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Abstract We study the limits of singularities of planar parallel 3-RPR manipulators
as the lengths of their legs tend to infinity, paying special attention to the presence
of cusps. These asymptotic singularities govern the kinematic behavior of the ma-
nipulator in a rather large portion of its workspace.
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1 Introduction

Planar 3-RPR manipulators have been extensively studied, see for instance [1-10].
Much attention has been paid to the analysis of the singularities of these manipu-
lators. These singularities govern the kinematic properties of the manipulators, for
instance their ability to perform singularity-free assembly mode changing.

It has been reported in several papers that the picture of the singularities in the
actuated joint space stabilizes when the lengths of the legs are sufficiently large.
Actually, in several examples, this stabilization appears already when the lengths of
legs are two or three times the lengths of the sides of the base and platform triangles.
See for instance Figure 1 extracted from the paper [8].

We study in this paper this stable configuration, introducing the limits of singu-
larities of planar parallel 3-RPR manipulators as the lengths of their legs tends to
infinity. These asymptotic singularities govern the kinematic behavior of the manip-
ulator in a rather large portion of its workspace. We classify the 3-RPR manipulators
with respect to the features of this stable configuration of singularities. We pay spe-
cial attention to the presence of cusps in the singular locus, since their presence is
crucial for the possility of singularity-free assembly mode changing.
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Fig. 1 Asymptotic stability of the section of the singularity surface of a 3-RPR manipulator

2 Modelization

The notations, the parameters and the variables we use are explained in Figure 2.

Fig. 2 3-RPR, parameters and variables used

The geometry of the base (resp. platform) is described by the parameters bA,hA,dA
(resp. bB,hB,dB and a sign ε =±1). In the direct orthonormal frame attached to the
base with origin A1, A2 has coordinates (bA,0) (bA > 0) and A3 has coordinates
(dA,hA) (hA > 0). In the direct orthonormal frame attached to the platform with
origin B1, B2 has coordinates (bB,0) (bB > 0) and B3 has coordinates (dB,εhB)
(hB > 0); the sign ε is −1 when the triangle B1B2B3 is oriented clockwise. We
always assume that neither triangle is flat, i.e. bAhAbBhB 6= 0. The position of the
vertex B1 of the platform is given in polar coordinates by the angle θ and the length
r1 of the leg A1B1. The orientation of the platform is given by the angle ϕ .

We shall also use the angle ψ = θ −ϕ +π instead of ϕ in order to simplify some
equations.
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We denote by r2 and r3 the lengths of the legs A2B2 and A3B3. These lengths are
given by

r2
2 = r2

1

+2r1
(
(bB cosϕ −bA)cosθ +bB sinϕ sinθ

)
−2bAbB cosϕ +b2

A +b2
B

r2
3 = r2

1

+2r1
(
(dB cosϕ − εhB sinϕ −dA)cosθ +(dB sinϕ + εhB cosϕ −hA)sinθ

)
−2(dAdB + εhAhB)cosϕ +2(εdAhB −hAdB)sinϕ +d2

A +d2
B +h2

A +h2
B

(1)

3 Asymptotic direct kinematic problem and singularities

We are interested in the limits of r1−r2 and r1−r3 as r1 tends to infinity. We denote
these limits by `2 and `3, repectively. They are easily obtained from Equations (1)
as

`2 = (bA −bB cosϕ)cosθ −bB sinϕ sinθ
`3 = (dA + εhB sinϕ −dB cosϕ)cosθ +(hA −dB sinϕ − εhB cosϕ)sinθ

(2)

Equations (2) are to be seen as describing the asymptotic inverse kinematic map-
ping (IKM). The asymptotic direct kinematic problem (DKP) is solving Equations
(2) for θ and ϕ . This can be done by writing Equations (2) in terms of u = tan(ϕ/2),
eliminating u and writing the resultant obtained in t = tan(θ/2); this process gives
the following quartic characteristic equation in t:

0 =
(
(dBl2 −bBl3)(t2 +1)+2hAbBt +(bAdB −dAbB)(t2 −1)

)2

+h2
B
(
(l2(t2 +1)+bA(t2 −1))2 −b2

B(t
2 +1)2) (3)

If we have a value of θ such that t = tan(θ/2) is a solution of Equation (3), car-
rying this value in Equations (2) yields a linear system in cosϕ and sinϕ , whose
determinant −εbBhB does not vanish. So we obtain a unique solution (θ ,ϕ) to the
symptotic DKP.

The asymptotic DKP has degree 4 and has no more than 4 solutions.
The Jacobian determinant of the asymptotic IKM (2) is

Jac =
(
hAbB cosθ 2 +(bAdB −dAbB)cosθ sinθ + εbAhB sinθ 2)sinϕ

+
(
(εbAhB −hAbB)cosθ sinθ +(dAbB −bAdB)sinθ 2)cosϕ

(4)

The equation Jac = 0 can easily be solved in tan(ϕ):

tan(ϕ) =
(hAbB − εbAhB) tan(θ)+(bAdB −dAbB) tan(θ)2

hAbB +(bAdB −dAbB) tan(θ)+ εbAhB tan(θ)2 (5)
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There is no surprise that we get in this way the curve of poles of the rational
parameterization rSing

1 (ϕ,θ) of the singularity surface in the workspace obtained in
[10]. This singularity curve in the torus of variables (ϕ ,θ) was already studied in the
quoted paper, where it is proved that it has two branches (connected components),
one passing through the point ϕ = 0,θ = 0 and the other passing through ϕ = π,θ =
0 obtained from the first by a translation of π on the angular variable ϕ .

The image by the asymptotic IKM of the singularity curve in the plane of vari-
ables (`2, `3) consists also of two branches. This curve is generically an irreducible
curve of degree 8, not rational. However, it is possible to obtain parameterizations
by analytic functions of θ of each of the branches by substituting in Equations (2)
the expressions for the trigonometric fonction of ϕ extracted from Equation (5).
One has to be careful in the determination of the angle ϕ from its tangent, in order
to ensure the continuity. One obtains for the first branch (the inner branch)

`in
2 =

(bA
√

δ −hAb2
B)cosθ −bB(bAdB −dAbB)sinθ√

δ

`in
3 =

(dA
√

δ −hAbBdB)cosθ +(hA
√

δ −dB(bAdB −dAbB)−bAh2
B)sinθ√

δ

(6)

where δ = (hAbB cosθ +(bAdB −dAbB)sinθ)2 +b2
Ah2

B sinθ 2. Note that δ is always
> 0, which ensures the analyticity in θ of the formulas (6). For the second branch
(the outer branch), one simply replaces all occurences of

√
δ by −

√
δ in formulas

(6).

4 Examples

We show here a few examples of asymptotic image singularity curves in the plane
(`2, `3). The curves are drawn using formulas (6) and their variants for the outer
branch.

Fig. 3 The asymptotic image singularity curve for the Innocenti-Merlet manipulator (diamond)
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The first example (Figure 3) is the Innocenti-Merlet manipulator [7], with bA =
15.9, hA = 10, dA = 0, bB = 17, εhB = 16.1, dB = 13.2; this is also the example
of Figure 1, and one recovers the stable section of the singularity surface for large
lengths of legs. The light gray indicates two solutions for the DKP, the dark gray
four solutions. The inner branch has four cusps and no double point; we call this
configuration a diamond.

Fig. 4 Other configurations for the asymptotic image singularity curve (swallowtail and annulus)

The next examples (Figure 4) show two other configurations for the image singu-
larity curves, with the same gray scale code. In both examples we have dA = dB = 0.
The example on the left is for bA = 8, hA = 3, bB = 1, εhB = 2. The inner branch
in this case has four cusps and two double points; we call this configaration a swal-
lowtail. The example on the right is for bA = 5, hA = 4, bB = 2, εhB = 2. Here the
inner branch is just an oval; we call this configuration an annulus.

We shall explain in the next section why these three examples show all possible
stable configurations for the asymtotic image singularity curve: diamond, swallow-
tail or annulus.

5 Asymptotic kinematics and wavefronts of an ellipse

The equations 2 for the asymptotic IKM take a more symmetric form when they are
written, after substituting ϕ with θ −ψ +π , as:(

`2
`3

)
=

(
bA 0
dA hA

)(
cosθ
sinθ

)
+

(
bB 0
dB εhB

)(
cosψ
sinψ

)
. (7)

The two summands of the right handside of Equation (7) are parameterizations of
ellipses EA(θ) and EB(ψ). By a linear change of coordinates, we can assume that
one of the ellipses (say EB) is a circle of radius ρ . We are then in the situation
of the paradigmatic example for wavefronts [11, 12]: the wavefront of an ellipse,
which is the envelope of the family of circles with radius ρ centered in a point of
the ellipse (the image of EA under the coordinate change). The outer branch of the
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wavefront is always a smooth convex curve, whereas the shape of the inner branch
of the wavefront bifurcates at values ρ = β 2/α, β , α , α2/β (where α and β are
respectively the semi-major and semi-minor axes lengths of the ellipse). The stable
configurations of the wavefront outside of the bifurcation values are the ones we
encountered in the preceding section: diamond, swallowtail and annulus.

There is a cusp of the inner branch of the wavefront, where it is tangent to the
circle of radius ρ centered at P on the ellipse, when ρ is equal to the curvature radius
of the ellipse at P. Hence, there is no cusp on the inner branch of the wavefront when
ρ is below the minimum or above the maximum of the curvature radius along the
ellipse, which are respectively β 2/α and α2/β . These values correspond to the
bifurcation between annulus and swallowtail, as shown in Figure 5 (ellipse in dotted
line, wavefront in solid line, circles in light gray).

Fig. 5 Bifurcation between annulus and swallowtail for ρ = β 2/α and ρ = α2/β

The inner branch of the wavefront has four cusps and no double points for values
of ρ between β and α . These values correspond to the bifurcation between diamond
and swallowtail, as shown in Figure 6.

Fig. 6 Bifurcation between diamond and swallowtail for ρ = β and ρ = α

In conclusion, we know what are the stable configurations (diamond, swallowtail,
annulus) for the asymptotic DKP and we can characterize the bifurcations between
these stable configurations. We shall make precise the classification of 3-RPR ma-
nipulators according to these stable configurations in the following section.
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6 Classification of 3-RPR manipulators

We use the analysis of the bifurcation of the wavefront of an ellipse recalled in the
preceding section. In order to do that, we change coordinates in the (`2, `3)-plane so
that the ellipse EB of Equation 7 is a circle of radius 1 in the new coordinates. We
set

MA =

(
bA 0
dA hA

)
MB =

(
bB 0
dB εhB

)
. (8)

The new coordinates (u,v) are given by
(

u
v

)
= M−1

B

(
`1
`2

)
and the equation of the

ellipse EA in variables (u,v) is

(
u v

) t(M−1
A MB)M−1

A MB

(
u
v

)
= 1 (9)

We denote by α and β the semi-major and semi-minor axes lengths of the el-
lipse described by Equation 9. The eigenvalues of the positive symmetric matrix
t(M−1

A MB)M−1
A MB are 1/α2 and 1/β 2, whence we derive an equation whose roots

are α2 and β 2:
S2

B λ 2 −UA,B λ +S2
A = 0 , (10)

with

SA = bAhA/2 , SB = bBhB/2 (the areas of the triangles),

UA,B =
1
4
(
b2

Ah2
B +h2

Ab2
B +(bAdB −dAbB)

2)
=

1
8
(
a2

A(b
2
B + c2

B −a2
B)+b2

A(c
2
B +a2

B −b2
B)+ c2

A(a
2
B +b2

B − c2
B)
)
,

(11)

where aA, cA, aB, cB denote the lengths of the sides A3A1, A2A3, B3B1, B2B3 re-
spectively. The second expression for UA,B makes clear that it is symmetric w.r.t. the
three sides of the triangles. The inequality UA,B ≥ 2SASB, expressing the fact that
the discriminant of Equation (10) is always nonnegative, is known in geometry as
the Neuberg-Pedoe inequality [13, 14]; the equality case is precisely when the two
triangles are similar.

The diamond configuration occurs when β < 1 < α , i.e. when (1 − α2)(1 −
β 2)< 0. The annulus configuration occurs when 1 < β 2/α or 1 > α2/β , i.e. when
(1−α4/β 2)(1−β 4/α2)> 0. We transform these inequalities using Equation (10)
and obtain the following classification result.

The configuration of the asymptotic singularities of a 3-RPR manipulator is

• a diamond when UA,B > S2
A +S2

B,
• an annulus when U3

A,B < S2
AS2

B(3UA,B +S2
A +S2

B),
• a swallowtail when UA,B < S2

A +S2
B and U3

A,B > S2
AS2

B(3UA,B +S2
A +S2

B).



8 Michel Coste

The inequality UA,B ≥ S2
A +S2

B has a geometric interpretation [14]: it is satisfied
if and only if there is a pose of the manipulator such that the three legs A1B1, A2B2
and A3B3 are parallel. No such geometric interpretation seems to be known for the
inequality U3

A,B < S2
AS2

B(3UA,B +S2
A +S2

B).
The three stable configurations we have found (diamond, annulus and swallow-

tail) only have the stable singularities [11] of a projection of a surface to a plane:
folds, cusps and transversal intersection of folds. Hence these configurations of
asymptotic singularities remain the same for the sections at large values of r1 (or
r2, or r3) of the singularity surface in the actuated joint space; the precise meaning
of “large” depends, of course, on the geometry of the manipulator.

There are non-generic manipulators for which the asymptotic singularities do not
belong to a stable configuration. This is the case for the “symmetric” manipulators
[15]: in this case the inner branch of the asymptotic singularity curve is reduced to
a point. We plan to study the stable perturbations of such manipulators in a future
work.

7 Conclusion

We studied the asymptotic DKP for 3-RPR manipulators. We have shown that this
is a fourth-degree problem. We have established that there are only three possible
stable configurations for the asymptotic singularities (diamond, swallowtail and an-
nulus), which remain unchanged for sufficiently large values of the lengths of the
legs. We also gave an explicit classification of 3-RPR manipulators with respect to
their asymptotic singularities.
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