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NUMERICAL SIMULATION OF THE SELECTION PROCESS OF THE OVARIAN

FOLLICLES

Aymard Benjamin1, 2, Clément Frédérique2, Coquel Frédéric3 and Postel

Marie1

Abstract. This paper presents the design and implementation of a numerical method to simulate
a multiscale model describing the selection process in ovarian follicles. The PDE model consists in
a quasi-linear hyperbolic system of large size, namely Nf × Nf , ruling the time evolution of the cell
density functions of Nf follicles (in practice Nf is of the order of a few to twenty). These equations
are weakly coupled through the sum of the first order moments of the density functions. The time-
dependent equations make use of two structuring variables, age and maturity, which play the roles
of space variables. The problem is naturally set over a compact domain of R

2. The formulation
of the time-dependent controlled transport coefficients accounts for available biological knowledge on
follicular cell kinetics. We introduce a dedicated numerical scheme that is amenable to parallelization,
by taking advantage of the weak coupling. Numerical illustrations assess the relevance of the proposed
method both in term of accuracy and HPC achievements.

Résumé. Ce document présente la conception et l’implémentation d’une méthode numérique servant
à simuler un modèle multiéchelle décrivant le processus de sélection des follicules ovariens. Le modèle
EDP consiste en un système hyperbolique quasi linéaire de grande taille, typiquement Nf ×Nf , gou-
vernant l’évolution des fonctions de densité cellulaire pour Nf follicules (en pratique Nf est de l’ordre
de quelque uns à une vingtaine). Ces équations d’évolution utilisent deux variables structurantes,
l’âge et la maturité, qui jouent le rôle de variables d’espace. Le problème est naturellement posé sur
un domaine compact de R

2. La formulation du transport à coefficients variables au cours du temps
en fonction du contrôle est issue des connaissances disponibles sur la cinétique cellulaire au sein des
follicules ovariens. Nous présentons un schéma numérique dédié au problème parallélisable en tirant
parti du faible couplage. Des simulations numériques permettent d’évaluer la pertinence de la méthode
proposée tant en terme de précision que de calcul haute performance.

Introduction

This work is motivated by a mathematical modelling approach of a complex physiological system, the develop-
ment of ovarian follicles. The model describes both the cell dynamics within each follicle and the competition
process within the population of follicles. The resulting model ( [9]) is a large scale system of weakly coupled
quasi-linear transport equations, where integro-differential terms occur both in the velocity and source term.
The coupling terms account for the endocrine-based dependence of one follicle dynamics on all other developing

1 UPMC Univ Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris, France

CNRS, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris, France
2 Centre de Recherche INRIA Paris-Rocquencourt, Domaine de Voluceau, B.P. 105 - F-78153 Le Chesnay, France
3 CMAP, Ecole Polytechnique, CNRS, route de Saclay, F-91128 Palaiseau Cedex-France

c© EDP Sciences, SMAI 2011



follicles. The well-posedness of the Cauchy problem is established in [17]. Existence and uniqueness of weak
solutions is proved for bounded initial conditions. The competition process was investigated in a game theory
approach after reducing the PDE model to coupled ODE systems [16]. Control problems associated with this
model are investigated in [8] (computation of backwards reachability sets) and [4] (optimal control in minimal
time).
We are specifically interested in the numerical issues raised by this multiscale model. In previous works [3,7,12],

a CTU numerical scheme has been implemented in the Bearclaw1 environment, which is based on adaptive mesh
refinement using wave-propagation algorithms [14, 15]. Here, we develop a dedicated code, which allows us (i)
to handle the conservative form of the equations, (ii) to deal with the discontinuous coefficients and (iii) to use
high performance computing (HPC) techniques in order to speed up the computing and be able to simulate as
many as twenty follicles.
The paper is organized as follows. In section 1, we introduce the biological background and the multiscale
model. In section 2, we describe the numerical scheme in detail. In section 3, we illustrate the simulation
outputs and assess the algorithm robustness, accuracy and scalability on parallel architectures.

1. Biological and biomathematical background

1.1. Biological background
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Figure 1. Follicle development as a multiscale process. Left : endocrine feedback loop between
the ovaries and the hypothalamo-pituitary-axis. Middle : schematic 2D view of an ovarian
follicle. Right : different cell states encountered by the granulosa cells during follicular devel-
opment.

1.1.1. Mesoscopic scale: ovarian follicles

Ovarian follicles are spheroidal tissular structures sheltering the oocytes (figure 1). Each follicle goes through a
development process, composed of two main parts : the basal development and the terminal development (figure
2). During basal development, the follicles are independent of hormonal support from the pituitary gland, while,
during the terminal part of their development, they become dependent on FSH (follicle stimulating hormone)
supply. Follicle development can end up either by ovulation, in the best case, or much more often by degeneration
through atresia. The commitment of a follicle to either ovulation or atresia is driven by the changes occurring
in the follicular cell population.

1http://www.pas.rochester.edu/~bearclaw/
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Figure 2. Follicular development : from basal to terminal development. After exiting the pool
of quiescent primordial follicles, ovarian follicles enter a several-month long process of growth
and maturation, that either ends up by ovulation or degeneration through atresia. In the basal
part of development, follicle growth is mainly due to the oocyte enlargement and increase in the
number of granulosa cell layers. In the final part of development, granulosa cells progressively
stop proliferating and follicle growth is mainly due to the enlargement of the antrum, a liquid-
filled cavity in the center of the follicle.

1.1.2. Macroscopic scale : competition process and endocrine feedback loop

In some sense, the terminal part of follicle development can be considered as a competition between follicles
for FSH resource. FSH controls follicle development, while FSH levels are in turn controlled by two hormones
secreted by the ovary, inhibin and estradiol, whose plasma levels are determined by the summed contributions
of all maturing follicles (figure 1). This ovarian hormonal feedback induces a drop in FSH levels that will
penalize the follicles, except those (in the poly-ovulating situations) or that (in the mono-ovulating ones) that
are sufficiently mature to survive in a FSH poor environment. The rising levels of estradiol finally triggers the
ovulatory surge that leads to the ovulation of the surviving follicles.

1.1.3. Microscopic scale : granulosa cell kinetics

Each granulosa cell can be encountered in either of three different cell states : proliferation, differentiation or
apoptosis (programmed cell death) (figure 3). At the beginning of terminal development, most granulosa cells
are progressing along the cell division cycle, that can be split into a G1 phase, where cells are sensitive to FSH
control, and a SM phase, where cells are preparing for mitosis and are insensitive to FSH control. At the end of
mitosis, one single mother cell gives birth to two daughter cells. During the FSH sensitive phase, cells become
more and more mature, up to a point where they reach a threshold maturity and exit the cell division cycle. At
this time they are exposed to a great risk of apoptosis, and may die if the FSH environment is not favorable.
After exiting the cell cycle, the cells stop proliferating definitively, but their maturity still increases, so that
they contribute more and more to hormone (and especially estradiol) secretion.

1.2. Biomathematical model

1.2.1. Computing domain

Let us introduce the variables
3













a age,

γ maturity,

t time,

the vector of granulosa cell densities for the Nf follicles

Φ(a, γ, t) = (φ1(a, γ, t), ..., φNf
(a, γ, t)),

and the computing domain Ω in the (a, γ) plane,

Ω = {(a, γ), 0 ≤ a ≤ Nc × Da, 0 ≤ γ ≤ 1}

where Nc is the number of cell cycles and Da is the duration of one cycle. The different cell states described in
paragraph 1.1.3 take place in three subdomains as illustrated in Figure 3











G1 = {(a, γ) ∈ Ω, pDa ≤ a ≤ (p + 1/2)Da, p = 0, . . . , Nc − 1, 0 ≤ γ ≤ γs},

SM = {(a, γ) ∈ Ω, (p + 1/2)Da ≤ a ≤ (p + 1)Da, p = 0, . . . , Nc − 1, 0 ≤ γ ≤ γs},

D = {(a, γ) ∈ Ω, γs ≤ γ}.

Figure 3. Division of the spatial domain according to the cell phases for unit cycle duration,
Da = 1. Left : schematic view of a granulosa cell cycle. Right : (a, γ) plane. The bottom part
represents the successive cell cycles, each composed of the G1 and SM phases. The top part
corresponds to the differentiation phase.

1.2.2. Hyperbolic system

If we consider, for each follicle, a conservation law for the granulosa cell population density, we obtain the
following hyperbolic system, satisfied by Φ:
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





















































∂φ1(a, γ, t)

∂t
+

∂(g(a, γ, u1(t))φ1(a, γ, t))

∂a
+

∂(h(a, γ, u1(t))φ1(a, γ, t))

∂γ
= −λ(a, γ, U(t))φ1(a, γ, t)

...
∂φf (a, γ, t)

∂t
+

∂(g(a, γ, uf (t))φf (a, γ, t))

∂a
+

∂(h(a, γ, uf (t))φf (a, γ, t))

∂γ
= −λ(a, γ, U(t))φf (a, γ, t)

...
∂φNf

(a, γ, t)

∂t
+

∂(g(a, γ, uNf
(t))φNf

(a, γ, t))

∂a
+

∂(h(a, γ, uNf
(t))φNf

(a, γ, t))

∂γ
= −λ(a, γ, U(t))φNf

(a, γ, t)

(1)
The initial condition is given by the distribution of the granulosa cell populations at the initial time

Φ(a, γ, 0) = Φ0(a, γ)

where Φ0 is compactly supported in ]0, NcDa[×]0, 1[. Since the functional domain Ω is compact, we need to
express boundary conditions. Considering some qualitative properties of the maturation function h, defined
below, the horizontal top boundary γ = 1 is never reached. Similarly, we can fix the number of cell cycles Nc in
accordance with the aging function g, so that the right vertical boundary a = NcDa is never reached. For sake
of computing simplicity, we therefore assume spatial periodicity on the outer boundaries of Ω in the numerical
simulations.
The aging function g appearing in (1) is defined by

g(a, γ, u) =

{

g1u + g2 for (a, γ) ∈ G1
1 for (a, γ) ∈ SM ∪ D

(2)

where g1, g2 are real positive constants. The maturation function h is defined by

h(a, γ, u) =

{

(−γ2 + (c1γ + c2)(1 − exp(
−u

ū
))) for (a, γ) ∈ G1 ∪ D

0 for (a, γ) ∈ SM
(3)

where c1, c2 and ū are real positive constants. The source term, that represents cell loss through apoptosis, is
defined by

λ(a, γ, U) =







K exp(−(
(γ − γs)

2

γ̄
)) × (1 − U) for (a, γ) ∈ G1 ∪ D

0 for (a, γ) ∈ SM
(4)

where K, γs and γ̄ are real positive constants.
Remark. The precise values of the constants depends on species and breeds; they will be fixed later.

1.2.3. Closure equations

The equations in the PDE system (1) are linked together through the arguments uf (t) and U(t) appearing
in the speeds g(a, γ, u) and h(a, γ, u) and in the source term λ(a, γ, u). U(t) and uf (t) represent respectively
the plasma FSH level and the locally bioavailable FSH level and depend on some maturation moments of the
densities.

• follicular cell mass (local, one by follicle)

m0(f, t) =

∫ 1

0

∫ NcDa

0

φf (a, γ, t)dadγ, 1 ≤ f ≤ Nf (5)
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This moment is an interesting quantity since it corresponds to an observable variable (the total cell
number in one follicle) even if it does not come as such into play in the equations.

• follicular maturity (local, one by follicle)

m(f, t) =

∫ 1

0

∫ NcDa

0

γφf (a, γ, t)dadγ, 1 ≤ f ≤ Nf (6)

• ovarian maturity (global, shared by all follicles)

M(t) =

Nf
∑

f=1

m(f, t), (7)

• plasma FSH level (global, shared by all follicles)

U(t) = Umin +
1 − Umin

1 + exp(c(M(t) − m))
, (8)

where Umin, c and m are real positive constants
• locally bioavailable FSH level

uf (t) = min

(

b1 +
eb2m(f,t)

b3
, 1

)

U(t), (9)

where b1, b2 and b3 are real positive constants.

It is important to notice that the aging function (2) is discontinuous (in general) on the interfaces G1 − SM ,
and that the maturation function (3) is discontinuous (in general) on the interfaces SM − D (Figure 3). It is
necessary to introduce transmission conditions in order to overcome possible failure of uniqueness due to the
discontinuities in coefficients (see [11] or [1] for instance). The precise definition of the required transmission
conditions has been addressed in the paper by Peipei Shang ( [17]). We suppose that, for each cycle p = 1, . . . , Nc

and each follicle f = 1, . . . , Nf , the flux on the a-axis is continuous between the phases G1 and SM

φf (t, a+, γ) = (g1uf + g2)φf (t, a−, γ), a = (p − 1/2)Da, 0 ≤ γ ≤ γs, (10)

and that the flux is doubling on the interfaces SM − G1, which accounts for the birth of new cells at the end
of each cell cycle

(g1uf + g2)φf (t, a+, γ) = 2φf (t, a−, γ), a = pDa, 0 ≤ γ ≤ γs. (11)

Finally, we suppose homogeneous Dirichlet condition to the north of the interface SM − D

φf (t, a, γ+
s ) = 0, (p − 1/2)Da ≤ a ≤ pDa. (12)

The time dependent ovarian maturity M(t) defined in (7) is compared to the ovarian maturity threshold, denoted
by Mo, to define the final time, beyond which the competition is over

tfinal = inf{t, M(t) ≥ Mo}. (13)

The follicles are then sorted into two classes : ovulatory if the maturity is higher than the follicle maturity
threshold, denoted by Mf , atretic otherwise.
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2. Numerical Method

2.1. Discretization

In this paragraph the cycle duration is set to Da = 1. We denote by ∆a (respectively ∆γ ) the space step
in the age (respectively maturity) direction. In practice we choose ∆a = ∆γ. The discretization step ∆γ
and the cellular maturity threshold γs must be chosen so that the interfaces where the speed coefficients (2,3)
are discontinuous fall on grid points covering the computational domain of size [Nc, 1]. Denoting by Nm the
number of grid cells by half granulosa cell cycle, we set Nγ = 2Nm and ∆a = ∆γ = 1/Nγ and we introduce the
dedicated2 notations for grid points (ak, γl) and mesh centers (ak+1/2, γl+1/2)

ak = k∆a, ak+1/2 = (k + 1/2)∆a, for k = 0, . . . , Nc × Nγ , (14)

γl = l∆γ, γl+1/2 = (l + 1/2)∆γ, for l = 0, . . . , Nγ . (15)

Considering that the time step ∆tn may change at every iteration, in order to preserve stability, the time
discretization is defined by

t0 = 0, tn+1 = tn + ∆tn, for n = 0, . . . , Nt (16)

with Nt such that tNt = tfinal. The unknowns are the approximate mean values of the density vector in each
grid mesh

Φn
k,l ≈

1

∆a∆γ

∫ ak+1

ak

∫ γl+1

γl

Φ(a, γ, tn)dγda, for k = 0, ..., NcNγ − 1, and l = 0, ..., Nγ − 1

whose components φn
f,k,l are the discrete density values for each follicle.

2.2. Macroscopic scale : piecewise constant approximation of the hormonal control

We define the approximation of the control terms (5 - 9) at each time step n = 0, . . . , Nt

mn
0,f = ∆a∆γ

Nγ−1
∑

l=0

NcNγ−1
∑

k=0

φn
f,k,l, for f = 1, . . . , Nf , (17)

mn
f = ∆a∆γ

Nγ−1
∑

l=0

γl+1/2

NcNγ−1
∑

k=0

φn
f,k,l, for f = 1, . . . , Nf , (18)

Mn =

Nf
∑

f=1

mn
f , (19)

Un = Umin +
1 − Umin

1 + exp(c(Mn − m))
, (20)

un
f = min(b1 +

eb2mn
f

b3
, 1)Un, for f = 1, . . . , Nf . (21)

2We use this index notation for the use of the forthcoming Multiresolution development
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2.3. Mesoscopic scale : finite volume scheme

We use a splitting strategy in order to compute the solution of the PDE system (1), which amounts to a
convective equation combined with a source equation, for each follicle f = 1, . . . , Nf

∂tφf (a, γ, t) + ∂a(g(a, γ, uf (t))φf (a, γ, t)) + ∂γ(h(a, γ, uf (t))φf (a, γ, t)) = 0 (convective part), (22)

∂tφf (a, γ, t) = −λ(a, γ, U(t))φf (a, γ, t) (source part). (23)

2.3.1. Convective part

The convection part (22) is treated with a classical finite volume method. The approximate mean values of the
solution at t = 0 are initialized using a midpoint formula, accurate at the order 2 in space

Φ0
k,l = Φ0(ak+1/2, γl+1/2).

Using the integral form of the conservation law

∫ tn+1

tn

∫ ak+1

ak

∫ γl+1

γl

(∂tφf (a, γ, t) + ∂a(g(a, γ, uf (t))φf (a, γ, t)) + ∂γ(h(a, γ, uf (t))φf (a, γ, t)))dγdadt = 0,

we obtain a recursion on the approximate density of each follicle, where we drop the index f for clarity sake

φn+1
k,l = φn

k,l −
∆t

∆a

(

Gk+1,l+ 1
2
(Φn) − Gk,l+ 1

2
(Φn)

)

−
∆t

∆γ

(

Hk+ 1
2
,l+1(Φ

n) − Hk+ 1
2
,l(Φ

n)
)

(24)

where Gk,l+ 1
2

(respectively Hk+ 1
2
,l) is the numerical flux across the vertical edge [(ak, γl), (ak, γl+1)] (respectively

the horizontal edge [(ak, γl), (ak+1, γl)]) defined by



















Gk,l+ 1
2
(Φn) ≈

1

∆tn∆γ

∫ tn+1

tn

∫ γl+1

γl

g(ak, γ, uf (t))φ(ak, γ, t)dγdt,

Hk+ 1
2
,l(Φ

n) ≈
1

∆tn∆a

∫ tn+1

tn

∫ ak+1

ak

h(a, γl, uf (t))φ(a, γl, t)dadt.

(25)

The dependence of the flux functions on all the follicle densities through the control term uf is emphasized by
the Φn argument. It appears in the explicit in time approximations of the speeds (2), and (3) at the center of
the mesh

{

gn
k,l = g(ak+ 1

2
, γl+ 1

2
, un

f ),

hn
k,l = h(ak+ 1

2
, γl+ 1

2
, un

f ).

Note that the transmission conditions (10) and (11) on the interfaces where these speed coefficients (2) and (3)
are discontinuous are exactly treated with the method described in the article of Godlewski and Raviart ( [11]).
The numerical fluxes (25) are designed using a limiter strategy. Indeed, it is well known that first order
schemes, like the Godunov scheme, are diffusive, and that second order schemes, like Lax Wendroff scheme,
generate oscillations in the neighborhood of discontinuities. In order to get a stable as well as precise scheme,
we take a weighting of a low order scheme and a high order scheme, and we define limited numerical fluxes

G = GLow + ℓ(rG)(GHigh − GLow),

H = HLow + ℓ(rH)(HHigh − HLow), (26)

where ℓ is a limiter function, for example van Leer function

ℓ(r) =
r + |r|

1 + r
8



and rG, rH are

rG =



























gk−1,lφk−1,l − gk−2,lφk−2,l

gk,lφk,l − gk−1,lφk−1,l
if gk−2,l ≥ 0 and gk−1,l ≥ 0 and gk,l ≥ 0,

gk+1,lφk+1,l − gk,lφk,l

gk,lφk,l − gk−1,lφk−1,l
if gk−1,l ≤ 0, and gk,l ≤ 0 and gk+1,l ≤ 0,

0 otherwise,

rH =



























hk,l−1φk,l−1 − hk,l−2φk,l−2

hk,lφk,l − hk,l−1φk,l−1
if hk,l−2 ≥ 0 and hk,l−1 ≥ 0 and hk,l ≥ 0,

hk,l+1φk,l+1 − hk,lφk,l

hk,lφk,l − hk,l−1φk,l−1
if hk,l−1 ≤ 0 and hk,l ≤ 0 and hk,l+1 ≤ 0,

0 otherwise.

These ratios are good indicators of the regularity of the function in each direction (see [18]). In fact, a steep
gradient or a discontinuity gives a ratio far from 1, whereas a smooth function gives a ratio close to 1.
The first order fluxes entering equation (26) are the Godunov fluxes











GLow
k,l+ 1

2

(Φn) = (gn
k−1,l)

+φn
k−1,l + (gn

k,l)
−φn

k,l,

HLow
k+ 1

2
,l
(Φn) = (hn

k,l−1)
+φn

k,l−1 + (hn
k,l)

−φn
k,l,

and the high order fluxes are the Lax Wendroff ones















GHigh

k,l+ 1
2

(Φn) =
1

2
(gn

k−1,lφ
n
k−1,l + gn

k,lφ
n
k,l),

HHigh

k+ 1
2
,l
(Φn) =

1

2
(hn

k,l−1φ
n
k,l−1 + hn

k,lφ
n
k,l).

Consequently, since ∆a = ∆γ, the CFL condition which guarantees the stability is

∆tnf,FV S ≤ CFL
∆γ

maxk,l(|gk,l|, |hk,l|)
(27)

with CFL ≤ 1
2 .

2.3.2. Source part

The source part (23) of the PDE system is explicitly dealt with

φn+1
k,l = φn

k,l − ∆tλ(ak+ 1
2
, γl+ 1

2
, Un)φn

k,l, (28)

which implies a stability condition on the time step, which we strengthen to enforce positivity

∆tnf,source ≤
1

maxk,l |λ(ak+ 1
2
, γl+ 1

2
, Un)|

. (29)

2.4. Macro/Meso scale Parallelization

In order to speed up the numerical simulations, the code is implemented on a parallel architecture. Every follicle
follows its own dynamic independently of the others, except that it shares with them the FSH resource, and
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that it contributes to the tuning of plasma FSH level. Hence it is natural to use a SIMD (single instruction,
multiple data) strategy, with one follicle by process. The only communications that have to be done at each
time step concern the ovarian maturity, through a reduction operation (sum) and the current time step ∆n,
through a reduction operation (min). Each process computes the maximum time step satisfying both conditions
(27) and (29)

∆tnf = min{∆tnf,FV S ,∆tnf,source} (30)

relevant for its own follicle, and the time step used by all processes is

∆tn = min
f

{∆tnf }. (31)

2.5. Parallel algorithm and improvement to order 2 in time

Finally, we get the following parallel algorithm for each time step:

(1) Compute time step
• Compute local time step ∆tnf (30)

• Communication : Compute the minimum of local time steps ∆tn (31)
(2) Update solution

• Flux computation (26),
• Convection computation (24),
• Source computation (28),

(3) Update control terms
• Compute local maturity (18),
• Communication : compute the sum of local maturities (19),
• Compute FSH plasma level (20),
• Compute locally bioavailable FSH rate (21).

Denoting by E the evolution operator, that consists in steps (2) and (3), the second order in time is achieved
by a second order Runge-Kutta method (Heun)

φ∗ = E(φn),

φ∗∗ = E(φ∗),

φn+1 =
1

2
(φn + φ∗∗).

3. Numerical simulations

The code was developed in C++ using the parallel library MPI. The tests were performed on the Jacques-
Louis Lions Laboratory super calculator SGI Altix UV 100. The current configuration is 64-core 2 GHz. The
visualizations were made with MEDIT [10] and gnuplot.

3.1. Initial condition

For the initial condition, we take a gaussian function centred in C = (Ca, Cγ)

φ0(a, γ) =
1

2πσ
exp

(

1

2

(

(a − Ca)2

σ2
+

(γ − Cγ)2

σ2

))

. (32)

The variance σ2 can be chosen so that φ0 is smooth enough to be used for testing the convergence rate.
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3.2. Sets of default parameters

Since one goal of this work was to improve the computational method, we used the same set of parameters as
in [12] to be able to compare at least qualitatively with our previous simulations outputs. We distinguish two
sets of parameters, the global ones, which are the same for all follicles (space discretization, CFL condition,. . . )
in Table 1 and the local ones (initial condition, velocity parameters,. . . ), which can depend on the follicle, in
Table 2.

Parameter Description Value
Nm number of grid cells by half granulosa cell cycle
Nc number of cycles 5

CFL CFL condition 0.45
Mf follicular maturity threshold 3.0
Mo ovarian maturity threshold 7.0

FSH plasma level (eq. (8))
Umin minimum level 0.075

c slope parameter 2.0
m abscissa of the inflection point 4.5

Apoptosis source term (eq. (4))
K intensity factor 6.0
γ̄ scaling factor 0.2

tmax maximum time (to avoid excessively long computations)

Table 1. Values of the global parameters used in Figures 4 to 8

The number of follicles, Nf , and the number of grid cells by half granulosa cell cycle, Nm, may depend on the
simulation.

Parameter Description Value
γs cellular maturity threshold 0.3

intrafollicular FSH level (eq. (9))
b1 basal level 0.08
b2 exponential rate 2.25
b3 scaling factor 1450.

Aging function (eq. (2))
g1 rate 4.0
g2 origin 0.7

Maturation function (eq. (3))
c1 0.68
c2 0.08
ū 0.02

Initial condition (eq. (32))
Ca abcissa of the center 0.25
Cγ ordinate of the center 0.15
σ2 variance 0.0025

Table 2. Values of the local parameters (one per follicle) used in Figures 4 to 8
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3.3. Time evolution of the cell density for one follicle

The behavior of the cell density of one single follicle as a function of time is first studied, in order to check some
qualitative properties. The full movie can be downloaded from http://www.ljll.math.upmc.fr/aymard/film.gif
and four snapshots are displayed on Figure 4. Note that on the snapshots the color code is time dependent while
in the movie it is set once and for all at initial time. The spatial discretization for this test uses Nm = 30 cells per
half granulosa cell cycle, and the domain Ω contains five cycles. The grid size is therefore 5× (2×30)2 = 18000.
The final time defined by (13) is not reached and the simulation is stopped at tmax = 4 after 570 time steps.
This corresponds to the time required to cover four cell cycles. On the first snapshot 4 a), we can observe the
initial condition, at the center C = (0.25, 0.15) of the first G1 phase. On the second snapshot 4 b), we see that
the density has moved to the second cycle and that it has been split into a fully differentiated part and a still
proliferating part, that lies in the SM phase. It is worth noticing that, consistently with the model, there is
no crossing of the SM -D interface. On the third snapshot 4 c), we can see that the cell density is doubling
at the end of the cell cycle, on the SM -G1 interface. On the last snapshot 4 d), at the end of the simulation,
the density is concentrated in the D phase above the fifth cell cycle. Even if all cells have exited the cell cycle,
we can distinguish three different density clouds, each of which being issued from one of the previous cycles
(respectively the second third and fourth cycle from top to down). This behavior of the numerical solution is
in accordance with the previous simulations presented in [12].

3.4. Competition between ten follicles

The second test consists in a more realistic simulation of a competition process between ten follicles. The
parameters defining the plasma FSH level are set to Umin = 0.9 and c = 10 and the intensity of the source term
is set to K = 1. The follicles are distinguished by the parameter defining their aging rate (2) at the origin. We
consider a range of g2 values running from 0.5 to 0.95, with a 0.05 increment from one follicle to the other

g2 = 0.5, 0.55, . . . , 0.95.

The maximum time is set to tmax = 1.5. For all other parameters we use the values in Tables 1 and 2. Figure
5 represents a) the plasma FSH level U(t) defined by (8) b) the locally bioavailable FSH level uf (t) defined by
(9) c) the cell mass m0(f, t) of each follicle defined by (5), d) the ovarian maturity M(t) defined by (7) and e)
the maturity m(f, t) of each follicle defined by (6). Figure 5.d) shows that the ovarian maturity reaches the
threshold defined by (13) with Mo = 5 around t = 1.2. Figure 5.e) shows that at the final time, only three
follicles have reached the ovulatory stage, where the follicle maturity defined by (6) is higher than Mf = 0.7.
They correspond to the values of the parameter g2 = 0.5, 0.55 and 0.63.

3.5. Convergence rate test

We now turn to the validation of the code, which consists in numerically verifying the asymptotic order of
convergence when the time step ∆t and space discretization step ∆γ go to zero. We use the parameters in
Tables 1 and 2, except for the gaussian function, whose variance is set to σ2 = 0.002, so that it is very smooth.
The simulation is stopped at tmax = 0.05, which allows us to reduce the number of cell cycles to Nc = 1 and to
discretize the solution on a square grid Nγ ×Nγ . We compute the solution for six different levels discretizations

Nγ = 80, 160, 320, 640, 1280, 2560

with the time discretization provided by the stability condition (30).

3This simulation was performed for technical purposes and do not meet exactly the biological specifications. The precise

numerical calibration of the model will be set up in future work.
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a) Initial condition in G1 phase

a

γ

b) SM phase

a

γ

c) Doubling of cell density at the end of the second cycle

γ

a

d) Final time

a

γ

Figure 4. Snapshots of the cell density at different times, starting from a smooth initial con-
dition in the G1 phase. The color code is time dependent. The full movie is available at
http://www.ljll.math.upmc.fr/aymard/film.gif

3.5.1. Convergence of the numerical scheme for the linear transport

We first study the convergence of the numerical scheme when the initial condition is centred in the SM phase
C = (0.7, 0.15) and the final time is small enough for the density to remain in this phase. The maturity function
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Figure 5. Competition between ten follicles differing by their aging function parameter g2
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(3) and the source term (4) are both null, and the aging function (2) is constant and equal to one. For such a
constant linear transport, we can compute the exact solution at the final time tNt = tmax using the characteristic
method as well as the error in L1-norm of the numerical solution

E(∆γ) = ∆γ2

Nγ−1
∑

k=0

Nγ−1
∑

l=0

∣

∣

∣
φNt

k,l − φ0(ak+ 1
2
− tNt , γl+ 1

2
)
∣

∣

∣
.

The error curve in log scale is superposed with the theoretical order O(∆γ2) in Figure 6.
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0(∆γ
2
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Figure 6. Convergence rate in the SM phase. Green curve : ∆γ → O(∆γ2). Blue curve : L1
norm error between the exact solution and the solution with space step ∆γ.

3.5.2. Full model convergence test

We now set the initial condition near the center C = (0.2, 0.15) of the G1 phase, still with a maximum time
tmax = 0.05 ensuring that the cell density remains in this zone. In that case the source term (4) and the age
and maturity speeds are no more constant, and we no longer know the exact solution of the PDE. The error
is computed using the solution with Nγ = 5120 as reference solution, that is compared to the solution on the
other meshes. Since we have used a dyadic refinement, the size Nref of the reference mesh in one direction is

always a power of two times the size N∆γ of the current mesh. Denoting by P =
Nref

N∆γ
the ratio between the

current discretization and the reference finest one, we estimate the discretization error by

E(∆γ) = ∆γ2

N∆γ−1
∑

k=0

N∆γ−1
∑

l=0

∣

∣

∣

∣

∣

φNt

k,l −
1

P 2

P
∑

p=0

P
∑

m=0

φref
kP+p,lP+m

∣

∣

∣

∣

∣

The asymptotic order O(∆γ1.95) which best fits the behavior of E(∆γ) is displayed in Figure 7.
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Figure 7. CV rate on the G1 phase. Green curve : ∆γ → O(∆γ1.95). Blue curve : L1 norm
error between the reference solution and the solution with a space step ∆γ.

3.6. HPC test

The improvement in terms of computing time provided by the parallelization is tested through a set of simula-
tions involving an increasing number of identical follicles. The grid for these simulations consists in one cycle
of 200 × 200 cells, and the simulation goes on for 900 times steps. In this experiment, we disposed of enough
processors to do the computing with one follicle by processor and since the time command is used to monitor
the computing time, the output of the program has been commented out. Figure 8 a) shows the real computing
time, which is basically the time elapsed from the beginning of the computation. Figure 8 b) shows the user
computing time, which cumulates all the processors computing time. The computing time cannot be shorter
than that required for a computation involving only one, this constitutes the so-called theoretical limit. The fact
that the real computing time remains close to the computing time for one follicle and that the user computing
time grows linearly with the number of follicles is very encouraging. The communications between processors
appear not to affect significantly the gain in computing time due to the parallel computing. A small increase
in real computing time can be noticed beyond eight follicles. This is due to the super calculator architecture,
where the processors are pooled in eight processor nodes. The communications within one node are faster than
across different nodes. This leads to a threshold effect observed as soon as more than eight processors are
needed, therefore involving more than one single node.

Conclusion

This paper summarizes preliminary works in the development of a dedicated software to illustrate numerically
the development of follicles. The uniform grid numerical method have been successfully tested in terms of
robustness, accuracy and scalability on parallel architecture. As part of a challenging project involving biologists
mathematicians and computer scientists, the different situations engendered by the model (mono-ovulation,
poly-ovulation or anovulation) from given combinations of parameters will now be systematically and intensively
tested. In order to achieve this goal within realistic delay the HPC aspect of the method must be enriched using
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Figure 8. Parallelization performance test. Simulation of an increasing number of identical
follicles. One follicle per processor. Green curve : theoretical limit. Blue curve : computing
time (in seconds). Left : elapsed time from the start of the computation. Right : cumulative
computed time on all processors

adaptive mesh refinement. The multiresolution method developed in [5] and further tested and extended in [6]
or [13] is currently implemented in this new configuration, where the presence of source terms and integral terms
will require special considerations as exemplified for instance in [2].
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