MODELING EXTREME VALUES OF PROCESSES OBSERVED AT IRREGULAR TIME STEPS: APPLICATION TO SIGNIFICANT WAVE HEIGHT.

SUPPLEMENTARY MATERIAL

By Nicolas Raillard*

Laboratoire de Mathématiques de Bretagne Atlantique, UMR 6205, Université de Brest Laboratoire d'Océanographie Spatiale, IFREMER

Insititut de Recherche Mathématique de Rennes, UMR 6625, Université de Rennes 1

By Pierre Ailliot

Laboratoire de Mathématiques de Bretagne Atlantique, UMR 6205, Université de Brest AND

By Jianfeng Yao

Department of Statistics & Actuarial Sciences, The University of Hong Kong

1. Consistency of MPL_1 estimator. In this supplementary material, we prove the following theorem.

THEOREM 1.1. Let $\{Z_t\}$ be a Gaussian extreme value process with unit Fréchet margins, as defined in the paper, and dependence parameter $\nu^* \in \Theta = [\nu_-, \nu_+]$ with $0 < \nu_- < \nu_+$. Assume that the process is observed at regular time $\{1...n\}$, and denote by

$$L_n(\nu) = \prod_{i=1}^{n-1} \frac{\partial^2 F_Z}{\partial z_1 \partial z_2} (Z_i, Z_{i+1}; \nu),$$

the pairwise likelihood function, with F_z defined by

$$F_Z(z_{t_1}, z_{t_2}; \nu) = \mathbb{P}(Z_{t_1} \le z_{t_1}, Z_{t_2} \le z_{t_2}) = \exp[-V(z_{t_1}, z_{t_2}; \nu)],$$

and

(1)
$$V(z_{t_1}, z_{t_2}; \nu) = \frac{1}{z_{t_1}} \Phi\left(\frac{a}{2} + \frac{1}{a} \log \frac{z_{t_2}}{z_{t_1}}\right) + \frac{1}{z_{t_2}} \Phi\left(\frac{a}{2} + \frac{1}{a} \log \frac{z_{t_1}}{z_{t_2}}\right).$$

We define $\hat{\nu}_n = \operatorname{argmax} L_n(\nu)$ as the corresponding estimator of ν^* . Then, $\hat{\nu}_n$ is a strongly consistent estimator of ν^* , i.e.,

$$\lim_{n\to\infty}\hat{\nu}_n=\nu^*a.s.$$

^{*}Corresponding Author (E-mail: nicolas.raillard@gmail.com)

A Gaussian extremal process $\{Z_t\}$ is a moving maxima process as defined in Stoev (2008). Using the results given in that paper, we deduce that $\{Z_t\}$ is a stationary unit Fréchet process, continuous in probability, mixing, and hence ergodic. It allows us to use the following theorem, which is a straightforward generalization of Theorem 1.12 in Pfanzagl (1969):

THEOREM 1.2. Let $\{Z_i\}_{i=1,\dots,n}$ be a stationary and ergodic process, whose distribution depends on a parameter $\nu^* \in \Theta$, where Θ is a compact subset of \mathbb{R} , and let Q_n be a contrast function defined as

$$Q_n(\nu) = \frac{1}{n} \sum_{i=1}^{n-1} f(Z_i, Z_{i+1}; \nu),$$

where f is a measurable function with real values and continuous in ν . Suppose that:

- (a) $\mathbb{E}\inf_{\nu\in\Theta}f(Z_1,Z_2;\nu)>-\infty;$
- (b) $\nu \mapsto \mathbb{E}f(Z_1, Z_2; \nu)$ has a unique finite minimum at ν^* .

Then, the minimum contrast estimator $\hat{\nu}_n = argmin_{\nu \in \Theta} Q_n(\nu)$ is strongly consistent:

$$\lim_{n \to \infty} \hat{\nu}_n = \nu^* \ a.s.$$

We use this theorem with

$$f(Z_1, Z_2; \nu) = -\log p(Z_1, Z_2; \nu),$$

where $p(z_1, z_2; \nu)$ denotes the joint pdf of (Z_1, Z_2) , $\Theta = (\nu_-, \nu_+)$ with $0 < \nu_- < \nu_+$. An explicit expression for f is given in Section 1.1. Properties (1) and (2) of Theorem 1.2 are verified in Sections 1.2 and 1.3, respectively.

1.1. Expression of the contrast. We have

$$p(Z_1, Z_2; \nu) = \frac{\partial^2}{\partial z_1 \partial z_2} F_Z(z_1, z_2; \nu),$$

with $F_Z(z_1, z_2; \nu) = \exp((-V(z_1, z_2; \nu)))$ and V defined in (1) and thus

$$f(Z_1, Z_2; \nu) = V(z_1, z_2; \nu) - \log \left(\frac{\partial V}{\partial z_1}(z_1, z_2) \frac{\partial V}{\partial z_2}(z_1, z_2) + \frac{\partial^2 V}{\partial z_1 \partial z_2}(z_1, z_2) \right).$$

The function V and its derivatives satisfy

$$\begin{split} V(z_1,z_2;\nu) &= \frac{\Phi(a/2+1/a\log\frac{z_2}{z_1})}{z_1} + \frac{\Phi(a/2+1/a\log\frac{z_1}{z_2})}{z_2} = \frac{\Phi(w)}{z_1} + \frac{\Phi(v)}{z_2}, \\ \frac{\partial V}{\partial z_1}(z_1,z_2;\nu) &= -\frac{\Phi(w)}{z_1^2} - \frac{\varphi(w)}{az_1^2} + \frac{\varphi(v)}{az_1z_2}, \\ \frac{\partial V}{\partial z_2}(z_1,z_2;\nu) &= -\frac{\Phi(v)}{z_2^2} - \frac{\varphi(v)}{az_2^2} + \frac{\varphi(w)}{az_1z_2}, \\ \frac{\partial^2 V}{\partial z_1\partial z_2}(z_1,z_2;\nu) &= -\frac{v\varphi(w)}{a^2z_1^2z_2} - \frac{w\varphi(v)}{a^2z_1z_2^2}, \end{split}$$

with

$$w = \frac{a}{2} + \frac{1}{a} \log \frac{z_2}{z_1},$$

$$v = a - w = \frac{a}{2} + \frac{1}{a} \log \frac{z_1}{z_2},$$

$$\varphi(w) = \frac{1}{\sqrt{2\pi}} e^{-a^2/8} e^{-\frac{\log^2(z_1/z_2)}{2a^2}} \sqrt{\frac{z_1}{z_2}},$$

$$\varphi(v) = \frac{1}{\sqrt{2\pi}} e^{-a^2/8} e^{-\frac{\log^2(z_1/z_2)}{2a^2}} \sqrt{\frac{z_2}{z_1}}.$$

Taking into account that $\frac{\varphi(w)}{az_1^2} - \frac{\varphi(v)}{az_1z_2} = 0$, the following simplified expressions for the derivatives of V are obtained:

$$\frac{\partial V}{\partial z_1}(z_1, z_2) = -\frac{\Phi(w)}{z_1^2},$$

$$\frac{\partial V}{\partial z_2}(z_1, z_2) = -\frac{\Phi(v)}{z_2^2},$$

$$\frac{\partial^2 V}{\partial z_1 \partial z_2}(z_1, z_2) = -\frac{\varphi(w)}{az_1^2 z_2} = -\frac{\varphi(v)}{az_2^2 z_1} = \frac{e^{-a^2/8} \exp\left(\frac{\log^2 \frac{z_2}{z_1}}{2a^2}\right)}{(z_1 z_2)^{3/2}}.$$

Finally, we deduce that

(2)
$$f(z_1, z_2; \nu) = V(z_1, z_2; \nu) - \log \left[\frac{\Phi(w)\Phi(v)}{a^2 z_1 z_2} + \frac{\varphi(w)}{a z_1^2 z_2} \right].$$

1.2. Lower bound (a). We have

$$\inf_{\nu} \{ f(z_1, z_2; \nu) \} \ge \inf_{\nu} \{ V(z_1, z_2; \nu) \} + \inf_{\nu} \left\{ -\log \left[\frac{\Phi(w)\Phi(v)}{a^2 z_1 z_2} + \frac{\varphi(w)}{a z_1^2 z_2} \right] \right\},$$

and each term on the right-hand side of this expression is treated separately below.

• **Term** $V(z_1, z_2; \nu)$.

V can be bounded using the Fréchet bound (Fréchet (1951)),

$$P(Z_1 \le z_1) + P(Z_2 \le z_2) - 1 \le \mathbb{P}(Z_1 \le z_1, Z_2 \le z_2) \le \min \{P(Z_1 \le z_1), P(Z_2 \le z_2)\},$$

which implies that

$$\min\left(-\frac{1}{z_1}, -\frac{1}{z_2}\right) \le V(z_1, z_2; \nu) \le \exp\left(-\frac{1}{z_1}\right) + \exp\left(\frac{1}{z_2}\right),$$

and thus

$$\inf_{\nu} \{ V(z_1, z_2; \nu) \} \ge \min \left(-\frac{1}{z_1}, -\frac{1}{z_2} \right).$$

The right-hand term of the last expression has a finite expectation since $\frac{1}{Z_1}$ and $\frac{1}{Z_2}$ have unit exponential distributions.

• Term $-\log \left[\frac{\Phi(w)\Phi(v)}{a^2 z_1 z_2} + \frac{\varphi(w)}{a z_1^2 z_2} \right].$

We have

$$-\log\left[\frac{\Phi(w)\Phi(v)}{z_{1}z_{2}}\nu^{2} + \frac{\varphi(w)}{z_{1}^{2}z_{2}}\nu\right] \geq 1 - \frac{\Phi(w)\Phi(v)}{z_{1}z_{2}}\nu^{2} + \frac{\varphi(w)}{z_{1}^{2}z_{2}}\nu$$

$$\geq 1 - \frac{\nu^{2}}{z_{1}z_{2}}$$

$$\geq 1 - \frac{\nu^{2}}{z_{1}z_{2}},$$

and Cauchy's inequality implies that the right-hand term of the last expression has a finite expectation since

$$\mathbb{E}\left[\frac{1}{Z_1Z_2}\right] \leq \sqrt{\mathbb{E}[1/Z_1^2]\mathbb{E}[1/Z_2^2]} = 1.$$

1.3. Identifiability (b). We must now prove that $\nu \mapsto \mathbb{E}f(Z_1, Z_2; \nu)$ has a unique finite minimum at ν^* on $\Theta = [\nu_- \nu_+]$. To this end we denote by P_{ν} the distribution with density function $p(z_1, z_2; \nu)$. Then,

$$\mathbb{E}_{\nu^*} \left[-\log \frac{p(Z_1, Z_2; \nu)}{p(Z_1, Z_2; \nu^*)} \right] = K(P_{\nu^*}, P_{\nu}),$$

is the Kullback-Leibler divergence between P_{ν^*} and P_{ν} . We have $K \geq 0$ and K = 0 iff $P_{\nu} = P_{\nu^*}$. As the density functions are positive and continuous in (z_1, z_2) , this is equivalent

to $p(z_1, z_2; \nu^*) = p(z_1, z_2; \nu)$ for all (z_1, z_2) . In particular, K = 0 implies that for all $z_1 = z_2 = z > 0$, we have

$$\exp\left[-\frac{2}{z}\Phi\left(\frac{1}{2\nu}\right)\right]\left[\frac{\Phi\left(\frac{1}{2\nu}\right)^2}{z^2}\nu^2 + \frac{\varphi\left(\frac{1}{2\nu}\right)}{z^3}\nu\right] = \exp\left[-\frac{2}{z}\Phi\left(\frac{1}{2\nu^*}\right)\right]\left[\frac{\Phi\left(\frac{1}{2\nu^*}\right)^2}{z^2}\nu^{*2} + \frac{\varphi\left(\frac{1}{2\nu^*}\right)}{z^3}\nu^*\right].$$

Letting $z \to 0$ while z > 0 we see that the exponents in the exponential function must be equal, i.e.,

$$\Phi\left(\frac{1}{\nu}\right) = \Phi\left(\frac{1}{\nu^*}\right).$$

Hence, $\nu = \nu^*$. The proof is complete.

References.

Fréchet, M. (1951). Sur les tableaux de corrélation dont les marges sont données. Annales de l'Université de Lyon 14 53-77. MR0049518 (14,189c)

Pfanzagl, J. (1969). On the measurability and consistency of minimum contrast estimates. *Metrika* 14 249-272.

Stoev, S. A. (2008). On the ergodicity and mixing of max-stable processes. Stochastic Processes and their Applications 118 1679–1705. MR2442375 (2009e:60116)