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The tree model of a meromorphic plane curve

Abdallah Assi∗

Abstract.1 We associate with a plane meromorphic curve f a tree model T (f) based on its
contact structure. Then we give a description of the y-derivative of f (resp. the Jacobian
J(f, g)) in terms of T (f) (resp. T (fg)). We also characterize the regularity of f in terms of its
tree.

Introduction

Let K be an algebraically closed field of characteristic 0, and let f, g be two monic reduced
polynomial of K((x))[y] of degrees n,m. Let fx, gx (resp. fy, gy) be the x-derivative (resp. the
y-derivative) of f, g, and let J(f, g) = fxgy − fygx. Let, by Newton Theorem,

f(x, y) =
n
∏

i=1

(y − yi(x)), g(x, y) =
m
∏

j=1

(y − zj(x))

where (yi(x))1≤i≤n and (zj(x))1≤j≤m are meromorphic fractional series in x.

The main objective of this paper is to give a description of fy (resp. J(f, g)) when the contact

structure of f (resp. fg) is given. Let H(x, y) =
∏a

i=1(y−Yi(x)) and H̄(x, y) =
∏b

j=1(y−Zj(x))

be two irreducible polynomials of K((x))[y] and define the contact c(H, H̄) of H with H̄ to be

c(H, H̄) = maxi,jOx(Yi − Zj)

where Ox denotes the x-order (in particular, c(H,H) = +∞). Let f be as above and define
the contact set of f to be

C(f) = {Ox(yi − yj)|1 ≤ i 6= j ≤ n}

∗Université d’Angers, Mathématiques, 49045 Angers ceded 01, France, e-mail:assi@univ-angers.fr
Visiting address: American University of Beirut, Department of Mathematics, Beirut 1107 2020, Lebanon

12000 Mathematical Subject Classification:14H50,1499

1



Let f = f1. . . . .fξ(f) be the factorization of f into irreducible components in K((x))[y]. Given
M ∈ C(f), we define CM(f) to be the set of irreducible components of f such that fi ∈ CM(f)
if and only if c(fi, fj) ≥ M for some j (with the understanding that c(fi, fi) ≥ M if and only
if M ≥ Ox(y − y′) for some roots y 6= y′ of fi(x, y) = 0). Given fi, fj ∈ CM(f), we say that
fiRMfj if and only if c(fi, fj) ≥ M . This defines an equivalence relation in CM(f). The set of
points of the tree of f at the level M is defined to be the set of equivalence classes of RM . The
set of points defined this way -where two close points are connected with a segment of line and
top points are assigned with arrows- defines the tree T (f) of f :
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Let PM
i be a point of the tree of f at the level M , and let f̄ be a monic polynomial of

K((x))[y]. We denote by Qf̄ (M, i) the product of irreducible components of f̄ whose contact
with any element of PM

i is M . It results from [8] that degyQfy(M, i) > 1, i.e. every point of
T (f) gives rise to a component of fy. We give in Section 7., based on the results of Section
5., the y-degree of Qfy(M, i) (see Proposition 7.6.), its intersection multiplicity as well as the
contact of its irreducible components with fj, 1 ≤ j ≤ ξ(f) (see Theorem 7.7. and Theorem
8.9.). This result gives a generalization of Merle Theorem (f ∈ K[[x]][y] and ξ(f) = 1) (see
Proposition 7.1.) and Delgado Theorem (f ∈ K[[x]][y] and ξ(f) = 2) (see Example 7.11.).
These two results use the arithmetic of the semigroup associated with f , which does not help
for meromorphic curves and, as shown by Delgado, does not seem to suffice when f ∈ K[[x]][y]
and ξ(f) ≥ 3.

Let T (fg) be the tree of fg. A point PM
i of T (fg) is said to be an f -point (resp. a g-point) if

PM
i does not contain irreducible components of g (resp. f). A point of T (fg) which is neither

an f -point nor a g-point is called a mixed point. This gives us the following description of
T (fg):
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In Section 8, based on the results of Sections 4. and 5., we prove the following:

Theorem If PM
i is an f -point (resp. a g-point), then degyQJ(f,g)(M, i) > 1.

We also give an explicit formula for degyQJ(f,g)(M, i) and its intersection multiplicity as well
as the contact of its irreducible components with each of the irreducible components of fg (see
Theorem 8.4.).

As a consequence of this result, if J(f, g) ∈ K((x)), then every point of T (fg) is a mixed point.

Our explicit formulas for degrees, contacts and intersection multiplicities are given in terms
of the invariants associated with the tree models of f, g and fg. They are obtained using the
results of Section 5 and Section 6. Although these results are technical, we think that such
precise formulas would be of interest for the study of problems such as the Jacobian conjecture
in the plane.

The problem of the factorization of fy and J(f, g) has been considered by several authors, with a
special attention to the analytical case. Beside the results of Merle and Delgado, Garćıa Barroso
(see [7]) used the Eggers tree in order to get a decomposition of the generic polar of an analytic
reduced curve (see [12] for the definition and the properties of the Eggers tree). In [9] and [10],
Maugendre computed the set of Jacobian quotients of a germ (h1, h2) : (C

2, 0) 7−→ (C2, 0) in
terms of the minimal resolution of h1h2.

Let the notations be as above, and assume that f, g ∈ K[x−1][y]. Let F (x, y) = f(x−1, y) and
G(x, y) = g(x−1, y). For all λ ∈ K, we denote by Fλ the polynomial F − λ. We say that the

family (Fλ)λ∈K is regular if the rank of the K-vector space
K[x, y]

(Fλ, Fy)
, denoted Int(F−λ, Fy), does

not depend on λ ∈ K. When (Fλ)λ∈K is not regular, there exists a finite number λ1, . . . , λs ∈ K
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such that Int(F − λ, Fy) > Int(F − λi, Fy) for λ generic and 1 ≤ i ≤ s. The set {λ1, . . . , λs} is
called the set of irregular values of (Fλ)λ∈K.

The regularity of a family of affine curves is related to many problems in affine geometry, in
particular the plane Jacobian problem. If (Fλ)λ is regular and smooth, then F is equivalent to
a coordinate of K2. If (Fλ)λ is smooth with only one irregular value λ1, then F −λ1 is reducible
in K[x, y] and one of its irreducible components is equivalent to a coordinate of K2. In general,
nothing is known when (Fλ)λ has more than two irregular values (see [4] and references).

Suppose that F is generic in the family (Fλ)λ. In particular, the intersection multiplicity of f
with any irreducible component of fy is less than 0. Let PM

i be a point of T (f). We say that
PM
i is a bad point if one of the irreducible components of Qfy(M, i) has intersection multiplicity

0 with f . Otherwise, PM
i is said to be a good point. Hence the tree T (f) can be partitioned

into bad and good points. In Section 9 we characterize the notion of regularity in terms of this
partition. This, with the results of Section 2. is used in Section 10. in order to prove that the
set of irregular values of f is bounded by the number of irreducible components ξ(f) of f (or
equivalently the set of irregular values of (Fλ)λ∈K is bounded by the number of places of F at
infinity).

The author would like to think the referees for their valuable comments and suggestions.

1 Characteristic sequences

In this Section we shall recall some well known results about the theory of meromorphic curves
(see [2] for example). Let

f = yn + a1(x)y
n−1 + ...+ an(x)

be a monic irreducible polynomial of K((x))[y], where K((x)) denotes the field of meromorphic
series over K. Let, by Newton Theorem, y(t) ∈ K((t)) such that f(tn, y(t)) = 0. If w is a
primitive nth root of unity, then we have:

f(tn, y) =
n
∏

k=1

(y − y(wkt)).

Write y(t) =
∑

i ait
i, and let supp(y(t)) = {i; ai 6= 0}. Clearly supp(y(t)) = supp(y(wkt)) for

all 1 ≤ k ≤ n− 1. We denote this set by supp(f) and we recall that gcd(n, supp(f)) = 1. If we

write x
1
n for t, then y(x

1
n ) =

∑

aix
i
n and f(x, y(x

1
n )) = 0, i.e. y(x

1
n ) is a root of f(x, y) = 0.

By Newton Theorem, there are n distinct roots of f(x, y) = 0, given by y(wkx
1
n ), 1 ≤ k ≤ n.

We denote the set of roots of f by Root(f).

We shall associate with f its characteristic sequences (mf
k)k≥0, (d

f
k)k≥1 and (rfk)k≥0 defined by:

4



| mf
0 |= df1 =| rf0 |= n, mf

1 = rf1 = inf({i ∈ supp(f)|gcd(i, n) < min(i, n)}, and for all k ≥ 2,

dfk = gcd (mf
0 , . . . , m

f
k−1) = gcd (dfk−1, m

f
k−1),

mf
k = inf {i ∈ supp(f)| i is not divisible by dfk},

and rfk = rfk−1

dfk−1

dfk
+mf

k −mf
k−1.

Since gcd(n, supp(f)) = 1, then there is hf ∈ N such that dhf+1 = 1. We denote by convention

mf
hf+1 = rfhf+1 = +∞. The sequence (mk)0≤k≤hf

is also called the set of Newton-Puiseux

exponents of f . We finally set efk =
dfk
dfk+1

for all 1 ≤ k ≤ hf .

Let H be a polynomial of K((x))[y]. We define the intersection of f with H , denoted int(f,H),

by int(f,H) = OtH(tn, y(t)) = n.OxH(x, y(x
1
n )), where Ot (resp. Ox) denotes the order in t

(resp. in x).

Let p, q ∈ N∗, and let α(x) ∈ K((x
1
p )), β(x) ∈ K((x

1
q )). We set

c(α, β) = Ox(α(x)− β(x))

and we call c(α, β) the contact of α with β. We define the contact of f with α(x) to be

c(f, α) = max1≤i≤nOx(yi(x)− α(x))

where {y1, . . . , yn} = Root(f).

Let g = ym + b1(x)y
m−1 + . . . + bm(x) be a monic irreducible polynomial of K((x))[y] and let

Root(g) = {z1, . . . , zm}. We define the contact of f with g to be

c(f, g) = c(f, z1(x)).

Note that c(f, g) = c(f, zj(x)) = c(g, yi(x)) for all 1 ≤ j ≤ m and for all 1 ≤ i ≤ n.

Remark 1.1 (see [1]) i) Let f ∈ K[[x]][y] (resp. f ∈ K[x−1][y]). The set of int(f, g), g ∈
K[[x]][y] (resp. g ∈ K[x−1][y]) is a subsemigroup of Z. We denote it by Γ(f) and we call it
the semigroup associated with f . With the notations above, rfk > 0 (resp. rfk < 0) for all

k = 0, . . . , hf , and rf0 , r
f
1 , . . . , r

f
hf

generate Γ(f). We write Γ(f) =< rf0 , r
f
1 , . . . , r

f
hf

>.

ii) For all 1 ≤ k ≤ hf , e
f
k is the minimal integer such that efkr

f
k ∈< rf0 , r

f
1 , . . . , r

f
k−1 >.

iii) For all 1 ≤ k ≤ hf , there is a monic irreducible polynomial gk ∈ K((x))[y] of degree
n

dfk
in

y such that c(f, gk) =
mf

k

n
and int(f, gk) = rfk . Furthermore, Γ(gk) =<

rf0

dfk
,
rf1

dfk
, . . . ,

rfk−1

dfk
>.
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Lemma 1.2 (see [1]) Let y(x) =
∑

i aix
i
n ∈ Root(f). Given s ∈ N∗, let Us denotes the group

of the sth roots of unity in K. Set

R(i) = {w ∈ Un|c(y(x), y(wx)) = Ox(y(x)− y(wx)) ≥
mf

i

n
}

S(i) = {w ∈ Un|c(y(x), y(wx)) = Ox(y(x)− y(wx)) =
mf

i

n
}.

We have the following:

i) For all 1 ≤ i ≤ hf + 1, R(i) = Udfi
. In particular, card(R(i)) = dfi .

ii) For all 1 ≤ i ≤ hf , S(i) = R(i) − R(i + 1) = Udf
i
− Udf

i
+1. In particular, card(S(i)) =

dfi − dfi+1.

Proof. Let w ∈ Un, then y(x)−y(wx) =
∑

k ak(1−wk)x
k
n . In particular, Ox(y(x)−y(wx)) ≥

mf
i

n
if and only if wk = 1 for all k < mf

i . This holds if and only if w ∈ Udfi
.�

Remark 1.3 i) Let F be a nonzero monic polynomial of K((x))[y]. Assume that F is reduced
and let F = F1. . . . .Fξ(F ) be the factorization of F into irreducible polynomials of K((x))[y]. We
define Root(F ) to be the union of Root(Fi), i = 1, . . . , ξ(F ). Given a polynomial G ∈ K((x))[y],

we set int(F,G) =
∑ξ(F )

i=1 int(Fi, G).

ii) Let p ∈ N∗, and let F be a nonzero monic polynomial of K((x
1
p ))[y]. Assume that F

is reduced and let x = Xp, y = Y , and F̄ (X, Y ) = F (Xp, Y ). The polynomial F̄ is a monic
reduced polynomial of K((X))[Y ]. Let Root(F̄ ) = {Y1(X), . . . , YN(X)}. The set of roots of

F (x, y) = 0 is {Y1(x
1
p ), . . . , YN(X

1
p )}.

Let M be a given real number and consider the sequence (mf
k)1≤k≤hf+1 of Newton-Puiseux

exponents of f . We define the function S(mf ,M) by putting

S(mf ,M) =







rfkd
f
k + (nM −mf

k)d
f
k+1 if

mf
1

n
≤

mf
k

n
≤ M <

mf
k+1

n

Md1 if M <
mf

1

n

Proposition 1.4 (see [1] or [8]) Let g = ym + b1(x)y
m−1 + . . .+ bm(x) be a monic irreducible

polynomial of K((x))[y]. We have the following:

c(f, g) = M if and only if int(f, g) = S(mf ,M)
m

n

c(f, g) < M if and only if int(f, g) < S(mf ,M)
m

n

c(f, g) > M if and only if int(f, g) > S(mf ,M)
m

n

6



Let g1, g2 be two monic irreducible polynomials of K((x))[y] of degrees q1 and q2 respectively
and let (mgi

k )1≤k≤hgi
be the set of Newton-Puiseux exponents of gi, i = 1, 2.

Lemma 1.5 (see [1]) Let M = min(c(f, g2), c(f, g1)). We have the following:

(i) c(g1, g2) ≥ M .

(ii) if c(f, g2) 6= c(f, g1) then c(g1, g2) = M .

Lemma 1.6 Let the notations be as above and let (mg
k)1≤k≤hg+1 be the set of Newton-Puiseux

exponents of g. Let M = c(f, g) and assume that M ≥
mf

1

n
. Let k be the greatest integer such

that
mf

k

n
=

mg
k

m
≤ M . We have the following:

i)
n

dfi
=

m

dgi
for all i = 1, . . . , k + 1.

ii)
n

dfk+1

divides m. In particular, if k = h then n divides m.

Proof. ii) results from i), since by i), m =
n

dfk+1

dgk+1. On the other hand, let 1 ≤ i ≤ k

and remark that m.n = n.m,m.mf
1 = n.mg

1, . . . , m.mf
i−1 = n.mg

i−1, in particular m.dfi =

m.gcd(n,mf
1 , . . . , m

f
i−1) = n.gcd(q,mg

1, . . . , m
g
i−1) = n.dgi . This proves i).�

Lemma 1.7 Let the notations be as in Lemma 1.6. and let y(x) ∈ Root(f) (resp. z(x) ∈

Root(g)) such that c(y(x), z(x)) = M . Write y(x) =
∑

i c
f
i x

i
n and z(x) =

∑

j c
g
jx

j

m . If

M =
mf

hf

n
and n ≥ m, then either cgmM -the coefficient of xM in z(x)- is 0, or m = n.

Proof. If cgmM 6= 0, then M =
mg

hg

m
, hence n divides m. This, with the hypotheses implies that

m = n.�

As a corollary we get the following:

Lemma 1.8 Let g1, g2 be two monic irreducible polynomials of K((x))[y] of degrees q1, q2

respectively, and assume that c(g1, f) = c(g2, f) =
mf

h(f)

n
. If q1 < n and q2 < n, then c(g1, g2) >

mf
hf

n
.

7



Proof. Let y(x) ∈ Root(f) (resp. z1(x) ∈ Root(g1), z2(x) ∈ Root(g2)) such that c(y(x), z1(x)) =

c(y(x), z2(x)) =
mf

hf

n
. In particular c(z1(x), z2(x)) ≥

mf
h(f)

n
. By Lemma 1.7., the coefficients

of x

mf
hf

n in z1(x) and z2(x) are 0, which implies that c(z1(x), z2(x)) >
mf

hf

n
. This proves our

assertion.�

2 Equivalent and almost equivalent polynomials

Let f, g be two monic irreducible polynomials of K((x))[y], of degrees n,m in y. Let (mf
k)1≤k≤hf

,

(dfk)1≤k≤hf
, and (rfk)0≤k≤hf

(resp. (mg
k)1≤k≤hg

, (dgk)1≤k≤hg
, and (rgk)0≤k≤hg

) be the set of charac-
teristic sequences of f (resp. of g).

Definition 2.1 i) We say that g is equivalent to f if the following holds:

- hf = hg

-
mg

k

m
=

mf
k

n
for all k = 1, . . . , hf .

- c(f, g) ≥
mf

hf

n
.

ii) We say that g is almost equivalent to f if the following holds:

- hf = hg + 1.

-
mf

k

n
=

mg
k

m
for all k = 1, . . . , hg.

- c(f, g) =
mf

hf

n
.

Lemma 2.2 Let the notations be as in Definition 2.1.

i) If g is equivalent to f , then m = n.

ii) If g is almost equivalent to f , then m =
n

dfhf

. Furthermore, if y(x) =
∑

p cpx
p

m ∈ Root(g),

then c
m

f
hf

n
.m

= 0.

Proof. i) results from Lemma 1.6. On the other hand, by the same Lemma, m = a
n

dfhf

for some

a ∈ N∗, but gcd(a
n

dfhf

,
a

dfhf

mf
1 , . . . ,

a

dfhf

mf
hf−1) =

a

dfhf

dfhf
= 1, hence a = 1. This proves the first

assertion of ii). Now the least assertion results from Lemma 1.7.�
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Definition 2.3 Let {F1, . . . , Fr} be a set of monic irreducible polynomials of K((x))[y]. As-
sume that r > 1 and let nFi

= degyFi for all 1 ≤ i ≤ r.

i) We say that the sequence (F1, . . . , Fr) is equivalent if for all 1 ≤ i ≤ r, Fi is equivalent to F1.

ii) We say that the sequence (F1, . . . , Fr) is almost equivalent if the following holds:

- The sequence contains an equivalent subsequence of r − 1 elements.

- The remaining element is almost equivalent to the elements of the subsequence.

Proposition 2.4 Let the notations be as in Definition 2.3. and let M be a rational number.
If c(Fi, Fj) = M for all i 6= j, then the sequence (F1, . . . , Fr) is either equivalent or almost
equivalent.

Proof. If r = 1, then there is nothing to prove. Assume that r > 1, and that nF1 = max1≤k≤rnFk
.

- If M > mF1
hF1

, then, by Lemma 1.6., ii), nF1 divides nFk
for all 1 ≤ k ≤ r. In particular

nF1 = nFk
and Fk is equivalent to F1 for all 1 ≤ k ≤ r.

- Suppose that M =
mF1

hF1

nF1

, and that (F1, . . . , Fr) is not equivalent. Suppose, without loss

of generality, that F2 is not equivalent to F1. By hypothesis, M ≥
mF2

hF2

nF2

and
mF1

j

nF1

=
mF2

j

nF2

for all 1 ≤ j ≤ hF1 − 1. Let y(x) =
∑

cpx
p

nF2 ∈ Root(F2). If the coefficient of xM in y(x)

is non zero, then nF1 divides nF2, in particular nF2 = nF1, and
mF1

hF1

nF1

=
mF2

hF2

nF2

. Hence F1 is

equivalent to F2, which is a contradiction. Finally hF2 = hF1 − 1, and nF2 = a.
nF1

dF1
hF1

, but

gcd(nF2 , m
F2
1 , . . . , mF2

hF2
) = 1, hence a = 1 and nF2 =

nF1

dF1

hF1

. In particular F2 is almost equivalent

to F1. Let k > 2. If Fk is not equivalent to F1, then nFk
= nF2 < nF1 by the same argument

as above. In particular, by Lemma 1.8., c(F1, F2) > M , which is a contradiction. Finally the
sequence (F1, . . . , Fr) is almost equivalent.�

3 The Newton polygon of a meromorphic plane curve

In this Section we shall recall the notion of the Newton polygon of a meromorphic plane curve.
More generally let p ∈ N and let F = yN +A1(x)y

N−1 + . . .+AN−1(x)y+AN(x) be a reduced
polynomial of K((x1/p))[y]. For all i = 0, . . . , N , let αi = OxAi(x). The Newton boundary of
F is defined to be the boundary of the convex hull of

⋃N
i=1(αi, i) + R+.

Write F (x, y) =
∑

ij cijx
i
pyj and let Supp(F ) = {(

i

p
, j)|cij 6= 0}, then the Newton boundary of

9



F is also the boundary of the convex hull of
⋃

( i
p
,j)∈Supp(F )(

i

p
, j) + R+.

We define the Newton polygon of F , denoted N(F ), to be the union of the compact faces of the
Newton boudary of F . Let {Pk = (αkj , kj), k0 > k1 . . . > kvF } be the set of vertices of N(F ).
We denote this set by V (F ). We denote by E(F ) = {△F

l = Pkl−1
Pkl, l = 1, . . . , vF} the set of

edges of N(F ). For all 1 ≤ l ≤ vF we set F△F
l
=

∑

( i
p
,j)∈Supp(F )

⋂
△F

l
cijx

i
pyj.

u u
u

A
A
Au
Q
Q
Q
QQu

�
�
�
�
�
�

u

u

u
u

������

u
u

Lemma 3.1 Given 1 ≤ l ≤ vF , there is exactly kl−1 − kl elements of Root(F ), yj(x), 1 ≤ j ≤
kl−1 − kl, such that the following hold

i) Ox(yj(x)) =
αkl−1

− αkl

kl−1 − kl
for all j.

ii) The set of initial coefficients, denoted inco, of y1, . . . , y(kl−1−kl) is nothing but the set of
nonzero roots of F△F

l
(1, y).

Conversely, given y(x) ∈ Root(F ), there exists △F
l such that Ox(y(x)) =

αkl−1
− αkl

kl−1 − kl
.

We denote the set of x-orders of Root(F ) by O(F ), and we set Poly(F ) = {F△F
l
(1, y)|1 ≤ l ≤

vF}.

Lemma 3.2 Let F be as above, and let M be a rational number. Define LM : Supp(F ) 7−→ Q

by LM (
i

p
, j) =

i

p
+Mj, and let a0 = inf(LM(Supp(F ))). Let inM (F ) =

∑

i
p
+Mj=a0

cijx
i
pyj. We

have the following:

i) M ∈ O(F ) if and only if inM(F ) is not a monomial. In this case, M =
αkl−1

− αkl

kl−1 − kl
for

some 1 ≤ l ≤ vF , and inM(F ) = F△F
l
. Furthermore, (a0, 0) is the point where the line defined

by (αkl−1
, kl−1) and (αkl, kl) intersects the x-axis.

ii) Consider the change of variables x = X, y = XMY and let F̄ (X, Y ) = F (X,XMY ). We

have F̄ =
∑

cijx
i
p
+Mj = xa0F△F

l
(1, y) +

∑

a>a0
xaPa(y).

10



Proof. Easy exercise.�

The following two lemmas give information about the Newton polygons of the y-derivative
(resp. the Jacobian) of a meromorphic curve (resp. the Jacobian of two meromorphic curves).

Lemma 3.3 Let F be as above and let N(F ) be the Newton polygon of F . Let V (F ) = {Pk =
(αkl, kl), k0 > k1 . . . > kvF } be the set of vertices of F and assume that kvF = 0, i.e. N(F ) meets
the x-axis. Assume that (α1, 1) ∈ Supp(F△F

vF
) for some α1 ∈ Q, and that (α1, 1) /∈ V (F ). We

have the following

i) (α1, 0) ∈ V (Fy).

ii) N(Fy) is the translation of N(F ) with respect to the vector (0,−1).

iii) O(Fy) = O(F ), vF = vFy
.

iv) degyF△F
vF

= degy(FY )△Fy
vF

+ 1. In particular, if F has s roots whose order in x is

αkv(F )−1
− αkv(F )

kvF−1
, then Fy has s− 1 roots with the same order in x.

Proof. The proof follows immediately from the hypotheses and Lemma 3.1.�

u uu u
uu

A
A
AuA
A
AuQQ

Q
QQ

Q
QQ uuu

�
�
�
�
�
�

�
�
�
�
�
�

u1r
u

uu
uu

������

������

Lemma 3.4 Let G = ym+ b1(x)y
m−1+ . . .+am(x) be a reduced polynomial of K((x

1
q ))[y] and

let J = J(F,G) = FxGy − FyGx be the Jacobian of F and G. Let V (G) = {(βli , li), l0 > l1 >
. . . > lvG} be the set of vertices of N(G) and let E(G) = {△G

1 , . . . ,△
G
vG
} be the set of edges of

N(G). Assume that the following holds:

i) kvF = lvG = 0, αvF 6= 0 and βvG 6= 0, i.e. N(F ) and N(G) meet the x-axis into points
different from the origin.

ii) (α1, 1) ∈ Supp(F△F
vF
) (resp. (β1, 1) ∈ Supp(G△G

vG
)) for some α1 (resp. β1) in Q, and

(α1, 1) /∈ V (F ) (resp. (β1, 1) /∈ V (G)).

iii) max(O(F )) > max(O(G)).

Then we have:

11



i) max(O(J)) = max(O(Fy)) = max(O(F )).

ii) IfG△G
vG
(x, 0) = axβlvG , a ∈ K∗, then (α1+βlvG

−1, 0) ∈ V (J) and J△J
vJ

= (−FyGx)△FyGx
vFyGx

=

−aβlr .x
βlr−1(Fy)△Fy

vF

.

u uuA
A
Au
Q
Q
Q
QQA

A
A
A

A
A

βlr

uu
u

u
αks

u u1r

Proof. It follows from the hypotheses that (αv(F )−1, 0) ∈ V (Fx), (α
1, 0) ∈ V (Fy), (βv(G)−1, 0) ∈

V (Gx), and (β1, 0) ∈ V (Gy). In particular (αv(F ) + β1 − 1, 0) ∈ V (FxGy) and (βv(G) + α1 −
1, 0) ∈ V (FyGx). Since max(O(F )) > max(O(G)), then βlvG

− β1 < αkv(F )
− α1, in particular

βlvG
+ α1 − 1 < αkvF

+ β1 − 1, and (βlvG
+ α1 − 1, 0) ∈ V (J). A similar argument shows

that the last edge of J = FxGy − FyGx is nothing but the last edge of −FyGx, and that
(−FyGx)△FyGx

vFyGx

= −aβlr .x
βlr−1(Fy)△Fy

vF

. �

4 Deformation of Newton polygons and applications

Let f = yn + a1(x)y
n−1 + . . . + an−1(x)y + an(x) be a reduced monic polynomial of K((x))[y]

and let Root(f) = {y1, . . . , yn}. Let f1, . . . , fξ(f) be the set of irreducible components of f in
K((x))[y].

Definition 4.1 Let N be a nonnegative integer and let γ(x) =
∑

k≥k0
akx

k
N ∈ K((x

1
N )). Let

M be a real number. We set

γ<M =











∑

k≥k0,
k
N
<M

akx
k
N if M >

k0
N

0 otherwise

and we call γ<M the < M-truncation of γ(x).

Let θ be a generic element of K. We set

γ<M,θ =











∑

k≥k0,
k
N
<M

akx
k
N + θ.xM if M ≥

k0
N

θ.xM otherwise

12



and we call γ<M,θ the M-deformation of γ(x).

Let N be a nonnegative integer and let γ(x) ∈ K((x
1
N )). Let M be a real number and let

γ<M be the < M-truncation of γ(x). Consider the change of variables X = x, Y = y − γ<M .
The polynomial F (X, Y ) = f(X, Y + γ<M) is a monic polynomial of degree n in Y whose
coefficients are fractional meromorphic series in X . Let V (F ) = {Pi = (αki, ki)|i = 1, . . . , vF}
and let E(F ) = {△F

1 , . . . ,△
F
vF
}.

Lemma 4.2 Let the notations be as above. Assume that γ /∈ Root(f) and letM = max1≤j≤nc(γ, yj).
We have the following:

i) Root(F (X, Y )) = {Yk = yk − γ<M , k = 1, . . . , n}.

ii) O(F ) = {c(yk, γ)|k = 1, . . . , n}.

iii) There is exactly ki − ki+1 roots y(x) of F whose contact with γ is
αi − αi−1

ki − ki−1
.

iii) The initial coefficients of Root(F ), denoted inco(F ), is = {inco(yk − γ)|k = 1, . . . , n}.

In particular, the Newton polygon N(F ) gives us a complete information about the relationship
between γ(x) with the roots of f . We call it the Newton polygon of f with respect to γ(x),
and we denote it by N(f, γ).

Proof. We have

F (X, Y ) = f(X, Y + γ(X)) =
n
∏

k=1

(Y + γ(X)− yk(X))

now use Lemma 3.1.�

Lemma 4.3 Let yi(x) be a root of f(x, y) = 0 and let

M = maxj 6=ic(yi, yj).

Let ỹi = yi<M,θ = (yi)<M(x) + θxM be the M-deformation of yi and consider the change of
variables X = x, Y = y − ỹi(X). Let F (X, Y ) = f(X, Y + ỹi(X)). We have the following:

i) O(F ) = {c(yj − yi)|j 6= i}}.

ii) M = max(O(F )).

iii) The last vertex of N(F ) belongs to the x-axis.

iv) Let △F
vF

be the last edge of N(F ). We have (α1, 1) ∈ Supp(F△F
vF
) for some α1. Further-

more, (α1, 1) /∈ V (F ).

13



Proof. We have

F (X, Y ) = f(X, Y + ỹi(X)) =
n
∏

k=1

(Y + (yi)<M(X) + θXM − yk(X))

and by hypothesis, O((yi)<M(X) + θXM − yk(X)) = O(yi(X) − yk(X)) for all k 6= i. Fur-
thermore, O((yi)<M(X) + θXM − yi(X)) = M = O(yi(X) − yj(X)) for some j 6= i. This
implies i) and ii). Now F (X, 0) =

∏n
k=1((yi)<M(X) + θXM − yk(X)) 6= 0, hence iii) fol-

lows. Let △F
vF

be the last edge of N(F ) and let yj1, . . . , yjp be the set of roots of f such
that c(yi − yjk) = M for all k = 1, . . . , l. Write yi =

∑

p c
i
px

p and let yi − yjk = cakx
M + ...

for all k = 1, . . . , l. It follows that (Yi)<M(X) + θxM − yjk(X) = (cak + θ)xM + .... Finally

F△F
vF

= (y − (cM + θ)xM)
∏l

k=1(y − (cak + θ)xM ). Since θ is generic and l ≥ 1, then iv) follows

immediately.�

In particular, using the results of Section 3., the last vertex of N(FY ) is (α
1, 0), O(F ) = O(Fy),

and max(O(FY )) = M . But FY (X, Y ) = fy(X, Y + ỹi(X)). This with the above Lemma led to
the following Proposition (see also [8], Lemma 3.3.):

Lemma 4.4 For yi(x), yj(x), i 6= j, there is a root zk(x) of fy(x, y) = 0 such that

c(yi(x), yj(x)) = c(yi(x), zk(x)) = c(yj(x), zk(x)).

Conversely, given yi(x), zk(x), there is yj(x) for which the above equality holds. Moreover,
given yi(x) and M ∈ R,

card{yj(x)|c(yi(x), yj(x)) = M} = card{zk(x)|c(yi(x), zk(x)) = M}.

Proof. Let i 6= j and let M = c(yi − yj). Let ỹi = (yi)<M + θxM be the M-deformation of yi.
Consider, as in Lemma 4.3., the change of variables X = x, Y = y − ỹi(X) and let F (X, Y ) =
f(X, Y + ỹi(X)). It follows from Lemma 4.3. that F (X, 0) 6= 0, and if degyF△F

vF
= r + 1, then

there is r roots yj1, . . . , yjr of f(x, y) = 0 such that c(yi − yjk) = M for all k = 1, . . . , r. Since
(α1, 0) ∈ Supp(F△F

vF
) for some α1, then the cardinality of E(Fy) is the same as the cardinality of

E(F ). Furthermore, N(Fy) is a translation of N(F ) with respect of the vector (0,−1). Finally,
(Fy)△F

vF
= (F△F

vF
)y is a polynomial of degree r in y. In particular, by Lemma 4.3., there is r

roots of fy(x, y) = 0 whose contact with yi is M . This completes the proof of the result.�

Let g = ym + a1(x)y
m−1 + . . .+ am(x) be a reduced monic polynomial of K((x))[y] and denote

by z1, . . . , zm the set of roots of g. Let yi(x) ∈ Root(f) and let:

M = max({c(yi, yj)|j 6= i} ∪ {c(yi, zk)|k = 1, . . . , m})

Lemma 4.5 Let the notations be as above, and assume that M > max1≤k≤mc(yi, zk). Let
ỹi = (yi)<M + θxM be the M-deformation of yi and consider the change of variables X =

14



x, Y = y − ỹi(X). Let F (X, Y ) = f(X, Y + ỹi(X)), G(X, Y ) = g(X, Y + ỹi(X)). We have the
following

i) F (X, 0) 6= 0 and G(X, 0) 6= 0, i.e. N(F ) and N(G) meet the x-axis.

ii) max(O(F )) = M > max(O(G))

iii) If △F
vF

(resp. △G
vG
) denotes the last edge of N(F ) (resp. N(G)) then (α1, 1) ∈

Supp(F△vF
) (resp. (β1, 1) ∈ Supp(G△vG

)) for some α1 (resp. β1), and (α1, 1) /∈ V (F ) (resp.
(β1, 1) /∈ V (G)).

Proof. Let F (X, Y ) =
∏n

j=1(Y − Yj(X)) and G(X, Y ) =
∏m

k=1(Y − Zk(X)). Clearly Yj(X) =

yj(X) − (yi)<M(X) + θXM , Zk(X) = zk(X) − (yi)<M(X) + θXM . In particular, for all k =
1, . . . , m, O(Zk) = c(yi, zk) < M . On the other hand, for all j 6= i, O(Yj) = c(yi, yj) ≤ M with
equality for at least one j, and O(Yi) = M . This implies i) and ii). Now iii) follows by a similar
argument as in Lemma 4.3.�

Let J = J(f, g), and note that J(F,G) = J(X, Y ). In particular, by the results of the previous
Section we get the following:

Lemma 4.6 For yi(x), yj(x), i 6= j, if c(yi, yj) > max1≤k≤mc(yi, zk), then there is a root ul(x)
of J(x, y) = 0 such that

c(yi(x), yj(x)) = c(yi(x), ul(x))

Conversely, given yi(x), ul(x), if c(yi, ul) > c(yi, zk), k = 1, . . . , m, there is yj(x) for which the
above equality holds. Moreover, given yi(x) and M ∈ R, if M > max1≤k≤mc(yi, zk), then:

card{yj(x)|c(yi(x), yj(x)) = M} = card{ul(x)|c(yi(x), ul(x)) = M}.

Proof. Let M = c(yi, yj) and consider the change of variables X = x, Y = y − ỹi(X), where
ỹi = (yi)<M +θxM is the M-deformation of yi. Let F (X, Y ) = f(X, Y + Ỹi(X)) and G(X, Y ) =
g(X, Y + Ỹi(X)). Il follows from the hypotheses that F and G satisfies conditions i), ii), and
iii) of Lemma 3.4. In particular J(X, Y )

△
J(X,Y )
v(J(X,Y )

= (G△G
v(G)

(X, 0))X .(F△F
vF
)Y . The proof follows

now by a similar argument as in Lemma 4.4.�

5 Five main results

Let f = yn + a1(x)y
n−1 + . . . + an(x) be a monic reduced polynomial of K((x))[y] and let

f = f1.f2. . . . .fξ(f) be the decomposition of f into irreducible components of K((x))[y]. Let fy
be the y-derivative of f and let Root(f) = {y1(x), . . . , yn(x)}.

For all 1 ≤ i ≤ ξ(f), set nfi = degy(fi), and let (mfi
k )1≤k≤hfi

+1, (d
fi
k )1≤k≤hfi

+1), (e
fi
k )1≤k≤hfi

,

(rfik )1≤k≤hfi
+1 be the set of characteristic sequences of fi.
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Proposition 5.1 Assume that ξ(f) = 1, i. e. f = f1 is irreducible. For all 1 ≤ k ≤ hf , we
have:

card{z(x) ∈ Root(fy)|c(f, z(x)) =
mf

k

nf
} = (efk − 1)

nf

dfk
.

Proof. Note that, by Lemma 4.4., c(f, z(x)) ∈ {
mf

1

nf
, . . . ,

mf
hf

nf
}. Assume first that k = hf and fix

a root yp of f . By Lemma 1.2., yp has the contact
mf

hf

nf
with exactly dfhf

−dfhf+1 = dfhf
−1 = efhf

−1

roots of f , consequently, by Lemma 4.4., there is efhf
− 1 roots of fy whose contact with yp

is
mf

hf

nf
. Denote the set of these roots by Dp. Each element of Dp has the contact

mf
hf

nf
with

exactly dfhf
roots of f (since we have to add yp). Denote this set by Cp. Let yq 6∈ Cp be a

root of f . Repeating with yq what we did for yp, we construct Dq and Cq in a similar way.

Obviously Cp ∩Cq = ∅ (otherwise, c(yp, yq) =
mf

hf

nf
, which is impossible because yq 6∈ Cp). This

implies that Dp ∩ Dq = ∅.... This process divides the nf roots of f into
nf

dfhf

disjoint groups

C1, . . . , C nf

d
f
hf

such that for all 1 ≤ p ≤
nf

dfhf

, Cp contains the roots of f having the contact
mf

hf

nf

with the elements of Dp. For all z(x) ∈ Dp, c(f, z(x)) =
mf

hf

nf

, in particular

card{z(x) ∈ Root(fy)|c(f, z(x)) =
mf

hf

nf
} =

nf

d
f
hf
∑

p=1

cardDp = (efhf
− 1)

nf

dfhf

.

Assume that the equality is true for k = hf , . . . , j + 1, then there is exactly
∑hf

i=j+1(e
f
i −

1)
nf

dfj
= nf −

nf

dfj
roots of fy having the contact ≥ mf

j with f . We now repeat the same argument

with
nf

dfj
,

dfj

dfj+1

− 1 instead of nf and dfhf
− 1.�

Proposition 5.2 Let M ∈ Q and let 1 ≤ i ≤ ξ(f). Assume that M 6=
mfi

k

nfi

for all k =

1, . . . , hfi. We have:
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card{z(x) ∈ Root(fy)|c(fi, z(x)) = M} = card{y(x) ∈ Root(f)|c(fi, y(x)) = M} =
∑

c(fi,fk)=M

nfk .

Proof. Let, without loss of generality, i = 1 and let k > 1 be such that c(f1, fk) = M . Fix a root
yp(x) of f1. Since c(yp(x), fk) = M , then there is a root y(x) of fk such that c(yp(x), y(x)) = M .

Let θ ∈ {0, . . . , hf1} be the smallest integer such that M <
mf1

θ+1

nf1

and consider another root

yj(x) of f1. We have:

c(yj, y(x)) = Ox(yj − y(x)) = Ox(yj − yp + yp − y(x)) =







M if Ox(yj − yp) ≥
m

f1
θ+1

nf1

Ox(yj − yp) if Ox(yj − yp) <
m

f1
θ+1

nf1

By Lemma 1.2., there is exactly df1θ+1 − 1 roots of f1 having a contact ≥
mf1

θ+1

nf1

with yp, conse-

quently, by the formula above, there is exactly df1θ+1 roots of f1 having the contact M with y(x)
(since we have to add yp). Denote this set by Cp and let Dp

k be the set of roots of fk having
the contact M with yp. In particular an element of Dp

k has the contact M with every element
of Cp.

Let yq /∈ Cp be a root of f1 and repeat the same construction with yq instead of yp. It is
clear that Cp ∩ Cq = ∅ (otherwise, if ȳ ∈ Cp ∩ Cq, then c(ȳ, yp) = c(ȳ, yq) = M , in particular
c(yp, yq) ≥ M , which is a contradiction since yq /∈ Cp), in particular Dp

k ∩Dq
k = ∅. This process

divides the set of roots of fk into disjoint
nf1

df1θ+1

groups D1
k, . . . , D

nf1

d
f1
θ+1

k : for all 1 ≤ p ≤
nf1

df1θ+1

, Dp
k

contains the roots of f having the contact M with the elements of Cp. Repeating what we
did with another fl, l 6= k, such that c(f1, fl) = M , then adding the Dp

k’s, We obtain disjoint
nf1

df1θ+1

groups D1, . . . , D nf1

d
f1
θ+1

such that Dp contains the roots of f having the contact M with the

elements of Cp. We have, by Lemma 4.4.

card{z(x) ∈ Root(fy)|c(yp(x), z(x)) = M} = card{y(x) ∈ Root(f)|c(yp(x), y(x)) = M} = cardDp

Let z(x) ∈ Root(fy) and assume that c(z(x), yp) = M . If yq ∈ Root(f), yq 6= yp, since c(yp, yq) 6=
M , then c(z(x), yq) ≤ M . In particular c(f1, z(x)) = M . Finally

card{z(x) ∈ Root(fy)|c(f1, z(x)) = M} =

nf1

d
f1
θ+1
∑

p=1

cardDp =
∑

c(f1,fk)=M

nfk
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This proves our assertion.�

Proposition 5.3 For all 1 ≤ i ≤ r and for all 1 ≤ θ ≤ hfi , we have:

card{z(x) ∈ Root(fy)|c(fi, z(x)) =
mfi

θ

nfi

} = card{y(x) ∈ Root(f)|c(fi, y(x)) =
mfi

θ

nfi

}+(efiθ −1)
nfi

dfiθ

=
∑

c(fi,fk)=
m

fi
θ

nfi

nfk + (efiθ − 1)
nfi

dfiθ
.

Proof. Let, without loss of generality, i = 1 and assume that c(f1, fk) =
mf1

θ

nf1

for at least one

k > 1. Let yp be a root of f1. Since c(fk, yp) =
mf1

θ

nf1

, then there is a root y(x) of fk such that

c(yp(x), y(x)) =
mf1

θ

nf1

. By Lemma 1.2., there is exactly df1θ − 1 roots of f1 having a contact

≥
mf1

θ

nf1

with yp. Let yj(x) be a root of f1 such that c(yp, yj) ≥
mf1

θ

nf1

, then c(yj, y(x)) = Ox(yj −

y(x)) = Ox(yj − yp + yp − y(x)) ≥
mf1

θ

nf1

. On the other hand, c(yj(x), y(x)) ≤ c(f1, fk) =
mf1

θ

nf1

,

hence c(yj, y(x)) =
mf1

θ

nf1

. Consequently, there is exactly df1θ roots of f1 having the contact

mf1
θ

nf1

with y(x). Denote this set by Cp and let Dk
p be the set of roots of fk such that for all

y(x) ∈ Dk
p , c(yp(x), y(x)) =

mf1
θ

nf1

. In particular, an element of Dk
p has the contact

mf1
θ

nf1

with

every element of Cp.

Let yq /∈ Cp be a root of f1 and repeat the same construction with yq instead of yp. We have,
by a similar argument as in Proposition 5.2., Cp ∩Cq = ∅ and consequently Dk

p ∩Dk
q = ∅. This

divides the set of roots of fk into disjoint
nf1

df1θ
groups D1

k, . . . , D

nf1

d
f1
θ

k . Each element of Dp
k has

the contact
mf1

θ

nf1

with the elements of Cp. Repeating the same argument with the set of fl such

that c(f1, fl) =
mf1

θ

nf1

, then adding the Dk
p ’s, we obtain disjoint

nf1

df1θ
groups D1, . . . , Dnf1

dθ

such
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that for all 1 ≤ p ≤
nf1

dθ
, Dp contains the roots of

f

f1
having the contact

mf1
θ

nf1

with the elements

of Cp. We have, by Lemma 2.2. and Lemma 4.4.:

card{z(x) ∈ Root(fy)|c(yp, z(x)) =
mf1

θ

nf1

} = card{y(x)|c(yp, y(x)) =
mf1

θ

nf1

}

= cardDp + (ef1θ − 1)
nf1

df1θ

And by a similar argument as in Proposition 5.2.,

card{z(x) ∈ Root(fy)|c(f1, z(x)) =
mf1

θ

nf1

} = (
∑

1≤p≤
nf1

d
f1
θ

cardDp) + (ef1θ − 1)
nf1

df1θ

= (
∑

c(f1,fk)=
m

f1
θ

nf1

nfk) + (ef1θ − 1)
nf1

df1θ

This proves our assertion.�

Let g = ym + b1(x)y
m−1 + . . . + bm(x) be a monic reduced polynomial of K((x))[y] and let

g1, . . . , gξ(g) be the set of irreducible components of g in K((x))[y]. Let Root(g) = {z1, . . . , zm},
and let J = J(f, g) be the Jacobian of f and g.

Proposition 5.4 Let M ∈ Q and assume that c(y(x), y′(x)) = M for some y(x), y′(x) ∈

Root(f), and that M > max1≤j≤mc(y(x), zj(x)). Let 1 ≤ i ≤ ξ(f), and assume that M 6=
mfi

k

nfi
for all k = 1, . . . , hfi . We have the following

card{u(x) ∈ Root(J)|c(fi, u(x)) = M} = card{yj(x)|c(fi, yj(x)) = M} =
∑

c(fi,fk)=M

nfk .

Proof. The proof is similar to the proof of Proposition 5.2., where Lemma 4.4. is replaced by
Lemma 4.6.�

Proposition 5.5 Let 1 ≤ θ ≤ hfi and assume that
mfi

θ

nfi

> max1≤j≤n,1≤k≤mc((yj(x), zk(x)). We

have the following

card{u(x) ∈ Root(J)|c(fi, u(x)) =
mfi

θ

nfi

} = card{y(x) ∈ Root(f)|c(fi, y(x)) =
mfi

θ

nfi

}+(efiθ −1)
nfi

dfiθ
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=
∑

c(fi,fk)=
m

fi
θ

nfi

nfk + (efiθ − 1)
nfi

dfiθ
.

Proof. The proof is similar to the proof of Proposition 5.3., where Lemma 4.4. is replaced by
Lemma 4.6.�

6 The tree of contacts

Let f be a monic reduced polynomial in K((x))[y] and let f = f1. . . . .fξ(f) be the factorization
of f into irreducible components of K((x))[y]. We define the set of contacts of f to be the set:

C(f) = {c(fp, fq)|1 ≤ p 6= q ≤ ξ(f)} ∪ ∪
ξ(f)
k=1{

mfk
1

nfk

, . . . ,
mfk

hfk

nfk

}

Let C(f) = {M1, . . . ,Mtf}. The tree associated with f is constructed as follows:

Let M ∈ C(f) and define CM(f) to be the set of irreducible components of f such that

fp ∈ CM(f) ⇔ c(fp, fq) ≥ M for some 1 ≤ q ≤ ξ(f)

with the understanding that c(fk, fk) ≥ M if and only if
mfk

i

nfk

≥ M for some 1 ≤ i ≤ hfk .

We associate with M the equivalence relation on the set CM(f), denoted RM , and defined as
follows:

fpRMfq if and only if c(fp, fq) ≥ M.

We define the points of the tree T (f) at the level M to be the set of equivalence classes of RM ,
and we denote this set by PM

1 , . . . , PM
sM

. We shall say that PN
j dominates PM

i , and we write
PN
j ≥ PM

i , if PN
j ⊆ PM

i . We shall say that PN
j strictly dominates PM

i , and we write PN
j > PM

i ,
if PN

j dominates PM
i , PM

i 6= PN
j , and C(f)∩]M,N [= ∅. This defines an order on the set of

points of T (f) with a unique minimal element, denoted PM1
1 . A point PM

i is called a top point
of T (f) if it is maximal with respect to this order. We denote by Top(f) the set of top points
of T (f).

Let PM
i be a point of T (f), and let PN1

i1
, . . . , PNt

it
be the set of points that strictly dominate PM

i .

We set DM
i = PM

i − ∪t
l=1P

Nl

il
. Clearly {PN1

i1
, . . . , PNt

it , DM
i } is a partition of PM

i . Furthermore,
for all F ∈ DM

i and for all F 6= G ∈ PM
i , c(F,G) = M . We also have the following:

i) if F ∈ DM
i , then M ≥

mF
hF

nF
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ii) PM
i ∈ Top(f) if and only if PM

i = DM
i .

If PN
j strictly dominates PM

i , then we link these two points be a segment of line. We define
the set of edges of T (f) to be the set of these segments. Given a point PM

i , if DM
i 6= ∅, then

we associate with each F ∈ DM
i an arrow starting at the point PM

i . Let PM1
1 , PM2

i2
. . . , PMk

ik
be

a set of points of T (f) such that PM2
i2

strictly dominates PM1
1 , PMk

ik
∈ Top(f), and P

Mj

ij
strictly

dominates P
Mj−1

ij−1
for all 3 ≤ j ≤ k. The union of edges linking these points is called a branch

of T (f). Clearly, there are as many branches of T (f) as there are top points of T (f).
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Lemma 6.1 Let PM
i be a point of T (f). We have the following:

i) For all F,G ∈ PM
i , c(F,G) ≥ M .

ii) For all F ∈ PM
i and for all H /∈ PM

i , c(F,H) < M .

iii) For all F,G ∈ PM
i and for all H /∈ PM

i , c(F,H) = c(G,H). We denote this rational by
c(H,PM

i ).

iv) let F ∈ PM
i and let 1 ≤ θ ≤ hF +1 be the smallest integer such that M ≤

mF
θ

nF
. If θ ≥ 2

then
mG

k

nG
=

mF
k

nF
for all G ∈ PM

i and for all 1 ≤ k ≤ θ − 1. We denote this rational number by

mk

n
(PM

i )). As a consequence
nG

dGk
does not depend on G ∈ PM

i ) and 1 ≤ k ≤ θ. We denote this

rational number by
n

dk
(PM

i ).

Proof. The proof is an easy application of Lemma 1.5. and Lemma 1.6.�

Let PM
i be a point of T (f) and define the subsets X1(M, i), . . . , Xs(M,i)(M, i) of PM

i as follows:
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- For all k and for all F,G ∈ Xk(M, i), c(F,G) = M .

- Given F ∈ Xk(M, i) and l 6= k, if F /∈ Xl(M, i), then c(F,G) > M for some G ∈ Xl(M, i)
(in particular F,G ∈ PN

j for some PN
j > PM

i ).

The sets defined above satisfy the following property:

Lemma 6.2 The cardinality of Xk(M, i) does not depend on 1 ≤ k ≤ s(M, i). We denote this
cardinality by c(M, i).

Proof. Assume that s(M, i) ≥ 2 and let 1 ≤ a 6= b ≤ s(M, i). We shall construct a bijective map
from Xa(M, i) to Xb(M, i). Let F ∈ Xa(M, i). If F /∈ Xb(M, i), then there is F̃ ∈ Xb(M, i) such
that c(F, F̃ ) > M . We claim that F̃ is the only element with this property. In fact, if there is
F̃ 6= G ∈ Xb(M, i) such that c(F,G)) > M , then M = c(F̃ , G)) ≥ min(c(F, F̃ ), c(F,G)) > M ,
which is a contradiction. This defines a map

φa,b : Xa(M, i) 7−→ Xb(M, i)

φa,b(F ) =

{

F if F ∈ Xb(M, i)

F̃ if F /∈ Xb(M, i)

This map is clearly bijective. This completes the proof of the Lemma.�

Lemma 6.3 Let the notations be as above, and let PN1
i1

, . . . , PNt

it
be the set of points that

strictly dominate PM
i . We have the following:

i) DM
i ⊆ Xk(M, i) for all 1 ≤ k ≤ s(M, i).

ii) Given 1 ≤ k ≤ s(M, i), (Xk(M, i) ∩ PN1
i1

, . . . , Xk(M, i) ∩ PNt

it
, DM

i ) is a partition of
Xk(M, i).

iii) Given 1 ≤ k ≤ s(M, i) and 1 ≤ l ≤ t, Xk(M, i) ∩ PN1
il

is reduced to one element.

iv) c(M, i) = t+ card(DM
i ).

Proof. The first two assertions are clear, on the other hand 3. =⇒ 4. We shall consequently
prove 3. Assume, without loss of generality, that k = 1, and let 1 ≤ l ≤ t . Suppose that
X1(M, i) ∩ PNl

il
= ∅ and let G ∈ PNl

il
. We have c(F,G) = M for all F ∈ X1(M, i), in particular

G ∈ X1(M, i), which is a contradiction. Consequently X1(M, i) ∩ PNl

il
6= ∅. Let G1, G2 be two

polynomials of X1(M, i) ∩ PNl

il
. We have c(G1, G2) = M and c(G1, G2) ≥ N > M . This is a

contradiction if G1 6= G2.�
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Let PM
i be a point of T (f) and assume that DM

i 6= ∅. For all F ∈ DM
i , c(F, F ) ≤ M , in

particular M ≥
mF

hF

nF
.

Lemma 6.4 Let the notations be as above. We have the following

i) If M >
mF

hF

nF
for all F ∈ DM

i , then nF does not depend on F ∈ DM
i . We denote it by n(DM

i ).

We have
∑

F∈DM
i
nF = (c(M, i)− t)n(DM

i ).

ii) If M =
mF

hF

nF
for some F ∈ DM

i , then one of the following hold

1ii) M =
mF

hF

nF
for all F ∈ DM

i . In this case, nF does not depend on F ∈ DM
i . We denote it

by n(DM
i ). We have

∑

F∈DM
i
nF = (c(M, i)− t)n(DM

i ).

1iii) M >
mF ′

h
F ′

nF ′

for some F ′ ∈ DM
i . In this case, M =

mF
hF

nF
>

mF ′

h
F ′

nF ′

for all F ∈ DM
i , F 6= F ′,

and nF , hF , (d
F
k )1≤k≤hF

do not depend on F ∈ DM
i , F 6= F ′. We denote these integers by

n(DM
i ), h(DM

i ), d
DM

i

k . With these notations we have n(F ′) =
n(DM

i )

d
DM

i

h(DM
i )

, and
∑

F∈DM
i
n(F ) =

(c(M, i)− t− 1).n(DM
i ) +

n(DM
i )

d
DM

i

h(DM
i )

.

Proof. By definition, for all F,G ∈ DM
i , c(F,G) = M . Consequently our results follow from

Proposition 3.4.�

Let H be a monic polynomial of K((x))[y] and let H1, . . . , Hξ(H) be the set of irreducible
components of H in K((x))[y]. Let PM

i be a point of T (f) and let F ∈ PM
i . We set:

R=M (F,H) =
∏

c(F,Hk)=M

Hk

and

R>M (F,H) =
∏

c(F,Hk)>M

Hk
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In other words, R=M(F,H) (resp. R>M(F,H)) is the product of irreducible components of H
whose contact with F is M (resp. > M).

Lemma 6.5 Suppose that PM
i /∈ Top(f) and let PN1

i1
, . . . , PNt

it
be the set of points that strictly

dominate PM
i . Fix 1 ≤ l ≤ t and let F ∈ PNl

il
. We have the following

i) For all G ∈ PNl

il
, R=M(G,H) = R=M(F,H) (resp. R>M(G,H) = R>M (F,H)). We denote

this polynomial by R=M(PNl

il
, H) (resp. R>M(PNl

il
, H)).

ii) For all G ∈ PNk

ik
, k 6= l, R>M (G,H) divides R=M(F,H).

iii) For all G ∈ DM
i , R>M(G,H) divides R=M (F,H).

Proof. Let H̄ be an irreducible component of H . If G ∈ PNl

il
, then c(F,G) ≥ Nl > M . In

particular, by Proposition 1.5., c(G, H̄) = M (resp. c(G, H̄) > M) if and only if c(F, H̄) = M
(resp. c(F, H̄) > M). This proves i). If either G ∈ PNk

ik
, k 6= l or G ∈ DM

i , then c(F,G) = M .
In particular, if c(G, H̄) > M , then, by Lemma 1.5. c(F, H̄) = M . This proves ii) and iii).�

Let the notations be as above. It follows from ii), iii) of Lemma 6.5. that:

t
∏

k=2

R>M (PNk

ik
, H).

∏

F∈DM
i

R>M(F,H) dividesR=M(PN1
i1

, H).

Set

QH(M, i) =
R=M(PN1

i1
, H)

∏t
k=2R>M(PNk

ik
, H).

∏

G∈DM
i
R>M (G,H)

and let

QH(M, i) =
∏

c(G,Hk)=M∀G∈PM
i

Hk

i.e. QH(M, i) is the product of the irreducible components of H whose contact with all G ∈ PM
i

is M .

Lemma 6.6 With the notations above, we have QH(M, i) = QH(M, i).

Proof. Let H̄ be an irreducible component of QH(M, i). For all G ∈ PM
i , c(G, H̄) = M .

In particular, since ∪t
k=1P

Nk

ik
⊆ PM

i , then H̄ divides R=M (PN1
i1

, H) and H̄ does not divide
∏t

k=2R>M(PNk

ik
, H).

∏

G∈DM
i
R>M(G,H). Hence QH(M, i) divides QH(M, i).
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Let us prove that QH(M, i) divides QH(M, i). Let G ∈ PM
i and let H̄ be an irreducible

component of QH(M, i).

- If G ∈ PN1
i1

, then by Lemma 6.5. i), R=M(G,H) = R=M(PN1
i1

, H), in particular c(G, H̄) =
M .

- If G ∈ PM
i − PN1

i1
then, by Lemma 6.3., G ∈ DM

i ∪ (∪t
k=2P

Nk

ik
). Suppose that G ∈ DM

i . If
c(G, H̄) > M , then H̄ divides R>M (G,H) = R>M(DM

i , H). This contradicts the definition of
QH(M, i). In particular c(G, H̄) = M . By a similar argument we prove that if G ∈ ∪t

k=2P
Nk

ik
,

then c(G, H̄) = M . This implies our assertion.�

Lemma 6.7 Suppose that PM
i ∈ Top(f), and recall that in this case PM

i = DM
i . Let F be an

element of DM
i . We have

QH(M, i) =
R=M(F,H)

∏

G∈DM
i ,G 6=F R>M(G,H)

Proof. The proof is similar to the proof of Lemma 6.6. �

7 Factorization of the y-derivative

7.1 The irreducible case

Let f be a monic irreducible polynomial of K((x))[y] of degree nf in y and consider the char-
acteristic sequences associated with f as in Section 1. We have the following:

Proposition 7.1 fy = P1. . . . .Phf
and for all k = 1, . . . , hf :

i) degyPk = (efk − 1)
nf

dfk
.

ii) int(f, Pk) = (efk − 1)rfk .

iii) For all irreducible component P of Pk, c(f, P ) =
mf

k

nf
.

Proof. i) and iii) result from Proposition 5.1. and ii) results from Proposition 1.4.�

7.2 The general case

Let the notations be as in Section 5. In particular f is a monic reduced polynomial of K((x))[y]
and f1, . . . , fξ(f) are the irreducible components of f in K((x))[y]. Consider the characteristic
sequences associated with f1, . . . , fξ(f) and let T (f) be the tree of f . Fix a point PM

i of T (f).
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Lemma 7.2 Let the notations be as above and let PM
i ∈ T (f) − Top(f). If DM

i 6= ∅, then
degy(R>M(F, fy)) = 0 for all F ∈ DM

i .

Proof. Suppose that PM
i /∈ Top(f), and that DM

i 6= ∅. Let F ∈ DM
i . If degy(R>M(F, fy)) 6= 1,

then c(F,H) = N > M for some irreducible component H of fy. In particular, by Lemma
4.4., c(F, F̄ ) = N for some irreducible component F̄ of f , hence F ∈ PN

j for some point
PN
j ∈ T (f), N > M . This is a contradiction because F ∈ DM

i .�

Lemma 7.3 Suppose that PM
i /∈ Top(f) and let PN1

i1
, . . . , PNt

it
be the set of points of T (f)

that strictly dominate PM
i . We have:

Qfy(M, i) =
R=M(PN1

i1
, fy)

∏t
l=2R>M (PNl

il
, fy)

Proof. We have, by Lemma 6.6.:

Qfy(M, i) =
R=M(PN1

i1
, fy)

∏t
l=2R>M (PNl

il
, fy).

∏

G∈DM
i
R>M(G, fy)

On the other hand, by Lemma 7.2., if G ∈ DM
i , then degy(R>M (G, fy) = 0). This proves our

assertion.�

Fix a polynomial Fl ∈ PNl

il
for all 1 ≤ l ≤ t. By Lemma 6.6., R=M(PNl

il
, fy) = R=M (Fl, fy)

(resp. R>M(PNl

il
, fy) = R>M(Fl, fy)). In particular we have:

Qfy(M, i) =
R=M(F1, fy)

∏t
l=2R>M(Fl, fy)

The following Lemmas give the degrees of the two polynomials describing Qfy(M, i).

Lemma 7.4 Let PM
i be a point of T (f) and let θ be the smallest integer such that M ≤

mF
θ

nF

for all F ∈ PM
i . Let (PNl

il
)1≤l≤t be the set of points that strictly dominate PM

i . Let F1 ∈ PN1
i1

.
We have:

degyR=M (F1, fy) =



































t
∑

l=2

(
∑

F∈P
Nl
il

nF ) +
∑

F∈DM
i

nF if M 6=
m

F1
θ

nF1

t
∑

l=2

(
∑

F∈P
Nl
il

nF ) +
∑

F∈DM
i

nF + (eF1
θ − 1)

nF1

dF1
θ

if M =
m

F1
θ

nF1
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Proof. This results from Propositions 5.2. and 5.3.�

Lemma 7.5 Let the notations and the hypotheses by as in Lemma 7.4. We have:

degyR>M (F1, fy) =
∑

F∈P
Nl
i1

−{F1}

nF +
∑

M<
m

F1
j

nF1

(eF1
j − 1)

nF1

dF1
j

Proof. This results from Propositions 5.2. and 5.3.�

As a corollary we have the following:

Proposition 7.6 Let the notations and the hypotheses by as in Lemma 7.4. and fix Fl ∈ P
Nil

il
for all 2 ≤ l ≤ t. We have:

degyQfy(M, i) =











































∑

F∈DM
i

nF +

t
∑

l=2

[nFl
−

∑

M<
m

Fl
j

nFl

(eFl

j − 1)
nFl

dFl

j

)] if M 6=
m

F1
θ

nF1

∑

F∈DM
i

nF +
t

∑

l=2

[nFl
−

∑

M<
m

Fl
j

nFl

(eFl

j − 1)
nFl

dFl

j

] + (eF1
θ − 1)

nF1

dF1
θ

if M =
m

F1
θ

nF1

Proof. This results from Lemmas 7.4. and 7.5., since gcd(R=M(F1, fy), R>M(Fl, fy)) = 1 for all
2 ≤ l ≤ t.�

Note that with the hypotheses of Proposition 7.6.,

nFl
−

∑

M<
m

Fl
j

nFl

(eFl

j − 1)
nFl

dFl

j

=































nFl
−

hFl
∑

j=θ

(eFl

j − 1)
nFl

dFl

j

=
nFl

dFl

θ

if M 6=
m

Fl
θ

nFl

nFl
−

hFl
∑

j=θ+1

(eFl

j − 1)
nFl

dFl

j

) =
nFl

dFl

θ+1

if M =
m

Fl
θ

nFl

Let A (resp. B) be the set of 1 ≤ l ≤ t for which M =
mFl

θ

nFl

(resp. M <
mFl

θ

nFl

). It follows that:

degyQfy(M, i) =



















∑

l∈A

nFl

dFl

θ+1

+
∑

l∈B−{1}

nFl

dFl

θ

+
∑

F∈DM
i

nF if 1 ∈ A

∑

l∈A−{1}

nFl

dFl

θ+1

+
∑

l∈B

nFl

dFl

θ

+ (eF1
θ − 1)

nF1

dF1
θ

+
∑

F∈DM
i

nF if 1 ∈ B
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Let (l1, l2) ∈ A × B and recall that
nF

dFθ+1

(reps.
nF

dFθ
) does not depend on F ∈ ∪l∈AP

Nl

il
(resp.

F ∈ ∪l∈BP
Nl

il
). In particular, if we denote by a (resp. b) the cardinality of A (resp. B), then we have:

degyQfy(M, i) =























a
nFl1

d
Fl1
θ+1

+ (b− 1)
nFl2

d
Fl2
θ

+
∑

F∈DM
i

nF if 1 ∈ B

(a− 1)
nFl1

d
Fl1
θ+1

+ b
nFl2

d
Fl2
θ

+ (eF1
θ − 1)(

nF1

dF1
θ

) +
∑

F∈DM
i

nF if 1 ∈ A

Note also that if B 6= ∅ then
nFl2

d
Fl2
θ

=
nF1

dF1
θ

, on the other hand, if B = ∅, then 1 ∈ A. In particular we

get the following:

degyQfy(M, i) = a
nFl1

d
Fl1
θ+1

+ (b− 1)
nF1

dF1
θ

+
∑

F∈DM
i

nF

The above results can be stated as follows:

Theorem 7.7 Let PM
i be a point of T (f) and assume that PM

i /∈ Top(f). Let (PNl

il
))1≤l≤t be the set

of points that strictly dominate PM
i and let θ be the smallest integer such that for all F ∈ PM

i ,M ≤
mF

θ

nF
. Fix Fl ∈ P

Nil

il
for all 1 ≤ l ≤ t and let A (resp. B) be the set of 1 ≤ l ≤ t for which M =

mF
θ

nF

(resp. M <
mF

θ

nF
) for all F ∈ ∪l∈AP

Nl

il
(resp. F ∈ ∪l∈BP

Nl

il
). Let (l1, l2) ∈ A×B. Let Fl1 ∈ P

Nl1
il1

and

Fl2 ∈ P
Nl2
il2

. If a (resp. b) denotes the cardinality of A (resp. B) then the component Qfy(M, i) of fy
satisfies the following:

i) degyQfy(M, i) = a
nFl1

d
Fl1
θ+1

+ (b − 1)
nFl2

d
Fl2
θ

+
∑

F∈DM
i
nF , and

∑

F∈DM
i
nF is given by the formula of

Lemma 6.4., where if F ∈ DM
i , then hF is either θ − 1 or θ depending on M >

mF
hF

nF
or M =

mF
hF

nF
.

ii) For all irreducible component P of Qfy(M, i) and for all F ∈ PM
i , c(F,P ) = M .

iii) For all irreducible component P of Qfy(M, i) and for all F /∈ PM
i , c(F,P ) = c(F,PM

i ) < M ,
where we recall that c(F,PM

i ) is the contact of F with any element of PM
i .

iv) For all 1 ≤ k ≤ ξ(f):

- If fk ∈ PM
i then int(fk, Qfy(M, i)) = S(mfk ,M)

degQfy(M, i)

nfk

.

- If fk /∈ PM
i then int(fk, Qfy(M, i)) = S(mfk , c(fk, P

M
i ))

degQfy(M, i)

nfk

, where c(fk, P
M
i ) is the

contact of fk with any F ∈ PM
i .�
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In the following we shall consider the case where PM
i is a top point of T (f).

Lemma 7.8 Suppose that PM
i = DM

i ∈ Top(f), and let F ∈ PM
i . We have the following:

Qfy(M, i) = R=M (F, fy)

Proof. By Lemma 7.2., degyR>M (G, fy) = 1 for all DM
i . Our assertion follows from Lemma 6.7.�

Let PM
i = DM

i = {F1, . . . , Fr}, and recall, by Proposition 2.4., that the sequence (F1, . . . , Fr) is either
equivalent, or almost equivalent.

Theorem 7.9 Let PM
i = {F1, . . . , Fr} ∈ Top(f) and assume that nF1 = max1≤k≤rnFk

. We have the
following:

i) If (F1, . . . , Fr) is equivalent with M >
mF1

hF1

nF1

, then degyQfy(M, i) = (r − 1)nF1 .

ii) If (F1, . . . , Fr) is equivalent with M =
mF1

hF1

nF1

, then degyQfy(M, i) = (r−1)nF1 +(eF1
hF1

−1)
nF1

dF1
hF1

.

iii) If (F1, . . . , Fr) is almost equivalent, then degyQfy(M, i) = (r − 1)nF1 .

Proof. It follows from Lemma 7.8. that degyQfy(M, i) = degyR=M (F1, fy). Now the hypothesis of
i) and ii) implies that nFk

= nF1 for all k = 2, . . . , r. Hence i) results from Proposition 5.2. and ii)
results from Proposition 5.3. Assume that (F1, . . . , Fr) is almost equivalent, and that, without loss
of generality, (F1, F3, . . . , Fr) is equivalent. Since Qfy(M, i) = R=M (F1, fy) = R=M (F2, fy), then iii)
results from Proposition 5.2.�

Remark 7.10 When PM
i = DM

i ∈ Top(f), the numbers a and b of Theorem 7.7. are zero. The
reader may verify that the two formulas of Theorem 7.7. and Theorem 7.9. coincide.�

Example 7.11 i) Delgado’s result: Let f = f1.f2. In [5], in order to generalize Merle’s Theorem, F.
Delgado uses the arithmetic of the semi-group of f . His result is a particular case of Theorem 7.7.
More precisely, let ni = degyfi, i = 1, 2 and let M = c(f1, f2), I = int(f1, f2). Let θ be the smallest

integer such that M ≤
mi

θ

ni
, i = 1, 2. We have:

fy = (

θ−1
∏

k=1

Qfy(
m1

k

nf1

, 1)).f̄y

where the properties Qfy(
m1

k

n(f1)
, 1) are given in the table 0), while those of the components of f̄y are

given in the tables 1), 2), 3), depending on the position of M on T (f). Note that c(fj, P ) means the
contact of fj with an irreducible component of Qfy(M, i).

0)
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Q Qfy(
m1

1
n1

, 1) ... Qfy(
m1

θ−1

n1
, 1)

degyQ (e11 − 1) n1

d
f1
1

... (e1θ−1 − 1) n1

d
f1
θ−1

c(f1, P ), int(f1, Q)
m

f1
1

n1
, (e11 − 1)r11 ...

m
f1
θ−1

n1
, (e1θ−1 − 1)r1θ−1

c(f2, P ), int(f2, Q)
m

f1
1

n1
, (e11 − 1)r21 ...

m
f1
θ−1

n1
, (e1θ−1 − 1)r2θ−1

With the notations of Theorem 7.7., for all 1 ≤ i ≤ θ − 1, we have: P

m1
i

n1
1 = {f1, f2}, a = 1, b = 0.

1) M 6=
mi

θ

n(fi)
, i = 1, 2.

Q Qfy(M, 1) Qfy(
m

f1
k

n1
, ∗), θ ≤ k ≤ hf1 Qfy(

m
f2
k

n2
, ∗), θ ≤ k ≤ hf2

degyQ
n1

d
f1
θ

= n2

d
f2
θ

(ef1k − 1) n1

d
f1
k

(ef2k − 1) n2

d
f2
k

c(f1, P ), int(f1, Q) M, I

d
f1
θ

(n1

n2

m
f1
k

n1
, (ef1k − 1)rf1k M, (ef2k − 1) I

d
f2
k

c(f2, P ), int(f2, Q) M, I

d
f2
θ

n2
n1

M, (ef1k − 1) I

d
f1
k

m
f2
k

n2
, (ef2k − 1)rf2k

u
u
�
�
�
�
�
�
�
�
�
�
��

uAAA
A

A
A

A
AA u
u���

u
u

u���

P

m
f1
θ

n1
∗ P

m
f2
θ

n2
∗

PM
1

P

m
f1
1

n1
1

P

m
f1
2

n1
1

With the notations of Theorem 7.7., we have:

PM
1 = {f1, f2}, A = {f1}, B = {f2}, a = b = 1

P

m
f1
k

n1
∗ = {f1}, θ ≤ k ≤ hf1 : a = 1, b = 0, P

m
f2
k

n2
∗ = {f2}, θ ≤ k ≤ h(f2) : a = 1, b = 0

2) M =
mf1

θ

n1
<

mf2
θ

n2
.

Q Qfy(M, 1) Qfy(
m

f1
k

n1
, ∗), θ + 1 ≤ k ≤ hf1 Qfy(

m
f2
k

n2
, ∗), θ ≤ k ≤ hf2

degyQ
n1

d
f1
θ+1

= n2

d
f2
θ

+ (ef1θ − 1) n1

d
f1
θ

(ef1k − 1) n1

d
f1
k

(e2k − 1) n2

d
f2
k

c(f1, P ), int(f1, Pi) M,ef1θ rf1θ
m

f1
k

n1
, (ef1k − 1)rf1k M, (e2k − 1) I

d
f2
k

c(f2, P ), int(f2, Pi) M, I

d
f1
θ+1

= ef1θ rf1θ
n2
n1

M, (ef1k − 1) I

d
f1
k

m
f2
k

n2
, (ef2k − 1)rf2k
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With the notations of Theorem 7.7., we have PM
1 = {f1, f2}, P

m
f1
k

n1
∗ = {f1} for all θ+1 ≤ k ≤ hf1 , and

P

m
f2
k

n2
∗ = {f2} for all θ ≤ k ≤ hf2 .

3) M =
mf1

θ

n1
=

mf2
θ

n2
.

Q Qfy(M, 1) Qfy(
m

f1
k

n1
, ∗), θ + 1 ≤ k ≤ hf1 Qfy(

m
f2
k

n2
, ∗), θ + 1 ≤ k ≤ hf2

degyQ
n1

d
f1
θ+1

+ (ef1θ − 1) n1

d
f1
θ

(ef1k − 1) n1

d
f1
k

(ef2k − 1) n2

d
f2
k

c(f1, P ), int(f1, Q) M, (2ef1θ − 1)rf1θ
m

f1
k

n1
, (ef1k − 1)rf1k M, (ef2k − 1) I

d
f2
k

c(f2, P ), int(f2, Q) M, (2ef2θ − 1)rf2θ M, (ef1k − 1) I

d
f1
k

m
f2
k

n2
, (ef2k − 1)rf2k

With the notations of Theorem 7.7., we have PM
1 = {f1, f2}, P

m
f1
k

n1
∗ = {f1} for all θ+1 ≤ k ≤ hf1 , and

P

m
f2
k

n2
∗ = {f2} for all θ + 1 ≤ k ≤ hf2 .

Example 7.12 i) f = f1.f2 and f1 = (y2−x3)2−x5y, f2 = (y2−x3)2+x5y. We have nf1 = nf2 = n =

4, rf1 = rf2 = r = (4, 6, 13), df1 = df2 = d = (4, 2, 1),mf1 = mf2 = m = (4, 6, 7), and c(f1, f2) =
7

4
.

The tree model of f is given by:

u
u@@I ���

3

2

7

4

P
3
2
1 = {f1, f2}

P
7
4
1 = {f1, f2}

Note that X(
3

2
, 1) = {f1}, X(

3

2
, 2) = {f2}, and X(

7

4
, 1) = P

7
4
1 = {f1, f2}. In particular c(

3

2
, 1) = 1

and c(
7

4
, 1) = 2. With the notations of Theorem 7.7., fy = Q(

3

2
, 1)Q(

7

4
, 1) = Q1Q2, where:

degyQ1 =
n

d2
−

n

d1
= 1 (a = 1, b = 0)

degyQ2 =
n

d3
−

n

d2
+ n = 2.4 − 2 = 6 (a = 1, b = 0).

Furthermore, for all irreducible component P of Q1 (resp. Q2), c(f1, P ) = c(f2, P ) =
3

2
(resp.

c(f1, P ) = c(f2, P ) =
7

4
). Finally, int(f1, Q1) = (e1 − 1)r1 = r1 = 6 = int(f2, Q1) and int(f1, Q2) =

int(f1, f2) + (e2 − 1)r2 = 39 = int(f2, Q2).

ii) f = f1.f2.f3.f4 and f1 = (y2 − x3)2 − x5y, f2 = (y2 − x3)2 + x5y, f3 = (y2 − x3)2 + x5y − x7,
and f4 = (y2 + x3)2 − x5y: Γ(fi) =< 4, 6, 13 >=< n, r1, r2 >, i = 1, 2, 3, 4,m1 = 6,m2 = 7, and
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c(f1, f2) = c(f1, f3) =
7

4
, c(f1, f4) =

3

2
, c(f2, f3) =

9

4
, c(f2, f4) =

3

2
, c(f3, f4) =

3

2
. The tree model of f

is given by:

u���@@I

u@@I

u
u���

������

3

2

7

4

9

4

P
3
2
1 = {f1, f2, f3, f4}

P
7
4
1 = {f1, f2, f3} P

7
4
2 = {f4}

P
9
4
1 = {f2, f3}

Note that Xi(
3

2
, 1) = {fi}, i = 1, . . . , 4, X1(

7

4
, 1) = {f1, f2},X2(

7

4
, 1) = {f1, f3}, D

7
4
1 = {f1},

X2(
7

4
, 2) = P

7
4
2 and X1(

9

4
, 1) = {f2, f3}. In particular, c(

3

2
, 1) = 1, c(

7

4
, 1) = 2 = c(

9

4
, 1), c(

7

4
, 2) = 1,.

Theorem 7.7. implies that fy = Q(
3

2
, 1)Q(

7

4
, 1)Q(

7

4
, 2)Q(

9

4
, 1) = Q1Q2Q3Q4 with the following prop-

erties:

Qi,degyQi Q1, 3 Q2, 6 Q3, 2 Q4, 4

c(f1, P ), int(f1, Qi)
3
2 , 18

7
4 , 39

3
2 , 12

7
4 , 26

c(f2, P ), int(f2, Qi)
3
2 , 18

7
4 , 39

3
2 , 12

9
4 , 28

c(f3, P ), int(f3, Qi)
3
2 , 18

7
4 , 39

3
2 , 12

9
4 , 28

c(f4, P ), int(f4, Qi)
3
2 , 18

3
2 , 36

7
4 , 13

3
2 , 24

Where c(F,P ) means the contact of F with an irreducible component P of Qi.

iii) Let f = f1.f2.f3, where f1 = (y2 − x3)2 − x5y, f2 = y2 − x3 and f3 = y2 + x3. We have

c(f1, f2) =
7

4
, c(f1, f3) =

3

2
= c(f2, f3), int(f1, f2) = 13, int(f1, f3) = 12 and int(f2, f3) = 6. The tree

model of f is given by:

u���@@I

u���3

2

7

4

P
3
2
1 = {f1, f2, f3}

P
7
4
1 = {f1, f2}

32



With the notations of Theorem 7.7., we have:

X(32 , 1) = {f1, f2},X(32 , 2) = {f2, f3},D
3
2
1 = {f3}, c(

3
2 , 1) = 2.

X(74 , 1) = {f1, f2}, c(
7
4 , 1) = 2.

This gives us the following description:

Q,degyQ Qfy(
3
2 , 1), 5 Qfy(

7
4 , 1), 2

c(f1, P ), int(f1, Q) 7
4 , 26

3
2 , 18

c(f2, P ), int(f2, Q) 7
4 , 13

3
2 , 9

c(f3, P ), int(f3, Q) 3
2 , 12

3
2 , 9

Where c(F,P ) means the contact of F with an irreducible component P of Qi.

iv) f = f1.f2, where f1 = ((y2−x3)2−x5y)2+x10(y2−x3) and f2 = ((y2+x3)2−x5y)2+x22(y2+x3).
We have Γ(f1) =< 8, 12, 26, 53 >,Γ(f2) =< 8, 12, 26, 57 >,M = c(f1, f2) =

3
2 and I = int(f1, f2) = 96.

The tree model of f is given by:

u

u
u

u
���

u
���

������������

P
3
2
1 = {f1, f2}

3

2

P
7
4
1 = {f2}7

4

P
15
4

1 = {f1}15

4

P
19
4

1 = {f2}
19

4

P
7
4
2 = {f1}

With the notations of Theorem 7.7., we have:

X(
3

2
, 1) = {f1},X(

3

2
, 2) = {f2}, c(

3

2
, 1) = 1.

X(
7

4
, 1) = {f2}, c(

7

4
, 1) = 1,X(

7

4
, 2) = {f1}, c(

7

4
, 2) = 1

X(
15

4
, 1) = {f1}, c(

15

4
, 1) = 1,X(

19

4
, 1) = {f2}, c(

19

4
, 1) = 1

This gives us the following description:

Q,degyQ Qfy(
3
2 , 1), 3 Qfy(

7
4 , 1), 2 Qfy(

7
4 , 2),2 Qfy(

15
4 , 1), 4 Qfy(

19
4 , 1), 4

c(f1, P ), int(f1, Q) 3
2 , 36

3
2 , 24

7
4 , 26

15
4 , 53

3
2 , 48

c(f2, P ), int(f2, Q) 3
2 , 36

7
4 , 26

3
2 , 24

3
2 , 48

19
4 , 57

Where c(F,P ) means the contact of F with an irreducible component P of Q.
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8 Factorization of the Jacobian

Let f = yn + a1(x)y
n−1 + . . . + an(x) and g = ym + b1(x)y

m−1 + . . . + bm(x) be two monic reduced
polynomials of K((x))[y] and consider the Jacobian J = J(f, g) of f and g. The aim of this Section is
to give a factorization theorem of J in terms of the tree of f.g. Let to this end T (f.g) be the tree of
f.g and let f1, . . . , fξ(f) (resp. g1, . . . , gξ(g)) be the irreducible components of f (resp. g) in K((x))[y].

Definition 8.1 Let PM
i ∈ T (f.g).

i) We say that PM
i is an f -point if for all 1 ≤ k ≤ ξ(g), gk /∈ PM

i (equivalently PM
i is an f -point

if for all F ∈ PM
i and for all 1 ≤ k ≤ ξ(g), c(gk, F ) < M).

ii) We say that PM
i is a g-point if for all 1 ≤ k ≤ ξ(f), fk /∈ PM

i (equivalently PM
i is a g-point if

for all F ∈ PM
i and for all 1 ≤ k ≤ ξ(f), c(fk, F ) < M .

iii) We say that the point PM
i is a mixed point if it is neither an f -point nor a g-point.

We denote by Tf (resp. Tg, resp. Tm) the set of f -points (resp. g-points, resp. mixed points) of
T (f.g). Clearly T (f.g) = Tf ∪ Tg ∪ Tm.

u Tm

u
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A
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A

A
A

A
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A
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u���@@I
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&
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%

'

&

$

%

u���@@I

���u���@@I 6
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Lemma 8.2 Let PM
i , PN

j ∈ T (f.g), and assume that PN
j ≥ PM

i .

i) If PM
i ∈ Tf (resp. PM

i ∈ Tg) then PN
j ∈ Tf (resp. PN

j ∈ Tg).

ii) if PN
j ∈ Tm, then PM

i ∈ Tm.

Proof. Easy exercise.�

Lemma 8.3 Let the notations be as above. If Tf 6= ∅ (resp. Tg 6= ∅), then Root(J) 6= ∅.
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Proof. Assume that Tf 6= ∅, and let P = PM
i ∈ Tf . Let F ∈ P and let yi(x), yj(x) ∈ Root(f) such

that c(yi, yj) = M . By hypothesis, M > maxz(x)∈Root(g)c(yi, z). Now use Lemma 4.6.�

More generally, assume that Tf ∪ Tg 6= ∅, Propositions 5.3. and 5.4. and similar arguments as in
Section 7. led to the following factorization theorem of J .

Theorem 8.4 J = J̄ .
∏

PM
i ∈Tf

QJ(M, i).
∏

PM
i ∈Tg

QJ(M, i), where for all PM
i ∈ Tf∪Tg, degyQJ(M, i) >

1. More precisely, assume, without loss of generality, that P = PM
i ∈ Tf and let (PNl

il
))1≤l≤t be the

set of points that strictly dominate PM
i . Let θ be the smallest integer such that M ≤

mF
θ

nF
for all

F ∈ PM
i . Let A (resp. B) be the set of 1 ≤ l ≤ t for which M =

mF
θ

nF
(resp. M <

mF
θ

nF
) for all

F ∈ ∪l∈AP
Nl

il
(resp. F ∈ ∪l∈BP

Nl

il
) and let (l1, l2) ∈ A×B. Let Fl1 ∈ P

Nl1
il1

and Fl2 ∈ P
Nl2
il2

. If a (resp.

b) denotes the cardinality of A (resp. B) then the following hold:

i) degyQJ(M, i) = a.
nFl1

d
Fl1
θ+1

+ (b− 1).
nFl2

d
Fl2
θ

+
∑

F∈DM
i
nF , and

∑

F∈DM
i
nF is given by the formula of

Lemma 5.6., where if F ∈ DM
i , then hF is either θ − 1 or θ depending on M >

mF
hF

nF
or M =

mF
hF

nF
.

ii) For all irreducible component P of QJ(M, i) and for all F ∈ PM
i , c(F,P ) = M .

iii) For all irreducible component P of QJ(M, i) and for all F /∈ PM
i (this holds in particular when

F = gk, 1 ≤ k ≤ ξ(g)), c(F,P ) = c(F,PM
i ) < M .

iv) For all 1 ≤ k ≤ ξ(f):

- If fk ∈ PM
i then int(fk, QJ(M, i)) = S(mfk ,M)

degyQJ(M, i)

nfk

.

- If fk /∈ PM
i then int(fk, QJ(M, i)) = S(mfk , c(fk, P

M
i ))

degyQJ(M, i)

nfk

.

Proof. The proof is similar to the proof of Theorem 7.7.�

Corollary 8.5 Assume that ξ(f) = 1, i.e. f = f1 is an irreducible polynomial of K((x))[y], and let

M = max
ξ(g)
k=1c(f, gk). Let θ be the smallest integer such that M <

mf

θ

nf
. If θ < hf , then J = J(f, g) =

J̄ .
∏hf

k=θ Jk, where for all θ ≤ k ≤ hf ,

i) degyJk = (efk − 1)
nf

dfk
.

ii) int(f, Jk) = (efk − 1)rfk .

iii) For all irreducible component P of Jk, c(f, P ) =
mf

k

nf
.

iv) For all 1 ≤ j ≤ ξ(g) and for all irreducible component P of Jk, c(gj , P ) = c(gj , f)
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Proof. In fact, Tf = {P

m
f
θ

nf

1 , . . . , P

m
f
hf

nf

1 }. The result is consequently a particular case of Theorem 8.4.�

9 Bad and good points on the tree of f

Let f = yn+a1(x)y
n−1+. . .+an(x) be a monic reduced polynomial ofK((x))[y], and let f = f1. . . . .fξ(f)

be the factorization of f into irreducible components in K((x))[y]. We shall assume that f is generic
in the following sense: for all irreducible component H of fy, int(f,H) ≤ 0.

Definition 9.1 Let F,G be two monic polynomials of K((x))[y], and let H be an irreducible monic
polynomial of K((x))[y]. We say that H is regular (resp. irregular) with respect to F if int(F,H) 6= 0
(resp. int(F,H) = 0). We define Reg(G,F ) (resp. Irreg(G,F )) to be the set of regular (resp.

irregular) components of G with respect to F . Let γ(x) ∈ K((x
1
p )), p ∈ N. We say that γ is regular

(resp. irregular) with respect to F if OxF (x, γ(x)) 6= 0 (resp.OxF (x, γ(x)) = 0). If G = Fy, then we
write Reg(F ) (resp. Irreg(F )) for Reg(Fy , F ) (resp. Irreg(Fy, F )).

Lemma 9.2 We have Irreg(f, fy) = ∅.

Proof. Let 1 ≤ j ≤ ξ(f) and let y(x) ∈ Root(fj). Let M = maxk 6=jc(fj , fk). By Lemma 4.4.,
M = max c(fj,H), where H runs over the set of irreducible components of fy. Since f is generic,
then

∑

y 6=ȳ∈Root(f)Ox(y − ȳ) +M ≤ 0. If M < 0, then Ox(y − ȳ) ≤ M < 0 for all ȳ ∈ Root(f), ȳ 6= y,
in particular

∑

y 6=ȳ∈Root(f)Ox(y− ȳ) < 0. If M > 0, then
∑

y 6=ȳ∈Root(f)Ox(y− ȳ) ≤ −M < 0. Finally
Oxfy(x, y(x)) =

∑

y 6=ȳ∈Root(f) Ox(y− ȳ) < 0, in particular int(fj , fy) < 0. This proves our assertion.�

Definition 9.3 Let F,G be two monic polynomials of K((x))[y], and let H be an irreducible compo-
nent of G. Assume that H ∈ Irreg(G,F ) and let γ ∈ Root(H). We have F (x, γ(x)) = λ+ u(x) where
λ ∈ K∗ and u(0) = 0. In particular, int(F −λ,H) > 0, hence H ∈ Reg(G,F −λ). We say that λ is an
irregular value of F with respect to G. We define irreg(F,G) to be the set of irregular values of F with
respect to G. If G = Fy, then we write reg(F ) (resp. irreg(F )) for reg(Fy , F ) (resp. irreg(Fy , F )).
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Definition 9.4 Let PM
i be a point of Top(f).

i) We say that PM
i is a good point if H ∈ Reg(f) for some irreducible component H of Qfy(M, i).

ii) We say that PM
i is a bad point if H ∈ Irreg(f) for some irreducible component H of Qfy(M, i).

Lemma 9.5 Let PM
i be a point of Top(f).

i) If PM
i is a good point, then for all irreducible component H of Qfy(M, i), H ∈ Reg(f).

ii) If PM
i is a bad point, then for all irreducible component H of Qfy(M, i), H ∈ Irreg(f).

Proof. i) By hypothesis, there is an irreducible component H̄ of Qfy(M, i) such that int(f, H̄) < 0.
Let H be an irreducible component of Qfy(M, i), and let γ(x) (resp. γ̄(x)) be a root of H (resp. H̄)
such that maxni=1c(γ, yi) = M = maxni=1c(γ̄, yi). We have:

Oxf(x, γ(x)) =

n
∑

i=1

c(γ(x), yi(x)) =

n
∑

i=1

c(γ̄(x), yi(x)) = Oxf(x, γ̄(x))

in particular int(f,H) =
1

nH
Oxf(x, γ(x)) < 0.

ii) The proof is similar to the proof of i).�

10 Irregular values of a meromorphic curve

Let the notations be as in Section 9, and let PM
i = {F1, . . . , Fr} be a bad point of Top(f). For all irre-

ducible component H of Qfy(M, i), int(f,H) = 0, in particular, if γ(x) ∈ Root(H), then f(x, γ(x)) =
λ+ u(x), where λ ∈ K∗ and u(0) = 0. In particular, λ ∈ irreg(f). Let {λ1(M, i), . . . , λp(M,i)(M, i)} be
the set of irregular values of f obtained from the components of Qfy(M, i) as above -more precisely
{λ1(M, i), . . . , λp(M,i)(M, i)} = {inco(f(x, γ(x)))|γ(x) ∈ Root(Qfy(M, i))}. We have the following:

Proposition 10.1 Assume that nF1 = max1≤i≤rnFi
.

i) If (F1, . . . , Fr) is equivalent and M >
mF1

hF1

nF1

, then p(M, i) ≤ r − 1.

ii) If (F1, . . . , Fr) is equivalent and M =
mF1

hF1

nF1

, then p(M, i) ≤ r.

iii) If (F1, . . . , Fr) is almost equivalent, then p(M, i) ≤ r − 1.

Proof. i) Let H be an irreducible component of Qfy(M, i). Since c(H,F1) = M >
mF1

hF1

nF1

, then

nF1 divides nH . On the other hand, by Theorem 7.9., degyQfy(M, i) = (r − 1)nF1 , In particular,
ξ(Qfy(M, i)) ≤ r − 1. This proves our assertion.
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ii) Let H be an irreducible component of Qfy(M, i). Since c(H,F1) =
mF1

hF1

nF1

, then
nF1

dF1
hF1

divides

nH . More precisely, let γ(x) =
∑

p cpx
p

nH ∈ Root(H), then one of the following holds:

- The coefficient of xM in γ(x) is nonzero, hence nF1 divides nH . In this case, we say that H is of
type I.

- The coefficient of xM in γ(x) is zero, then we say that H is of type II.

Let H1,H2 be two irreducible components of type II of Qfy(M, i). If γ1(x) ∈ Root(H1) (resp. γ2(x) ∈
Root(H2)), then c(yi, γ1) = c(yi, γ2), and inco(yi − γ1) = inco(yi − γ2) for all yi ∈ Root(f). In
particular, H1 and H2 give rise to the same irregular value of f . On the other hand, by Theorem 7.9.,

degyQfy(M, i) = (r−1)nF1 +(eF1
hF1

−1)
nF1

dF1
hF1

, hence the number of irreducible components of Qfy(M, i)

of type I is bounded by r − 1. This proves our assertion.

iii) The proof is similar to the proof of ii).�

Corollary 10.2 Let f be as above. The number of irregular values of f is bounded by ξ(f).

Proof. This results from Proposition 10.1.�

Remark 10.3 Let the notations be above. If irreg(f) has exactly ξ(f) elements, then for all PM
i /∈

Top(f),DM
i = ∅. More precisely, it follows from the proof of Proposition 10.1. that the cardinality of

irreg(f) is bounded by

∑

PM
i ∈Top(f)

card(PM
i )

In particular, if card(irreg(f))= ξ(f) then for all 1 ≤ i ≤ ξ(f), fi ∈ PM
i for some bad point PM

i ∈
Top(f). Furthermore, given a bad point PM

i = {F1, . . . , Fr} ∈ Top(f), the following holds:

i) (F1, . . . , Fr) is equivalent, and M =
MF1

hF1

nF1

.

ii) Qfy(M, i) = H1 . . . Hr+1 and for all i = 1, . . . , r, Hi is irreducible of degree nF1 and Hi is

equivalent to F1. Furthermore, int(Hr+1, F1 . . . Fr) = (eF1
hF1

− 1)rF1
hF1

.

We do not have examples of meromorphic plane curve satisfying the properties above, and we think
that such an example does not exist. More precisely, we think that the tree of a meromorphic plane
curve which is generic in its family must have at least one good point.

Remark 10.4 Suppose that T (f) has only one bad point PM
i , and that irreg(f) has ξ(f) elements

(in particular PM
i = {f1, . . . , fξ(f)}). With the notations of Remark 10.3., if ξ(f) > 1 (resp. ξ(f) = 1),

then we have int(H1, f) = 0 = ξ(f)rf1hf1
(resp. int(H1, f) = 0 = (ef1hf1

−1)rf1hf1
), which is a contradiction.

This implies that if f has only one bad point, then card(irreg(f))≤ ξ(f)−1, and this bound is sharp (let
f = y4+x−1y2+y+1 : ξ(f) = 2, T (f) has one bad point and one good point, and card(irreg(f))= 1).
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As a particular case, if f is irreducible, then irreg(f) = ∅. Note that if f ∈ K[x−1, y], then f is
irreducible in K((x))[y] if and only if f(x−1, y) ∈ K[x, y] has one place at infinity. In this case, the
assertion above is a consequence of the Abhyankar-Moh theory.
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