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The tree model of a meromorphic plane curve

Abdallah Assi*

Abstract.! We associate with a plane meromorphic curve f a tree model T'(f) based on its
contact structure. Then we give a description of the y-derivative of f (resp. the Jacobian
J(f,g)) in terms of T'(f) (resp. T'(fg)). We also characterize the regularity of f in terms of its
tree.

Introduction

Let K be an algebraically closed field of characteristic 0, and let f, g be two monic reduced
polynomial of K((z))[y] of degrees n,m. Let f,, g, (resp. fy,g,) be the z-derivative (resp. the
y-derivative) of f, g, and let J(f,g) = f.9, — fy9.. Let, by Newton Theorem,

n m

i=1 j=1
where (y;(x))1<i<n and (2;(x))1<j<m are meromorphic fractional series in .
The main objective of this paper is to give a description of f, (resp. J(f,g)) when the contact
structure of f (vesp. fg) is given. Let H(z,y) = [[7_,(y—Yi(z)) and H(z,y) = I (y—Z;(x))

. J=1\
be two irreducible polynomials of K((x))[y] and define the contact ¢(H, H) of H with H to be
C(H, H) = maxi,jOm(Y; — ZJ)

where O, denotes the z-order (in particular, ¢(H, H) = 4+00). Let f be as above and define
the contact set of f to be

C(f) ={0a(yi — )l <i#j <n}
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Let f=f1..... fe(p) be the factorization of f into irreducible components in K((z))[y]. Given
M € C(f), we define C/(f) to be the set of irreducible components of f such that f; € Cp(f)
if and only if ¢(f;, f;) > M for some j (with the understanding that c(f;, f;) > M if and only
if M > O,(y —y') for some roots y # y' of fi(z,y) = 0). Given f;, f; € Cy(f), we say that
fiRwn f; if and only if ¢(f;, f;) > M. This defines an equivalence relation in Cj;(f). The set of
points of the tree of f at the level M is defined to be the set of equivalence classes of R;;. The
set of points defined this way -where two close points are connected with a segment of line and
top points are assigned with arrows- defines the tree T'(f) of f:

Let PM be a point of the tree of f at the level M, and let f be a monic polynomial of
K((z))[y]. We denote by Qf(M,i) the product of irreducible components of f whose contact
with any element of PM is M. It results from [8] that deg,Qy, (M,i) > 1, i.e. every point of
T(f) gives rise to a component of f,. We give in Section 7., based on the results of Section
5., the y-degree of Qy, (M, i) (see Proposition 7.6.), its intersection multiplicity as well as the
contact of its irreducible components with f;,1 < j < &(f) (see Theorem 7.7. and Theorem
8.9.). This result gives a generalization of Merle Theorem (f € K|[z]][y] and £(f) = 1) (see
Proposition 7.1.) and Delgado Theorem (f € K[[z]][y] and &(f) = 2) (see Example 7.11.).
These two results use the arithmetic of the semigroup associated with f, which does not help
for meromorphic curves and, as shown by Delgado, does not seem to suffice when f € K[[z]][y]

and &(f) > 3.

Let T'(fg) be the tree of fg. A point PM of T'(fg) is said to be an f-point (resp. a g-point) if
PM does not contain irreducible components of g (resp. f). A point of T'(fg) which is neither
an f-point nor a g-point is called a mixed point. This gives us the following description of

T(fg):



In Section 8, based on the results of Sections 4. and 5., we prove the following:

Theorem If PM is an f-point (resp. a g-point), then deg,Q .o (M, 1) > 1.

We also give an explicit formula for deg,@ (74 (M, i) and its intersection multiplicity as well
as the contact of its irreducible components with each of the irreducible components of fg (see
Theorem 8.4.).

As a consequence of this result, if J(f, g) € K((x)), then every point of T'(fg) is a mixed point.

Our explicit formulas for degrees, contacts and intersection multiplicities are given in terms
of the invariants associated with the tree models of f,g and fg. They are obtained using the
results of Section 5 and Section 6. Although these results are technical, we think that such
precise formulas would be of interest for the study of problems such as the Jacobian conjecture
in the plane.

The problem of the factorization of f, and J(f, g) has been considered by several authors, with a
special attention to the analytical case. Beside the results of Merle and Delgado, Garcia Barroso
(see [7]) used the Eggers tree in order to get a decomposition of the generic polar of an analytic
reduced curve (see [12] for the definition and the properties of the Eggers tree). In [9] and [10],
Maugendre computed the set of Jacobian quotients of a germ (hy, hy) : (C?,0) — (C?,0) in
terms of the minimal resolution of A;hs.

Let the notations be as above, and assume that f,g € K[z7!][y]. Let F(z,y) = f(z~!,y) and
G(z,y) = g(z7!,y). For all A € K, we denote by F) the polynomial F' — X\. We say that the
K[z, y]

, denoted Int(F' —\, F},), does
(F)\, Fy) ( y)
not depend on A € K. When (F)) ek is not regular, there exists a finite number Ay, ..., A\, € K

family (F))aek is regular if the rank of the K-vector space
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such that Int(F — A, F)) > Int(F' — \;, F})) for A generic and 1 <14 < s. The set {\,..., s} is
called the set of irregular values of (F))xck.

The regularity of a family of affine curves is related to many problems in affine geometry, in
particular the plane Jacobian problem. If (F)), is regular and smooth, then F'is equivalent to
a coordinate of K2. If (F}y), is smooth with only one irregular value Ay, then F'— \; is reducible
in K[z, y] and one of its irreducible components is equivalent to a coordinate of K2. In general,
nothing is known when (F)), has more than two irregular values (see [4] and references).

Suppose that F' is generic in the family (F)),. In particular, the intersection multiplicity of f
with any irreducible component of f, is less than 0. Let P be a point of T'(f). We say that
PM is a bad point if one of the irreducible components of Q #,(M, i) has intersection multiplicity
0 with f. Otherwise, PM is said to be a good point. Hence the tree T'(f) can be partitioned
into bad and good points. In Section 9 we characterize the notion of regularity in terms of this
partition. This, with the results of Section 2. is used in Section 10. in order to prove that the
set of irregular values of f is bounded by the number of irreducible components £(f) of f (or
equivalently the set of irregular values of (F))ex is bounded by the number of places of F at

infinity).

The author would like to think the referees for their valuable comments and suggestions.

1 Characteristic sequences

In this Section we shall recall some well known results about the theory of meromorphic curves
(see [2] for example). Let

f=y"+a(x)y" ' + . 4 an(z)

be a monic irreducible polynomial of K((z))[y], where K((z)) denotes the field of meromorphic
series over K. Let, by Newton Theorem, y(t) € K((¢)) such that f(¢",y(t)) = 0. If w is a
primitive nth root of unity, then we have:

Fmy) =] —y@w*)).

Write y(t) = >, a;t’, and let supp(y(t)) = {i;a; # 0}. Clearly supp(y(t)) = supp(y(w*t)) for
all 1 <k <n—1. We denote this set by supp(f) and we recall that ged(n,supp(f)) = 1. If w
write zw for ¢, then y(zw) = S azw and f(z,y(zw)) = 0, i.e. y(zn) is a root of f(z,y)
By Newton Theorem, there are n distinct roots of f(x,y) = 0, given by y(wk:c%), 1

We denote the set of roots of f by Root(f).

We shall associate with f its characteristic sequences (m )0, (@])i=1 and (rf)z=o defined by:



| mi |=d] =| rl |=n, m! = r] = inf({i € supp(f)|ged(i,n) < min(i,n)}, and for all k > 2,
d£ = ged <m07 e 7m£—1) = ged <d£—17 m£—1)7

mi = inf {i € supp(f)| 7 is not divisible by d/},

df
and T]]: = 7“1/:71 k-l - mgq-

k
Since ged(n, supp(f)) = 1, then there is hy € N such that dj, ., = 1. We denote by convention

m£f+1 = T,]:fH = +4o00. The sequence (mk)ogkghf is also called the set of Newton-Puiseux
df

exponents of f. We finally set e£ = f—k for all 1 <k < hy.
k+1

Let H be a polynomial of K((z))[y]. We define the intersection of f with H, denoted int(f, H),
by int(f, H) = O.H(t",y(t)) = n.OyH(z,y(zx)), where O, (resp. O,) denotes the order in ¢
(resp. in z).

Let p,q € N*, and let a(z) € K((a:%)),ﬁ(:c) € K((azé)) We set

c(a, B) = Og(a(z) — B(2))

and we call c(a, B) the contact of o with 8. We define the contact of f with a(z) to be

c(f, @) = maxi<i<n O (yi(z) — a(z))

where {y1,...,y,} = Root(f).

Let g = y™ + by (z)y™ ' + ... + b(x) be a monic irreducible polynomial of K((z))[y] and let
Root(g) = {z1, ..., 2zm}. We define the contact of f with g to be

C(f7 g) = C(f7 Zl(ﬂf))-
Note that c(f,g) = c(f, zj(x)) = c(g,vi(x)) for all 1 < j <m and for all 1 <i < n.

Remark 1.1 (see [1]) i) Let f € K[[z]][y] (resp. f € K[z7'][y]). The set of int(f,g), g €
K[[z]][y] (resp. g € K[z7!][y]) is a subsemigroup of Z. We denote it by I'(f) and we call it

the semigroup associated with f. With the notations above, rg > 0 (resp. rg < 0) for all
k=0,...,hs, and rg,r{, . ..,T]J:f generate ['(f). We write ['(f) =< rg,r{, . ..,r,{f >.
ii) For all 1 <k < hy, ei is the minimal integer such that ei’r,{ e< rg, r{, e ,T,J:_l >.

iii) For all 1 < k < hy, there is a monic irreducible polynomial g, € K((x))[y] of degree ™ in

f P f

,
y such that c(f, gx) = "% and int(f, gx) = r{. Furthermore, I'(g;) =< T—(}, T—}, e k—;l



Lemma 1.2 (see [1]) Let y(z) =), a;zv € Root(f). Given s € N*, let U, denotes the group
of the sth roots of unity in K. Set

m!
R(i) = {w € Unle(y(2), y(wz)) = Oaly(z) — y(we)) = —=}

m!
5(i) = 1w € Unle(y(2), y(we)) = Ou(y(z) — y(we)) = —*}.

We have the following:
i) Forall 1 <i < hy +1, R(i) = Uy. In particular, card(R(i)) = dl.
In particular, card(S(i)) =

ii) Forall 1 <i < hy, S(i) = R(i) = R(i + 1) = Uy — Uy 4.
df —dl,,.
K m’
Proof. Let w € U, then y(z)—y(wz) = >, ar(1—w")z~. In particular, O,(y(z)—y(wzx)) > —
n

if and only if w* = 1 for all k < m/. This holds if and only if w € U, n

Remark 1.3 i) Let F' be a nonzero monic polynomial of K((x))[y]. Assume that F' is reduced
and let F' = Fy..... F¢(ry be the factorization of F' into irreducible polynomials of K((x))[y]. We
define Root(F’) to be the union of Root(F;),i = 1,...,&(F). Given a polynomial G € K((x))[y],
we set int(F,G) = ng) int(F;, G).

ii) Let p € N*, and let F' be a nonzero monic polynomial of K((x%))[y] Assume that F
is reduced and let x = X? y =Y, and F(X,Y) = F(X?,Y). The polynomial F' is a monic

reduced polynomial of K((X))[Y]. Let Root(F) = {Y1(X),...,Yn(X)}. The set of roots of
1 1
Fle,y) =0 is (Vi(zh), ..., Yu(X3)).

Let M be a given real number and consider the sequence (mi)lgkgh 1 of Newton-Puiseux
exponents of f. We define the function S(m/, M) by putting

f s f
T,];diJr(nM—mg)dgH if ™ §%§]\4<M

n n

S<mf7M>: md
Md1 lfM<Tl

Proposition 1.4 (see [1] or [8]) Let g = y™ + by (z)y™ ' + ... + b, (z) be a monic irreducible
polynomial of K((x))[y]. We have the following:

c(f,g) =M if and only if int(f,g) = S(m/, M)

3|3

|3

c(f,g) <M ifand only if int(f,g) < S(m’, M)

c(f,g) > M if and only if int(f,g) > S(m/, M)
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Let g1, go be two monic irreducible polynomials of K((xz))[y] of degrees ¢; and ¢» respectively
and let (mzi)lﬁkﬁhgi be the set of Newton-Puiseux exponents of ¢;, i = 1, 2.

Lemma 1.5 (see [1]) Let M = min(c(f, g2),c(f, 91)). We have the following:
(i) c(g1, 92) = M.
(11) if C(fv 92) 7& C(fv gl) then C(gla 92) =M.

Lemma 1.6 Let the notations be as above and let (mz)lgkgthrl be the set of Newton-Puiseux

exponents of g. Let M = ¢(f, g) and assume that M > %{ Let k£ be the greatest integer such
that m_i = m_i < M. We have the following:
n m
i) d%c :d%for alli=1,...,k+ 1.
ii) fi divides m. In particular, if £k = h then n divides m.
k+1

Proof. ii) results from i), since by i), m = dfidg On the other hand, let 1 < i < k

k1t
k+1
and remark that m.n = n.m,m.m] = n.m{’,...,m.m{fl = n.m{_;, in particular m.d{ =
m.ged(n,m!, ... m! ) =n.ged(q,m?,...,m{_,) =n.d’. This proves i).H

Lemma 1.7 Let the notations be as in Lemma 1.6. and let y(z) € Root(f) (resp. z(x) €
Root(g)) such that c(y(z),z(z)) = M. Write y(z) = 3., ¢/aw and z(z) = chgx%. If
f
m

h . . . .
M = —L and n > m, then either ¢? ,, -the coefficient of 2™ in z(z)- is 0, or m = n.
n

g9
m

hg, hence n divides m. This, with the hypotheses implies that
m

Proof. If ¢ ,, # 0, then M =
m=n.l

As a corollary we get the following:

Lemma 1.8 Let ¢;, g2 be two monic irreducible polynomials of K((x))[y] of degrees ¢i, 2
f

m
respectively, and assume that c(g1, f) = c¢(go, f) = ) g ¢ < nand ga < n, then ¢(g1, g2) >
n

f

n



Proof. Let y(z) € %oot(f) (resp. z1(z) € Root(g1), ZQ(x)fe Root(g2)) such that c(y(z), z1(x)) =

m m
c(y(z), z2(x)) % In particular ¢(z1(x), z2(z)) > % By Lemma 1.7., the coefficients
f
Mhy -

of x n in z(z) and 29(z) are 0, which implies that ¢(z1(x), z2(x)) > — " This proves our
n

assertion.l

2 Equivalent and almost equivalent polynomials

Let f, g be two monic irreducible polynomials of K((z))[y], of degrees n, m in y. Let (mg)lﬁkﬁhfa

(di)lgkghf, and (T;f)ogkghf (resp. (m)1<k<n,» (d})1<k<n,, and (r])o<k<n,) be the set of charac-
teristic sequences of f (resp. of g).

Definition 2.1 i) We say that g is equivalent to f if the following holds:

hp=h,
g f
ST T fop all k=1, By
m n
my,
-clfig) 2 — =

ii) We say that g is almost equivalent to f if the following holds:

~hp=hy+ 1.
f g
ST % fop all k=1, By
n m
f
-clf9)=—=

Lemma 2.2 Let the notations be as in Definition 2.1.

i) If g is equivalent to f, then m = n.

ii) If g is almost equivalent to f, then m = d% Furthermore, if y(z) = cprm € Root(g),
hg
thenec r =0.

hy

n

.m

Proof. i) results from Lemma 1.6. On the other hand, by the same Lemma, m = a% for some

hy
" n a f a f . a f . .
a € N*, but gcd(a—df TR RERRE a mhffl) = dhf =1, hence a = 1. This proves the first
hy “hy hy hy

assertion of ii). Now the least assertion results from Lemma 1.7.H
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Definition 2.3 Let {F},..., F.} be a set of monic irreducible polynomials of K((z))[y]. As-
sume that » > 1 and let np, = degyﬂ foralll1 <i<r.

i) We say that the sequence (Fi, ..., F},) is equivalent if for all 1 < ¢ < r, F} is equivalent to F}.
ii) We say that the sequence (Fi,..., F,) is almost equivalent if the following holds:
- The sequence contains an equivalent subsequence of r — 1 elements.

- The remaining element is almost equivalent to the elements of the subsequence.

Proposition 2.4 Let the notations be as in Definition 2.3. and let M be a rational number.
If ¢(F;, F;) = M for all i # j, then the sequence (Fi,...,F,) is either equivalent or almost
equivalent.

Proof. If r = 1, then there is nothing to prove. Assume that r > 1, and that np, = max;<z<,np,.

-IfM > mf}l, then, by Lemma 1.6., ii), np, divides np, for all 1 < k < r. In particular
ngp, = np, and Fj is equivalent to Fj forall 1 <k <.
"

h . . .
- Suppose that M = " and that (Fy,..., F.) is not equivalent. Suppose, without loss
nFl
Fy F F.
M, and m;' _ m;*
nF2 nFl nF2

_p
for all 1 < j < hp, — 1. Let y(x) = > c,x" € Root(Fy). If the coefficient of z* in y(z)
F F
. . . . My Mg, .
is non zero, then np, divides ng,, in particular ngp, = npg,, and = —=2. Hence Fj] is
nFl np2

of generality, that F3 is not equivalent to Fj. By hypothesis, M >

n
equivalent to F5, which is a contradiction. Finally hp, = hp, — 1, and np, = a.dF—Fll, but
he,
n
ged(np,, mP2, ... ,mf;) =1, hence a = 1 and ng, = df—Fll In particular F; is almost equivalent
3t
to Fy. Let k > 2. If Fj, is not equivalent to F, then np, = ngp, < np, by the same argument

as above. In particular, by Lemma 1.8., ¢(F}, F5) > M, which is a contradiction. Finally the
sequence (Fi, ..., F,) is almost equivalent.ll

3 The Newton polygon of a meromorphic plane curve

In this Section we shall recall the notion of the Newton polygon of a meromorphic plane curve.
More generally let p € N and let F' =y~ + A (2)yV 1 + ...+ Ayv_1(2)y + Ax(2z) be a reduced
polynomial of K((z!/?))[y]. For all i = 0,..., N, let a; = O,A;(x). The Newton boundary of
F' is defined to be the boundary of the convex hull of Ui]il(ai, i)+ R,

Write F(z,y) = >_,; cijx%yj and let Supp(F) = {(Z,j)|cij # 0}, then the Newton boundary of
p



F'is also the boundary of the convex hull of J: j)eSupp(F)(E,j) + R,
r’ p

We define the Newton polygon of F', denoted N(F'), to be the union of the compact faces of the
Newton boudary of F. Let {Fy = (ax,,k;),ko > ki... > Ky} be the set of vertices of N(F).
We denote this set by V(F). We denote by E(F) = {A]'= P, Py,,l=1,...,vp} the set of

edges of N(F). For all 1 <1 < vp we set Fpr = Z(i J)eSupp(F) () AF cijx%yj.
p7

!

Lemma 3.1 Given 1 <! < vp, there is exactly k;_; — k; elements of Root(F), y;(z),1 < j <
k;_1 — k;, such that the following hold

g, —«
i) O(y(x)) = R R o all J-
ki1 — K
ii) The set of initial coeflicients, denoted inco, of y1,...,yw,_,—&, is nothing but the set of
nonzero roots of Far(1,y).
. . F ak:l_l - ak;l
Conversely, given y(z) € Root(F), there exists A;" such that O,(y(z)) = o
-1 — R

We denote the set of z-orders of Root(F) by O(F), and we set Poly(F) = {Far(1,y)[1 <1 <

’UF}.

Lemma 3.2 Let F' be as above, and let M be a rational number. Define Ly, : Supp(F') — Q
by Las(L,§) = -+ Mj, and let ap = inf(Ly (Supp(F))). Let iny (F) = 3
p p

have the following:

i .
. .yrpard V\f
Ly Mj=ag CigT" Y- WE
O, — O
=1 L for

ki — K
some 1 <1 < wp, and iny (F) = Fpr. Furthermore, (ap,0) is the point where the line defined

i) M € O(F) if and only if inp/(F) is not a monomial. In this case, M =

by (a,_,,ki—1) and (oy,, ki) intersects the z-axis.
ii) Consider the change of variables 2 = X,y = X™Y and let F(X,Y) = F(X, XMY). We
have F' = E Cijxi—’—Mj = lﬂoFﬁf(L y) + Za>ao xaPa(y).

10



Proof. Easy exercise.ll

The following two lemmas give information about the Newton polygons of the y-derivative
(resp. the Jacobian) of a meromorphic curve (resp. the Jacobian of two meromorphic curves).

Lemma 3.3 Let F be as above and let N(F') be the Newton polygon of F'. Let V(F) = {P, =
(g, ki), ko > k1 ... > ky, } be the set of vertices of F' and assume that k,,, = 0,i.e. N(F)
the z-axis. Assume that (o', 1) € Supp(FAgF) for some o' € Q, and that (al,1) ¢ V(F
have the following

i) (a',0) € V(F,).
ii) N(F,) is the translation of N(F') with respect to the vector (0, —1).
111) O(Fy) = O(F), Vp = UFy.

iv) deg, Far = deg,(Fy) m + 1. In particular, if F' has s roots whose order in x is
ga

meets
). W

Qg

”(F)kl *5)  then F, has s — 1 roots with the same order in .
vp—1

Proof. The proof follows immediately from the hypotheses and Lemma 3.1.1

1

!

Lemma 3.4 Let G = y™ +by(z)y™ ' +...+a,(z) be a reduced polynomial of K((azé))[ | and
let J = J(F,G) = F,G, — F,G, be the Jacobian of F' and G. Let V(G) = {(8;,,1;),lo > L1 >

> Iy, } be the set of vertices of N(G) and let E(G) = {A{, ..., AS } be the set of edges of
N(G). Assume that the following holds:

i) kyp = lye =0, ap, # 0 and fF,, # 0, i.e. N(F) and N(G) meet the z-axis into points
different from the origin.

i) (a',1) € Supp(Far ) (vesp. (B',1) € Supp(Gag_)) for some a' (resp. B') in Q, and
(af,1) ¢ V(F) (resp. (8',1) ¢ V(G)).
iii) max(O(F)) > max(O(G)).

Then we have:

11



i) max(O(J)) = max(O(F,)) = max(O(F)).
ii) If Gag. (2,0) = az”™c  a € K*, then (a'+p,,—1,0) € V(J) and Ing = (=F,Gy) \ryoe =

VFy Gy
—apy, .aPr =Y Fy)AFy )
vp

1

B, Qg T

S

Proof. It follows from the hypotheses that (o, —1,0) € V(F,), (a',0) € V(F,), (Bue—1,0) €
V(G,), and (8,0) € V(G,). In particular (o) + 81 — 1,0) € V(F,G,) and (Byq) + o' —
1,0) € V(F,G,). Since max(O(F)) > max(O(G)), then £, — 8" < ay, ., — o', in particular
Blo, + ' =1 < ag, +p' =1, and (B, +a' —1,0) € V(J). A similar argument shows
that the last edge of J = F,G, — F,G, is nothing but the last edge of —F,G,, and that

(—Fny)AFyGI = —aﬁlT.ZL‘Blrfl(Fy)AFy. |
VFy Gy vR

4 Deformation of Newton polygons and applications

Let f=y"+a(x)y" ' +... + an_1(2)y + a,(x) be a reduced monic polynomial of K((z))[y]
and let Root(f) = {y1,...,yn}. Let fi,..., fe(p) be the set of irreducible components of f in

K((2))ly].

Definition 4.1 Let N be a nonnegative integer and let v(z) = > 5, apzv € K((zv)). Let
M be a real number. We set

ko ko
B Z apr™ i M > N
V<M = \ k>ko, <M
0 otherwise
and we call vy the < M-truncation of v(x).

Let 6 be a generic element of K. We set

k
Z akaj% +0.2M if M > NO

V<M,0 = \ k>ko, £ <M
0.xM otherwise

12



and we call y.pr9 the M-deformation of v(x).

Let N be a nonnegative integer and let y(z) € K((z)). Let M be a real number and let
Y<um be the < M-truncation of v(z). Consider the change of variables X = z,Y = y — yy,.
The polynomial F(X,Y) = f(X,Y + 7-p) is a monic polynomial of degree n in Y whose
coefficients are fractional meromorphic series in X. Let V(F) = {P;, = (ag,, ki)|i = 1,...,vp}

and let E(F) = {A],..., AL }.

Lemma 4.2 Let the notations be as above. Assume that v ¢ Root(f) and let M = maxj<;<,c(7, y;)-
We have the following:

1) ROOt(F(X, Y)) = {Yk =Y — /7<M7k = 1, e ,’I’I,}.
ii) O(F) = {c(yr,V)|k=1,...,n}.

Q; — Oy
iii) There is exactly k; — k;11 roots y(x) of F' whose contact with ~ is !

ki — ki1
iii) The initial coefficients of Root(F'), denoted inco(F'), is = {inco(yx —y)|k =1,...,n}.

In particular, the Newton polygon N (F) gives us a complete information about the relationship
between ~(x) with the roots of f. We call it the Newton polygon of f with respect to (),
and we denote it by N(f,~).

Proof. We have

F(X,Y) = f(X,Y +7(X)) = [TV +7(X) = (X))

k=1

now use Lemma 3.1.1

Lemma 4.3 Let y;(z) be a root of f(z,y) =0 and let

M = max;zc(yi, y;).
Let 7 = Yicare = (Wi)<m(x) + 02M be the M-deformation of y; and consider the change of
variables X = z,Y =y — 4;(X). Let F(X,Y) = f(X,Y + 3:(X)). We have the following:
i) O(F) = {cly; —va)lj # i}}-
ii) M = max(O(F)).
iii) The last vertex of N(F') belongs to the z-axis.

iv) Let AL Dbe the last edge of N(F). We have (o', 1) € Supp(FAgF) for some a!. Further-
more, (a!,1) ¢ V(F).

13



Proof. We have

F(X,Y) = f(X,Y +5:(X)) = [ ]V + () cns(X) + 6XM — (X))
k=1

and by hypothesis, O((y;)<m(X) + 0XM — (X)) = O(y:(X) — yp(X)) for all k # i. Fur-
thermore, O((y:)<m(X) + 0XM — (X)) = M = O(y;(X) — y;(X)) for some j # i. This
implies i) and ii). Now F(X,0) = [[r_,((yi)<m(X) + 6XM — y(X)) # 0, hence iii) fol-
lows. Let AL be the last edge of N(F) and let y;,,...,y;, be the set of roots of f such
that c¢(y; —y;,) = M for all k =1,...,1. Write y; = Zp c;xp and let y; — y;, = cq ™ + ...
for all k = 1,...,1. Tt follows that (Y;)<a(X) + 02 — y; (X) = (ca, + 0)2™ + .... Finally
Fpr = (y — (car + 0)x™M) ka=1(?/ — (Cay, + 0)xM). Since 6 is generic and [ > 1, then iv) follows
immediately.ll

In particular, using the results of Section 3., the last vertex of N(Fy) is (a*,0), O(F) = O(F,),
and max(O(Fy)) = M. But Fy(X,Y) = f,(X,Y +7;(X)). This with the above Lemma led to
the following Proposition (see also [8], Lemma 3.3.):

Lemma 4.4 For y;(z),y;(x),t # j, there is a root zx(x) of f,(z,y) = 0 such that

(i), y; (@) = cyi(@), 2 (2)) = cly; (@), 20 (2))-

Conversely, given y;(x), z(z), there is y;(z) for which the above equality holds. Moreover,
given y;(z) and M € R,

card{y;(z)|c(yi(z), y;(x)) = M} = card{z(z)|c(yi(z), 21(x)) = M}.

Proof. Let i # j and let M = c(y; — y;). Let ;s = (yi)<ar + 02™ be the M-deformation of y;.
Consider, as in Lemma 4.3., the change of variables X = z,Y =y — 3;(X) and let FI(X,Y) =
f(X,Y +g:(X)). It follows from Lemma 4.3. that F(X,0) # 0, and if deg, Far =1 +1, then

there is r roots y;,,...,y;, of f(z,y) = 0 such that c(y; —y;,) = M forall k =1,...,r. Since
(al,0) € Supp(FAUFF) for some o, then the cardinality of F(F,) is the same as the cardinality of

E(F). Furthermore, N(F)) is a translation of N(F') with respect of the vector (0, —1). Finally,
(Fy)AUFF = (FAUFF)y is a polynomial of degree r in y. In particular, by Lemma 4.3., there is r
roots of f,(z,y) = 0 whose contact with y; is M. This completes the proof of the result.l

Let g = y™ +ay(z)y™ '+ ... + an(x) be a reduced monic polynomial of K((z))[y] and denote
by 21, ...,z the set of roots of g. Let y;(x) € Root(f) and let:

M = max({e(ys, y)lj # 1} U{elyi, 201k = 1,....,m})

Lemma 4.5 Let the notations be as above, and assume that M > maxj<g<mc(yi, 2x). Let
Ui = (yi)<m + 02™ be the M-deformation of y; and consider the change of variables X =
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z,Y =y —7;(X). Let F(X,Y)=f(X,Y +3:(X)), GX,Y) =g(X,Y + 7;(X)). We have the
following

i) F(X,0) # 0 and G(X,0) # 0, i.e. N(F) and N(G) meet the z-axis.

ii) max(O(F)) = M > max(O(Q))

i) If AP (resp. AS) denotes the last edge of N(F) (resp. N(G)) then (a',1) €
Supp(Fa,, ) (resp. (8',1) € Supp(Ga,,)) for some o' (resp. $'), and (a',1) ¢ V(F) (resp.
(8',1) ¢ V(@)

Proof. Let F(X,Y) = [[[_;(Y = Y;(X)) and G(X,Y) = [[,Z, (Y — Z(X)). Clearly Y;(X) =
Y (X) — () e (X) + XM Z1(X) = 2p(X) — (yi) < (X) + 0X M. In particular, for all k& =
1,....,m, O(Zy) = c(yi, z) < M. On the other hand, for all j # i, O(Y;) = c(vy;, y;) < M with
equality for at least one j, and O(Y;) = M. This implies i) and ii). Now iii) follows by a similar
argument as in Lemma 4.3.1

Let J = J(f,g), and note that J(F,G) = J(X,Y). In particular, by the results of the previous
Section we get the following:

Lemma 4.6 For y;(z),y;(z),7 # j, if c(yi,y;) > maxi<g<mc(vi, 2k), then there is a root w(z)
of J(x,y) = 0 such that

c(yi(2), y;(2)) = c(yi(x), w(x))

Conversely, given y;(z), w(x), if ¢(yi, w) > c(yi, zx),k = 1,...,m, there is y;(x) for which the
above equality holds. Moreover, given y;(x) and M € R, if M > maxy<x<mc(yi, 2x), then:

card{y;(z)|e(yi(x), y;(x)) = M} = card{w(z)|e(yi(x), w(x)) = M}.

Proof. Let M = c¢(y;,y;) and consider the change of variables X = z,Y = y — 3;(X), where
Ui = (i) <ar + 02 is the M-deformation of y;. Let F(X,Y) = f(X,Y +Y;(X)) and G(X,Y) =
g(X,Y +Y;(X)). 1l follows from the hypotheses that F and G satisfies conditions i), ii), and
iii) of Lemma 3.4. In particular J(X,Y) \sxy) = (GAUG(G) (X,0))x-(Far_)y. The proof follows

v(J(X,Y)
now by a similar argument as in Lemma 4.4.1

5 Five main results

Let f = 4" + ai(z)y™ ' + ... + a,(z) be a monic reduced polynomial of K((z))[y] and let
f=Fffao.. fe(p) be the decomposition of f into irreducible components of K((z))[y]. Let f,
be the y-derivative of f and let Root(f) = {y1(x),...,yn(x)}.

For all 1 < i < &(f), set ny, = deg,(fi), and let (m[")1ck<n, 1, (A )1<kzn, +1); (€L ) 1<hzn;,
(Tgi)lgkgh ;,+1 be the set of characteristic sequences of f;.
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Proposition 5.1 Assume that £(f) = 1, 1. e. f = f; is irreducible. For all 1 < k < hy, we

have:
m£ f ny
card{z(z) € Root(f,)|c(f, 2(x)) = 0 —} = (e 1)df-
m{ mi
Proof. Note that, by Lemma 4.4., ¢(f, 2(z)) € {—, ..., —2L}. Assume first that k = h; and fix
ny ny
7nf
aroot y, of f. By Lemma 1.2., y, has the contact n—f with exactly d —d£f+1 = d{lf—l = eﬁf—l
roots of f, consequently, by Lemma 4.4., there is e{l — 1 roots of f, whose contact with y,
m! mf
h
is —2L. Denote the set of these roots by D,. Each element of D, has the contact —X with
ny ny

exactly dhf roots of f (since we have to add y,). Denote this set by C,. Let y, ¢ C, be a

root of f. Repeating with y, what we did for y,, we construct D, and Cj, in a similar way.

f

Obviously C, N C, = 0 (otherwise, ¢(yp, y,) = , which is impossible because y, ¢ C,). This

n
implies that D, N D, = .... This process divides the ns roots of f into de disjoint groups

hy
m,
Cy,...,Cns such that for all 1 < p < —, C, contains the roots of f having the contact —=
@, dhf nf
m,
with the elements of D,. For all z(z) € D, c(f, 2(x)) = —L, in particular
ny
nf
f d}{f
My f ny
card{z(z) € Root(f,)|c(f, 2(z)) = n—f} = anrde = (ehf — l)g
p=1 f

Assume that the equality is true for k = hy,... ,] + 1, then there is exactly Z (e r_

i=7+1
n n
1)—; =ns— —}c roots of f, having the contact > mj with f. We now repeat the same argument
ng dj
with —J’f, —2 — 1 instead of ny and d} — 1.1
o at s
J J+1
mfi
Proposition 5.2 Let M € Q and let 1 < i < £(f). k
Ny

., hy,. We have:
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card{z(x) € Root(f,)|e(fi, 2(x)) = M} = card{y(x) € Root(f)|c(fi,y(x)) = M} = > ny.
c(fifx)=M

Proof. Let, without loss of generality, : = 1 and let £ > 1 be such that ¢(f1, fx) = M. Fix a root
yp(z) of f1. Since c(y,(x), fx) = M, then there is a root y(x) of fi such that c(y,(x),y(x)) = M.

fi

m
Let 8 € {0,...,hy} be the smallest integer such that M < 91 and consider another root

np
yj(x) of fi. We have:
mil
M if Om@j - yp) > %
c(y;,y(2)) = Ox(y; = y(x)) = Oaly; — vp +yp — y(2)) = . it
Ou(y; —yp) 1 Ouly; —yp) < ﬁ
mfl
By Lemma 1.2., there is exactly dgﬁrl — 1 roots of f; having a contact > —% with Yp, conse-
np

quently, by the formula above, there is exactly dgﬁrl roots of fi having the contact M with y(z)
(since we have to add y,). Denote this set by C), and let D} be the set of roots of fj having
the contact M with y,. In particular an element of D} has the contact M with every element
of Cj,.

Let y, ¢ C, be a root of f; and repeat the same construction with y, instead of y,. It is
clear that C, N C, = 0 (otherwise, if § € C, N C,, then ¢(y,y,) = c(y,y,) = M, in particular
c(Yp, yq) > M, which is a contradiction since y, ¢ C,), in particular D} N D} = (). This process

f1

n all n
divides the set of roots of f; into disjoint df% groups D}, ..., DZ"“: forall1 <p< df{I , Dy

041 0+1
contains the roots of f having the contact M with the elements of C,. Repeating what we
did with another f;, [ # k, such that c(f1, fi) = M, then adding the D}’s, We obtain disjoint

n
dffl groups Dy, ..., D n; such that D, contains the roots of f having the contact M with the

I1
6+1 4931
elements of C},. We have, by Lemma 4.4.

card{z(x) € Root(f,)|e(yy(x), 2(x)) = M} = card{y(x) € Root(f)le(y(x), y(x)) = M} = cardD,

Let z(z) € Root(f,) and assume that c(z(x),y,) = M. If y, € Root(f), y, # yp, since c(yp, yq) #
M, then ¢(z(x),y,) < M. In particular c(fi, 2(x)) = M. Finally

e
0+1

card{z(x) € Root(f,)|c(f1,2(z)) = M} = Z cardD,, = Z Ty
p=1 c(f1,fr)=M
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This proves our assertion.Hl

Proposition 5.3 For all 1 <¢ <r and for all 1 <60 < hy,, we have:

fi fi

m m ) i
card{(s) € Root(f, el () = 22} = card{yi) € Root()ep(2)) = 22 p+(ef—1) %
s s )

. ne¢.

= Z ng, + (egz - l)d;:.

mfi 0
c(firfr)= n?_

f1
Proof. Let, without loss of generality, ¢ = 1 and assume that c(fi, fx) = 9 for at least one
ng
f1
k > 1. Let y, be a root of f;. Since ¢(fi,y,) = m—e, then there is a root y(x) of fx such that
iy
f1
c(yp(z),y(z)) = T By Lemma 1.2., there is exactly dJ} — 1 roots of f; having a contact
ny

mi! 1 mi!
> —% with y,. Let y;(z) be a root of f; such that c(y,,y;) > —%, then c(y;, y(z)) = O.(y; —

ny ny

1 mgl 1 méﬁ
y(@)) = Oaly; — 4p + yp —y(x)) 2 np On the other hand, c(y;(z),y(z)) < c(f1, fr) = e
1 1
fi
hence c(y;,y(z)) = Mo Consequently, there is exactly dgl roots of f; having the contact
nyg

f1
" with y(x). Denote this set by C, and let D}’; be the set of roots of fi such that for all
ny

' mi mi
y(z) € D¥ c(yy(x),y(x)) = —%. In particular, an element of D¥ has the contact —~ with

np iy

every element of C),.

Let y, ¢ C, be a root of f; and repeat the same construction with y, instead of y,. We have,
by a similar argument as in Proposition 5.2., C;, N C, = () and consequently D’; N D’q‘C = (). This

"f1

n 1
divides the set of roots of f; into disjoint i} groups D}, ..., D,:e . Each element of D7 has
dj!

f1
the contact —~ with the elements of C,. Repeating the same argument with the set of f; such
ny
1 ml n
that c(f1, fi) = n; , then adding the D}’;’s, we obtain disjoint d—]{i groups Dy, .. .,D% such
1 0
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fi
with the elements

that for all 1 < p < df L, D, contains the roots of i having the contact %
0 1 N
of C},. We have, by Lemma 2.2. and Lemma 4.4.:

mi mi
card{z(z) € Root(fy)|c(yp, 2()) = n; = card{y(z)|c(yp, y(z)) = n; }

n
— cardD, + (elt — 1 Zh
o+ (ef -~ 1

And by a similar argument as in Proposition 5.2.,

f1

m N
card(x(z) € Root(f,le(fr =) = "} = (3" cardD,) +(ef — 1)L
i 1<p<iL dy

- ho_

D SRR TSR

f1 0

c(f1,fr)= "f1

This proves our assertion.Hl

Let g = y™ + by(z)y™ ' + ... + bu(x) be a monic reduced polynomial of K((x))[y] and let
g1, - - -, Je(g) be the set of irreducible components of ¢ in K((z))[y]. Let Root(g) = {z1,..., zm},
and let J = J(f, g) be the Jacobian of f and g.

Proposition 5.4 Let M € Q and assume that c(y(x),y'(z)) = M for some y(x),y'(z) €
Root(f), and that M > maxj<j<mc(y(z), zj(x)). Let 1 <i < &(f), and assume that M # b
o ny;

forall k =1,...,hy,. We have the following

card{u(x) € Root()e(fy, u(x) = M} = card{y;(2)|e(fogy(@)) = M} = 3"y
c(firfu)=M

Proof. The proof is similar to the proof of Proposition 5.2., where Lemma 4.4. is replaced by
Lemma 4.6.1

fi
Proposition 5.5 Let 1 < 6 < hy, and assume that Mo - max; <j<n1<k<mC((y;(2), zx(x)). We
ny; o
have the following
mgl gl ny
card{u(z) € Root(J)|e(fi, u(x)) = . } = card{y(z) € Root(f)|e(fi, y(x)) = }+( —Dor
T 0
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) mnrs.
- Y -
fi 0

)

c(firfre)= ny

Proof. The proof is similar to the proof of Proposition 5.3., where Lemma 4.4. is replaced by
Lemma 4.6.1

6 The tree of contacts

Let f be a monic reduced polynomial in K((z))[y] and let f = fi..... fe(p) be the factorization
of f into irreducible components of K((z))[y]. We define the set of contacts of f to be the set:

T

() m{k "Mhy
CUf) =Aclfp Ol <p#a <€)UY, —)
fr ny

Let C(f) = {M, ..., M;,}. The tree associated with f is constructed as follows:

Let M € C(f) and define Cj/(f) to be the set of irreducible components of f such that

fo € Cul(f) & cfp, fo) = M for some 1 < g <&(f)

mik

with the understanding that c(fy, fr) > M if and only if —— > M for some 1 < i < hy,.
nfy
We associate with M the equivalence relation on the set Cp(f), denoted Ry, and defined as

follows:

fpRum fq if and only if ¢(f,, f,) > M.

We define the points of the tree T'(f) at the level M to be the set of equivalence classes of Ry,
and we denote this set by PM, ..., st\é. We shall say that PjN dominates PM, and we write
PN > pPM if PV C PM. We shall say that P}V strictly dominates P, and we write P}V > PM,
if PN dominates P, PM # PN and C(f)N|M,N[= 0. This defines an order on the set of
points of T'(f) with a unique minimal element, denoted PlMl. A point PM is called a top point,
of T'(f) if it is maximal with respect to this order. We denote by Top(f) the set of top points

of T(f).

Let PM be a point of T'(f), and let Pi]lvl, e PZJtVt be the set of points that strictly dominate PM.
We set D} = PM —Uj_  P,". Clearly {Pijlvl, ..., P, DM} is a partition of P. Furthermore,
for all F € DM and for all F # G € PM ¢(F,G) = M. We also have the following:

F

m
i) if F € DM, then M > —2&
nrg
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ii) PM € Top(f) if and only if PM = DM.

If PjN strictly dominates P, then we link these two points be a segment of line. We define
the set of edges of T'(f) to be the set of these segments. Given a point PM, if DM #£ () then
we associate with each '€ DM an arrow starting at the point P, Let P}, PZ{YQ U Pf‘“ be

a set of points of T'(f) such that PM2 strictly dominates P, PM’“ € Top(f), and PMj strictly

dominates P Mict for all 3 < j < k. The union of edges linking these points is called a branch
of T(f). Clearly, there are as many branches of T'(f) as there are top points of T'(f).

Lemma 6.1 Let P be a point of T'(f). We have the following:
i) For all F,G € PM ¢(F,G) > M
ii) For all F € PM and for all H ¢ PM c(F,H) < M.

iii) For all F,G € PM and for all H ¢ PM ¢(F,H) = ¢(G, H). We denote this rational by
o(H, M)

m¥
iv) let '€ PM andlet 1 <0 < hyg+ 1 be the smallest integer such that M < —%. If § > 2
n
m¢ mF !
then —& = for all G € PM and for all 1 < k < 6 — 1. We denote this rational number by
nag ne

%(PZM )). As a consequence d_G does not depend on G € PM) and 1 < k < 0. We denote this
n k

rational number by d%(PZM ).

Proof. The proof is an easy application of Lemma 1.5. and Lemma 1.6.H

Let PM be a point of T'(f) and define the subsets X1 (M, 1), ..., Xy, (M, 1) of PM as follows:
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- For all k and for all F, G € Xy (M, 1), ¢(F,G) = M.
- Given F € Xy(M, i) and | # k, it F' ¢ X;(M, 1), then ¢(F,G) > M for some G € X;(M, 1)
(in particular F,G € P} for some PV > PM).

The sets defined above satisfy the following property:

Lemma 6.2 The cardinality of X (M, ) does not depend on 1 < k < s(M,i). We denote this
cardinality by c¢(M,1).

Proof. Assume that s(M,i) > 2and let 1 < a # b < s(M,i). We shall construct a bijective map
from X, (M, 1) to X,(M, ). Let F € X,(M,i). If F ¢ X,(M, i), then there is F' € X,(M, 1) such
that c(F, F ) > M. We claim that F is the only element with this property. In fact, if there is
F +# G € X,(M,i) such that ¢(F,G)) > M, then M = ¢(F,G)) > min(c¢(F, F), ¢(F,G)) > M,
which is a contradiction. This defines a map

Gap : Xa(M,1) —> Xp(M, 1)

[F it Fe X, (M,i)
Pan(F) = {ﬁ if ¢ X,(M, i)

This map is clearly bijective. This completes the proof of the Lemma.ll

Lemma 6.3 Let the notations be as above, and let Pi]lvl, ey PZ]tVt be the set of points that
strictly dominate P. We have the following:

i) DM C X;.(M, i) for all 1 < k < s(M,1).

i) Given 1 < k < s(M,i), (Xp(M,i) NP, Xp(M, i) N PN, DM) is a partition of
Xi(M,1).

iii) Given 1 < k < s(M,i) and 1 <1 <t, Xi(M,i)N PZJZV1 is reduced to one element.

iv) ¢(M,i) =t + card(DM).

Proof. The first two assertions are clear, on the other hand 3. = 4. We shall consequently
prove 3. Assume, without loss of generality, that £ = 1, and let 1 < [ < ¢t . Suppose that
Xq(M,i)N PZ]lVl = () and let G € PZJZVZ We have ¢(F,G) = M for all ' € X;(M,1), in particular
G € X (M,1i), which is a contradiction. Consequently X;(M,i) N PZJIV’ # (. Let G1, G2 be two
polynomials of X (M,i) N PZ]lVl We have ¢(G1,G3) = M and ¢(Gy,G2) > N > M. This is a
contradiction if G; # G2.1
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Let PM be a point of T(f) and assume that DM = (). For all F € DM ¢(F,F) < M, in
F

Lemma 6.4 Let the notations be as above. We have the following
i) If M > hF for all F € DM, then nr does not depend on F' € DM. We denote it by n(DM).
We have EFeD{” ng = (c(M,i) — t)n(DM).
mF
i) If M = nLFF for some F' € DM, then one of the following hold

m¥
1) M = HLFF for all £ € DM. In this case, ny does not depend on F' € DM. We denote it
by n(D}M). We have >~ .. pu np = (¢(M, i) — t)n(DM).

F’ F !

Ly M > —£ for some F' € DM. In this case, M = W:L—F > TZLFF,' for all F € DM, F # F,
and ng, hr, (dF)lnghF do not depend on F € DM F # F'. We denote these integers by
DM
n(Df”),h(Di”),de’M. With these notations we have n(F’) = nE)MZ ), and Y pcpu n(F) =
h(lDZM)
n(DM
(e(M, i) — t — 1).n(DM) + %
h(DM)

Proof. By definition, for all F,G € DM ¢(F,G) = M. Consequently our results follow from
Proposition 3.4.1

Let H be a monic polynomial of K((x))[y] and let Hi,..., Hey) be the set of irreducible
components of H in K((z))[y]. Let PM be a point of T'(f) and let ' € PM. We set:

Rou(FH)= [ He
c(F,Hp)=M
and

Roy(F.H)= ] He

o(F,Hy)>M

23



In other words, R_p/(F, H) (resp. R-n(F, H)) is the product of irreducible components of H
whose contact with F'is M (resp. > M).

Lemma 6.5 Suppose that P ¢ Top(f) and let P*, ..., PM* be the set of points that strictly

11 )

dominate PM. Fix 1 <l <t and let F € PZJLVZ We have the following

i) For all G € Pi]lvl, R_y(G,H) = R_py(F,H) (resp. R-pn(G, H) = R-p(F, H)). We denote
this polynomial by R:M(Pi]lvl, H) (resp. R>M(Pi]lvl, H)).

ii) For all G € P,k # I, Ron(G, H) divides Ry (F, H).

iii) For all G € DM, R. (G, H) divides R_y(F, H).

Proof. Let H be an irreducible component of H. If G € Pi]lvl, then ¢(F,G) > Ny, > M. In
particular, by Proposition 1.5., ¢(G, H) = M (resp. ¢(G,H) > M) if and only if ¢(F, H) = M
(resp. ¢(F, H) > M). This proves i). If either G € PZJ:’“,k # 1l or G € DM then ¢(F,G) = M.
In particular, if ¢(G, H) > M, then, by Lemma 1.5. ¢(F, H) = M. This proves ii) and iii).H

Let the notations be as above. It follows from ii), iii) of Lemma 6.5. that:

t
[ Rore(PYe, H). T[ Ron(F, H)divides Ry (PN, H).
k=2

1 ) 11 ?
FeDM

Set

oy . R:M(Pijl\flv H)
QH(M7 Z) E—— N,
Hk:Q R>M(Pz‘,c >H)- HG’GDZM R>M(G> H)

and let

Qu(M,i) = 1T Hy,

e(G,Hy)=MVGePM

i.e. Qp(M,1)is the product of the irreducible components of H whose contact with all G € PM
is M.

Lemma 6.6 With the notations above, we have Qg (M, i) = Q (M, 1).

Proof. Let H be an irreducible component of Qy(M,i). For all G € PM, ¢(G,H) = M.
In particular, since Ufgzlf)i]:‘“ C PM, then H divides R_p/(P)*, H) and H does not divide

11 )

[1._, Ron(PY¥ H). [eepy Ron(G, H). Hence Qu(M, i) divides Qp (M, ).

1 )
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Let us prove that Qy(M,i) divides Qy(M,i). Let G € PM and let H be an irreducible
component of @ (M, 7).

-IfG e Pijlvl, then by Lemma 6.5. i), R_y(G, H) = R:M(Pgl,H), in particular ¢(G, H) =
M.

-1If G € PM — P then, by Lemma 6.3., G € DM U (U{_,P™). Suppose that G € DM. If
c(G,H) > M, then H divides R> (G, H) = Rsp(D}, H). This contradicts the definition of
Qpu(M,i). In particular ¢(G, H) = M. By a similar argument we prove that if G € U};ZQPZ-]:’“,
then ¢(G, H) = M. This implies our assertion.ll

Lemma 6.7 Suppose that PM € Top(f), and recall that in this case PM = DM. Let F be an
element of DM. We have

R_y(F, H)

Qu(M,1) =
" HGeD{W,G;ﬁF Rom(G, H)

Proof. The proof is similar to the proof of Lemma 6.6. Il

7 Factorization of the y-derivative

7.1 The irreducible case

Let f be a monic irreducible polynomial of K((z))[y] of degree ns in y and consider the char-
acteristic sequences associated with f as in Section 1. We have the following:

Proposition 7.1 f, = P;..... Py, and for all k =1,... hy:

: n
i) deg, Py = (ef — 1)—]{
dj,
N o f
i) int(, Py) = (ef — 1)rf.

m

iii) For all irreducible component P of Py, c(f, P) = n—Jf

Proof. i) and iii) result from Proposition 5.1. and ii) results from Proposition 1.4.H

7.2 The general case

Let the notations be as in Section 5. In particular f is a monic reduced polynomial of K((x))|y]
and fi,..., fe) are the irreducible components of f in K((z))[y]. Consider the characteristic
sequences associated with fi,..., fey) and let T'(f) be the tree of f. Fix a point P of T(f).
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Lemma 7.2 Let the notations be as above and let PM € T(f) — Top(f). If DM # (), then
deg, (R-n(F, f,)) = 0 for all F € DM.

Proof. Suppose that PM ¢ Top(f), and that DM # 0. Let F € DM. If deg,(R=u(F, f,)) # 1,
then ¢(F,H) = N > M for some irreducible component H of f,. In particular, by Lemma
44., ¢(F,F) = N for some irreducible component F of f, hence F € PjN for some point
PN e T(f),N > M. This is a contradiction because F' € D} I

Lemma 7.3 Suppose that PM ¢ Top(f) and let Pl-jlvl, cee PthVt be the set of points of T'(f)
that strictly dominate P. We have:

u(P fy)
Hl 2R>M<PNl fy)

ny<M7 Z)

Proof. We have, by Lemma 6.6.:

m(BY 1)
IT- 2R>M<PN fy)- Taepy Rom(G, fy)

On the other hand, by Lemma 7.2., if G € DM, then deg, (R (G, f,) = 0). This proves our
assertion.ll

Fix a polynomial Iy e PYforall 1 <1<t By Lemma 6.6., Roy (P, f,) = Roy(F, fy)
(resp. R>M( Y fy) = Rom(F, fy)). In particular we have:

ny <M7 Z) =

Ry (11, fy)
Hllt:Q R>M(Flv fy)

The following Lemmas give the degrees of the two polynomials describing Qy, (M, 7).

ny<M7 Z) =

F

Lemma 7.4 Let PM be a point of T(f) and let 6 be the smallest integer such that M < M
ng

for all FF € PM. Let (le )i<i<¢ be the set of points that strictly dominate PM. Let Fy € P,
We have:

t
IZ;(Z”F)J“Z”F ifM;Ng—Z

= FEPZ.NZ FGD,ZM
degyRZM(Fl’ fy) = !

t

ngo. i
S nm+ Y nF+(651—1)dFi if M = e
=2

=2 pepl FeDM 0
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Proof. This results from Propositions 5.2. and 5.3.1

Lemma 7.5 Let the notations and the hypotheses by as in Lemma 7.4. We have:

nr
deg,Ron(Fs f) = 3. met 3, (e —1)-7
FeP)!—{F1} M<r%w1 J

1

Proof. This results from Propositions 5.2. and 5.3.1

As a corollary we have the following:

Proposition 7.6 Let the notations and the hypotheses by as in Lemma 7.4. and fix F] € PZJLV”
for all 2 <[ <t. We have:

4 t F
F, ng . 1
)DETED NN SR E LD 0 7
FeDM =2 mE J
. , M<si-

g, @y, (M, 1) = : P nr .
F . m
> met M- 3l 0 it =

FeDM =2 mi dj 0

Proof. This results from Lemmas 7.4. and 7.5., since ged(R=p/(F1, fy), R>m(F1, fy)) = 1 for all
2<i<t.

Note that with the hypotheses of Proposition 7.6.,

hi, .
F; nFl _ nFl . m l
I L BIC b et R Aok 7
£ B =0 j 0
ne— Y, (e =g = by .
m?l Y F nE ng . m
M<o g = ) (e = 1)d_Ff) - dpll it M=
1 j=6+1 J 0+1
mb mb
Let A (resp. B) be the set of 1 <1 <t for which M = —% (resp. M < —2-). It follows that:
ng, ng

S S MY

leA "0+1  1eB-{1} "0 FeDM

nFl nFl F nFl .
Z sz +ZE+(691_1)dF1+ ZTLF ifle B
tea—{1) %o+1 1B % o' repM

dengfy (M7 Z) =
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n
F—F (reps. dF) does not depend on F' € Ujeal; N (resp.
0+1

F e U BPZ-JZV’). In particular, if we denote by a (resp. b) the cardinality of A (resp. B), then we have:

Let (11,12) € A x B and recall that

nF, nF,

dFllllJr( dlz+ZnF iflenB
. 0+1 FeDM
deg,Qy, (M, i) = ng, F
! 1 1 F nF
(a— 1)dFl11 bszj + (ep* — dFi Z np ifleA
0+1 6 FeDM
nr
Note also that if B # () then 12 = Zg , on the other hand, if B = ), then 1 € A. In particular we
g 0

get the following;:

(b—l F1—|— Z ng

9+1 FeDM

dengfy(M i) = a

The above results can be stated as follows:

Theorem 7.7 Let PM be a point of T'(f) and assume that P ¢ Top(f). Let (Pi]lvl))lglgt be the set

of points that strictly dominate P} and let 6 be the smallest integer such that for all F € PM M <

F F

leFleP “"forall 1 <I<tandlet A (resp. B)betheset0f1<l<tforwhlchM—m—9

ng nr
mF

(resp. M < —) for all F' € Ujeal;, N (resp. F e UleBP Y. Let (I1,l2) € Ax B. Let Fj, € PZ-]IVZ1 and
ng 1

F, € Pl-l . If a (resp. b) denotes the cardinality of A (resp. B) then the component Qy (M,i) of f,
2 z
satisfies the following:

i) deg, Qs, (M, 1) = ari + (b~ )’

and ). pm np is given by the formula of

6+1 9 P F

. M s . mhF o mhp

Lemma 6.4., where if F' € D;”, then hp is either § — 1 or § depending on M > or M = .
ng ng

i) For all irreducible component P of Qy, (M, ) and for all F € PM c¢(F,P) = M.

iii) For all irreducible component P of Qy, (M,i) and for all F ¢ PM, ¢(F,P) = ¢(F,PM) < M,
where we recall that c(F, PM) is the contact of F' with any element of PM.

iv) For all 1 <k <&(f):
degQ fy(M, 7/)

-If fr € P@'M then int(fk,ny(M,i)) = S(mfk,M) -
T

dengy(M, ’L)

- If fk ¢ PZM then ll’lt(fk;,ny(M,’L)) = S(mfkac(fkaP@M)) n
) Jr

, where c(fy, PM) is the

contact of fj, with any F € PM .l
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In the following we shall consider the case where PZM is a top point of T'(f).

Lemma 7.8 Suppose that PZM = DZM € Top(f), and let F € PiM. We have the following:
Qs, (M, i) = R—pn(F, fy)

Proof. By Lemma 7.2., degy R~ (G, f,) =1 for all DiM. Our assertion follows from Lemma 6.7.H

Let PM = DM = {F,..., F,}, and recall, by Proposition 2.4., that the sequence (Fi,..., F,) is either
equivalent, or almost equivalent.

Theorem 7.9 Let PM = {F,...,F,} € Top(f) and assume that ng, = maxj<g<,np,. We have the
following;:

"
h
i) If (Fy,...,F,) is equivalent with M > —L then deg,Qy, (M,i) = (r — 1)ng,.
Ny
F
.. . . . hi“l . F nEp
ii) If (F1,..., F,) is equivalent with M = ; then degyQy, (M, i) = (r —)np, + (e, — 1)dF1 .
nr : 1 ne
1

iii) If (F, ..., Fy) is almost equivalent, then deg,Qy, (M,i) = (r — 1)np,.

Proof. It follows from Lemma 7.8. that deg,Qy, (M,i) = deg,R-p(F1, f,). Now the hypothesis of
i) and ii) implies that np, = np for all k = 2,...,7. Hence i) results from Proposition 5.2. and ii)
results from Proposition 5.3. Assume that (Fi,..., F,) is almost equivalent, and that, without loss
of generality, (Fi, F3,..., F;) is equivalent. Since Qy, (M,i) = R=p(F1, fy) = R=pm(F2, fy), then iii)
results from Proposition 5.2.1

Remark 7.10 When PM = DZM € Top(f), the numbers a and b of Theorem 7.7. are zero. The

7
reader may verify that the two formulas of Theorem 7.7. and Theorem 7.9. coincide.l

Example 7.11 i) Delgado’s result: Let f = fi.f2. In [5], in order to generalize Merle’s Theorem, F.

Delgado uses the arithmetic of the semi-group of f. His result is a particular case of Theorem 7.7.

More precisely, let n; = deg, f;,i = 1,2 and let M = c(f1, f2), I = int(f1, f2). Let 6 be the smallest
i

m
integer such that M < —2,i =1,2. We have:
n;

6—1 m,lc B
fy = (kl_{ ny(n_fla 1))-fy

my,
n(f1)
given in the tables 1), 2), 3), depending on the position of M on T'(f). Note that c(f;, P) means the
contact of f; with an irreducible component of Qy, (M, 1).

where the properties Qp, ( ,1) are given in the table 0), while those of the components of fy are

0)
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ml ml,
. 2, (5.1 Q521
deg, @ (e1 — 1);T11 (G 1)le11

. mit 4 1 mil, N 1
c(f1, P),int(f1, Q) IR (e — D)ry N1 >(€971 - 1)7"071

. f1 mjL
C(f27 P)? lnt(f27 Q) ”;_117 (6% - 1)7"% T(i] : ’ (65_1 B 1)T3—1

m;

With the notations of Theorem 7.7., for all 1 <4 < 6 — 1, we have: Pln1 ={f1, fa},a=1,b=0.

i
My

1) M # n(fi)’i =1,2.
Q Qr01.1) | Qg (B 0.6 <k < hy, | Qu (" 4),0 < k <y,
deg, @ o= (ef! — 1) (e —1)2%
(i, P)int(£1,Q) | M.EG | (e~ 1] M (ef -0
2 Pint(f2@) | MF | Ml -ng | -l

M
Pl
f1

7YL2
ny
Pl
f1

7YL1

With the notations of Theorem 7.7., wéh#ve:
PM ={f, o}, A={N},B={fo},a=b=1

1

i

e

P*"l :{fl}ﬁgkghfl :a=1,b=0, P*"z Z{fg},HSkSh(fg)ZQZI,bZO

f [
2) M = My _ My
n1 no
ml1 m]?
Q ny(M,fl) ny(n—l,*},9+1§k§hfl Qp, (™ %),0 < k < hy,
ny _ ng 1 _ ni 1 _ ni 2 _ na
deg, @ av T ak + (e 1)d£1 (e 1)d£1 (e 1)d£2
; 1,01 m£1 1 f1 2 I
c(f1, P),int(f1, P;) M, ey'ry S (e =g M, (e, — I)E
T2
(f2 P int(fo, PY) | M, f = ety 32 M, (ef! = 1) ™ (eft — 1yl
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f1

With the notations of Theorem 7.7., we have PM = {f1, f2}, P. e ={fi}forall 0+1 <k < hy,, and
f2

P*"2 ={fo} forall 0 < k < hy,.

fi f2
3) M =" _ T
n1 ng
Q Qy,(M,1) ny(n %), 0 +1 <k < hy ny(n %), 0 +1 <k < hy,
i T T2
deng d2£1 + (691 - 1)(ZT11 ( k‘ )dfl ( k; )df2
1
c(fi, P),int(f1,Q) | M, (2¢f' = 1)rf! T (eft = D! M, (e =1)5
T2
c(fo, P),int(f>,Q) | M, (2] = D)rf? M, (eft = 1) T (et = D
k
mi1
k

With the notations of Theorem 7.7., we have PM = {f, fo}, P."* ={f1} forall @ +1 < k < hy,, and
f2
Mk

P, ={fo} forall 0 +1 <k < hy,.

Example 7.12 i) f = fi.fo and f1 = (y?—23)? =2y, fo = (y*—23)?+2%y. We have ny, =np, =n =
4,ffl = fo =r= (45 6’ 13)adfl = de = d = (452’1),mf1 = me =m = (45 6, 7)’ and C(fl’f2) =

INGIPN

The tree model of f is given by:

Pl = {1 f2)

MICO

= {f1, fo}

| W =

\1

Note that X(g,l) ={hHt, X(g,Q) = {f2}, and X(Z,l) P! = {f1, fo}. In particular c(;) 1)=1

and C(Z, 1) = 2. With the notations of Theorem 7.7., f, = Q(g, 1)Q(£, 1) = Q1Q2, where:
n n
denglzd_Q_d_1:1 (azl,b:())
dengQZ%—d—2+n—24—2—6( 1,b = 0).

3
Furthermore, for all irreducible component P of @ (resp. Q2), c(f1,P) = c(f2, P) = 2 (resp.

c(f1,P) =c(f2, P) = Z) Finally, int(f1,Q1) = (e1 — 1)r1 = r1 = 6 = int(f2, Q1) and int(f1,Q2) =
int(f1, f2) + (e — 1)rg = 39 = int(fo, Q2).

i) f=fifofsfrand fi = (v —2°)? = 2Py, fo = (y* — %) + 2Py, f3 = (y* — 2°) + 2Py — 2,
and fy = (y? + 23)% — 2%y: T(f;) =< 4,6,13 >=< n,r,ry >,i = 1,2,3,4,m; = 6,ms = 7, and
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7 3 9 3 3
c(f1, f2) = c(f1, f3) = Z,C(flaf4) = §,C(f2,f3) = Z,C(fz,f4) = §,C(f3,f4) =5 The tree model of f
is given by:
9 :
Z Pl = {f27f3}
7 7 7
1 Pt ={f1, f2, 3} Pyt ={fa}
3
5 P1 :{flaf25f3af4}
3 . 7 7 i
Note that Xi(?’l) = {fit,yi = 1,...,4, X1(Z,1) = {f1,f2}7X2(Z71) = {f1,fs}, D} = {f1},
7
Xo(%,2) = B and X,(,1) = {fo. f5}. Tn particular, o(3,1) = Le(2.1) = 2= e(3,1),(F,2) = 1,
3 7 7 9
Theorem 7.7. implies that f, = Q(i’ 1)@(1, 1)@(1, Q)Q(Z’ 1) = Q1Q2Q3Q4 with the following prop-
erties:
Qi7dengi Q173 Q276 Q372 Q474
c(f1,P),int(f1,Q;) | 2,18 | 2,39 | 3,12 | 1,26
c(fo, P),int(fo,Q;) | 5,18 | £,39 | 3,12 | 3,28
c(f3, P),int(f3,Qi) | 5,18 | 7,39 | 5,12 | 7,28
c(f1, P),int(f4,Q:) | 5,18 | 3,36 | 1,13 | 5,24

Where ¢(F, P) means the contact of F' with an irreducible component P of Q;.

iii) Let f = f1.f2.f3, where fi = (y?> — 2%)? — 2%y, fo = y?> — 2% and f3 = y? + 23. We have

c(fl’f2) = E’C(flaffi) = g = C(fQ’f3)aint(fl,f2) = 13aint(f1’f3) = 12 and int(f?affi) = 6. The tree

model of f is given by:

7 7
1 P ={f1, fo}
3 3

5 P? ={f1, fo, f3}
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With the notations of Theorem 7.7., we have:

X310 = {f1. 2} X(3.2) = {for fs}. D? = {fs}h.e(3.1) =2.
X(I,1) ={f, fo},c(f,1) =2

This gives us the following description:

Q’degUQ ny(%?l)’5 ny(%51)52
c(f1, P), int(f1, Q) 1,26 218
c(fo, P), int(f2, Q) 1,13 2.9
c(fs, P),int(f5,Q) [ 5,12 29

Where ¢(F, P) means the contact of F' with an irreducible component P of Q;.

iv) f = f1.fo, where fi = ((y*—2°)?—a%y)?+2'°(y? —2®) and fo = ((y*+2°)? —2”y)*+222(y* +2°).
We have I'(f1) =< 8,12,26,53 >, I'(f2) =< 8,12,26,57 >, M = ¢(f1, f2) = % and I = int(f1, f2) = 96.
The tree model of f is given by:

19 19
i Pt ={fa} o/

PY = {1}

With the notations of Theorem 7.7., we have:

XG )= {A1XE,2) = {fheS 1) =1
X(51) = (el 1) = 1,X(1,2) = (i) el ,2) =1
X(%?U = {fl}vc(%vl) = 17X(1T4971) = {f2}70(¥71) =1

This gives us the following description:

Q, deg,Q Qr,3.1).,31Q,51),2]Q.(5,2)2]Q22,1),4]Q,,(2,1),4
C(fl’P)’lnt(flaQ) %’36 %524 %,26 %,53 %’48
C(fQ’P)’lnt(f%Q) %’36 2526 %,24 %,48 %,57

Where ¢(F, P) means the contact of F' with an irreducible component P of Q.
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8 Factorization of the Jacobian

Let f =y" 4+ a1(z)y" ' +... +an(z) and g = y™ + by (2)y™ ' + ... 4 by () be two monic reduced
polynomials of K((x))[y] and consider the Jacobian J = J(f,g) of f and g. The aim of this Section is
to give a factorization theorem of J in terms of the tree of f.g. Let to this end T'(f.g) be the tree of
fgandlet fi,..., fe) (vesp. gi,...,ge(g)) be the irreducible components of f (resp. g) in K((z))[y].

Definition 8.1 Let PM € T(f.g).

i) We say that P is an f-point if for all 1 < k < &(g), gr ¢ PM (equivalently P is an f-point
if for all F € PM and for all 1 < k < &(g), c(gk, F) < M).

ii) We say that PM is a g-point if for all 1 < k < £(f), fr € PM (equivalently P is a g-point if
for all F € PM and for all 1 < k < &(f), e(fx, F) < M.

iii) We say that the point PZ-M is a mixed point if it is neither an f-point nor a g-point.

We denote by T (resp. Ty, resp. T),) the set of f-points (resp. g-points, resp. mixed points) of
T(f.9). Clearly T(f.g) = Ty UTy U T,.

N T

'

Lemma 8.2 Let PM, PJN € T(f.g), and assume that PjN > pM.
i) If PM € Ty (vesp. PM € T,) then PJN € T (resp. PJN e Ty).
i) if P € T,,, then PM € T,.

Proof. Easy exercise.ll

Lemma 8.3 Let the notations be as above. If Ty # () (resp. Ty # 0), then Root(J) # 0.

34



Proof. Assume that Ty # 0, and let P = PM € Ty. Let F € P and let y;(z),y;j(z) € Root(f) such
that c(yi,y;) = M. By hypothesis, M > max 4)cRoot(q)c(¥i, 2). Now use Lemma 4.6.1

More generally, assume that Ty U T, # (), Propositions 5.3. and 5.4. and similar arguments as in
Section 7. led to the following factorization theorem of J.

Theorem 8.4 J = J. HPMeTf Qu(M,i). [Ipmeq, @i(M, 1), where for all PM e TyUT,, deg, Q. (M, i) >

1. More precisely, assume, without loss of generality, that P = PZM € Ty and let (Pi]lvl))lglgt be the
F

set of points that strictly dominate PZM . Let 6 be the smallest integer such that M < Mo for all
n
mp ml!%m
F € PM. Let A (resp. B) be the set of 1 < <t for which M = —% (resp. M < —%) for all

ng ng
F e UleAPi]lVl (resp. F € UleBPiJlVl) and let (I1,l2) € Ax B. Let [}, € PZ-]IVZ1 and Fj, € Pi]lVlQ. If a (resp.
1 2
b) denotes the cardinality of A (resp. B) then the following hold:

i) deg, Q. (M, i) = a'nllell + (b — l)nglj + > pepm nr, and ) puv np is given by the formula of
d d K3 K3
0+1 (2 P F
. M . . . mhF o mhp
Lemma 5.6., where if F' € D;”, then hp is either § — 1 or  depending on M > or M = .
nr ng

ii) For all irreducible component P of Q;(M,i) and for all F € PM c(F,P) = M.

iii) For all irreducible component P of Q (M, ) and for all F' ¢ PM (this holds in particular when
F =g, 1 <k <&(9), c(F,P) =c(F,PM) < M.

iv) For all 1 <k < &(f):
~If fi € PM then int(fy, Q(M, i) = g(mfk,M)%J(M’i).
S
- If fi ¢ PM then int(fy, Qs (M, i) = S(mfk’c(fk’PiM))w.

nf,

Proof. The proof is similar to the proof of Theorem 7.7.H

Corollary 8.5 Assume that £(f) = 1, i.e. f = f1 is an irreducible polynomial of K((z))[y], and let
f
M = maxi(:gic(f, gr)- Let 6 be the smallest integer such that M < T:—Jf If § < hy, then J = J(f,9) =

J. HZLH Jy., where for all 0 < k < hy,
. ny
i) degyJr = el —1)—L.
) Y ( k )d£

i) int(f, Jy) = (e, — 1)r.

m?

iii) For all irreducible component P of Ji, c¢(f, P) = —&.

ny

iv) For all 1 < j < £(g) and for all irreducible component P of Ji, ¢(gj, P) = c(g;, f)

35



([ J
md
! Thy
Proof. In fact, Ty = {Plnf . " }. The result is consequently a particular case of Theorem 8.4.H

9 Bad and good points on the tree of f

Let f = y"+a1(z)y" '+...+an(x) be amonic reduced polynomial of K((x))[y], and let f = fi..... feep
be the factorization of f into irreducible components in K((z))[y]. We shall assume that f is generic
in the following sense: for all irreducible component H of f,, int(f, H) < 0.

Definition 9.1 Let F,G be two monic polynomials of K((z))[y], and let H be an irreducible monic
polynomial of K((x))[y]. We say that H is regular (resp. irregular) with respect to F if int(F, H) # 0
(resp. int(F,H) = 0). We define Reg(G, F) (resp. Irreg(G, F)) to be the set of regular (resp.
irregular) components of G with respect to F. Let v(x) € K((x%)),p € N. We say that v is regular
(resp. irregular) with respect to F' if O, F(z,v(x)) # 0 (resp.O,F(x,v(x)) = 0). If G = F,, then we
write Reg(F') (resp. Irreg(F')) for Reg(F),, F) (resp. Irreg(Fy, F)).

Lemma 9.2 We have Irreg(f, f,) = 0.

Proof. Let 1 < j < &(f) and let y(x) € Root(f;). Let M = maxy,c(fj, fr). By Lemma 4.4.,
M = max c(f;, H), where H runs over the set of irreducible components of f,. Since f is generic,
Fhen Zy;égeRoot(f) Ox(y—9)+M<0. If M <0, then O,(y —gy) <M <0 forall y € Root(f),g #+ vy,
in particular 3, croot(r) Oy — %) < 0. If M >0, then 3 o cpoor(p) Ox(y — %) < =M < 0. Finally
O fy(@,y(x)) = 32 2geroot(r) Oy — ¥) <0, in particular int(f;, fy) < 0. This proves our assertion.l

Definition 9.3 Let F, G be two monic polynomials of K((z))[y], and let H be an irreducible compo-
nent of G. Assume that H € Irreg(G, F') and let v € Root(H). We have F(z,v(x)) = A + u(z) where
A € K* and u(0) = 0. In particular, int(#' — A, H) > 0, hence H € Reg(G, F — \). We say that A is an
irregular value of F' with respect to G. We define irreg(F, G) to be the set of irregular values of F' with
respect to G. If G = F,,, then we write reg(F') (resp. irreg(F)) for reg(Fy, F') (resp. irreg(Fy, F)).
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Definition 9.4 Let PM be a point of Top(f).
i) We say that PM is a good point if H € Reg(f) for some irreducible component H of Qy, (M, ).
ii) We say that PM is a bad point if H € Irreg(f) for some irreducible component H of Q £, (M, 7).

Lemma 9.5 Let PM be a point of Top(f).
i) If PM is a good point, then for all irreducible component H of Qy, (M, i), H € Reg(f).
ii) If PM is a bad point, then for all irreducible component H of @ 7, (M, i), H € Irreg(f).

Proof. i) By hypothesis, there is an irreducible component H of Qy, (M, i) such that int(f, H) < 0.
Let H be an irreducible component of Qy, (M, %), and let y(z) (resp. 5(z)) be a root of H (resp. H)
such that max]" ;c(v,y;) = M = max}_,c(¥,y;). We have:

n n

Oz f(z,7(x)) =) ely(),yi(x) = Y e(7(x), yi(x)) = Ouf (x,7(2))

i=1 i=1

1
in particular int(f, H) = EOxf(x,’y(x)) <0.

ii) The proof is similar to the proof of i).H

10 Irregular values of a meromorphic curve

Let the notations be as in Section 9, and let PM = {Fy,..., F,.} be a bad point of Top(f). For all irre-
ducible component H of Qy, (M, i), int(f, H) = 0, in particular, if y(z) € Root(H), then f(z,v(r)) =
A+u(r), where A € K* and u(0) = 0. In particular, A € irreg(f). Let {\1(M,4),..., A\pari)(M, i)} be
the set of irregular values of f obtained from the components of Qy, (M, ) as above -more precisely

{AL(M, ), . Apear,y (M, 3) } = {inco(f(z,v(x)))|v(x) € Root(Qy,(M,i))}. We have the following:

Proposition 10.1 Assume that np = maxi<j<,nF,.

F1
hFl

i) If (FY,..., F,) is equivalent and M > p— then p(M,i) <r —1.
1
Py
hp,

ii) If (Fy,...,F,) is equivalent and M = , then p(M,i) <.

ng
iii) If (F,...,F,) is almost equivalent, then p(M,i) <r — 1.

Py

hpy
ng
ng, divides ng. On the other hand, by Theorem 7.9., deg,Qy, (M,i) = (r — 1)ng, In particular,
£(Qy,(M,i)) <r—1. This proves our assertion.

Proof. i) Let H be an irreducible component of Qy, (M,i). Since c(H,F1) = M >

, then

37



F1

m
h
ii) Let H be an irreducible component of Qy, (M,i). Since c(H, I) = "L then "B divides

F
ng, d; !
1 hFl

ny. More precisely, let y(z) =}, cpxﬁ € Root(H), then one of the following holds:

- The coefficient of ™ in y(z) is nonzero, hence np, divides ny. In this case, we say that H is of
type L
- The coefficient of 2 in ~(x) is zero, then we say that H is of type II.

Let Hy, Hy be two irreducible components of type IT of Qy, (M, ). If v1(x) € Root(Hy) (resp. y2(x) €
Root(Hs)), then c(y;,v1) = c(yi,72), and inco(y; — 1) = inco(y; — 2) for all y; € Root(f). In
particular, H, and Hs give rise to the same irregular value of f. On the other hand, by Theorem 7.9.,

deg,Qy,(M,i) = (r—1)np + (65;1 —1) 5;:1 , hence the number of irreducible components of Q, (M, 1)

hr,
of type I is bounded by r — 1. This proves our assertion.

iii) The proof is similar to the proof of ii).H
Corollary 10.2 Let f be as above. The number of irregular values of f is bounded by &(f).
Proof. This results from Proposition 10.1.H

Remark 10.3 Let the notations be above. If irreg(f) has exactly £(f) elements, then for all PM ¢
Top(f), DZM = (). More precisely, it follows from the proof of Proposition 10.1. that the cardinality of
irreg(f) is bounded by

Z card(PM)
PiM €Top(f)

In particular, if card(irreg(f))= &(f) then for all 1 < i < &(f), f; € PM for some bad point PM €
Top(f). Furthermore, given a bad point PM = {Fy,..., F.} € Top(f), the following holds:

"
h
i) (Fy,...,F.) is equivalent, and M = —L.
ng
ii) Qy,(M,i) = Hy...H,y1 and for all 4 = 1,...,r, H; is irreducible of degree np, and H; is

equivalent to Fy. Furthermore, int(H,41, Fy ... F,) = (65; - 1)7“,121v .
1 1

We do not have examples of meromorphic plane curve satisfying the properties above, and we think
that such an example does not exist. More precisely, we think that the tree of a meromorphic plane
curve which is generic in its family must have at least one good point.

Remark 10.4 Suppose that T(f) has only one bad point PM and that irreg(f) has £(f) elements

(in particular PM = {f1,..., fe(p)}). With the notations of Remark 10.3., if £(f) > 1 (resp. £(f) = 1),
then we have int(Hy, f) =0 = £(f)r,]:;1 (resp. int(Hy, f) =0= (62‘1 —1)7“,]:;1 ), which is a contradiction.
This implies that if f has only one bad point, then card(irreg(f))< &(f)—1, and this bound is sharp (let
f=v 42 +y+1:£(f) =2, T(f) has one bad point and one good point, and card (irreg(f))= 1).
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As a particular case, if f is irreducible, then irreg(f) = ). Note that if f € K[z~!,y], then f is
irreducible in K((x))[y] if and only if f(z7!,y) € K[z, y] has one place at infinity. In this case, the
assertion above is a consequence of the Abhyankar-Moh theory.
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