The tree model of a meromorphic plane curve

Abdallah Assi

To cite this version:

Abdallah Assi. The tree model of a meromorphic plane curve. 2012. hal-00656600v1

HAL Id: hal-00656600 https://hal.science/hal-00656600v1

Preprint submitted on 4 Jan 2012 (v1), last revised 4 Oct 2013 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

The tree model of a meromorphic plane curve

Abdallah Assi*

Abstract. ${ }^{1}$ We associate with a plane meromorphic curve f a tree model $T(f)$ based on its contact structure. Then we give a complete description of the y-derivative of f (resp. the Jacobien $J(f, g)$) in terms of $T(f)$ (resp. $T(f g)$). We also characterize the regularity of f in terms of its tree and we give a bound for the number of its irregular values.

Introduction

Let \mathbf{K} be an algebraically closed field of characteristic 0 , and let f, g be two monic reduced polynomial of $\mathbf{K}((x))[y]$ of degrees n, m. Let f_{x}, g_{x} (resp. f_{y}, g_{y}) be the x-derivative (resp. the y-derivative) of f, g, and let $J(f, g)=f_{x} g_{y}-f_{y} g_{x}$. Let, by Newton Theorem,

$$
f(x, y)=\prod_{i=1}^{n}\left(y-y_{i}(x)\right), \quad g(x, y)=\prod_{j=1}^{m}\left(y-z_{j}(x)\right)
$$

where $\left(y_{i}(x)\right)_{1 \leq i \leq n}$ and $\left(z_{j}(x)\right)_{1 \leq j \leq m}$ are meromorphic fractional series in x.
The main objective of this paper is to give a complete description of f_{y} (resp. $J(f, g)$) when the contact structure of f (resp. $f g$) is given. This description is based on a tree model defined in the following way: let f be as above, and let M be a rational number. Assume that M is the x-order, denoted O_{x}, of $y_{i}-y_{j}$ for some $1 \leq i \neq j \leq n$, and let E_{M} be the set of irreducible components of f such that $H \in E_{M}$ if and only if the contact $c(H, \bar{H}) \geq M$ for some $\bar{H} \in E_{M}$ (where if $H(x, y)=\prod_{i=1}^{a}\left(y-Y_{i}(x)\right)$ and $\bar{H}(x, y)=\prod_{j=1}^{b}\left(y-Z_{j}(x)\right)$, then $\left.c(H, \bar{H})=\max _{i, j} O_{x}\left(Y_{i}-Z_{j}\right)\right)$. Let $H_{1}, H_{2} \in E_{M}$. We say that $H_{1} R_{M} H_{2}$ if the contact of H_{1} with H_{2} is $\geq M$. The set of points of the tree of f at the level M is defined to be the set of equivalence classes of R_{M} (see Section 6). Let P_{i}^{M} be a point of the tree of f at the level M, and let \bar{f} be a monic polynomial of $\mathbf{K}((x))[y]$. We denote by $Q_{\bar{f}}(M, i)$ the product of irreducible components of \bar{f} whose contact with any element of $P(M, i)$ is M. By [6], we have

[^0]$\operatorname{deg}_{y} Q_{f_{y}}(M, i)>1$. Let $f=f_{1} \ldots \ldots f_{\xi(f)}$ be the factorization of f into irreducible components in $\mathbf{K}((x))[y]$. In Section 7., based on the results of Section 5., we describe the properties of $Q_{f_{y}}(M, i)$ for all P_{i}^{M} (degree in y, intersection and contact with f_{i} for all $i=1, \ldots, \xi(f)$). This result gives a generalization of Merle Theorem $(\xi(f)=1)$ (see Theorem 7.1.) and Delgado Theorem $(\xi(f)=2)$ (see Example 7.11.). These two results use the arithmetic of the semigroup associated with f, which, as shown by Delgado, does not seem to suffice when $\xi(f) \geq 3$.
Let $T(f g)$ be the tree of $f g$. A point P_{i}^{M} of $T(f g)$ is said to be an f-point (resp. g-point) if P_{i}^{M} does not contain irreducible components of f (resp. g). In Section 9, based on the results of Sections 4. and 5., we prove that if P_{i}^{M} is an f-point (resp. a g-point), then $\operatorname{deg}_{y} Q_{J(f, g)}(M, i)>1$. We also describe, as for f_{y}, the different properties of $Q_{J(f, g)}(M, i)$ in terms of those of $f g$.
Let the notations be as above, and assume that $f, g \in \mathbf{K}\left[x^{-1}\right][y]$. Let $F(x, y)=f\left(x^{-1}, y\right), G(x, y)=$ $g\left(x^{-1}, y\right)$. For all $\lambda \in \mathbf{K}$, we denote by F_{λ} the polynomial $F-\lambda$. We say that the family $\left(F_{\lambda}\right)_{\lambda \in \mathbf{K}}$ is regular if the rank of the \mathbf{K}-vector space $\frac{\mathbf{K}[x, y]}{\left(F_{\lambda}, F_{y}\right)}$, denoted $\operatorname{Int}\left(F-\lambda, F_{y}\right)$, does not depend on $\lambda \in \mathbf{K}$. When $\left(F_{\lambda}\right)_{\lambda \in \mathbf{K}}$ is not regular, there exists a finite number $\lambda_{1}, \ldots, \lambda_{s} \in \mathbf{K}$ such that $\operatorname{Int}\left(F-\lambda, F_{y}\right)<\operatorname{Int}\left(F-\lambda_{i}, F_{y}\right)$ for λ generic and $1 \leq i \leq s$.
The regularity of a family of affine curves is related to many problems in affine geometry, in particular the plane Jacobian problem. If $\left(F_{\lambda}\right)_{\lambda}$ is regular and smooth, then F is equivalent to a coordinate of \mathbf{K}^{2}. If $\left(F_{\lambda}\right)_{\lambda}$ is smooth with only one irregular value λ_{1}, then $F-\lambda_{1}$ is reducible in $\mathbf{K}[x, y]$ and one of its irreducible components is equivalent to a coordinate of \mathbf{K}^{2}. In general, nothing is known when $\left(F_{\lambda}\right)_{\lambda}$ has more than two irregular values (see [4] and references).
In Section 10. we characterize the notion of regularity in terms of the tree $T(f)$. More precisely we divide $T(f)$ into good and bad points. In particular, f is regular if the set of bad points of $T(f)$ is empty. This, with the results of Section 2. is used in Section 11. in order to prove that the set of irregular values of f contains at most $\xi(f)-1$ elements (see Proposition 10.3.). We give an example where this bound is attained.

1 Characteristic sequences

In this Section we shall recall some well known results about the theory of meromorphic curves (see [2] for example). Let

$$
f=y^{n}+a_{1}(x) y^{n-1}+\ldots+a_{n}(x)
$$

be an irreducible monic polynomial of $\mathbf{K}((x))[y]$, where $\mathbf{K}((x))$ denotes the field of meromorphic series over K. Let, by Newton Theorem, $y(t) \in \mathbf{K}((t))$ such that $f\left(t^{n}, y(t)\right)=0$. If w is a primitive nth root of unity, then we have:

$$
f\left(t^{n}, y\right)=\prod_{k=1}^{n}\left(y-y\left(w^{k} t\right)\right)
$$

Write $y(t)=\sum_{i} a_{i} t^{i}$, and let $\operatorname{supp}(y(t))=\left\{i ; a_{i} \neq 0\right\}$. Clearly $\operatorname{supp}(y(t))=\operatorname{supp} y\left(w^{k} t\right)$ for all $1 \leq k \leq n-1$. We denote this set by $\operatorname{supp}(f)$ and we recall that $\operatorname{gcd}(n, \operatorname{supp}(f))=1$. If we write $x^{\frac{1}{n}}$ for t, then $y\left(x^{\frac{1}{n}}\right)=\sum a_{i} x^{\frac{i}{n}}$ and $f\left(x, y\left(x^{\frac{1}{n}}\right)\right)=0$, i.e. $y\left(x^{\frac{1}{n}}\right)$ is a root of $f(x, y)=0$. By Newton Theorem, there are n distinct roots of $f(x, y)=0$, given by $y\left(w^{k} x^{\frac{1}{n}}\right), 1 \leq k \leq n$. We denote the set of roots of f by $\operatorname{Root}(f)$.
We shall associate with f its characteristic sequences $\left(m_{k}^{f}\right)_{k \geq 0},\left(d_{k}^{f}\right)_{k \geq 1}$ and $\left(r_{k}^{f}\right)_{k \geq 0}$ defined by:
$\left|m_{0}^{f}\right|=d_{1}^{f}=\left|r_{0}^{f}\right|=n, m_{1}^{f}=r_{1}^{f}=\inf (\{i \in \operatorname{supp}(f) \mid \operatorname{gcd}(i, n)<\min (i, n)\}$, and for all $k \geq 2$, $d_{k}^{f}=\operatorname{gcd}\left(m_{0}^{f}, \ldots, m_{k-1}^{f}\right)=\operatorname{gcd}\left(d_{k-1}^{f}, m_{k-1}^{f}\right)$,
$m_{k}^{f}=\inf \left\{i \in \operatorname{supp} f \mid i\right.$ is not divisible by $\left.d_{k}^{f}\right\}$,
and $r_{k}^{f}=r_{k-1}^{f} \frac{d_{k-1}^{f}}{d_{k}^{f}}+m_{k}^{f}-m_{k-1}^{f}$.
Since $\operatorname{gcd}(n, \operatorname{supp}(f))=1$, then there is $h_{f} \in \mathbb{N}$ such that $d_{h_{f}+1}=1$. We denote by convention $m_{h_{f}+1}^{f}=r_{h_{f}+1}^{f}=+\infty$. The sequence $\left(m_{k}\right)_{0 \leq k \leq h_{f}}$ is also called the set of Newton-Puiseux exponents of f. We finally set $e_{k}^{f}=\frac{d_{k}^{f}}{d_{k+1}^{f}}$ for all $1 \leq k \leq h_{f}$.
Let H be a polynomial of $\mathbf{K}((x))[y]$. We define the intersection of f with H, denoted $\operatorname{int}(f, H)$, by $\operatorname{int}(f, H)=O_{t} H\left(t^{n}, y(t)\right)=n \cdot O_{x} H\left(x, y\left(x^{\frac{1}{n}}\right)\right.$, where O_{t} (resp. O_{x}) denotes the order in t (resp. in x).
Let $p, q \in \mathbb{N}$, and let $\alpha(x) \in \mathbf{K}\left(\left(x^{\frac{1}{p}}\right)\right), \beta(x) \in \mathbf{K}\left(\left(x^{\frac{1}{q}}\right)\right)$. We set

$$
\mathrm{c}(\alpha, \beta)=O_{x}(\alpha(x)-\beta(x))
$$

and we call $\mathrm{c}(\alpha, \beta)$ the contact of α with β. We define the contact of f with $\alpha(x)$ to be

$$
\mathrm{c}(f, \alpha)=\max _{1 \leq i \leq n} O_{x}\left(y_{i}(x)-\alpha(x)\right)
$$

where $\left\{y_{1}, \ldots, y_{n}\right\}=\operatorname{Root}(f)$.
Let $g=y^{m}+b_{1}(x) y^{m-1}+\ldots+b_{m}(x)$ be a monic irreducible polynomial of $\mathbf{K}((x))[y]$ and let $\operatorname{Root}(g)=\left\{z_{1}, \ldots, z_{m}\right\}$. We define the contact of f with g to be

$$
\mathrm{c}(f, g)=\mathrm{c}\left(f, z_{1}(x)\right)
$$

Note that $\mathrm{c}(f, g)=\mathrm{c}\left(f, z_{j}(x)\right)=\mathrm{c}\left(g, y_{i}(x)\right)$ for all $1 \leq j \leq m$ and for all $1 \leq i \leq n$.

Remark 1.1 (see [1]) i) Let $f \in \mathbf{K}[[x]][y]$ (resp. $\left.f \in \mathbf{K}\left[x^{-1}\right][y]\right)$. The set of $\operatorname{int}(f, g), g \in$ $\mathbf{K}[[x]][y]$ (resp. $g \in \mathbf{K}\left[x^{-1}\right][y]$) is a subsemigroup of \mathbb{Z}. We denote it by $\Gamma(f)$ and we call it the semigroup associated with f. With the notations above, $r_{k}^{f}>0$ (resp. $r_{k}^{f}<0$) for all $k=0, \ldots, h_{f}$, and $r_{0}^{f}, r_{1}^{f}, \ldots, r_{h_{f}}^{f}$ generate $\Gamma(f)$. We write $\Gamma(f)=<r_{0}^{f}, r_{1}^{f}, \ldots, r_{h_{f}}^{f}>$.
ii) For all $1 \leq k \leq h_{f}, e_{k}^{f}$ is the minimal integer such that $e_{k}^{f} r_{k}^{f} \in<r_{0}^{f}, r_{1}^{f}, \ldots, r_{k-1}^{f}>$.
iii) For all $1 \leq k \leq h_{f}$, there is an irreducible monic polynomial $g_{k} \in \mathbf{K}((x))[y]$ of degree $\frac{n}{d_{k}^{f}}$ in y such that $\mathrm{c}\left(f, g_{k}\right)=\frac{m_{k}^{f}}{n}$ and $\operatorname{int}\left(f, g_{k}\right)=r_{k}^{f}$. Furthermore, $\Gamma\left(g_{k}\right)=<\frac{r_{0}^{f}}{d_{k}^{f}}, \frac{r_{1}^{f}}{d_{k}^{f}}, \ldots, \frac{r_{k-1}^{f}}{d_{k}^{f}}>$.

Lemma 1.2 (see [1]) Let $y(x)=\sum_{i} a_{i} x^{\frac{i}{n}} \in \operatorname{Root}(f)$. Given $s \in \mathbf{N}^{*}$, let U_{s} denotes the group of the s th roots of unity in \mathbf{K}. Set

$$
\begin{aligned}
& R(i)=\left\{w \in U_{n} \left\lvert\, c(y(x), y(w x))=O_{x}(y(x)-y(w x)) \geq \frac{m_{i}^{f}}{n}\right.\right\} \\
& S(i)=\left\{w \in U_{n} \left\lvert\, c(y(x), y(w x))=O_{x}(y(x)-y(w x))=\frac{m_{i}^{f}}{n}\right.\right\} .
\end{aligned}
$$

We have the following:
i) For all $1 \leq i \leq h_{f}+1, R(i)=U_{d_{i}^{f}}$. In particular, $\operatorname{card}(R(i))=d_{i}^{f}$.
ii) For all $1 \leq i \leq h_{f}, S(i)=R(i)-R(i+1)=U_{d_{i}^{f}}-U_{d_{i}^{f}+1}$. In particular, $\operatorname{card}(S(i))=$ $d_{i}^{f}-d_{i+1}^{f}$.

Proof. Let $w \in U_{n}$, then $y(x)-y(w x)=\sum_{k} a_{k}\left(1-w^{k}\right) x^{\frac{k}{n}}$. In particular, $O_{x}(y(x)-y(w x)) \geq \frac{m_{i}^{f}}{n}$ if and only if $w^{k}=1$ for all $k<m_{i}^{f}$. This holds if and only if $w \in U_{d_{i}^{f}}$.

Remark 1.3 i) Let F be a nonzero monic polynomial of $\mathbf{K}((x))[y]$. Assume that F is reduced and let $F=F_{1} \ldots \ldots F_{\xi(F)}$ be the factorization of F into irreducible polynomials of $\mathbf{K}((x))[y]$. We define $\operatorname{Root}(F)$ to be the union of $\operatorname{Root}\left(F_{i}\right), i=1, \ldots, \xi(F)$. Given a polynomial $G \in \mathbf{K}((x))[y]$, we set $\operatorname{int}(F, G)=\sum_{i=1}^{\xi(F)} \operatorname{int}\left(F_{i}, G\right)$.
ii) Let $p \in \mathbb{N}^{*}$, and let F be a nonzero monic polynomial of $\mathbf{K}\left(\left(x^{\frac{1}{p}}\right)\right)[y]$. Assume that F is reduced and let $x=X^{p}, y=Y$, and $\bar{F}(X, Y)=F\left(X^{p}, Y\right)$. The polynomial \bar{F} is a monic reduced polynomial of $\mathbf{K}((X))[Y]$. Let $\operatorname{Root}(\bar{F})=\left\{Y_{1}(X), \ldots, Y_{N}(X)\right\}$. The set of roots of $F(x, y)=0$ is $\left\{Y_{1}\left(x^{\frac{1}{p}}\right), \ldots, Y_{s}\left(X^{\frac{1}{p}}\right)\right\}$.

Let M be a given real number and consider the sequence $\left(m_{k}^{f}\right)_{1 \leq k \leq h_{f}+1}$ of Newton-Puiseux exponents of f. We define the function $S\left(m^{f}, M\right)$ by putting

$$
S\left(m^{f}, M\right)= \begin{cases}r_{k}^{f} d_{k}^{f}+\left(n M-m_{k}^{f}\right) d_{k+1}^{f} & \text { if } \frac{m_{1}^{f}}{n} \leq \frac{m_{k}^{f}}{n} \leq M<\frac{m_{k+1}^{f}}{n} \\ M d_{1} & \text { if } M<\frac{m_{1}^{f}}{n}\end{cases}
$$

Proposition 1.4 (see [1] or [8]) Let $g=y^{m}+b_{1}(x) y^{m-1}+\ldots+b_{m}(x)$ be a monic irreducible polynomial of $\mathbf{K}((x))[y]$. We have the following:

$$
\begin{array}{lll}
c(f, g)=M & \text { iff } & \operatorname{int}(f, g)=S\left(m^{f}, M\right) \frac{m}{n} \\
c(f, g)<M & \text { iff } & \operatorname{int}(f, g)<S\left(m^{f}, M\right) \frac{m}{n} \\
c(f, g)>M & \text { iff } & \operatorname{int}(f, g)>S\left(m^{f}, M\right) \frac{m}{n}
\end{array}
$$

Let g_{1}, g_{2} be two irreducible monic polynomials of $\mathbf{K}((x))[y]$ of degrees q_{1} and q_{2} respectively and let $\left(m_{k}^{g_{i}}\right)_{1 \leq k \leq h_{g_{i}}}$ be the set of Newton-Puiseux exponents of $g_{i}, i=1,2$.

Lemma 1.5 (see [1]) Let $M=\min \left(c\left(f, g_{2}\right), c\left(f, g_{1}\right)\right)$. We have the following:
(i) $c\left(g_{1}, g_{2}\right) \geq M$.
(ii) if $c\left(f, g_{2}\right) \neq c\left(f, g_{1}\right)$ then $c\left(g_{1}, g_{2}\right)=M$.

Lemma 1.6 Let the notations be as above and let $\left(m_{k}^{g}\right)_{1 \leq k \leq h_{g}+1}$ be the set of Newton-Puiseux exponents of g. Let $M=c(f, g)$ and assume that $M \geq \frac{m_{1}^{f}}{n}$. Let k be the greatest integer such that $\frac{m_{k}^{f}}{n}=\frac{m_{k}^{g}}{m} \leq M$. We have the following:
i) $\frac{n}{d_{i}^{f}}=\frac{m}{d_{i}^{g}}$ for all $i=1, \ldots, k+1$.
ii) $\frac{n}{d_{k+1}^{f}}$ divides m. In particular, if $k=h$ then n divides m.

Proof. ii) results from i), since by i), $m=\frac{n}{d_{k+1}^{f}} d_{k+1}^{g}$. On the other hand, let $1 \leq i \leq k$ and remark that $m \cdot n=n . m, m \cdot m_{1}^{f}=n \cdot m_{1}^{g}, \ldots, m \cdot m_{i-1}^{f}=n . m_{i-1}^{g}$, in particular $m \cdot d_{i}^{f}=$ $m \cdot \operatorname{gcd}\left(n, m_{1}^{f}, \ldots, m_{i-1}^{f}\right)=n \cdot \operatorname{gcd}\left(q, m_{1}^{g}, \ldots, m_{i-1}^{g}\right)=n \cdot d_{i}^{g}$. This proves i)

Lemma 1.7 Let the notations be as in Lemma 1.6. and let $y(x) \in \operatorname{Root}(f)($ resp. $z(x) \in$ $\operatorname{Root}(g))$ such that $c(y(x), z(x))=M$. Write $y(x)=\sum_{i} c_{i}^{f} x^{\frac{i}{n}}$ and $z(x)=\sum_{j} c_{j}^{g} x^{\frac{j}{m}}$. If $M=\frac{m_{h_{f}}^{f}}{n}$ and $n \geq m$, then either $c_{m M}^{g}$-the coefficient of x^{M} in $z(x)$ - is 0 , or $m=n$.

Proof. If $c_{m M}^{g} \neq 0$, then $M=\frac{m_{h_{g}}^{g}}{m}$, hence n divides m. This, with the hypotheses implies that $m=n$.
As a corollary we get the following:
Lemma 1.8 Let g_{1}, g_{2} be two monic polynomials of $\mathbf{K}((x))[y]$ of degrees q_{1}, q_{2} respectively, and assume that $c\left(g_{1}, f\right)=c\left(g_{2}, f\right)=\frac{m_{h(f)}^{f}}{n}$. If $q_{1}<n$ and $q_{2}<n$, then $c\left(g_{1}, g_{2}\right)>\frac{m_{h_{f}}^{f}}{n}$.

Proof. Let $y(x) \in \operatorname{Root}(f)$ (resp. $\left.z_{1}(x) \in \operatorname{Root}\left(g_{1}\right), z_{2}(x) \in \operatorname{Root}\left(g_{2}\right)\right)$ such that $c\left(y(x), z_{1}(x)\right)=$ $c\left(y(x), z_{2}(x)\right)=\frac{m_{h_{f}}^{f}}{n}$. In particular $c\left(z_{1}(x), z_{2}(x)\right) \geq \frac{m_{h(f)}^{f}}{n}$. By Lemma 1.7., the coefficients of $x \frac{m_{h_{f}}^{f}}{n}$ in
assertion.

2 Equivalent and almost equivalent polynomials

Let f, g be two monic irreducible polynomials of $\mathbf{K}((x))[y]$, of degrees n, m in y. Let $\left(m_{k}^{f}\right)_{1 \leq k \leq h_{f}}$, $\left(d_{k}^{f}\right)_{1 \leq k \leq h_{f}}$, and $\left(r_{k}^{f}\right)_{0 \leq k \leq h_{f}}$ (resp. $\left(m_{k}^{g}\right)_{1 \leq k \leq h_{g}},\left(d_{k}^{g}\right)_{1 \leq k \leq h_{g}}$, and $\left.\left(r_{k}^{g}\right)_{0 \leq k \leq h_{g}}\right)$ be the set of characteristic sequences of f (resp. of g).

Definition 2.1 i) We say that g is equivalent to f if the following holds:

$$
\begin{aligned}
& -h_{f}=h_{g} \\
& -\frac{m_{k}^{g}}{m}=\frac{m_{k}^{f}}{n} \text { for all } k=1, \ldots, h_{f} \\
& -\mathrm{c}(f, g) \geq \frac{m_{h_{f}}^{f}}{n}
\end{aligned}
$$

ii) We say that g is almost equivalent to f if the following holds:

$$
\begin{aligned}
& -h_{f}=h_{g}+1 \\
& -\frac{m_{k}^{f}}{n}=\frac{m_{k}^{g}}{m} \text { for all } k=1, \ldots, h_{g} \\
& -\mathrm{c}(f, g)=\frac{m_{h_{f}}^{f}}{n} .
\end{aligned}
$$

Lemma 2.2 Let the notations be as in Definition 2.1.
i) If g is equivalent to f, then $m=n$.
ii) If g is almost equivalent to f, then $m=\frac{n}{d_{h_{f}}^{f}}$. Furthermore, if $y(x)=\sum_{p} c_{p} x^{\frac{p}{m}} \in \operatorname{Root}(g)$, then $c_{\frac{m_{h_{f}}^{f}}{n}}=0$.

Proof. i) results from Lemma 1.6. On the other hand, by the same Lemma, $m=a \frac{n}{d_{h_{f}}^{f}}$ for some $a \in \mathbb{N}^{*}$, but $\operatorname{gcd}\left(a \frac{n}{d_{h_{f}}^{f}}, \frac{a}{d_{h_{f}}^{f}} m_{1}^{f}, \ldots, \frac{a}{d_{h_{f}}^{f}} m_{h_{f}-1}^{f}\right)=\frac{a}{d_{h_{f}}^{f}} d_{h_{f}}^{f}=1$, hence $a=1$. This proves the first assertion of ii). Now the least assertion results from Lemma 1.7.

Definition 2.3 Let $\left\{F_{1}, \ldots, F_{r}\right\}$ be a set of monic irreducible polynomials of $\mathbf{K}((x))[y]$. Assume that $s>1$ and let $n_{F_{i}}=\operatorname{deg}_{y} F_{i}$ for all $1 \leq i \leq r$.
i) We say that the sequence $\left(F_{1}, \ldots, F_{r}\right)$ is equivalent if for all $1 \leq i \leq r, F_{i}$ is equivalent to F_{1}.
ii) We say that the sequence $\left(F_{1}, \ldots, F_{r}\right)$ is almost equivalent if the following holds:

- The sequence contains an equivalent subsequence of $s-1$ elements.
- The remaining element is almost equivalent to the elements of the subsequence.

Proposition 2.4 Let the notations be as in Definition 2.3. and let M be a rational number. If $c\left(F_{i}, F_{j}\right)=M$ for all $i \neq j$, then the sequence $\left(F_{1}, \ldots, F_{r}\right)$ is either equivalent or almost equivalent.

Proof. If $r=1$, then there is nothing to prove. Assume that $r>1$, and that $n_{F_{1}}=\max _{1 \leq k \leq r} n_{F_{k}}$.

- If $M>m_{h_{F_{1}}}^{F_{1}}$, then, by Lemma 1.6., ii), $n_{F_{1}}$ divides $n_{F_{k}}$ for all $1 \leq k \leq r$. In particular $n_{F_{1}}=n_{F_{k}}$ and F_{k} is equivalent to F_{1} for all $1 \leq k \leq r$.
- Suppose that $M=\frac{m_{h_{F_{1}}}^{F_{1}}}{n_{F_{1}}}$, and that $\left(F_{1}, \ldots, F_{r}\right)$ is not equivalent. Suppose, without loss of generality, that F_{2} is not equivalent to F_{1}. By hypothesis, $M \geq \frac{m_{h_{F_{2}}}^{F_{2}}}{n_{F_{2}}}$ and $\frac{m_{j}^{F_{1}}}{n_{F_{1}}}=\frac{m_{j}^{F_{2}}}{n_{F_{2}}}$ for all $1 \leq j \leq h_{F_{1}}-1$. Let $y(x)=\sum c_{p} x^{\frac{p}{n_{F_{2}}}} \in \operatorname{Root}\left(F_{2}\right)$. If the coefficient of x^{M} in $y(x)$ is non zero, then $n_{F_{1}}$ divides $n_{F_{2}}$, in particular $n_{F_{2}}=n_{F_{1}}$, and $\frac{m_{h_{F_{1}}}^{F_{1}}}{n_{F_{1}}}=\frac{m_{h_{n_{F_{2}}}}^{F_{2}}}{n_{F_{2}}}$. Hence F_{1} is equivalent to F_{2}, which is a contradiction. Finally $h_{F_{2}}=h_{F_{1}}-1$, and $n_{F_{2}}=a \cdot \frac{n_{F_{1}}}{d_{h_{F_{1}}}^{F_{1}}}$, but $\operatorname{gcd}\left(n_{F_{2}}, m_{1}^{F_{2}}, \ldots, m_{h_{F_{2}}}^{F_{2}}\right)=1$, hence $a=1$ and $n_{F_{2}}=\frac{n_{F_{1}}}{d_{h_{F_{1}}}^{F_{1}}}$. In particular F_{2} is almost equivalent to F_{1}. Let $k>2$. If F_{k} is not equivalent to F_{1}, then $n_{F_{k}}=n_{F_{2}}<n_{F_{1}}$ by the same argument as above. In particular, by Lemma 1.8., $c\left(F_{1}, F_{2}\right)>M$, which is contradiction. Finally the sequence $\left(F_{1}, \ldots, F_{r}\right)$ is almost equivalent.

3 The Newton polygon of a meromorphic plane curve

In this Section we shall recall the notion of the Newton polygon of a meromorphic plane curve. More generally let $p \in \mathbf{N}$ and let $F=y^{N}+A_{1}(x) y^{N-1}+\ldots+A_{N-1}(x) y+A_{N}(x)$ be a reduced polynomial of $\mathbf{K}\left(\left(x^{1 / p}\right)\right)[y]$. For all $i=0, \ldots, N$, let $\alpha_{i}=O_{x} A_{i}(x)$. The Newton boundary of F is defined to be the boundary of the convex hull of $\bigcup_{i=1}^{N}\left(\alpha_{i}, i\right)+\mathbf{R}_{+}$.
Write $F(x, y)=\sum_{i j} c_{i j} x^{\frac{i}{p}} y^{j}$ and let $\operatorname{Supp}(F)=\left\{\left.\left(\frac{i}{p}, j\right) \right\rvert\, c_{i j} \neq 0\right\}$, then the Newton boundary of F is also the boundary of the convex hull of $\bigcup_{\left(\frac{i}{p}, j\right) \in \operatorname{Supp}(F)}\left(\frac{i}{p}, j\right)+\mathbf{R}_{+}$.
We define the Newton polygon of F, denoted $N(F)$, to be the union of the compact faces of the Newton boudary of F. Let $\left\{P_{k}=\left(\alpha_{k_{j}}, k_{j}\right), k_{0}>k_{1} \ldots>k_{v_{F}}\right\}$ be the set of vertices of $N(F)$. We denote this set by $V(F)$. We denote by $E(F)=\left\{\triangle_{l}^{F}=P_{k_{l-1}} P_{k_{l}}, l=1, \ldots, v_{F}\right\}$ the set of edges of $N(F)$. For all $1 \leq l \leq v_{F}$ we set $F_{\triangle_{l}^{F}}=\sum_{\left(\frac{i}{p}, j\right) \in \operatorname{Supp}(F) \cap \triangle_{l}^{F}} c_{i j} x^{\frac{i}{p}} y^{j}$.

Lemma 3.1 Given $1 \leq l \leq v_{F}$, there are exactly $k_{l-1}-k_{l}$ elements of $\operatorname{Root}(F), y_{j}(x), 1 \leq j \leq$ $k_{l-1}-k_{l}$, such that for all $1 \leq j \leq k_{l-1}-k_{l}$:
i) $O_{x}\left(y_{j}(x)\right)=\frac{\alpha_{k_{l-1}}-\alpha_{k_{l}}}{k_{l-1}-k_{l}}$.
ii) The set of initial coefficients, denoted inco, of $y_{1}, \ldots, y_{\left(k_{l-1}-k_{l}\right)}$ is nothing but the set of nonzero roots of $F_{\triangle_{l}^{F}}(1, y)$.
Conversely, given $y(x) \in \operatorname{Root}(F)$, there exists \triangle_{l}^{F} such that $O_{x}(y(x))=\frac{\alpha_{k_{l-1}}-\alpha_{k_{l}}}{k_{l-1}-k_{l}}$.
We denote the set of x-orders of $\operatorname{Root}(F)$ by $O(F)$, and we set $\operatorname{Poly}(F)=\left\{F_{\triangle_{l}^{F}}(1, y) \mid 1 \leq l \leq\right.$ $\left.v_{F}\right\}$.

Lemma 3.2 Let F be as above, and let M be a rational number. Define $L_{M}: \operatorname{Supp}(F) \longmapsto \mathbb{Q}$ by $L_{M}\left(\frac{i}{p}, j\right)=\frac{i}{p}+M j$, and let $a_{0}=\inf L_{M}(\operatorname{Supp}(F))$. Let $\operatorname{in}_{M}(F)=\sum_{\frac{i}{p}+M j=a_{0}} c_{i j} x^{\frac{i}{p}} y^{j}$. We have the following:
i) $M \in O(F)$ if and only if $\operatorname{in}_{M}(F)$ is not a monomial. In this case, $M=\frac{\alpha_{k_{l-1}}-\alpha_{k_{l}}}{k_{l-1}-k_{l}}$ for some $1 \leq l \leq v_{F}$, and $\operatorname{in}_{M}(F)=F_{\triangle_{l}}$. Furthermore, $\left(a_{0}, 0\right)$ is the point where the line defined by $\left(\alpha_{k_{l-1}}, k_{l-1}\right)$ and ($\alpha_{k_{l}}, k_{l}$) intersects the x-axis.
ii) Consider the change of variables $x=X, y=X^{M} Y$ and let $\bar{F}(X, Y)=F\left(X, X^{M} Y\right)$. We have $\bar{F}=\sum c_{i j} x^{\frac{i}{p}+M j}=x^{a_{0}} F_{\triangle_{l}^{F}}(1, y)+\sum_{a>a_{0}} x^{a} P_{a}(y)$.

Proof. Easy exercise.

Lemma 3.3 Let F be as above and let $N(F)$ be the Newton polygon of F. Let $V(F)=\left\{P_{k}=\right.$ $\left.\left(\alpha_{k_{l}}, k_{l}\right), k_{0}>k_{1} \ldots>k_{v_{F}}\right\}$ be the set of vertices of F and assume that $k_{v_{F}}=0$, i.e. $N(F)$ meets the x-axis. Assume that $\left(\alpha^{1}, 1\right) \in \operatorname{Supp}\left(F_{\triangle_{v_{F}}}\right)$ for some $\alpha^{1} \in \mathbb{Q}$, and that $\left(\alpha^{1}, 1\right) \notin V(F)$. We have the following
i) $\left(\alpha^{1}, 0\right) \in V\left(F_{y}\right)$.
ii) $N\left(F_{y}\right)$ is the translation of $N(F)$ with respect to the vector $(0,-1)$.
iii) $O\left(F_{y}\right)=O(F), v_{F}=v_{F_{y}}$.
iv) $\operatorname{deg}_{y} F_{\triangle_{v_{F}}}=\operatorname{deg}_{y}\left(F_{Y}\right)_{\triangle_{v_{F}}}+1$. In particular, if F has s roots whose order in x is $\frac{\alpha_{k_{v(F)-1}}-\alpha_{k_{v(F)}}}{k_{v_{F}-1}}$, then F_{y} has $s-1$ roots with the same order in x.

Proof. The proof follows immediately from the hypotheses and Lemma 3.1.

Lemma 3.4 Let $G=y^{m}+b_{1}(x) y^{m-1}+\ldots+a_{m}(x)$ be a reduced polynomial of $\mathbf{K}\left(\left(x^{\frac{1}{q}}\right)\right)[y]$ and let $J=J(F, G)=F_{x} G_{y}-F_{y} G_{x}$ be the Jacobian of F and G. Let $V(G)=\left\{\left(\beta_{l}, l\right), l_{0}>l_{1}>\right.$
$\left.\ldots>l_{v_{G}}\right\}$ be the set of vertices of $N(G)$ and let $E(G)=\left\{\triangle_{1}^{G}, \ldots, \triangle_{v_{G}}^{G}\right\}$ be the set of edges of $N(G)$. Assume that the following holds:
i) $k_{v_{F}}=l_{v_{G}}=0, \alpha_{v_{F}} \neq 0$ and $\beta_{v_{F}} \neq 0$, i.e. $N(F)$ and $N(G)$ meet the x-axis into points different from the origin.
ii) $\left(\alpha^{1}, 1\right) \in \operatorname{Supp}\left(F_{\triangle_{v_{F}}}\right)$ (resp. $\left.\left(\beta^{1}, 1\right) \in \operatorname{Supp}\left(G_{\triangle_{v_{G}}}\right)\right)$ for some α^{1} (resp. $\left.\beta^{1}\right)$ in \mathbb{Q}, and $\left(\alpha^{1}, 1\right) \notin V(F)\left(\right.$ resp. $\left(\beta^{1}, 1\right) \notin V(G)$.
iii) $\max (O(F))>\max (O(G))$.

Then we have:
i) $\max (O(J))=\max \left(O\left(F_{y}\right)\right)=\max (O(F))$.
ii) If $G_{\triangle_{G_{G}}}(x, 0)=a x^{\beta_{l_{v_{G}}}}, a \in \mathbf{K}^{*}$, then $\left(\alpha^{1}+\beta_{l_{v_{G}}}-1,0\right) \in V(J)$ and $J_{\Delta_{v_{J}}^{J}}=\left(-F_{y} G_{x}\right)_{\triangle_{v_{F_{y} G_{x}}}^{F_{y} G_{x}}}=$ $-a \beta_{l_{r}} \cdot x^{\beta_{l_{r}}-1}\left(F_{y}\right)_{\triangle_{v_{F}}^{F_{y}}}$.

Proof. It follows from the hypotheses that $\left(\alpha_{v(F)}-1,0\right) \in V\left(F_{x}\right),\left(\alpha^{1}, 0\right) \in V\left(F_{y}\right),\left(\beta_{v(G)}-1,0\right) \in$ $V\left(G_{x}\right)$, and $\left(\beta^{1}, 0\right) \in V\left(G_{y}\right)$. In particular $\left(\alpha_{v(F)}+\beta^{1}-1,0\right) \in V\left(F_{x} G_{y}\right)$ and $\left(\beta_{v(G)}+\alpha^{1}-\right.$ $1,0) \in V\left(F_{y} G_{x}\right)$. Since $\max (O(F))>\max (O(G))$, then $\beta_{l_{v_{G}}}-\beta^{1}<\alpha_{k_{v(F)}}-\alpha^{1}$, in particular $\beta_{l_{v_{G}}}+\alpha^{1}-1<\alpha_{k_{v_{F}}}+\beta^{1}-1$, and $\left(\beta_{l_{v_{G}}}+\alpha^{1}-1,0\right) \in V(J)$. A similar argument shows that the last adge of $J=F_{x} G_{y}-F_{y} G_{x}$ is nothing but the last edge of $-F_{y} G_{x}$, and that $\left(-F_{y} G_{x}\right)_{\triangle_{v_{F_{y} G_{x}}}^{F_{y} G_{x}}}=-a \beta_{l_{r}} \cdot x^{\beta_{l_{r}}-1}\left(F_{y}\right)_{\Delta_{v_{F}}^{F_{y}}}$.

4 Deformation of Newton polygons and applications

Let $f=y^{n}+a_{1}(x) y^{n-1}+\ldots+a_{n-1}(x) y+a_{n}(x)$ be a monic reduced polynomial of $\mathbf{K}((x))[y]$ and let $\operatorname{Root}(f)=\left\{y_{1}, \ldots, y_{n}\right\}$. Let $f_{1}, \ldots, f_{\xi(f)}$ be the set of irreducible components of f in $\mathbf{K}((x))[y]$.

Definition 4.1 Let N be a nonnegative integer and let $\gamma(x)=\sum_{k \geq k_{0}} a_{k} x^{\frac{k}{N}} \in \mathbf{K}\left(\left(x^{\frac{1}{N}}\right)\right)$. Let M be a real number. We set

$$
\gamma_{<M}= \begin{cases}\sum_{k \geq k_{0}, \frac{k}{N}<M} a_{k} x^{\frac{k}{N}} & \text { if } M>\frac{k_{0}}{N} \\ 0 & \text { otherwise }\end{cases}
$$

and we call $\gamma_{<M}$ the $<M$-truncation of $\gamma(x)$.
Let θ be a generic element of \mathbf{K}. We set

$$
\gamma_{<M, \theta}= \begin{cases}\sum_{k \geq k_{0}, \frac{k}{N}<M} a_{k} x^{\frac{k}{N}}+\theta \cdot x^{M} & \text { if } M \geq \frac{k_{0}}{N} \\ \theta \cdot x^{M} & \text { otherwise }\end{cases}
$$

and we call $\gamma_{<M, \theta}$ the M-deformation of $\gamma(x)$.

Let N be a nonnegative integer and let $\gamma(x) \in \mathbf{K}\left(\left(x^{\frac{1}{N}}\right)\right)$. Let M be a real number and let $\gamma_{<M}$ be the $<M$-truncation of $\gamma(x)$. Consider the change of variables $X=x, Y=y-\gamma_{<M}$. The polynomial $F(X, Y)=f\left(X, Y+\gamma_{<M}\right)$ is a monic polynomial of degree n in Y whose coefficients are fractional meromorphic series in X. Let $V(F)=\left\{P_{i}=\left(\alpha_{k_{i}}, k_{i}\right) \mid i=1, \ldots, v_{F}\right\}$ and let $E(F)=\left\{\triangle_{1}^{F}, \ldots, \triangle_{v_{F}}^{F}\right\}$.

Lemma 4.2 Let the notations be as above. Assume that $\gamma \notin \operatorname{Root}(f)$ and let $M=\max _{1 \leq j \leq n} \mathrm{c}\left(\gamma, y_{j}\right)$. We have the following:
i) $\operatorname{Root}(F(X, Y))=\left\{Y_{k}=y_{k}-\gamma_{<M}, k=1, \ldots, n\right\}$.
ii) $O(F)=\left\{\mathrm{c}\left(y_{k}, \gamma\right) \mid k=1, \ldots, n\right\}$.
iii) There are exactly $k_{i}-k_{i+1}$ roots $y(x)$ of F whose contact with γ is $\frac{\alpha_{i}-\alpha_{i-1}}{k_{i}-k_{i-1}}$.
iii) The initial coefficients of $\operatorname{Root}(F)$, denoted $\operatorname{inco}(F)$, is $=\left\{\operatorname{inco}\left(y_{k}-\gamma\right) \mid k=1, \ldots, n\right\}$.

In particular, the Newton polygon $N(F)$ gives us the complete information about the relationship between $\gamma(x)$ with the roots of f. We call it the Newton polygon of f with respect to $\gamma(x)$, and we denote it by $N(f, \gamma)$.

Proof. We have

$$
F(X, Y)=f(X, Y+\gamma(X))=\prod_{k=1}^{n}\left(Y+\gamma(X)-y_{k}(X)\right)
$$

now use Lemma 3.1

Lemma 4.3 Let $y_{i}(x)$ be a root of $f(x, y)=0$ and let

$$
M=\max _{j \neq i} c\left(y_{i}, y_{j}\right)
$$

Let $\tilde{y}_{i}=y_{i<M, \theta}=\left(y_{i}\right)_{<M}(x)+\theta x^{M}$ be the M-deformation of y_{i} and consider the change of variables $X=x, Y=y-\tilde{y}_{i}(X)$. Let $F(X, Y)=f\left(X, Y+\tilde{y}_{i}(X)\right)$. We have the following:
i) $\left.O(F)=\left\{\mathrm{c}\left(y_{j}-y_{i}\right) \mid j \neq i\right\}\right\}$.
ii) $M=\max (O(F))$.
iii) The last vertex of $N(F)$ belongs to the x-axis.
iv) Let $\triangle_{v_{F}}^{F}$ be the last edge of $N(F)$. We have $\left(\alpha^{1}, 1\right) \in \operatorname{Supp}\left(F_{\triangle_{v_{F}}}\right)$ for some α^{1}. Furthermore, $\left(\alpha^{1}, 1\right) \notin V(F)$.

Proof. We have

$$
F(X, Y)=f\left(X, Y+\tilde{y}_{i}(X)\right)=\prod_{k=1}^{n}\left(Y+\left(y_{i}\right)_{<M}(X)+\theta X^{M}-y_{k}(X)\right)
$$

and by hypothesis, $O\left(\left(y_{i}\right)_{<M}(X)+\theta X^{M}-y_{k}(X)\right)=O\left(y_{i}(X)-y_{k}(X)\right)$ for all $k \neq i$. Furthermore, $O\left(\left(y_{i}\right)_{<M}(X)+\theta X^{M}-y_{i}(X)\right)=M=O\left(y_{i}(X)-y_{j}(X)\right)$ for some $j \neq i$. This implies i) and ii). Now $F(X, 0)=\prod_{k=1}^{n}\left(\left(y_{i}\right)_{<M}(X)+\theta X^{M}-y_{k}(X)\right) \neq 0$, hence iii) follows. Let $\triangle_{v_{F}}^{F}$ be the last edge of $N(F)$ and let $y_{j_{1}}, \ldots, y_{j_{p}}$ be the set of roots of f such that $c\left(y_{i}-y_{j_{k}}\right)=M$ for all $k=1, \ldots, l$. Write $y_{i}=\sum_{p} c_{p}^{i} x^{p}$ and let $y_{i}-y_{j_{k}}=c_{a_{k}} x^{M}+\ldots$ for all $k=1, \ldots, l$. It follows that $\left(Y_{i}\right)_{<M}(X)+\theta x^{M}-y_{j_{k}}(X)=\left(c_{a_{k}}+\theta\right) x^{M}+\ldots$. Finally $F_{\triangle_{v_{F}}}=\left(y-\left(c_{M}+\theta\right) x^{M}\right) \prod_{k=1}^{l}\left(y-\left(c_{a_{k}}+\theta\right) x^{M}\right)$. Since θ is generic and $l \geq 1$, then iv) follows immediately.
In particular, using the results of Section 3., the last vertex of $N\left(F_{Y}\right)$ is $\left(\alpha^{1}, 0\right), O(F)=O\left(F_{y}\right)$, and $\max \left(O\left(F_{Y}\right)\right)=M$. But $F_{Y}(X, Y)=f_{y}\left(X, Y+\tilde{y}_{i}(X)\right)$. This with the above Lemma led to the following Proposition (see also [10], Lemma 3.3.):

Lemma 4.4 For $y_{i}(x), y_{j}(x), i \neq j$, there is a root $z_{k}(x)$ of $f_{y}(x, y)=0$ such that

$$
c\left(y_{i}(x), y_{j}(x)\right)=c\left(y_{i}(x), z_{k}(x)\right)=c\left(y_{j}(x), z_{k}(x)\right)
$$

Conversely, given $y_{i}(x), z_{k}(x)$, there is $y_{j}(x)$ for which the above equality holds. Moreover, given $y_{i}(x)$ and $M \in \mathbb{R}$,

$$
\operatorname{card}\left\{y_{j}(x) \mid c\left(y_{i}(x), y_{j}(x)\right)=M\right\}=\operatorname{card}\left\{z_{k}(x) \mid c\left(y_{i}(x), z_{k}(x)\right)=M\right\}
$$

Proof. Let $i \neq j$ and let $M=c\left(y_{i}-y_{j}\right)$. Let $\tilde{y}_{i}=\left(y_{i}\right)_{<M}+\theta x^{M}$ be the M-deformation of y_{i}. Consider, as in Lemma 4.3., the change of variables $X=x, Y=y-\tilde{y}_{i}(X)$ and let $F(X, Y)=$ $f\left(X, Y+\tilde{y}_{i}(X)\right)$. It follows from Lemma 4.3. that $F(X, 0) \neq 0$, and if $\operatorname{deg}_{y} F_{\triangle_{v_{F}}}=r+1$, then
there is r roots $y_{j_{1}}, \ldots, y_{j_{r}}$ of $f(x, y)=0$ such that $c\left(y_{i}-y_{j_{k}}\right)=M$ for all $k=1, \ldots, r$. Since $\left(\alpha^{1}, 0\right) \in \operatorname{Supp}\left(F_{\triangle_{v_{F}}}\right)$ for some α^{1}, then the cardinality of $E\left(F_{y}\right)$ is the same as the cardinality of $E(F)$. Furthermore, $N\left(F_{y}\right)$ is a translation of $N(F)$ with respect of the vector $(0,-1)$. Finally, $\left(F_{y}\right)_{\triangle_{v_{F}}^{F}}=\left(F_{\triangle_{v_{F}}}\right)_{y}$ is a polynomial of degree r in y. In particular, by Lemma 4.3., there is r roots of $f_{y}(x, y)=0$ whose contact with y_{i} is M. This completes the proof of the result.
Let $g=y^{m}+a_{1}(x) y^{m-1}+\ldots+a_{m}(x)$ be a reduced monic polynomial of $\mathbf{K}((x))[y]$ and denote by z_{1}, \ldots, z_{m} the set of roots of g. Let $y_{i}(x) \in \operatorname{Root}(f)$ and let:

$$
M=\max \left(\left\{c\left(y_{i}, y_{j}\right) \mid j \neq i\right\} \cup\left\{c\left(y_{i}, z_{k}\right) \mid k=1, \ldots, m\right\}\right)
$$

Lemma 4.5 Let the notations be as above, and assume that $M>\max _{1 \leq k \leq m} c\left(y_{i}, z_{k}\right)$. Let $\tilde{y}_{i}=\left(y_{i}\right)_{<M}+\theta x^{M}$ be the M-deformation of y_{i} and consider the change of variables $X=$ $x, Y=y-\tilde{y}_{i}(X)$. Let $F(X, Y)=f\left(X, Y+\tilde{y}_{i}(X)\right), G(X, Y)=g\left(X, Y+\tilde{y}_{i}(X)\right)$. We have the following
i) $F(X, 0) \neq 0$ and $G(X, 0) \neq 0$, i.e. $N(F)$ and $N(G)$ meet the x-axis.
ii) $\max (O(F))=M>\max (O(G))$
iii) If $\triangle_{v_{F}}^{F}$ (resp. $\triangle_{v_{G}}^{G}$) denotes the last edge of $N(F)$ (resp. $\left.\quad N(G)\right)$ then $\left(\alpha^{1}, 1\right) \in$ $\operatorname{Supp}\left(F_{\triangle_{v_{F}}}\right)\left(\right.$ resp. $\left.\left(\beta^{1}, 1\right) \in \operatorname{Supp}\left(G_{\triangle_{v_{G}}}\right)\right)$ for some $\alpha^{1}\left(\right.$ resp. $\left.\beta^{1}\right)$, and $\left(\alpha^{1}, 1\right) \notin V(F)$ (resp. $\left.\left(\beta^{1}, 1\right) \notin V(G)\right)$.

Proof. Let $F(X, Y)=\prod_{j=1}^{n}\left(Y-Y_{j}(X)\right)$ and $G(X, Y)=\prod_{k=1}^{m}\left(Y-Z_{k}(X)\right)$. Clearly $Y_{j}(X)=$ $y_{j}(X)-\left(y_{i}\right)_{<M}(X)+\theta X^{M}, Z_{k}(X)=z_{k}(X)-\left(y_{i}\right)_{<M}(X)+\theta X^{M}$. In particular, for all $k=$ $1, \ldots, m, O\left(Z_{k}\right)=c\left(y_{i}, z_{k}\right)<M$. On the other hand, for all $j \neq i, O\left(Y_{j}\right)=c\left(y_{i}, y_{j}\right) \leq M$ with equality for at least one j, and $O\left(Y_{i}\right)=M$. This implies i) and ii). Now iii) follows by a similar argument as in Lemma 4.3.
Let $J=J(f, g)$, and note that $J(F, G)=J(X, Y)$. In particular, by the results of the previous Section we get the following:

Lemma 4.6 For $y_{i}(x), y_{j}(x), i \neq j$, if $c\left(y_{i}, y_{j}\right)>\max _{1 \leq k \leq m} c\left(y_{i}, z_{k}\right)$, then there is a root $u_{l}(x)$ of $J(x, y)=0$ such that

$$
c\left(y_{i}(x), y_{j}(x)\right)=c\left(y_{i}(x), u_{l}(x)\right)
$$

Conversely, given $y_{i}(x), u_{l}(x)$, if $c\left(y_{i}, u_{l}\right)>c\left(y_{i}, z_{k}\right), k=1, \ldots, m$, there is $y_{j}(x)$ for which the above equality holds. Moreover, given $y_{i}(x)$ and $M \in \mathbb{R}$, if $M>\max _{1 \leq k \leq m} c\left(y_{i}, z_{k}\right)$, then:

$$
\operatorname{card}\left\{y_{j}(x) \mid c\left(y_{i}(x), y_{j}(x)\right)=M\right\}=\operatorname{card}\left\{u_{l}(x) \mid c\left(y_{i}(x), u_{l}(x)\right)=M\right\}
$$

Proof. Let $M=c\left(y_{i}, y_{j}\right)$ and consider the change of variables $X=x, \tilde{Y}^{Y}=y-\tilde{y}_{i}(X)$, where $\tilde{y}_{i}=\left(y_{i}\right)_{<M}+\theta x^{M}$ is the M-deformation of y_{i}. Let $F(X, Y)=f\left(X, Y+\tilde{Y}_{i}(X)\right)$ and $G(X, Y)=$
$g\left(X, Y+\tilde{Y}_{i}(X)\right)$. Il follows from the hypotheses that F and G satisfies conditions i), ii), and iii) of Lemma 3.4. In particular $J(X, Y)_{\triangle_{v(J(X, Y)}^{J(X, Y)}}=\left(G_{\triangle_{v(G)}^{G}}(X, 0)\right)_{X} \cdot\left(F_{\triangle_{v_{F}}^{F}}\right)_{Y}$. The proof follows now by a similar argument as in Lemma 4.4.

5 Five main results

Let $f=y^{n}+a_{1}(x) y^{n-1}+\ldots+a_{n}(x)$ be a reduced monic polynomial of $\mathbf{K}((x))[y]$ and let $f=f_{1} \cdot f_{2} \ldots . f_{\xi(f)}$ be the decomposition of f into irreducible components of $\mathbf{K}((x))[y]$. Let f_{y} be the y-derivative of f and let $\operatorname{Root}(f)=\left\{y_{1}(x), \ldots, y_{n}(x)\right\}$.
For all $1 \leq i \leq \xi(f)$, set $n_{f_{i}}=\operatorname{deg}_{y}\left(f_{i}\right)$, and let $\left.\left(m_{k}^{f_{i}}\right)_{1 \leq k \leq h_{f_{i}}+1},\left(d_{k}^{f_{i}}\right)_{1 \leq k \leq h_{i}+1}\right),\left(e_{k}^{f_{i}}\right)_{1 \leq k \leq h_{f_{i}}}$, $\left(r_{k}^{f_{i}}\right)_{1 \leq k \leq h_{f_{i}}+1}$ be the set of characteristic sequences of f_{i}. Let finally $z(x)$ denotes an element of $\operatorname{Root}\left(f_{y}\right)$.

Proposition 5.1 Assume that $\xi(f)=1$, i. e. $f=f_{1}$ is irreducible. For all $1 \leq k \leq h_{f}$, we have:

$$
\operatorname{card}\left\{z(x) \left\lvert\, c(f, z(x))=\frac{m_{k}^{f}}{n_{f}}\right.\right\}=\left(e_{k}^{f}-1\right) \frac{n_{f}}{d_{k}^{f}}
$$

Proof. Note that, by Lemma 4.4., $c(f, z(x)) \in\left\{\frac{m_{1}^{f}}{n_{f}}, \ldots, \frac{m_{h_{f}}^{f}}{n_{f}}\right\}$. Assume first that $k=h_{f}$ and fix a root y_{p} of f. By Lemma 1.2., y_{p} has the contact $\frac{m_{h_{f}}^{f}}{n_{f}}$ with exactly $d_{h_{f}}^{f}-d_{h_{f}+1}^{f}=d_{h_{f}}^{f}-1=e_{h_{f}}^{f}-1$ roots of f, consequently, by Lemma 4.4., there is $e_{h_{f}}^{f}-1$ roots of f_{y} whose contact with y_{p} is $\frac{m_{h_{f}}^{f}}{n_{f}}$. Denote the set of these roots by D_{p}. Each element of D_{p} has the contact $\frac{m_{h_{f}}^{f}}{n_{f}}$ with exactly $d_{h_{f}}^{f}$ roots of f (since we have to add y_{p}). Denote this set by C_{p}. Let $y_{q} \notin C_{p}$ be a root of f. Repeating with y_{q} what we did for y_{p}, we construct D_{q} and C_{q} in a similar way. Obviously $C_{p} \cap C_{q}=\emptyset$ (otherwise, $c\left(y_{p}, y_{q}\right)=\frac{m_{h f}^{f}}{n_{f}}$, which is impossible because $y_{q} \notin C_{p}$). This implies that $D_{p} \cap D_{q}=\emptyset \ldots$. This process divides the n_{f} roots of f into $\frac{n_{f}}{d_{h_{f}}^{f}}$ disjoint groups $C_{1}, \ldots, C_{\frac{n_{f}}{d_{h_{f}}^{f}}}$ such that for all $1 \leq p \leq \frac{n_{f}}{d_{h_{f}}^{f}}, C_{p}$ contains the roots of f having the contact $\frac{m_{h_{f}}^{f}}{n_{f}}$ with the elements of D_{p}. For all $z(x) \in D_{p}, c(f, z(x))=\frac{m_{h_{f}}^{f}}{n_{f}}$, in particular

$$
\operatorname{card}\left\{z(x) \left\lvert\, c(f, z(x))=\frac{m_{h_{f}}^{f}}{n_{f}}\right.\right\}=\sum_{p=1}^{\frac{n_{f}}{d_{h_{f}}^{f}}} \operatorname{card} D_{p}=\left(e_{h_{f}}^{f}-1\right) \frac{n_{f}}{d_{h_{f}}^{f}} .
$$

Assume that the equality is true for $k=h_{f}, \ldots, j+1$, then there is exactly $\sum_{i=j+1}^{h_{f}}\left(e_{i}^{f}-\right.$ 1) $\frac{n_{f}}{d_{j}^{f}}=n_{f}-\frac{n_{f}}{d_{j}^{f}}$ roots of f_{y} having the contact $\geq m_{j}^{f}$ with f. We now repeat the same argument with $\frac{n_{f}}{d_{j}^{f}}, \frac{d_{j}^{f}}{d_{j+1}^{f}}-1$ instead of n_{f} and $d_{h_{f}}^{f}-1$.

Proposition 5.2 Let $M \in \mathbb{Q}$ and let $1 \leq i \leq \xi(f)$. Assume that $M \neq \frac{m_{k}^{f_{i}}}{n_{f_{i}}}$ for all $k=$ $1, \ldots, h_{f_{i}}$. We have:

$$
\operatorname{card}\left\{z(x) \mid c\left(f_{i}, z(x)\right)=M\right\}=\operatorname{card}\left\{y(x) \in \operatorname{Root}(f) \mid c\left(f_{i}, y(x)\right)=M\right\}=\sum_{c\left(f_{i}, f_{k}\right)=M} n_{f_{k}}
$$

Proof. Let, without less of generality, $i=1$ and let $k>1$ be such that $c\left(f_{1}, f_{k}\right)=M$. Fix a root $y_{p}(x)$ of f_{1}. Since $c\left(y_{p}(x), f_{k}\right)=M$, then there is a root $y(x)$ of f_{k} such that $c\left(y_{p}(x), y(x)\right)=M$. Let $\theta \in\left\{0, \ldots, h_{f_{1}}\right\}$ be the smallest integer such that $M<\frac{m_{\theta+1}^{f_{1}}}{n_{f_{1}}}$ and consider another root $y_{j}(x)$ of f_{1}. We have:
$c\left(y_{j}, y(x)\right)=O_{x}\left(y_{j}-y(x)\right)=O_{x}\left(y_{j}-y_{p}+y_{p}-y(x)\right)= \begin{cases}M & \text { if } O_{x}\left(y_{j}-y_{p}\right) \geq \frac{m_{\theta+1}^{f_{1}}}{n_{f_{1}}} \\ O_{x}\left(y_{j}-y_{p}\right) & \text { if } O_{x}\left(y_{j}-y_{p}\right)<\frac{m_{\theta+1}^{f_{1}}}{n_{f_{1}}}\end{cases}$
By Lemma 1.2., there is exactly $d_{\theta+1}^{f_{1}}-1$ roots of f_{1} having a contact $\geq \frac{m_{\theta+1}^{f_{1}}}{n_{f_{1}}}$ with y_{p}, consequently, by the formula above, there is exactly $d_{\theta+1}^{f_{1}}$ roots of f_{1} having the contact M with $y(x)$ (since we have to add y_{p}). Denote this set by C_{p} and let D_{k}^{p} be the set of roots of f_{k} having the contact M with y_{p}. In particular an element of D_{k}^{p} has the contact M with every element of C_{p}.
Let $y_{q} \notin C_{p}$ be a root of f_{1} and repeat the same construction with y_{q} instead of y_{p}. It is clear that $C_{p} \cap C_{q}=\emptyset$ (otherwise, if $\bar{y} \in C_{p} \cap C_{q}$, then $c\left(\bar{y}, y_{p}\right)=c\left(\bar{y}, y_{q}\right)=M$, in particular $c\left(y_{p}, y_{q}\right) \geq M$, which is a contradiction since $\left.y_{q} \notin C_{p}\right)$, in particular $D_{k}^{p} \cap D_{k}^{q}=\emptyset$. This process divides the set of roots of f_{k} into disjoint $\frac{n_{f_{1}}}{d_{\theta+1}^{f_{1}}}$ groups $D_{k}^{1}, \ldots, D_{k}^{\frac{n_{f_{1}}}{d_{\theta+1}}}$: for all $1 \leq p \leq \frac{n_{f_{1}}}{d_{\theta+1}^{f_{1}}}, D_{k}^{p}$
contains the roots of f having the contact M with the elements of C_{p}. Repeating what we did with another $f_{l}, l \neq k$, such that $c\left(f_{1}, f_{l}\right)=M$, then adding the D_{k}^{p},s, We obtain disjoint $\frac{n_{f_{1}}}{d_{\theta+1}^{f_{1}}}$ groups $D_{1}, \ldots, D_{\frac{n_{f_{1}}}{f_{\theta+1}^{f_{1}}}}$ such that D_{p} contains the roots of f having the contact M with the elements of C_{p}. We have, by Lemma 4.4.

$$
\operatorname{card}\left\{z(x) \mid c\left(y_{p}(x), z(x)\right)=M\right\}=\operatorname{card}\left\{y(x) \in \operatorname{Root}(f) \mid c\left(y_{p}(x), y(x)\right)=M\right\}=\operatorname{card} D_{p}
$$

Let $z(x) \in \operatorname{Root}\left(f_{y}\right)$ and assume that $c\left(z(x), y_{p}\right)=M$. If $y_{q} \in \operatorname{Root}(f), y_{q} \neq y_{p}$, since $c\left(y_{p}, y_{q}\right) \neq$ M, then $c\left(z(x), y_{q}\right) \leq M$. In particular $\mathrm{c}\left(f_{1}, z(x)\right)=M$. Finally

$$
\operatorname{card}\left\{z(x) \mid c\left(f_{1}, z(x)\right)=M\right\}=\sum_{p=1}^{\frac{n_{f_{1}}}{d_{\theta+1}^{f_{1}}}} \operatorname{card} D_{p}=\sum_{c\left(f_{1}, f_{k}\right)=M} n_{f_{k}}
$$

This proves our assertion.

Proposition 5.3 For all $1 \leq i \leq r$ and for all $1 \leq \theta \leq h_{f_{i}}$, we have:

$$
\begin{gathered}
\operatorname{card}\left\{z(x) \left\lvert\, c\left(f_{i}, z(x)\right)=\frac{m_{\theta}^{f_{i}}}{n_{f_{i}}}\right.\right\}=\operatorname{card}\left\{y(x) \in \operatorname{Root}(f) \left\lvert\, c\left(f_{i}, y(x)\right)=\frac{m_{\theta}^{f_{i}}}{n_{f_{i}}}\right.\right\}+\left(e_{\theta}^{f_{i}}-1\right) \frac{n_{f_{i}}}{d_{\theta}^{f_{i}}} \\
=\sum_{\substack{ \\
c\left(f_{i}, f_{k}\right)=\frac{m_{\theta}}{f_{i}} \\
n_{f_{i}}}} n_{f_{k}}+\left(e_{\theta}^{f_{i}}-1\right) \frac{n_{f_{i}}}{d_{\theta}^{f_{i}}}
\end{gathered}
$$

Proof. Let, without loss of generality, $i=1$ and assume that $c\left(f_{1}, f_{k}\right)=\frac{m_{\theta}^{f_{1}}}{n_{f_{1}}}$ for at least one $k>1$. Let y_{p} be a root of f_{1}. Since $c\left(f_{k}, y_{p}\right)=\frac{m_{\theta}^{f_{1}}}{n_{f_{1}}}$, then there is a root $y(x)$ of f_{k} such that $c\left(y_{p}(x), y(x)\right)=\frac{m_{\theta}^{f_{1}}}{n_{f_{1}}}$. By Lemma 1.2., there is exactly $d_{\theta}^{f_{1}}-1$ roots of f_{1} having a contact $\geq \frac{m_{\theta}^{f_{1}}}{n_{f_{1}}}$ with y_{p}. Let $y_{j}(x)$ be a root of f_{1} such that $c\left(y_{p}, y_{j}\right) \geq \frac{m_{\theta}^{f_{1}}}{n_{f_{1}}}$, then $c\left(y_{j}, y(x)\right)=O_{x}\left(y_{j}-\right.$ $y(x))=O_{x}\left(y_{j}-y_{p}+y_{p}-y(x)\right) \geq \frac{m_{\theta}^{f_{1}}}{n_{f_{1}}}$. On the other hand, $c\left(y_{j}(x), y(x)\right) \leq c\left(f_{1}, f_{k}\right)=\frac{m_{\theta}^{f_{1}}}{n_{f_{1}}}$, hence $c\left(y_{j}, y(x)\right)=\frac{m_{\theta}^{f_{1}}}{n_{f_{1}}}$. Consequently, there is exactly $d_{\theta}^{f_{1}}$ roots of f_{1} having the contact
$\frac{m_{\theta}^{f_{1}}}{n_{f_{1}}}$ with $y(x)$. Denote this set by C_{p} and let D_{p}^{k} be the set of roots of f_{k} such that for all $y(x) \in D_{p}^{k}, c\left(y_{p}(x), y(x)\right)=\frac{m_{\theta}^{f_{1}}}{n_{f_{1}}}$. In particular, an element of D_{p}^{k} has the contact $\frac{m_{\theta}^{f_{1}}}{n_{f_{1}}}$ with every element of C_{p}.
Let $y_{q} \notin C_{p}$ be a root of f_{1} and repeat the same construction with y_{q} instead of y_{p}. We have, by a similar argument as in Proposition 5.2., $C_{p} \cap C_{q}=\emptyset$ and consequently $D_{p}^{k} \cap D_{q}^{k}=\emptyset$. This divides the set of roots of f_{k} into disjoint $\frac{n_{f_{1}}}{d_{\theta}^{f_{1}}}$ groups $D_{k}^{1}, \ldots, D_{k}^{\frac{n_{f_{1}}^{f_{\theta}}}{d_{\theta}}}$. Each element of D_{k}^{p} has the contact $\frac{m_{\theta}^{f_{1}}}{n_{f_{1}}}$ with the elements of C_{p}. Repeating the same argument with the set of f_{l} such that $c\left(f_{1}, f_{l}\right)=\frac{m_{\theta}^{f_{1}}}{n_{f_{1}}}$ with f_{1}, then adding the D_{p}^{k},s, we obtain disjoint $\frac{n_{f_{1}}}{d_{\theta}^{f_{1}}}$ groups $D_{1}, \ldots, D_{\frac{n_{f_{1}}}{d_{\theta}}}$ such that for all $1 \leq p \leq \frac{n_{f_{1}}}{d_{\theta}}, D_{p}$ contains the roots of $\frac{f}{f_{1}}$ having the contact $\frac{m_{\theta}^{f_{1}}}{n_{f_{1}}}$ with the elements of C_{p}. We have, by Lemma 2.1. and Lemma 4.4.:

$$
\begin{gathered}
\operatorname{card}\left\{z(x) \left\lvert\, c\left(y_{p}, z(x)\right)=\frac{m_{\theta}^{f_{1}}}{n_{f_{1}}}\right.\right\}=\operatorname{card}\left\{y(x) \left\lvert\, c\left(y_{p}, y(x)\right)=\frac{m_{\theta}^{f_{1}}}{n_{f_{1}}}\right.\right\} \\
=\operatorname{card} D_{p}+\left(e_{\theta}^{f_{1}}-1\right) \frac{n_{f_{1}}}{d_{\theta}^{f_{1}}}
\end{gathered}
$$

And by a similar argument as in Proposition 5.2.,

$$
\operatorname{card}\left\{z(x) \left\lvert\, c\left(f_{1}, z(x)\right)=\frac{m_{\theta}^{f_{1}}}{n_{f_{1}}}\right.\right\}=\left(\sum_{1 \leq p \leq \frac{n_{f_{1}}}{d_{\theta}^{f_{1}}}} \operatorname{card} D_{p}\right)+\left(e_{\theta}^{f_{1}}-1\right) \frac{n_{f_{1}}}{d_{\theta}^{f_{1}}}=\left(\sum_{c\left(f_{1}, f_{k}\right)=\frac{m_{\theta}^{f_{1}}}{n_{f_{1}}}} n_{f_{k}}\right)+\left(e_{\theta}^{f_{1}}-1\right) \frac{n_{f_{1}}}{d_{\theta}^{f_{1}}}
$$

This proves our assertion.
Let $g=y^{m}+b_{1}(x) y^{m-1}+\ldots+b_{m}(x)$ be a monic reduced polynomial of $\mathbf{K}((x))[y]$ and let $g_{1}, \ldots, g_{\xi(g)}$ be the set of irreducible components of g in $\mathbf{K}((x))[y]$. Set $\operatorname{Root}(g)=\left\{z_{1}, \ldots, z_{m}\right\}$, and let $J=J(f, g)$ be the Jacobian of f and g.

Proposition 5.4 Let $M \in \mathbb{Q}$ and assume that $c\left(y(x), y^{\prime}(x)\right)=M$ for some $y(x), y^{\prime}(x) \in$ $\operatorname{Root}(f)$, and that $M>\max _{1 \leq j \leq m} c\left(y(x), z_{j}(x)\right)$. Let $1 \leq i \leq \xi(f)$, and assume that $M \neq \frac{m_{k}^{f_{i}}}{n_{f_{i}}}$ for all $k=1, \ldots, h_{f_{i}}$. We have the following

$$
\operatorname{card}\left\{u(x) \in \operatorname{Root}(J) \mid c\left(f_{i}, u(x)\right)=M\right\}=\operatorname{card}\left\{y_{j}(x) \mid c\left(f_{i}, y_{j}(x)\right)=M\right\}=\sum_{c\left(f_{i}, f_{k}\right)=M} n_{f_{k}} .
$$

Proof. The proof is similar to the proof of Proposition 5.2., where Lemma 4.4. is replaced by Lemma 4.6.

Proposition 5.5 Let $1 \leq \theta \leq h_{f_{i}}$ and assume that $\frac{m_{\theta}^{f_{i}}}{n_{f_{i}}}>\max _{1 \leq j \leq n, 1 \leq k \leq m} c\left(\left(y_{j}(x), z_{k}(x)\right)\right.$. We have the following

$$
\begin{aligned}
\operatorname{card}\left\{u(x) \in \operatorname{Root}(J) \left\lvert\, c\left(f_{i}, u(x)\right)=\frac{m_{\theta}^{f_{i}}}{n_{f_{i}}}\right.\right\} & =\operatorname{card}\left\{y(x) \in \operatorname{Root}(f) \left\lvert\, c\left(f_{i}, y(x)\right)=\frac{m_{\theta}^{f_{i}}}{n_{f_{i}}}\right.\right\}+\left(e_{\theta}^{f_{i}}-1\right) \frac{n_{f_{i}}}{d_{\theta}^{f_{i}}} \\
& =\sum_{\substack{ \\
c\left(f_{i}, f_{k}\right)=\frac{m_{\theta}}{f_{i}} \\
n_{f_{i}}}} n_{f_{k}}+\left(e_{\theta}^{f_{i}}-1\right) \frac{n_{f_{i}}}{d_{\theta}^{f_{i}}}
\end{aligned}
$$

Proof. The proof is similar to the proof of Proposition 5.3., where Lemma 4.4. is replaced by Lemma 4.6.

6 The tree of contacts

Let f be a reduced monic polynomial in $\mathbf{K}((x))[y]$ and let $f=f_{1} \ldots \ldots f_{\xi(f)}$ be the factorization of f into irreducible components of $\mathbf{K}((x))[y]$. We define the set of contacts of f to be the set:

$$
C(f)=\left\{c\left(f_{p}, f_{q}\right) \mid 1 \leq p \neq q \leq \xi(f)\right\} \cup \cup_{k=1}^{r}\left\{\frac{m_{1}^{f_{k}}}{n_{f_{k}}}, \ldots, \frac{m_{h_{f_{k}}}^{f_{k}}}{n_{f_{k}}}\right\}
$$

Let $C(f)=\left\{M_{1}, \ldots, M_{t_{f}}\right\}$. The tree associated with f is constructed as follows:
Let $M \in C(f)$ and define $C_{M}(f)$ to be the set of irreducible components of f such that

$$
f_{p} \in C_{M}(f) \Leftrightarrow c\left(f_{p}, f_{q}\right) \geq M \text { for some } 1 \leq q \leq \xi(f)
$$

with the understanding that $c\left(f_{k}, f_{k}\right) \geq M$ if and only if $\frac{m_{i}^{f_{k}}}{n_{f_{k}}} \geq M$ for some $1 \leq i \leq h_{f_{k}}$. We associate with M the equivalence relation on the set $C_{M}(f)$, denoted R_{M}, and defined as follows:

$$
f_{p} R_{M} f_{q} \text { if and only if } c\left(f_{p}, f_{q}\right) \geq M .
$$

We define the points of the tree $T(f)$ at the level M to be the set of equivalence classes of R_{M}, and we denote this set by $P_{1}^{M}, \ldots, P_{s_{M}}^{M}$. We shall say that P_{j}^{N} dominates P_{i}^{M}, and we write $P_{j}^{N} \geq P_{i}^{M}$, if $P_{j}^{N} \subseteq P_{i}^{M}$. We shall say that P_{j}^{N} strictly dominates P_{i}^{M}, and we write $P_{j}^{N}>P_{i}^{M}$, if P_{j}^{N} dominates $P_{i}^{M}, P_{i}^{M} \neq P_{j}^{N}$, and $\left.C(f) \cap\right] M, N[=\emptyset$. This defines an order on the set of points of $T(f)$ with a unique minimal element, denoted $P_{1}^{M_{1}}$. A point P_{i}^{M} is called a top point of $T(f)$ if it is maximal with respect to this order. We denote by $\operatorname{Top}(f)$ the set of top points of $T(f)$.
Let P_{i}^{M} be a point of $T(f)$, and let $P_{i_{1}}^{N_{1}}, \ldots, P_{i_{t}}^{N_{t}}$ be the set of points that strictly dominate P_{j}^{M}. We set $D_{i}^{M}=P_{i}^{M}-\cup_{l=1}^{t} P_{i_{l}}^{N_{l}}$. Clearly $\left\{P_{i_{1}}^{N_{1}}, \ldots, P_{i_{t}}^{N_{t}}, D_{i}^{M}\right\}$ is a partition of P_{i}^{M}. Furthermore, for all $F \in D_{i}^{M}$ and for all $F \neq G \in P_{i}^{M}, c(F, G)=M$. Note that if $F \in D_{i}^{M}$, then $M \geq \frac{m_{h_{F}}^{F}}{n_{F}}$ and that $P_{i}^{M} \in \operatorname{Top}(f)$ if and only if $P_{i}^{M}=D_{i}^{M}$.
If P_{j}^{N} strictly dominates P_{i}^{M}, then we link these two points be a line segment. We define the set of edges of $T(f)$ to be the set of these line segments. Given a point P_{i}^{M}, if $D_{i}^{M} \neq \emptyset$, then we associate with all $F \in D_{i}^{M}$ an arrow starting at the point P_{i}^{M}. Let $P_{1}^{M_{1}}, P_{i_{2}}^{M_{2}} \ldots, P_{i_{k}}^{M_{k}}$ be a set of points of $T(f)$ such that $P_{i_{2}}^{M_{2}}$ strictly dominates $P_{1}^{M_{1}}, P_{i_{k}}^{M_{k}} \in \operatorname{Top}(f)$, and $P_{i_{j}}^{M_{j}}$ strictly dominates $P_{i_{j-1}}^{M_{j-1}}$ for all $3 \leq j \leq k$. The union of edges linking these points is called a branch of $T(f)$. Clearly, there are as many branches of $T(f)$ as there are top points of $T(f)$.

Lemma 6.1 Let P_{i}^{M} be a point of $T(f)$. We have the following:
i) For all $F, G \in P_{i}^{M}, c(F, G) \geq M$.
ii) For all $F \in P_{i}^{M}$ and for all $G \notin P_{i}^{M}, c(F, G)<M$.
iii) For all $F, G \in P_{i}^{M}$ and for all $H \notin P_{i}^{M}, c(F, H)=c(G, H)$. We denote this rational by $c\left(H, P_{i}^{M}\right)$.
iv) let $F \in P_{i}^{M}$ and let $1 \leq \theta \leq h_{F}+1$ be the smallest integer such that $M \leq \frac{m_{\theta}^{F}}{n_{F}}$. If $\theta \geq 2$ then $\frac{m_{k}^{G}}{n_{G}}=\frac{m_{k}^{F}}{n_{F}}$ for all $G \in P_{i}^{M}$ and for all $1 \leq k \leq \theta-1$. We denote this rational number by $\left.\frac{m_{k}}{n}\left(P_{i}^{M}\right)\right)$. As a consequence $\frac{n_{G}}{d_{k}^{G}}$ does not depend on $\left.G \in P_{i}^{M}\right)$ and $1 \leq k \leq \theta$. We denote this rational number by $\frac{n}{d_{k}}\left(P_{i}^{M}\right)$.

Proof. The proof is an easy application of Lemma 1.5. and Lemma 1.6.
Let P_{i}^{M} be a point of $T(f)$ and define the subsets $X_{1}(M, i), \ldots, X_{s(M, i)}(M, i)$ of P_{i}^{M} as follows:

- For all k and for all $F, G \in X_{k}(M, i), c(F, G)=M$.
- Given $F \in X_{k}(M, i)$ and $l \neq k$, if $F \notin X_{l}(M, i)$, then $c(F, G)>M$ for some $G \in X_{l}(M, i)$ (in particular $F, G \in P_{j}^{N}$ for some $P_{j}^{N}>P_{i}^{M}$).
The sets defined above satisfy the following property:

Lemma 6.2 The cardinality of $X_{k}(M, i)$ does not depend on $1 \leq k \leq s(M, i)$. We denote this cardinality by $c(M, i)$.

Proof. Assume that $s(M, i) \geq 2$ and let $1 \leq a \neq b \leq s(M, i)$. We shall construct a bijective map from $X_{a}(M, i)$ to $X_{b}(M, i)$. Let $F \in X_{a}(M, i)$. If $F \notin X_{b}(M, i)$, then there is $\tilde{F} \in X_{b}(M, i)$ such that $c(F, \tilde{F})>M$. We claim that \tilde{F} is the only element with this property. In fact, if there is $\tilde{F} \neq G \in X_{b}(M, i)$ such that $\left.c(F, G)\right)>M$, then $\left.M=c(\tilde{F}, G)\right) \geq \min (c(F, \tilde{F}), c(F, G))>M$, which is a contradiction. This defines a map

$$
\begin{gathered}
\phi_{a, b}: X_{a}(M, i) \longmapsto X_{b}(M, i) \\
\phi_{a, b}(F)= \begin{cases}F & \text { if } F \in X_{b}(M, i) \\
\tilde{F} & \text { if } F \notin X_{b}(M, i)\end{cases}
\end{gathered}
$$

This map is clearly bijective. This completes the proof of the Lemma.
Lemma 6.3 Let the notations be as above, and let $P_{i_{1}}^{N_{1}}, \ldots, P_{i_{t}}^{N_{t}}$ be the set of points that strictly dominate P_{i}^{M}. We have the following:
i) $D_{i}^{M} \subseteq X_{k}(M, i)$ for all $1 \leq k \leq s(M, i)$.
ii) Given $1 \leq k \leq s(M, i),\left(X_{k}(M, i) \cap P_{i_{1}}^{N_{1}}, \ldots, X_{k}(M, i) \cap P_{i_{t}}^{N_{t}}, D_{i}^{M}\right)$ is a partition of $X_{k}(M, i)$.
iii) Given $1 \leq k \leq s(M, i)$ and $1 \leq l \leq t, X_{k}(M, i) \cap P_{i_{l}}^{N_{1}}$ is reduced to one element.
iv) $c(M, i)=t+\operatorname{card}\left(D_{i}^{M}\right)$.

Proof. The first two assertions are clear, on the other hand $3 . \Longrightarrow 4$. We shall consequently prove 3. Assume, without loos of generality, that $k=1$, and let $1 \leq l \leq t$. Suppose that $X_{1}(M, i) \cap P_{i_{l}}^{N_{l}}=\emptyset$ and let $G \in P_{i_{l}}^{N_{l}}$. We have $c(F, G)=M$ for all $F \in X_{1}(M, i)$, in particular $G \in X_{1}(M, i)$, which is a contradiction. Consequently $X_{1}(M, i) \cap P_{i_{l}}^{N_{l}} \neq \emptyset$. Let G_{1}, G_{2} be two polynomials of $X_{1}(M, i) \cap P_{i_{l}}^{N_{l}}$. We have $c\left(G_{1}, G_{2}\right)=M$ and $c\left(G_{1}, G_{2}\right) \geq N>M$. This is a contradiction if $G_{1} \neq G_{2}$.

Let P_{i}^{M} be a point of $T(f)$ and assume that $D_{i}^{M} \neq \emptyset$. For all $F \in D_{i}^{M}, c(F, F) \leq M$, in particular $M \geq \frac{m_{h_{F}}^{F}}{n_{F}}$.

Lemma 6.4 Let the notations be as above. We have the following
i) If $M>\frac{m_{h_{F}}^{F}}{n_{F}}$ for all $F \in D_{i}^{M}$, then n_{F} does not depend on $F \in D_{i}^{M}$. We denote it by $n\left(D_{i}^{M}\right)$. We have $\sum_{F \in D_{i}^{M}} n_{F}=(c(M, i)-t) n\left(D_{i}^{M}\right)$.
ii) If $M=\frac{m_{h_{F}}^{F}}{n_{F}}$ for some $F \in D_{i}^{M}$, then one of the following hold
$\left.1_{i i}\right) M=\frac{m_{h_{F}}^{F}}{n_{F}}$ for all $F \in D_{i}^{M}$. In this case, n_{F} does not depend on $F \in D_{i}^{M}$. We denote it by $n\left(D_{i}^{M}\right)$. We have $\sum_{F \in D_{i}^{M}} n_{F}=(c(M, i)-t) n\left(D_{i}^{M}\right)$.
$1_{i i i)} M>\frac{m_{h_{F}}^{F^{\prime}}}{n_{F^{\prime}}}$ for some $F^{\prime} \in D_{i}^{M}$. In this case, $M=\frac{m_{h_{F}}^{F}}{n_{F}}>\frac{m_{h_{F^{\prime}}}^{F^{\prime}}}{n_{F^{\prime}}}$ for all $F \in D_{i}^{M}, F \neq F^{\prime}$, and $n_{F}, h_{F},\left(d_{k}^{F}\right)_{1 \leq k \leq h_{F}}$ do not depend on $F \in D_{i}^{M}, F \neq F^{\prime}$. We denote these integers by $n\left(D_{i}^{M}\right), h\left(D_{i}^{M}\right), d_{k}^{D_{i}^{M}}$. With these notations we have $n\left(F^{\prime}\right)=\frac{n\left(D_{i}^{M}\right)}{d_{h\left(D_{i}^{M}\right)}^{D_{i}^{M}}}$, and $\sum_{F \in D_{i}^{M}} n(F)=$ $(c(M, i)-t-1) \cdot n\left(D_{i}^{M}\right)+\frac{n\left(D_{i}^{M}\right)}{d_{h\left(D_{i}^{M}\right)}^{D_{i}^{M}}}$.

Proof. By definition, for all $F, G \in D_{i}^{M}, c(F, G)=M$. Consequently our results follow from Proposition 2.4.
Let H be a monic polynomial of $\mathbf{K}((x))[y]$ and let $H_{1}, \ldots, H_{\xi(H)}$ be the set of irreducible components of H in $\mathbf{K}((x))[y]$. Let P_{i}^{M} be a point of $T(f)$ and let $F \in P_{i}^{M}$. We set:

$$
R_{=M}(F ; H)=\prod_{c\left(F, H_{k}\right)=M} H_{k}
$$

and

$$
R_{>M}(F ; H)=\prod_{c\left(F, H_{k}\right)>M} H_{k}
$$

In other words, $R_{=M}(F ; H)$ (resp. $R_{>M}(F ; H)$) is the product of irreducible components of H whose contact with F is M (resp. $>M$).

Lemma 6.5 Suppose that $P_{i}^{M} \notin \operatorname{Top}(f)$ and let $P_{i_{1}}^{N_{1}}, \ldots, P_{i_{t}}^{N_{t}}$ be the set of points that strictly dominate P_{i}^{M}. Fix $1 \leq l \leq t$ and let $F \in P_{i_{l}}^{N_{l}}$. We have the following
i) For all $G \in P_{i_{l}}^{N_{l}}, R_{=M}(G ; H)=R_{M}(F ; H)$ (resp. $R_{>M}(G ; H)=R_{>M}(F ; H)$). We denote this polynomial by $R_{=M}\left(P_{i_{l}}^{N_{l}}, H\right)\left(\right.$ resp. $\left.R_{>M}\left(P_{i_{l}}^{N_{l}}, H\right)\right)$.
ii) For all $G \in P_{i_{k}}^{N_{k}}, k \neq l, R_{>M}(G ; H)$ divides $R_{=M}(F ; H)$.
iii) For all $G \in D_{i}^{M}, R_{>M}(G ; H)$ divides $R_{=M}(F ; H)$.

Proof. Let H_{k} be an irreducible component of H. If $G \in P_{i_{l}}^{N_{l}}$, then $c(F, G) \geq N_{k}>M$. In particular, by Proposition 1.5., $c\left(G, H_{k}\right)=M$ (resp. $\left.c\left(G, H_{k}\right)>M\right)$ if and only if $c\left(F, H_{k}\right)=M$ (resp. $\left.c\left(F, H_{k}\right)>M\right)$. This proves i). If either $G \in P_{i_{k}}^{N_{k}}, k \neq l$ or $G \in D_{i}^{M}$, then $c(F, G)=M$. In particular, if $c\left(G, H_{k}\right)>M$, then, by Lemma 1.5. $c\left(F, H_{k}\right)=M$. This proves ii) and iii).
Let the notations be as above. It follows from ii), iii) of Lemma 6.5. that that:

$$
\prod_{k=2}^{t} R_{>M}\left(P_{i_{k}}^{N_{k}} ; H\right) . \prod_{F \in D_{i}^{M}} R_{>M}(F ; H) \text { divides } R_{=M}\left(P_{i_{1}}^{N_{1}} ; H\right)
$$

Set

$$
\bar{Q}_{H}(M, i)=\frac{R_{=M}\left(P_{i_{1}}^{N_{1}} ; H\right)}{\prod_{k=2}^{t} R_{>M}\left(P_{i_{k}}^{N_{k}} ; H\right) \cdot \prod_{F \in D_{i}^{M}} R_{>M}(F ; H)}
$$

and let

$$
Q_{H}(M, i)=\prod_{c\left(F, H_{k}\right)=M \forall F \in P_{i}^{M}} H_{k}
$$

i.e. $Q_{H}(M, i)$ is the product of the irreducible components of H whose contact with all $F \in P$ is M.

Lemma 6.6 With the notations above, we have $Q_{H}(M, i)=\bar{Q}_{H}(M, i)$.

Proof. Let H_{k} be an irreducible component of $Q_{H}(M, i)$. For all $F \in P_{i}^{M}, c\left(F, H_{k}\right)=M$. In particular, since $\cup_{k=1}^{t} P_{i_{k}}^{N_{k}} \subseteq P_{i}^{M}$, then H_{k} divides $R_{=M}\left(P_{i_{1}}^{N_{1}} ; H\right)$ and H_{k} does not divide $\prod_{k=2}^{t} R_{>M}\left(P_{i_{k}}^{N_{k}} ; H\right) . \prod_{F \in D_{i}^{M}} R_{>M}(F ; H)$. Hence $Q_{H}(M, i)$ divides $\bar{Q}_{H}(M, i)$.
Let us prove that $\bar{Q}_{H}(M, i)$ divides $Q_{H}(M, i)$. Let $G \in P_{i}^{M}$ and let \bar{H} be an irreducible component of $\bar{Q}_{H}(M, i)$.

- If $G \in P_{i_{1}}^{N_{1}}$, then by Lemma 6.5. i), $R_{=M}(G ; H)=R_{=M}\left(P_{i_{1}}^{N_{1}}, H\right)$, in particular $c(G, \bar{H})=$ M.
- If $G \in P_{i}^{M}-P_{i_{\breve{1}}}^{N_{1}}$, then by Lemma 6.3., $G \in D_{i}^{M} \cup\left(\cup_{k=2}^{t} P_{i_{k}}^{N_{k}}\right)$. Suppose that $G \in D_{i}^{M}$. If $c(G, \bar{H})>M$, then \bar{H} divides $R_{>M}(G, H)=R_{>M}\left(D_{i}^{M}, H\right)$. This contradicts the definition of $\bar{Q}_{H}(M, i)$. In particular $c(G, \bar{H})=M$. By a similar argument we prove that if $G \in \cup_{k=2}^{t} P_{i_{k}}^{N_{k}}$, then $c(G, \bar{H})=M$. This implies our assertion.

Lemma 6.7 Suppose that $P_{i}^{M} \in \operatorname{Top}(f)$, and recall that in this case $P_{i}^{M}=D_{i}^{M}$. Let F be an element of D_{i}^{M}. We have

$$
Q_{H}(M, i)=\frac{R_{=M}(F ; H)}{\prod_{G \in D(M, i), G \neq F} R_{>M}(G ; H)}
$$

Proof. The proof is similar to the proof of Lemma 6.6.

7 Factorization of the y-derivative

7.1 The irreducible case

Let f be a monic irreducible polynomial of $\mathbf{K}((x))[y]$ of degree n_{f} in y and consider the characteristic sequences associated with f as in Section 1. We have the following:

Proposition $7.1 f_{y}=P_{1} \ldots \ldots P_{h_{f}}$ and for all $k=1, \ldots, h_{f}$:
i) $\operatorname{deg}_{y} P_{k}=\left(e_{k}^{f}-1\right) \frac{n_{f}}{d_{k}^{f}}$.
ii) $\operatorname{int}\left(f, P_{k}\right)=\left(e_{k}^{f}-1\right) r_{k}^{f}$.
iii) For all irreducible component P of $P_{k}, c(f, P)=\frac{m_{k}^{f}}{n_{f}}$.

Proof. i) and iii) result from Proposition 5.1. and ii) results from Proposition 1.4.

7.2 The general case

Let the notations be as in Section 5. In particular f is a monic reduced polynomial of $\mathbf{K}((x))[y]$ and $f_{1}, \ldots, f_{\xi(f)}$ are the irreducible components of f in $\mathbf{K}((x))[y]$. Consider the characteristic sequences associated with $f_{1}, \ldots, f_{\xi(f)}$ and let $T(f)$ be the tree of f. Fix a point P_{i}^{M} of $T(f)$.

Lemma 7.2 Let the notations be as above and let $P_{i}^{M} \in T(f)-\operatorname{Top}(f)$. If $D_{i}^{M} \neq \emptyset$, then $R_{>M}\left(F, f_{y}\right)=1$ for all $F \in D_{i}^{M}$.

Proof. Suppose that $P_{i}^{M} \notin \operatorname{Top}(f)$, and that $D_{i}^{M} \neq \emptyset$. Let $F \in D_{i}^{M}$. If $R_{>M}\left(F, f_{y}\right) \neq 1$, then $c(F, H)=N>M$ for some irreducible component H of f_{y}. In particular, by Lemma 4.4., $c(F, \bar{F})=N$ for some irreducible component \bar{F} of f, hence $F \in P_{j}^{N}$ for some point $P_{j}^{N} \in T(f), N>M$. This is a contradiction because $F \in D_{i}^{M}$.

Lemma 7.3 Suppose that $P_{i}^{M} \notin \operatorname{Top}(f)$ and let $P_{i_{1}}^{N_{1}}, \ldots, P_{i_{t}}^{N_{t}}$ be the set of points of $T(f)$ that strictly dominate P_{i}^{M}. We have:

$$
Q_{f_{y}}(M, i)=\frac{R_{=M}\left(P_{i_{1}}^{N_{1}}, f_{y}\right)}{\prod_{l=2}^{t} R_{>M}\left(P_{i_{l}}^{N_{l}}, f_{y}\right)}
$$

Proof. We have, by Lemma 6.6.:

$$
Q_{f_{y}}(M, i)=\frac{R_{=M}\left(P_{i_{1}}^{N_{1}}, f_{y}\right)}{\prod_{l=2}^{t} R_{>M}\left(P_{i_{l}}^{N_{l}}, f_{y}\right) \cdot \prod_{F \in D_{i}^{M}} R_{>M}\left(F, f_{y}\right)}
$$

On the other hand, by Lemma 7.2., if $F \in D_{i}^{M}$, then $R_{>M}\left(F, f_{y}\right)=1$. This proves our assertion.
Fix a polynomial $F_{l} \in P_{i_{l}}^{N_{l}}$ for all $1 \leq l \leq t$. By Lemma 6.6., $R_{=M}\left(P_{i_{l}}^{N_{l}}, f_{y}\right)=R_{=M}\left(P_{i_{l}}, F_{l}\right)$ (resp. $\left.R_{>M}\left(P_{i_{l}}^{N_{l}}, f_{y}\right)=R_{>M}\left(P_{i_{l}}, F_{l}\right)\right)$. In particular we have:

$$
Q_{f_{y}}(M, i)=\frac{R_{=M}\left(F_{1}, f_{y}\right)}{\prod_{l=2}^{t} R_{>M}\left(F_{l}, f_{y}\right)}
$$

The following Lemmas give the degrees of the two polynomials describing $Q_{f_{y}}(M, i)$.
Lemma 7.4 Let the notations be as above, and let θ be the smallest integer such that $M \leq \frac{m_{\theta}^{F}}{n_{F}}$ for all $F \in P_{i}^{M}$. We have:

$$
\operatorname{deg}_{y} R_{=M}\left(F_{1}, f_{y}\right)= \begin{cases}\sum_{l=2}^{t}\left(\sum_{F \in P_{i_{l}}^{N_{l}}} n_{F}\right)+\sum_{F \in D_{i}^{M}} n_{F} & \text { if } M \neq \frac{m_{\theta}^{F_{1}}}{n_{F_{1}}} \\ \sum_{l=2}^{t}\left(\sum_{F \in P_{i_{l}}^{N_{l}}} n_{F}\right)+\sum_{F \in D_{i}^{M}} n_{F}+\left(e_{\theta}^{F_{1}}-1\right) \frac{n_{F_{1}}}{d_{\theta}^{F_{1}}} & \text { if } M=\frac{m_{\theta}^{F_{1}}}{n_{F_{1}}}\end{cases}
$$

Proof. This results from Propositions 5.3. and 5.4

Lemma 7.5 Let the notations be as above, and let the hypotheses by as in Lemma 7.4. We have:

$$
\operatorname{deg}_{y} R_{>M}\left(F_{l}, f_{y}\right)=\sum_{F \in P_{i_{l}}^{N_{l}}-\left\{F_{l}\right\}} n_{F}+\sum_{M<m_{j}^{F_{l}}}\left(e_{j}^{F_{l}}-1\right) \frac{n_{F_{l}}}{d_{j}^{F_{l}}}
$$

Proof. This results from Propositions 5.3. and 5.4.
As a corollary we have the following:

Proposition 7.6 Let the notations be as above, and let the hypotheses by as in Lemma 7.4. We have:

$$
\operatorname{deg}_{y} Q_{f_{y}}(M, i)= \begin{cases}\left.\sum_{F \in D_{i}^{M}} n_{F}+\sum_{l=2}^{t}\left[n_{F_{l}}-\sum_{M<m_{j}^{F_{l}}}\left(e_{j}^{F_{l}}-1\right) \frac{n_{F_{l}}}{d_{j}^{F_{l}}}\right)\right] & \text { if } M \neq \frac{m_{\theta}^{F_{1}}}{n_{F_{1}}} \\ \sum_{F \in D_{i}^{M}} n_{F}+\sum_{l=2}^{t}\left[n_{F_{l}}-\sum_{M<m_{j}^{F_{l}}}\left(e_{j}^{F_{l}}-1\right) \frac{n_{F_{l}}}{d_{j}^{F_{l}}}\right]+\left(e_{\theta}^{F_{1}}-1\right) \frac{n_{F_{1}}}{d_{\theta}^{F_{1}}} & \text { if } M=\frac{m_{\theta}^{F_{1}}}{n_{F_{1}}}\end{cases}
$$

Proof. This results from Lemmas 7.4. and 7.5., since $\operatorname{gcd}\left(R_{=M}\left(F_{1}, f_{y}\right), R_{>M}\left(F_{l}, f_{y}\right)\right)=1$ for all $2 \leq l \leq t$.
Note that

$$
n_{F_{l}}-\sum_{M<m_{j}^{F_{l}}}\left(e_{j}^{F_{l}}-1\right) \frac{n_{F_{l}}}{d_{j}^{F_{l}}}= \begin{cases}n_{F_{l}}-\sum_{j=\theta}^{h_{F_{l}}}\left(e_{j}^{F_{l}}-1\right) \frac{n_{F_{l}}}{d_{j}^{F_{l}}}=\frac{n_{F_{l}}}{d_{\theta}^{F_{l}}} & \text { if } M \neq \frac{m_{\theta}^{F_{l}}}{n_{F_{l}}} \\ \left.n_{F_{l}}-\sum_{j=\theta+1}^{h_{F_{l}}}\left(e_{j}^{F_{l}}-1\right) \frac{n_{F_{l}}}{d_{j}^{F_{l}}}\right)=\frac{n_{F_{l}}}{d_{\theta+1}^{F_{l}}} & \text { if } M=\frac{m_{\theta}^{F_{l}}}{n_{F_{l}}}\end{cases}
$$

Let A (resp. B) be the set of $1 \leq l \leq t$ for which $M=\frac{m_{\theta}^{F_{l}}}{n_{F_{l}}}$ (resp. $M<\frac{m_{\theta}^{F_{l}}}{n_{F_{l}}}$). It follows that:

$$
\operatorname{deg}_{y} Q_{f_{y}}(M, i)= \begin{cases}\sum_{l \in A} \frac{n_{F_{l}}}{d_{\theta+1}^{F_{l}}}+\sum_{l \in B-\{1\}} \frac{n_{F_{l}}}{d_{\theta}^{F_{l}}}+\sum_{F \in D_{i}^{M}} n_{F} & \text { if } 1 \in A \\ \sum_{l \in A-\{1\}} \frac{n_{F_{l}}}{d_{\theta+1}^{F_{l}}}+\sum_{l \in B} \frac{n_{F_{l}}}{d_{\theta}^{F_{l}}}+\left(e_{\theta}^{F_{1}}-1\right) \frac{n_{F_{1}}}{d_{\theta}^{F_{1}}}+\sum_{F \in D_{i}^{M}} n_{F} & \text { if } 1 \in B\end{cases}
$$

Let $\left(l_{1}, l 2\right) \in A \times B$ and recall that $\frac{n_{F}}{d_{\theta+1}^{F}}$ (reps. $\frac{n_{F}}{d_{\theta}^{F}}$) does not depend on $F \in \cup_{l \in A} P_{i_{l}}^{N_{l}}$ (resp. $F \in \cup_{l \in B} P_{i_{l}}^{N_{l}}$). In particular, if we denote by a (resp. b) the cardinality of A (resp. B), then we have:

$$
\operatorname{deg}_{y} Q_{f_{y}}(M, i)= \begin{cases}a \frac{n_{F_{l_{1}}}}{F_{\theta+1}^{F_{1}}}+(b-1) \frac{n_{F_{l_{2}}}}{d_{\theta}^{F_{l_{2}}}}+\sum_{F \in D_{i}^{M}} n_{F} & \text { if } 1 \in B \\ (a-1) \frac{n_{F_{l_{1}}}}{d_{\theta+1}^{F_{l_{1}}}}+b \frac{n_{F_{l_{2}}}}{d_{\theta}^{F_{l_{2}}}}+\left(e_{\theta}^{F_{1}}-1\right)\left(\frac{n_{F_{1}}}{d_{\theta}^{F_{1}}}\right)+\sum_{F \in D_{i}^{M}} n_{F} & \text { if } 1 \in A\end{cases}
$$

Note that if $B \neq \emptyset$ then $\frac{n_{F_{l_{2}}}}{d_{\theta}^{F_{l_{2}}}}=\frac{n_{F_{1}}}{d_{\theta}^{F_{1}}}$, on the other hand, if $B=\emptyset$, then $1 \in A$. In particular we get the following:

$$
\operatorname{deg}_{y} Q_{f_{y}}(M, i)=a \frac{n_{F_{l_{1}}}}{d_{\theta+1}^{F_{l_{1}}}}+(b-1) \frac{n_{F_{1}}}{d_{\theta}^{F_{1}}}+\sum_{F \in D_{i}^{M}} n_{F}
$$

The above results can be stated as follows:

Theorem 7.7 Let P_{i}^{M} be a point of $T(f)$ and assume that $P_{i}^{M} \notin \operatorname{Top}(f)$. Let $\left.\left(P_{i_{l}}^{N_{l}}\right)\right)_{1 \leq l \leq t}$ be the set of points that strictly dominate P_{i}^{M} and let θ be the smallest integer such that for all $F \in P_{i}^{M}, M \leq$ $\frac{m_{\theta}^{F}}{n_{F}}$. Let A (resp. B) be the set of $1 \leq l \leq t$ for which $M=\frac{m_{\theta}^{F}}{n_{F}}\left(\right.$ resp. $M<\frac{m_{\theta}^{F}}{n_{F}}$) for all $F \in \cup_{l \in A} P_{i_{l}}^{N_{l}}$ (resp. $F \in \cup_{l \in B} P_{i_{l}}^{N_{l}}$) and Let $\left(l_{1}, l_{2}\right) \in A \times B$. If a (resp. b) denotes the cardinality of A (resp. B) then the component $Q_{f_{y}}(M, i)$ of f_{y} satisfies tha following:
i) $\operatorname{deg}_{y} Q_{f_{y}}(M, i)=a \frac{n_{F_{l_{1}}}}{d_{\theta+1}^{l_{1}}}+(b-1) \frac{n_{F l_{2}}}{d_{\theta}^{F_{l_{2}}}}+\sum_{F \in D_{i}^{M}} n_{F}$, and $\sum_{F \in D_{i}^{M}} n_{F}$ is given by the formula of Lemma 6.4., where if $F \in D_{i}^{M}$, then h_{F} is either $\theta-1$ or θ depending on $M>\frac{m_{h_{F}}^{F}}{n_{F}}$ or $M=\frac{m_{h_{F}}^{F}}{n_{F}}$.
ii) For all irreducible component P of $Q_{f_{y}}(M, i)$ and for all $F \in P_{i}^{M}, c(F, P)=M$.
iii) For all irreducible component P of $Q_{f_{y}}(M, i)$ and for all $F \notin P_{i}^{M}, \mathrm{c}(F, P)=c\left(F, P_{i}^{M}\right)<M$, where we recall that $c\left(F, P_{i}^{M}\right)$ is the contact of F with any element of P_{i}^{M}.
iv) For all $1 \leq k \leq \xi(f)$:

- If $f_{k} \in P_{i}^{M}$ then $\operatorname{int}\left(f_{k}, Q_{f_{y}}(M, i)\right)=S\left(m^{f_{k}}, M\right) \frac{\operatorname{deg}_{Q} f_{y}(M, i)}{n_{f_{k}}}$.
- If $f_{k} \notin P_{i}^{M}$ then $\operatorname{int}\left(f_{k}, Q_{f_{y}}(M, i)\right)=S\left(m^{f_{k}}, c\left(f_{k}, P_{i}^{M}\right)\right) \frac{\operatorname{deg}_{Q} f_{y}(M, i)}{n_{f_{k}}}$, where $c\left(f_{k}, P_{i}^{M}\right)$ is the contact of f_{k} with any $F \in P_{i}^{M}$.

In the following we shall consider the case where P_{i}^{M} is a top point of $T(f)$.

Lemma 7.8 Suppose that $P_{i}^{M}=D_{i}^{M} \in \operatorname{Top}(f)$, and let $F \in P_{i}^{M}$. We have the following:

$$
Q_{f_{y}}(M, i)=R_{=M}\left(F, f_{y}\right)
$$

Proof. By Lemma 7.2., $R_{>M}\left(G, f_{y}\right)=1$ for all D_{i}^{M}. Our assertion follows from Lemma 6.7
Let $P_{i}^{M}=D_{i}^{M}=\left\{F_{1}, \ldots, F_{r}\right\}$, and recall that, by Proposition 2.4., the sequence $\left(F_{1}, \ldots, F_{r}\right)$ is either equivalent, or almost equivalent.

Theorem 7.9 Let $P_{i}^{M}=\left\{F_{1}, \ldots, F_{r}\right\} \in \operatorname{Top}(f)$ and assume that $n_{F_{1}}=\max _{1 \leq k \leq r} n_{F_{k}}$. We have the following:
i) If $\left(F_{1}, \ldots, F_{r}\right)$ is equivalent with $M>\frac{m_{h_{F_{1}}}^{F_{1}}}{n_{F_{1}}}$, then $\operatorname{deg}_{y} Q_{f_{y}}(M, i)=(r-1) n_{F_{1}}$.
ii) If $\left(F_{1}, \ldots, F_{r}\right)$ is equivalent with $M=\frac{m_{h_{F_{1}}}^{F_{1}}}{n_{F_{1}}}$, then $\operatorname{deg}_{y} Q_{f_{y}}(M, i)=(r-1) n_{F_{1}}+\left(e_{h_{F_{1}}}^{F_{1}}-1\right) \frac{n_{F_{1}}}{d_{h_{F_{1}}}^{F_{1}}}$.
iii) If $\left(F_{1}, \ldots, F_{r}\right)$ is almost equivalent, then $\operatorname{deg}_{y} Q_{f_{y}}(M, i)=(r-1) n_{F_{1}}$.

Proof. It follows from Lemma 7.8. that $\operatorname{deg}_{y} Q_{f_{y}}(M, i)=\operatorname{deg}_{y} R_{=M}\left(F_{1}, f_{y}\right)$. Now the hypothesis of i) and ii) implies that $n_{F_{k}}=n_{F_{1}}$ for all $k=2, \ldots, r$. Hence i) results from Proposition 5.2. and ii) results from Proposition 5.3. Assume that $\left(F_{1}, \ldots, F_{r}\right)$ is almost equivalent, and that, without loos of generality, $\left(F_{1}, F_{3}, \ldots, F_{r}\right)$ is equivalent. Since $Q_{f_{y}}(M, i)=R_{=M}\left(F_{1}, f_{y}\right)=R_{=M}\left(F_{2}, f_{y}\right)$, then iii) results from Proposition 5.2.

Remark 7.10 When $P_{i}^{M}=D_{i}^{M} \in \operatorname{Top}(f)$, the numbers a and b of Theorem 7.7. are zero. The reader may verify that the two formulas of Theorem 7.7. and Theorem 7.9. coincide.

Example 7.11 i) Delgado's result: Let $f=f_{1} \cdot f_{2}$. In [5], in order to generalize Merle's Theorem, F . Delgado uses the arithmetic of the semi-group of f. His result is a particular case of Theorem 7.7. More precisely, let $n_{i}=\operatorname{deg}_{y} f_{i}, i=1,2$ and let $M=c\left(f_{1}, f_{2}\right), I=\operatorname{int}\left(f_{1}, f_{2}\right)$. Let θ be the smallest integer such that $M \leq \frac{m_{\theta}^{i}}{n_{i}}, i=1,2$. We have:

$$
f_{y}=\left(\prod_{k=1}^{\theta-1} Q_{f_{y}}\left(\frac{m_{k}^{1}}{n_{f_{1}}}, 1\right)\right) \cdot \bar{f}_{y}
$$

where the properties $Q_{f_{y}}\left(\frac{m_{k}^{1}}{n\left(f_{1}\right)}, 1\right)$ are given in the table 0$)$, while those of the components of \bar{f}_{y} are given in the tables 1), 2), 3), depending on the position of M on $T(f)$. Note that $c\left(f_{j}, P\right)$ means the contact of f_{j} with an irreducible component of $Q_{f_{y}}(M, i)$.
0)

Q	$Q_{f_{1}}\left(\frac{m_{1}^{1}}{n_{1}}, 1\right)$	\ldots	$Q_{f_{y}}\left(\frac{m_{\theta-1}^{1}}{n_{1}}, 1\right)$
$\operatorname{deg}_{y} Q$	$\left(e_{1}^{1}-1\right) \frac{n_{1}}{d_{1}^{f_{1}}}$	\cdots	$\left(e_{\theta-1}^{1}-1\right) \frac{n_{1}}{d_{\theta-1}^{f_{1}}}$
$c\left(f_{1}, P\right), \operatorname{int}\left(f_{1}, Q\right)$	$\frac{m_{1}^{f_{1}}}{n_{1}},\left(e_{1}^{1}-1\right) r_{1}^{1}$	\ldots	$\frac{m_{\theta-1}^{f_{1}}}{n_{1}},\left(e_{\theta-1}^{1}-1\right) r_{\theta-1}^{1}$
$c\left(f_{2}, P\right), \operatorname{int}\left(f_{2}, Q\right)$	$\frac{m_{1}^{f_{1}}}{n_{1}},\left(e_{1}^{1}-1\right) r_{1}^{2}$	\ldots	$\frac{m_{\theta-1}^{f_{1}}}{n_{1}},\left(e_{\theta-1}^{1}-1\right) r_{\theta-1}^{2}$

With the notations of Theorem 7.7., for all $1 \leq i \leq \theta-1$, we have: $P_{1}^{\frac{m_{i}^{1}}{n_{1}}}=\left\{f_{1}, f_{2}\right\}, a=1, b=0$.

1) $M \neq \frac{m_{\theta}^{i}}{n\left(f_{i}\right)}, i=1,2$.

Q	$Q_{f_{y}}(M, 1)$	$Q_{f_{y}}\left(\frac{m_{k}^{f_{1}}}{n_{1}}, *\right), \theta \leq k \leq h_{f_{1}}$	$Q_{f_{y}}\left(\frac{m_{k}^{f_{2}}}{n_{2}}, *\right), \theta \leq k \leq h_{f_{2}}$
$\operatorname{deg}_{y} Q$	$\frac{n_{1}}{d_{\theta}^{f_{1}}}=\frac{n_{2}}{d_{\theta}^{f_{\theta}}}$	$\left(e_{k}^{f_{1}}-1\right) \frac{n_{1}}{d_{k}^{f_{1}}}$	$\left(e_{k}^{f_{2}}-1\right) \frac{n_{2}}{d_{k}^{f_{2}}}$
$c\left(f_{1}, P\right), \operatorname{int}\left(f_{1}, Q\right)$	$M, \frac{I}{d_{\theta}^{f_{1}}} \frac{n_{1}}{n_{2}}$	$\frac{m_{k}^{f_{1}}}{n_{1}},\left(e_{k}^{f_{1}}-1\right) r_{k}^{f_{1}}$	$M,\left(e_{k}^{f_{2}}-1\right) \frac{I}{d_{k}^{f_{2}}}$
$c\left(f_{2}, P\right), \operatorname{int}\left(f_{2}, Q\right)$	$M, \frac{I}{d_{\theta}^{f_{2}}} \frac{n_{2}}{n_{1}}$	$M,\left(e_{k}^{f_{1}}-1\right) \frac{I}{d_{k}^{I}}$	$\frac{m_{k}^{f_{2}}}{n_{2}},\left(e_{k}^{f_{2}}-1\right) r_{k}^{f_{2}}$

With the notations of Theorem 7.7., we have:

$$
\begin{aligned}
& P_{1}^{M}=\left\{f_{1}, f_{2}\right\}, A=\left\{f_{1}\right\}, B=\left\{f_{2}\right\}, a=b=1 \\
& P_{1}^{\frac{m_{1}^{f_{1}}}{n_{1}}}=\left\{f_{1}\right\}, \theta \leq k \leq h_{f_{1}}: a=1, b=0, P_{1}^{\frac{m_{k}^{f_{2}}}{n_{2}}}=\left\{f_{2}\right\}, \theta \leq k \leq h\left(f_{2}\right): a=1, b=0
\end{aligned}
$$

2) $M=\frac{m_{\theta}^{f_{1}}}{n_{1}}<\frac{m_{\theta}^{f_{2}}}{n_{2}}$.

Q	$Q_{f_{y}}(M, 1)$	$\left.Q_{f_{y}} \frac{m_{k}^{f_{1}}}{n_{1}}, *\right), \theta+1 \leq k \leq h_{f_{1}}$	$Q_{f_{y}}\left(\frac{m_{k}^{f_{2}}}{n_{2}}, *\right), \theta \leq k \leq h_{f_{2}}$
$\operatorname{deg}_{y} Q$	$\frac{n_{1}}{d_{\theta+1}^{f_{1}}}=\frac{n_{2}}{d_{\theta}^{f_{2}}}+\left(e_{\theta}^{f_{1}}-1\right) \frac{n_{1}}{d_{\theta}^{f_{1}}}$	$\left(e_{k}^{f_{1}}-1\right) \frac{n_{1}}{d_{k}^{f_{1}}}$	$\left(e_{k}^{2}-1\right) \frac{n_{2}}{d_{k}^{f_{2}}}$
$c\left(f_{1}, P\right), \operatorname{int}\left(f_{1}, P_{i}\right)$	$M, e_{\theta}^{f_{1}} r_{\theta}^{f_{1}}$	$\frac{m_{k}^{f_{1}}}{n_{1}},\left(e_{k}^{f_{1}}-1\right) r_{k}^{f_{1}}$	$M,\left(e_{k}^{2}-1\right) \frac{I}{d_{k}^{f_{2}}}$
$c\left(f_{2}, P\right), \operatorname{int}\left(f_{2}, P_{i}\right)$	$M, \frac{I}{d_{\theta+1}^{f_{1}}}=e_{\theta}^{f_{1}} r_{\theta}^{f_{1} \frac{n_{2}}{n_{1}}}$	$M,\left(e_{k}^{f_{1}}-1\right) \frac{I}{d_{k}^{f_{1}}}$	$\frac{m_{k}^{f_{2}}}{n_{2}},\left(e_{k}^{f_{2}}-1\right) r_{k}^{f_{2}}$

With the notations of Theorem 7.7., we have $P_{1}^{M}=\left\{f_{1}, f_{2}\right\}, P_{1}^{\frac{m_{k}^{f_{1}}}{n_{1}}}=\left\{f_{1}\right\}$ for all $\theta+1 \leq k \leq h_{f_{1}}$, and $P_{1}^{\frac{m_{k}^{f_{2}}}{n_{2}}}=\left\{f_{2}\right\}$ for all $\theta \leq k \leq h_{f_{2}}$.
3) $M=\frac{m_{\theta}^{f_{1}}}{n_{1}}=\frac{m_{\theta}^{f_{2}}}{n_{2}}$.

Q	$Q_{f_{y}}(M, 1)$	$Q_{f_{y}}\left(\frac{m_{k}^{f_{1}}}{n_{1}}, *\right), \theta+1 \leq k \leq h_{f_{1}}$	$Q_{f_{y}}\left(\frac{m_{k}^{f_{2}}}{n_{2}}, *\right), \theta+1 \leq k \leq h_{f_{2}}$
$\operatorname{deg}_{y} Q$	$\frac{n_{1}}{d_{\theta+1}^{f_{1}}}+\left(e_{\theta}^{f_{1}}-1\right) \frac{n_{1}}{d_{\theta}^{f_{1}}}$	$\left(e_{k}^{f_{1}}-1\right) \frac{n_{1}}{d_{k}^{f_{1}}}$	$\left(e_{k}^{f_{2}}-1\right) \frac{n_{2}}{d_{k}^{f_{2}}}$
$c\left(f_{1}, P\right), \operatorname{int}\left(f_{1}, Q\right)$	$M,\left(2 e_{\theta}^{f_{1}}-1\right) r_{\theta}^{f_{1}}$	$\frac{m_{k}^{f_{1}}}{n_{1}},\left(e_{k}^{f_{1}}-1\right) r_{k}^{f_{1}}$	$M,\left(e_{k}^{f_{2}}-1\right) \frac{I}{d_{k}^{f_{2}}}$
$c\left(f_{2}, P\right), \operatorname{int}\left(f_{2}, Q\right)$	$M,\left(2 e_{\theta}^{f_{2}}-1\right) r_{\theta}^{f_{2}}$	$M,\left(e_{k}^{f_{1}}-1\right) \frac{I}{d_{k}^{f_{1}}}$	$\frac{m_{k}^{f_{2}}}{d_{2}},\left(e_{k}^{f_{2}}-1\right) r_{k}^{f_{2}}$

With the notations of Theorem 7.7., we have $P_{1}^{M}=\left\{f_{1}, f_{2}\right\}, P_{1}^{\frac{m_{k}^{f_{1}}}{n_{1}}}=\left\{f_{1}\right\}$ for all $\theta+1 \leq k \leq h_{f_{1}}$, and $P_{1}^{\frac{m_{k}^{f_{2}}}{n_{2}}}=\left\{f_{2}\right\}$ for all $\theta+1 \leq k \leq h_{f_{2}}$.

Example 7.12 i) $f=f_{1} \cdot f_{2}$ and $f_{1}=\left(y^{2}-x^{3}\right)^{2}-x^{5} y, f_{2}=\left(y^{2}-x^{3}\right)^{2}+x^{5} y$. We have $n_{f_{1}}=n_{f_{2}}=n=$ $4, \underline{r}^{f_{1}}=\underline{r}^{f_{2}}=\underline{r}=(4,6,13), \underline{d}^{f_{1}}=\underline{d}^{f_{2}}=\underline{d}=(4,2,1), \underline{m}^{f_{1}}=\underline{m}^{f_{2}}=\underline{m}=(4,6,7)$, and $c\left(f_{1}, f_{2}\right)=\frac{7}{4}$. The tree model of f is given by:

$$
\begin{aligned}
& \frac{7}{4} \\
& \frac{3}{2}
\end{aligned} \text { 〇 } P_{1}^{\frac{7}{4}}=\left\{f_{1}, f_{2}\right\}
$$

Note that $X\left(\frac{3}{2}, 1\right)=\left\{f_{1}\right\}, X\left(\frac{3}{2}, 2\right)=\left\{f_{2}\right\}$, and $X\left(\frac{7}{4}, 1\right)=P_{1}^{\frac{7}{4}}=\left\{f_{1}, f_{2}\right\}$. In particular $c\left(\frac{3}{2}, 1\right)=1$ and $c\left(\frac{7}{4}, 1\right)=2$. With the notations of Theorem 7.7., $f_{y}=Q\left(\frac{3}{2}, 1\right) Q\left(\frac{7}{4}, 1\right)=Q_{1} Q_{2}$, where:

$$
\begin{aligned}
& \operatorname{deg}_{y} Q_{1}=\frac{n}{d_{2}}-\frac{n}{d_{1}}=1(a=1, b=0) \\
& \operatorname{deg}_{y} Q_{2}=\frac{n}{d_{3}}-\frac{n}{d_{2}}+n=2.4-2=6(a=1, b=0) .
\end{aligned}
$$

Furthermore, for all irreducible component P of Q_{1} (resp. Q_{2}), $c\left(f_{1}, P\right)=c\left(f_{2}, P\right)=\frac{3}{2}$ (resp. $\left.c\left(f_{1}, P\right)=c\left(f_{2}, P\right)=\frac{7}{4}\right)$. Finally, $\operatorname{int}\left(f_{1}, Q_{1}\right)=\left(e_{1}-1\right) r_{1}=r_{1}=6=\operatorname{int}\left(f_{2}, Q_{1}\right)$ and $\operatorname{int}\left(f_{1}, Q_{2}\right)=$ $\operatorname{int}\left(f_{1}, f_{2}\right)+\left(e_{2}-1\right) r_{2}=39=\operatorname{int}\left(f_{2}, Q_{2}\right)$.
ii) $f=f_{1} \cdot f_{2} \cdot f_{3} \cdot f_{4}$ and $f_{1}=\left(y^{2}-x^{3}\right)^{2}-x^{5} y, f_{2}=\left(y^{2}-x^{3}\right)^{2}+x^{5} y, f_{3}=\left(y^{2}-x^{3}\right)^{2}+x^{5} y-x^{7}$, and $f_{4}=\left(y^{2}+x^{3}\right)^{2}-x^{5} y: \Gamma\left(f_{i}\right)=<4,6,13>=<n, r_{1}, r_{2}>, i=1,2,3,4, m_{1}=6, m_{2}=7$, and $c\left(f_{1}, f_{2}\right)=c\left(f_{1}, f_{3}\right)=\frac{7}{4}, c\left(f_{1}, f_{4}\right)=\frac{3}{2}, c\left(f_{2}, f_{3}\right)=\frac{9}{4}, c\left(f_{2}, f_{4}\right)=\frac{3}{2}, c\left(f_{3}, f_{4}\right)=\frac{3}{2}$. The tree model of f is given by:

$$
\begin{array}{ll}
\frac{9}{4} & P_{1}^{\frac{9}{4}} \\
\frac{7}{4} & P_{1}^{\frac{7}{4}}=\left\{f_{2}, f_{3}\right\} \\
\frac{3}{2} & P_{1}^{\frac{3}{2}}=\left\{f_{2}, f_{3}\right\}
\end{array}
$$

Note that $X_{i}\left(\frac{3}{2}, 1\right)=\left\{f_{i}\right\}, i=1, \ldots, 4, X_{1}\left(\frac{7}{4}, 1\right)=\left\{f_{1}, f_{2}\right\}, X_{2}\left(\frac{7}{4}, 1\right)=\left\{f_{1}, f_{3}\right\}, D_{1}^{\frac{7}{4}}=\left\{f_{1}\right\}$, $X_{2}\left(\frac{7}{4}, 2\right)=P_{2}^{\frac{7}{4}}$ and $X_{1}\left(\frac{9}{4}, 1\right)=\left\{f_{2}, f_{3}\right\}$. In particular, $c\left(\frac{3}{2}, 1\right)=1, c\left(\frac{7}{4}, 1\right)=2=c\left(\frac{9}{4}, 1\right), c\left(\frac{7}{4}, 2\right)=1$,. Theorem 7.7. implies that $f_{y}=Q\left(\frac{3}{2}, 1\right) Q\left(\frac{7}{4}, 1\right) Q\left(\frac{7}{4}, 2\right) Q\left(\frac{9}{4}, 1\right)=Q_{1} Q_{2} Q_{3} Q_{4}$ with the following properties:

$Q_{i}, \operatorname{deg}_{y} Q_{i}$	$Q_{1}, 3$	$Q_{2}, 6$	$Q_{3}, 2$	$Q_{4}, 4$
$c\left(f_{1}, P\right), \operatorname{int}\left(f_{1}, Q_{i}\right)$	$\frac{3}{2}, 18$	$\frac{7}{4}, 39$	$\frac{3}{2}, 12$	$\frac{7}{4}, 26$
$c\left(f_{2}, P\right), \operatorname{int}\left(f_{2}, Q_{i}\right)$	$\frac{3}{2}, 18$	$\frac{7}{4}, 39$	$\frac{3}{2}, 12$	$\frac{9}{4}, 28$
$c\left(f_{3}, P\right), \operatorname{int}\left(f_{3}, Q_{i}\right)$	$\frac{3}{2}, 18$	$\frac{7}{4}, 39$	$\frac{3}{2}, 12$	$\frac{9}{4}, 28$
$c\left(f_{4}, P\right), \operatorname{int}\left(f_{4}, Q_{i}\right)$	$\frac{3}{2}, 18$	$\frac{3}{2}, 36$	$\frac{7}{4}, 13$	$\frac{3}{2}, 24$

Where $c(F, P)$ means the contact of F with an irreducible component P of Q_{i}.
iii) Let $f=f_{1} \cdot f_{2} \cdot f_{3}$, where $f_{1}=\left(y^{2}-x^{3}\right)^{2}-x^{5} y, f_{2}=y^{2}-x^{3}$ and $f_{3}=y^{2}+x^{3}$. We have $c\left(f_{1}, f_{2}\right)=\frac{7}{4}, c\left(f_{1}, f_{3}\right)=\frac{3}{2}=c\left(f_{2}, f_{3}\right), \operatorname{int}\left(f_{1}, f_{2}\right)=13, \operatorname{int}\left(f_{1}, f_{3}\right)=12$ and $\operatorname{int}\left(f_{2}, f_{3}\right)=6$. The tree model of f is given by:

With the notations of Theorem 7.7., we have:

$$
\begin{aligned}
& X\left(\frac{3}{2}, 1\right)=\left\{f_{1}, f_{2}\right\}, X\left(\frac{3}{2}, 2\right)=\left\{f_{2}, f_{3}\right\}, D_{1}^{\frac{3}{2}}=\left\{f_{3}\right\}, c\left(\frac{3}{2}, 1\right)=2 \\
& X\left(\frac{7}{4}, 1\right)=\left\{f_{1}, f_{2}\right\}, c\left(\frac{7}{4}, 1\right)=2
\end{aligned}
$$

This gives us the following description:

$Q, \operatorname{deg}_{y} Q$	$Q_{f_{y}}\left(\frac{3}{2}, 1\right), 5$	$Q_{f_{y}}\left(\frac{7}{4}, 1\right), 2$
$c\left(f_{1}, P\right), \operatorname{int}\left(f_{1}, Q\right)$	$\frac{7}{4}, 26$	$\frac{3}{2}, 18$
$c\left(f_{2}, P\right), \operatorname{int}\left(f_{2}, Q\right)$	$\frac{7}{4}, 13$	$\frac{3}{2}, 9$
$c\left(f_{3}, P\right), \operatorname{int}\left(f_{3}, Q\right)$	$\frac{3}{2}, 12$	$\frac{3}{2}, 9$

Where $c(F, P)$ means the contact of F with an irreducible component P of Q_{i}.
iv) $f=f_{1} . f_{2}$, where $f_{1}=\left(\left(y^{2}-x^{3}\right)^{2}-x^{5} y\right)^{2}+x^{10}\left(y^{2}-x^{3}\right)$ and $f_{2}=\left(\left(y^{2}+x^{3}\right)^{2}-x^{5} y\right)^{2}+x^{22}\left(y^{2}+x^{3}\right)$.

We have $\Gamma\left(f_{1}\right)=<8,12,26,53>, \Gamma\left(f_{2}\right)=<8,12,26,57>, M=c\left(f_{1}, f_{2}\right)=\frac{3}{2}$ and $I=\operatorname{int}\left(f_{1}, f_{2}\right)=96$. The tree model of f is given by:

$$
\begin{array}{ll}
\frac{19}{4} & P_{1}^{\frac{19}{4}}=\left\{f_{2}\right\} \\
\frac{15}{4} & P_{1}^{\frac{7}{4}}=\left\{f_{2}\right\} \\
\frac{7}{4} & P_{1}^{\frac{3}{2}}=\left\{f_{1}, f_{2}\right\}
\end{array}
$$

With the notations of Theorem 7.7., we have:

$$
\begin{aligned}
& X\left(\frac{3}{2}, 1\right)=\left\{f_{1}\right\}, X\left(\frac{3}{2}, 2\right)=\left\{f_{2}\right\}, c\left(\frac{3}{2}, 1\right)=1 \\
& X\left(\frac{7}{4}, 1\right)=\left\{f_{2}\right\}, c\left(\frac{7}{4}, 1\right)=1, X\left(\frac{7}{4}, 2\right)=\left\{f_{1}\right\}, c\left(\frac{7}{4}, 2\right)=1 \\
& X\left(\frac{15}{4}, 1\right)=\left\{f_{1}\right\}, c\left(\frac{15}{4}, 1\right)=1, X\left(\frac{19}{4}, 1\right)=\left\{f_{2}\right\}, c\left(\frac{19}{4}, 1\right)=1
\end{aligned}
$$

This gives us the following description:

$Q, \operatorname{deg}_{y} Q$	$Q_{f_{y}}\left(\frac{3}{2}, 1\right), 3$	$Q_{f_{y}}\left(\frac{7}{4}, 1\right), 2$	$Q_{f_{y}}\left(\frac{7}{4}, 2\right), 2$	$Q_{f_{y}}\left(\frac{15}{4}, 1\right), 4$	$Q_{f_{y}}\left(\frac{19}{4}, 1\right), 4$
$c\left(f_{1}, P\right), \operatorname{int}\left(f_{1}, Q\right)$	$\frac{3}{2}, 36$	$\frac{3}{2}, 24$	$\frac{7}{4}, 26$	$\frac{15}{4}, 53$	$\frac{3}{2}, 48$
$c\left(f_{2}, P\right), \operatorname{int}\left(f_{2}, Q\right)$	$\frac{3}{2}, 36$	$\frac{7}{4}, 26$	$\frac{3}{2}, 24$	$\frac{3}{2}, 48$	$\frac{19}{4}, 57$

Where $c(F, P)$ means the contact of F with an irreducible component P of Q.

8 Factorization of the Jacobian

Let $f=y^{n}+a_{1}(x) y^{n-1}+\ldots+a_{n}(x)$ and $g=y^{m}+b_{1}(x) y^{m-1}+\ldots+b_{m}(x)$ be two monic reduced polynomials of $\mathbf{K}((x))[y]$ and consider the Jacobian $J=J(f, g)$ of f and g. The aim of this Section is to give a factorization theorem of J in terms of the tree of $f . g$. Let to this end $T(f . g)$ be the tree of $f . g$ and let $f_{1}, \ldots, f_{\xi(f)}$ (resp. $\left.g_{1}, \ldots, g_{\xi(g)}\right)$ be the irreducible components of f (resp. g) in $\mathbf{K}((x))[y]$.

Definition 8.1 Let $P_{i}^{M} \in T(f . g)$.
i) We say that P_{i}^{M} is an f-point if for all $1 \leq k \leq \xi(g), g_{k} \notin P_{i}^{M}$ (equivalently P_{i}^{M} is an f-point if for all $F \in P_{i}^{M}$ and for all $\left.1 \leq k \leq \xi(g), c\left(g_{k}, F\right)<M\right)$.
ii) We say that P_{i}^{M} is a g-point if for all $1 \leq k \leq \xi(f), f_{k} \notin P_{i}^{M}$ (equivelently P_{i}^{M} is a g-point if for all $F \in P_{i}^{M}$ and for all $1 \leq k \leq \xi(f), c\left(f_{k}, F\right)<M$.
iii) We say that the point P_{i}^{M} is a mixed point if it is neither an f-point nor a g-point.

We denote by T_{f} (resp. T_{g}, resp. T_{m}) the set of f-points (resp. g-points, resp. mixed points) of $T(f . g)$. Clearly $T(f . g)=T_{f} \cup T_{g} \cup T_{m}$.

Lemma 8.2 Let $P_{i}^{M}, P_{j}^{N} \in T(f . g)$, and assume that $P_{j}^{N} \geq P_{i}^{M}$.
i) If $P_{i}^{M} \in T_{f}$ (resp. $P_{i}^{M} \in T_{g}$) then $P_{j}^{N} \in T_{f}$ (resp. $P_{j}^{N} \in T_{g}$).
ii) if $P_{j}^{N} \in T_{m}$, then $P_{i}^{M} \in T_{m}$.

Proof. Easy exercise

Lemma 8.3 Let the notations be as above. If $T_{f} \neq \emptyset\left(\right.$ resp. $\left.T_{g} \neq \emptyset\right)$, then $\operatorname{Root}(J) \neq \emptyset$.

Proof. Assume that $T_{f} \neq \emptyset$, and let $P=P_{i}^{M} \in T_{f}$, and let $F \in P$. Let $y_{i}(x), y_{j}(x) \in \operatorname{Root}(f)$ such that $c\left(y_{i}, y_{j}\right)=M$. By hypothesis, $M>\max _{1 \leq k \leq c}\left(y_{i}, z_{k}\right)$. Now use Lemma 4.6.
More generally, assume that $T_{f} \cup T_{g} \neq \emptyset$, Propositions 5.4. and 5.5. and similar arguments as in Section 8. led to the following factorization theorem of J.

Theorem $8.4 J=\bar{J} . \prod_{P_{i}^{M} \in T_{f}} Q_{J}(M, i) . \prod_{P_{i}^{M} \in T_{g}} Q_{J}(M, i)$, and $Q_{J}(M, i), P_{i}^{M} \in T_{f} \cup T_{g}$ has the following properties:
$\left(^{*}\right)$ Assume that $P=P_{i}^{M} \in T_{f}$ and let $\left.\left(P_{i_{l}}^{N_{l}}\right)\right)_{1 \leq l \leq t}$ be the set of points that strictly dominate P_{i}^{M}. Let θ be the smallest integer such that $M \leq \frac{m_{\theta}^{F}}{n(F)}$ for all $F \in P_{i}^{M}$. Let A (resp. B) be the set of $1 \leq l \leq t$ for which $M=\frac{m_{\theta}^{F}}{n_{F}}$ (resp. $M<\frac{m_{\theta}^{F}}{n_{F}}$) for all $F \in \cup_{l \in A} P_{i_{l}}^{N_{l}}$ (resp. $F \in \cup_{l \in B} P_{i_{l}}^{N_{l}}$) and let $\left(l_{1}, l_{2}\right) \in A \times B$. If a (resp. b) denotes the cardinality of A (resp. B) then the following hold:
i) $\operatorname{deg}_{y} Q_{J}(M, i)=a \cdot \frac{n_{F_{l_{1}}}}{d_{\theta+1}^{l_{1}}}+(b-1) \cdot \frac{n_{F_{1}}}{d_{\theta}^{F_{1}}}+\sum_{F \in D_{i}^{M}} n_{F}$, and $\sum_{F \in D_{i}^{M}} n_{F}$ is given by the formula of Lemma 5.6., where if $F \in D_{i}^{M}$, then h_{F} is either $\theta-1$ or θ depending on $M>\frac{m_{h_{F}}^{F}}{n_{F}}$ or $M=\frac{m_{h_{F}}^{F}}{n_{F}}$.
ii) For all irreducible component P of $Q_{J}(M, i)$ and for all $F \in P_{i}^{M}, c(F, P)=M$.
iii) For all irreducible component P of $Q_{J}(M, i)$ and for all $F \notin P_{i}^{M}$ (this holds in particular when $\left.F=g_{k}, 1 \leq k \leq \xi(g)\right), \mathrm{c}(F, P)=c\left(F, P_{i}^{M}\right)<M$.
iv) For all $1 \leq k \leq \xi(f)$:

- If $f_{k} \in P_{i}^{M}$ then $\operatorname{int}\left(f_{k}, Q_{J}(M, i)\right)=S\left(m\left(f_{k}\right), M\right) \operatorname{deg}_{Q} J(M, i) n_{f_{k}}$.
- If $f_{k} \notin P_{i}^{M}$ then $\operatorname{int}\left(f_{k}, Q_{J}(M, i)\right)=S\left(m\left(f_{k}\right), c\left(f_{k}, P_{i}^{M}\right)\right) \operatorname{deg}_{Q} J(M, i) n_{f_{k}}$.
$\left({ }^{* *}\right)$ Assume that $P=P_{i}^{M} \in T_{g}$ and let $\left.\left(P_{i_{l}}^{N_{l}}\right)\right)_{1 \leq l \leq t}$ be the set of points that strictly dominate P_{i}^{M}. Let θ be the smallest integer such that $M \leq \frac{m_{\theta}^{F}}{n(F)}$ for all $F \in P_{i}^{M}$. Let A (resp. B) be the set of $1 \leq l \leq t$ for which $M=\frac{m_{\theta}^{F}}{n_{F}}$ (resp. $M<\frac{m_{\theta}^{F}}{n_{F}}$) for all $F \in \cup_{l \in A} P_{i_{l}}^{N_{l}}$ (resp. $F \in \cup_{l \in B} P_{i_{l}}^{N_{l}}$) and let $\left(l_{1}, l_{2}\right) \in A \times B$. If a (resp. b) denotes the cardinality of A (resp. B) then the following hold:
i) $\operatorname{deg}_{y} Q_{J}(M, i)=a \cdot \frac{n_{F_{1}}}{d_{\theta+1}^{F_{1}}}+(b-1) \cdot \frac{n_{F_{1}}}{d_{\theta}^{F_{1}}}+\sum_{F \in D_{i}^{M}} n_{F}$, and $\sum_{F \in D_{i}^{M}} n_{F}$ is given by the formula of Lemma 5.6., where if $F \in D_{i}^{M}$, then h_{F} is either $\theta-1$ or θ depending on $M>\frac{m_{h_{F}}^{F}}{n_{F}}$ or $M=\frac{m_{h_{F}}^{F}}{n_{F}}$.
ii) For all irreducible component P of $Q_{J}(M, i)$ and for all $F \in P_{i}^{M}, c(F, P)=M$.
iii) For all irreducible component P of $Q_{J}(M, i)$ and for all $F \notin P_{i}^{M}$ (this holds in particular when $\left.F=f_{k}, 1 \leq k \leq \xi(f)\right), \mathrm{c}(F, P)=c\left(F, P_{i}^{M}\right)<M$.
iv) For all $1 \leq k \leq \xi(g)$:
- If $g_{k} \in P_{i}^{M}$ then $\operatorname{int}\left(g_{k}, Q_{J}(M, i)\right)=S\left(m\left(g_{k}\right), M\right) \operatorname{deg} Q_{J}(M, i) n_{g_{k}}$.
- If $g_{k} \notin P_{i}^{M}$ then $\operatorname{int}\left(g_{k}, Q_{J}(M, i)\right)=S\left(m\left(f_{k}\right), c\left(g_{k}, P_{i}^{M}\right)\right) \operatorname{deg} Q_{J}(M, i) n_{g_{k}}$.

Proof. The proof is similar to the proof of Theorem 7.7.

Corollary 8.5 Assume that $\xi(f)=1$, i.e. $f=f_{1}$ is an irreducible polynomial of $\mathbf{K}((x))[y]$, and let $M=\max _{k=1}^{\xi(g)} c\left(f, g_{k}\right)$. Let θ be the smallest integer such that $M<\frac{m_{\theta}^{f}}{n_{f}}$. If $\theta<h_{f}$, then $J=J(f, g)=$ $\bar{J} . \prod_{k=\theta}^{h_{f}} J_{k}$, where for all $\theta \leq k \leq h_{f}$,
i) $\operatorname{deg}_{y} J_{k}=\left(e_{k}^{f}-1\right) \frac{n_{f}}{d_{k}^{f}}$.
ii) $\operatorname{int}\left(f, J_{k}\right)=\left(e_{k}^{f}-1\right) r_{k}^{f}$.
iii) For all irreducible component P of $J_{k}, c(f, P)=\frac{m_{k}^{f}}{n_{f}}$.
iv) For all $1 \leq j \leq \xi(g)$ and for all irreducible component P of $J_{k}, c\left(g_{j}, P\right)=c\left(g_{j}, f\right)$

Proof. In fact, $T_{f}=\left\{P_{1}^{\frac{m_{\theta}^{f}}{n_{f}}}, \ldots, P_{1}^{\frac{m_{h_{f}}^{f}}{n_{f}}}\right\}$. The result is consequently a particular case of Theorem 8.4.

9 Bad and good points on the tree of f

Let $f=y^{n}+a_{1}(x) y^{n-1}+\ldots+a_{n}(x)$ be a monic reduced polynomial of $\mathbf{K}\left(\left(x^{-1}\right)\right)[y]$, and let $f=$ $f_{1} \ldots \ldots f_{\xi(f)}$ be the factorisation of f into irreducible components in $\mathbf{K}((x))[y]$. We shall assume that f is generic in the following sense: for all irreducible component H of f_{y}, int $(f, H) \leq 0$.

Definition 9.1 Let F, G be two monic polynomials of $\mathbf{K}((x))[y]$, and let H be an irreducible monic polynomial of $\mathbf{K}((x))[y]$. We say that H is regular (resp. irregular) with respect to F if $\operatorname{int}(F, H) \neq 0$ (resp. $\operatorname{int}(F, H)=0$). We define $\operatorname{Reg}(G, F)$ (resp. Irreg (G, F)) to be the set of regular (resp. irregular) components of G with respect to F. Let $\gamma(x) \in \mathbf{K}\left(\left(x^{\frac{1}{p}}\right)\right), p \in \mathbb{N}$. We say that γ is regular (resp. irregular) with respect to F if $O_{x} F(x, \gamma(x)) \neq 0\left(\right.$ resp. $\left.O_{x} F(x, \gamma(x))=0\right)$. If $G=F_{y}$, then we write $\operatorname{Reg}(F)(\operatorname{resp} . \operatorname{Irreg}(F))$ for $\operatorname{Reg}\left(F_{y}, F\right)\left(\right.$ resp. $\left.\operatorname{Irreg}\left(F_{y}, F\right)\right)$.

Lemma 9.2 We have $\operatorname{Irreg}\left(f, f_{y}\right)=\emptyset$.
Proof. Let $1 \leq j \leq \xi(f)$ and let $y(x) \in \operatorname{Root}\left(f_{j}\right)$. Finally let $M=\max _{k \neq j} c\left(f_{j}, f_{k}\right)$. By Lemma 4.4., $M=\max c\left(f_{j}, H\right)$, where H runs over the set of irreducible components of f_{y}. Since f is generic, then $\sum_{y \neq \bar{y} \in \operatorname{Root}(f)} O_{x}(y-\bar{y})+M \leq 0$. If $M<0$, then $O_{x}(y-\bar{y}) \leq M<0$ for all $\bar{y} \in \operatorname{Root}(f), \bar{y} \neq y$, in particular $\sum_{y \neq \bar{y} \in \operatorname{Root}(f)} O_{x}(y-\bar{y})<0$. If $M>0$, then $\sum_{y \neq \bar{y} \in \operatorname{Root}(f)} O_{x}(y-\bar{y}) \leq-M<0$. Finally $O_{x} f_{y}(x, y(x))=\sum_{y \neq \bar{y} \in \operatorname{Root}(f)} O_{x}(y-\bar{y})<0$, in particular $\operatorname{int}\left(f_{j}, f_{y}\right)<0$. This proves our assertion.

Definition 9.3 Let F, G be two monic polynomials of $\mathbf{K}((x))[y]$, and let H be an irreducible component of G. Assume that $H \in \operatorname{Irreg}(G, F)$ and let $\gamma \in \operatorname{Root}(H)$. We have $F(x, \gamma(x))=\lambda+u(x)$ where $\lambda \in \mathbf{K}^{*}$ and $u(0)=0$. In particular, $\operatorname{int}(F-\lambda, H)>0$, hence $H \in \operatorname{Reg}(G, F-\lambda)$. We say that λ is an irregular value of F with respect to G. We define $\operatorname{irreg}(F, G)$ to be the set of irregular values of F with respect to G. If $G=F_{y}$, then we write $\operatorname{reg}(F)(\operatorname{resp} . \operatorname{irreg}(F))$ for $\operatorname{reg}\left(F_{y}, F\right)\left(\operatorname{resp} . \operatorname{irreg}\left(F_{y}, F\right)\right)$.

Definition 9.4 Let P_{i}^{M} be a point of $\operatorname{Top}(f)$.
i) We say that P_{i}^{M} is a good point if $H \in \operatorname{Reg}(f)$ for some irreducible component of $Q_{f_{y}}(M, i)$.
ii) We say that P_{i}^{M} is a bad point if $H \in \operatorname{Irreg}(f)$ for some irreducible component of $Q_{f_{y}}(M, i)$.

Lemma 9.5 Let P_{i}^{M} be a point of $\operatorname{Top}(f)$.
i) If P_{i}^{M} is a good point, then for all irreducible component H of $Q_{f_{y}}(M, i), H \in \operatorname{Reg}(f)$.
ii) If P_{i}^{M} is a bad point, then for all irreducible component H of $Q_{f_{y}}(M, i), H \in \operatorname{Irreg}(f)$.

Proof. i) By hypothesis, there is an irreducible component \bar{H} of $Q_{f_{y}}(M, i)$ such that $\operatorname{int}(f, \bar{H})<0$. Let H be an irreducible component of $Q_{f_{y}}(M, i)$, and let $\gamma(x)$ (resp. $\bar{\gamma}(x)$) be a root of H (resp. \bar{H}) such that $\max _{i=1}^{n} c\left(\gamma, y_{i}\right)=M=\max _{i=1}^{n} c\left(\bar{\gamma}, y_{i}\right)$. We have:

$$
O_{x} f(x, \gamma(x))=\sum_{i=1}^{n} c\left(\gamma(x), y_{i}(x)\right)=\sum_{i=1}^{n} c\left(\bar{\gamma}(x), y_{i}(x)\right)=O_{x} f(x, \bar{\gamma}(x))
$$

in particular $\operatorname{int}(f, H)=\frac{1}{n_{H}} O_{x} f(x, \gamma(x))<0$.
ii) The proof is similar to the proof of i).

10 The number of irregular values of a meromorphic curve

Let the notations be as in Section 9, and let $P_{i}^{M}=\left\{F_{1}, \ldots, F_{r}\right\}$ be a bad point of $\operatorname{Top}(f)$. For all irreducible component H of $Q_{f_{y}}(M, i), \operatorname{int}(f, H)=0$, in particular, if $\gamma(x) \in \operatorname{Root}(H)$, then $f(x, \gamma(x))=\lambda+u(x)$, where $\lambda \in \mathbf{K}^{*}$ and $u(x)$ is a fractional power series such that $u(0)=0$. In particular, $\lambda \in \operatorname{irreg}(f)$. Let $\left\{\lambda_{1}(M, i), \ldots, \lambda_{p(M, i)}(M, i)\right\}$ be the set of irregular values of f obtained from the components of $Q_{f_{y}}(M, i)$ as above -more precisely $\left\{\lambda_{1}(M, i), \ldots, \lambda_{p(M, i)}(M, i)\right\}=$ $\left\{\operatorname{inco}(f(x, \gamma(x))) \mid \gamma(x) \in \operatorname{Root}\left(Q_{f_{y}}(M, i)\right)\right\}$. We have the following:

Proposition 10.1 Assume that $n_{F_{1}}=\max _{1 \leq i \leq r} n_{F_{i}}$.
i) If $\left(F_{1}, \ldots, F_{r}\right)$ is equivalent and $M>\frac{m_{h_{F_{1}}}^{F_{1}}}{n_{F_{1}}}$, then $p(M, i) \leq r-1$.
ii) If $\left(F_{1}, \ldots, F_{r}\right)$ is equivalent and $M=\frac{m_{h_{F_{1}}}^{F_{1}}}{n_{F_{1}}}$, then $p(M, i) \leq r$.
iii) If $\left(F_{1}, \ldots, F_{r}\right)$ is almost equivalent, then $p(M, i) \leq r-1$.

Proof. i) Let H be an irreducible component of $Q_{f_{y}}(M, i)$. Since $c\left(H, F_{1}\right)=M>\frac{m_{h_{F_{1}}}^{F_{1}}}{n_{F_{1}}}$, then $n_{F_{1}}$ divides n_{H}. On the other hand, by Theorem 7.9., $\operatorname{deg}_{y} Q_{f_{y}}(M, i)=(r-1) n_{F_{1}}$, In particular, $\xi\left(Q_{f_{y}}(M, i)\right) \leq r-1$. This proves our assertion.
ii) Let H be an irreducible component of $Q_{f_{y}}(M, i)$. Since $c\left(H, F_{1}\right)=\frac{m_{h_{F_{1}}}^{F_{1}}}{n_{F_{1}}}$, then $\frac{n_{F_{1}}}{d_{h_{F_{1}}}^{F_{1}}}$ divides n_{H}. More precisely, let $\gamma(x)=\sum_{p} c_{p} x^{\frac{p}{n_{H}}} \in \operatorname{Root}(H)$, then one of the following holds:

- The coefficient of x^{M} in $\gamma(x)$ is nonzero, hence $n_{F_{1}}$ divides n_{H}. In this case, we say that H is of type I.
- The coefficient of x^{M} in $\gamma(x)$ is zero, hence $\frac{n_{F_{1}}}{d_{h_{F_{1}}}^{F_{1}}}$ divides n_{H}. In this case, we say that H is of type II.
Let H_{1}, H_{2} be two irreducible components of type II of $Q_{f_{y}}(M, i)$. If $\gamma_{1}(x) \in \operatorname{Root}\left(H_{1}\right)\left(\right.$ resp. $\gamma_{2}(x) \in$ $\left.\operatorname{Root}\left(H_{2}\right)\right)$, then $c\left(y_{i}, \gamma_{1}\right)=c\left(y_{i}, \gamma_{2}\right)$, and $\operatorname{inco}\left(y_{i}-\gamma_{1}\right)=\operatorname{inco}\left(y_{i}-\gamma_{2}\right)$ for all $y_{i} \in \operatorname{Root}(f)$. In particular, H_{1} and H_{2} give rise to the same irregular value of f. On the other hand, by Theorem 7.9., $\operatorname{deg}_{y} Q_{f_{y}}(M, i)=(r-1) n_{F_{1}}+\left(e_{h_{F_{1}}}^{F_{1}}-1\right) \frac{n_{F_{1}}}{d_{h_{1}}^{F_{1}}}$, hence the number of irreducible components of $Q_{f_{y}}(M, i)$ of type I is bounded by $r-1$. This proves our assertion.
iii) The proof is similar to the proof of ii).

Corollary 10.2 Let f be as above. The number of irregular values of f is bounded by $\xi(f)$.
Proof. This results from Proposition 10.1.

Suppose that $f \in \mathbf{K}\left[x^{-1}\right][y]$, and let $f_{1}, \ldots, f_{\xi(f)}$ be the set of irreducible components of f in $\mathbf{K}((x))[y]$. If for all irreducible components of $f_{y}, \operatorname{int}(f, H)=0$, then $\operatorname{int}\left(f-\lambda, f_{y}\right)>0$ for some $\lambda \in \operatorname{irreg}(f)$. This is a contradiction, since $f_{y} \in \mathbf{K}\left[x^{-1}\right][y]$. In particular, the tree $T(f)$ of f contains at least one good point. This leads to the folowing:

Proposition 10.3 Let the notations be as above. If $f \in \mathbf{K}\left[x^{-1}\right][y]$, then the number of irregular values of f is bounded by $\xi(f)-1$.

Proof. A good point of $T(f)$ contains at least one irreducible component of f. In particular at most $\xi(f)-1$ irreducible components of f belong to the set of bad points of f. Now use Proposition 10.1.

Remark 10.4 Let the notations be as above and assume that $f \in \mathbf{K}\left[x^{-1}\right][y]$. If irreg (f) has exactly $\xi(f)-1$ elements, then for all $P_{i}^{M} \notin \operatorname{Top}(f), D_{i}^{M}=\emptyset$. More precisely, it follows from the proof of Proposition 10.1. that the cardinality of $\operatorname{irreg}(f)$ is bounded by

$$
\sum_{P_{i}^{M} \in \operatorname{Top}(f)} \operatorname{card}\left(P_{i}^{M}\right)
$$

In particular, if $\operatorname{card}(\operatorname{irreg}(f))=\xi(f)-1$ then the following holds:
i) f has exactly one good point in $\operatorname{Top}(f)$ with exactly one element, say $f_{\xi(f)}$.
ii) For all $1 \leq i \leq \xi(f)-1, f_{i} \in P_{i}^{M}$ for some bad point $P_{i}^{M} \in \operatorname{Top}(f)$.

Furthermore, given a bad point $P_{i}^{M}=\left\{F_{1}, \ldots, F_{r}\right\},\left(F_{1}, \ldots, F_{r}\right)$ is equivalent, and $M=\frac{M_{h_{F_{1}}}^{F_{1}}}{n_{F_{1}}}$.
Remark 10.5 The polynomial $f=y^{4}+x^{-1} y^{2}+y+1$ has two irreducible components. On the other hand, $f_{y}=4 y^{3}+x^{-1}+1$, and $\operatorname{int}\left(f, f_{y}\right)=-3$, $\operatorname{int}\left(f-1, f_{y}\right)=-2$. The set of irregular values of f is reduced to one element. In particular the bound of Proposition 8.3. is sharp.

References

[1] S.S. Abhyankar.- On the semigroup of a meromorphic curve, Part 1, in Proceedings, International Symposium on Algebraic Geometry, Kyoto, pp. 240-414, 1977.
[2] S.S. Abhyankar and A .Assi.- Jacobian of meromorphic curves, Proc. Indian Acad. Sci. Math. Sci. 109 (1999), no. 2, 117-163.
[3] A. Assi.- Sur l'intersection des courbes méromorphes, C. R. Acad. Sci. Paris Sér. I Math. 329 (1999), n ${ }^{0} 7,625-628$.
[4] A. Assi.- Meromorphic plane curves, Math. Z. 230 (1999), no. 1, 16-183.
[5] F. Delgado de la Mata.- A factorization theorem for the polar of a curve with two branches, Compositio Mathematica, 92, pp. 327-375, 1994.
[6] T.C. Kuo and Y.C. Lu.- On analytic function germs of two complex variables, Topology 16, pp. 299-310, 1977.
[7] M. Merle.- Invariants polaires des courbes planes, Inventiones Mathematics 41, pp. 299-310, 1977.
[8] O. Zariski.- Le probleme des modules pour les branches planes, Lectures at Centre de Mathématiques, Ecole Polytechnique, Notes by F. Kmety and M. Merle, 1973.

[^0]: *Université d'Angers, Mathématiques, 49045 Angers ceded 01, France, e-mail:assi@univ-angers.fr
 ${ }^{1} 2000$ Mathematical Subject Classification:14H50,1499

