Estimation de densités complexes par permutation de sous-échantillons
Résumé
Dans cet article, nous proposons une approche originale d'estimation séquentielle de densités non paramétriques définies dans des espaces de grande dimension, dans le cadre méthodologique du filtrage particulaire. En exploitant les indépendances conditionnelles de l'espace d'état, nous proposons de permuter des sous-ensembles indépendants de particules de manière à générer un nouvel ensemble échantillonnant mieux cet espace. Nous intégrons cette approche dans deux versions classiques du filtre particulaire : celui avec échantillonnage partitionné et celui à recuit simulé de manière à prouver son efficacité. Nous nous comparons aux approches classiques dans le cadre de l'estimation des densités d'objets synthétiques articulés. Nous montrons que notre approche diminue à la fois les erreurs d'estimation et les temps de traitement
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...