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We present some studies on the mechanisms of pathogenesis based on experimental work and on its interpretation through a mathematical model.

Using a collection of clinical strains of the opportunistic human pathogen

Pseudomonas aeruginosa, we performed co-culture experiments with Dictyostelium amoebae, to investigate the two organisms' interaction, characterized by a cross action between amoeba, feeding on bacteria, and bacteria exerting their pathogenic action against amoeba. In order to classify bacteria virulence, independently of this cross interaction, we have also performed killing experiments of bacteria against the nematode C. elegans.

Introduction

Virulence is a complex and often multi-factorial phenotypic trait that quantifies the degree of pathogenicity of an organism, by establishing its ability to mount an infection and to cause a disease. Genetic determinants of bacterial virulence are potential drug targets, and represent an alternative to the generic cellular and molecular mechanisms targeted by most antibiotics used to date for the control of infections in humans and animals. Model host organisms are used to identify and study the function of virulence factors in human pathogenic bacteria. Mammalian hosts are preferentially used for this purpose, because they are thought to mimic the situation occurring in an infected human patient. However, a number of non-mammalian organisms, such as the amoeba Dictyostelium discoideum, the nematode Caenorhabditis elegans, the insect Drosophila melanogaster and the fish Danio rerio have been recently used as alternative hosts, with the advantage of avoiding ethical problems and allowing us to assess bacterial virulence in an easier way than by using mammalian hosts.

Dictyostelium amoebae are soil microorganisms that feed on bacteria and have been utilized to assess the virulence of many different bacterial genera, including Klebsiella [START_REF] Benghezal | Specific host genes required for the killing of Klebsiella bacteria by phagocytes[END_REF], Aeromonas [START_REF] Froquet | Alternative host model to evaluate Aeromonas virulence[END_REF] or Pseudomonas [START_REF] Cosson | Pseudomonas aeruginosa virulence analyzed in a Dictyostelium discoideum host system[END_REF][START_REF] Pukatzki | The human pathogen Pseudomonas aeruginosa utilizes con-served virulence pathways to infect the social amoeba Dictyostelium discoideum[END_REF]. In this model system, pathogenic bacteria defend against predation by Dictyostelium, activating virulence pathways that impede amoeba cells to grow and to form phagocytic plaques. The system has been almost exclusively used to assess the role of specific genes in virulence, by comparing the virulence phenotype of mutants versus wild-type strains. To our knowledge, the Dictyostelium model has not been applied to date to determine the natural virulence range of pathogenic bacteria obtained from clinical samples. Mathematical models concerning bacterial growth have been recently developed within different contexts motivated by nosocomial infections, though, to our knowledge, no specific model has been considered for describing the particular amoeba-bacteria interaction such as described above. In particular, some work has been devoted to modeling the interaction between pathogens and cells of the immune system [START_REF] Nowak | Virus dynamics[END_REF] or between bacteria and phagocytes, including antibiotic resistance [START_REF] Austin | The dynamics of drug action on the within-host population growth of infectious agents: melding pharmacokinetics with pathogen population dynamics[END_REF][START_REF] Boldin | Relative effects of barrier precautions and topical antibiotics on nosocomial bacterial transmission: Results of multi-compartment models[END_REF][START_REF] D'agata | Modeling antibiotic resistance in hospitals: The impact of minimizing treatment duration[END_REF][START_REF] D'agata | The Impact of Different Antibiotic Regimens on the Emergence of Antimicrobial-Resistant Bacteria[END_REF][START_REF] Imran | The dynamics of bacterial infection, innate immune response and antibiotic treatment[END_REF][START_REF] Webb | A model of antibiotic resistant bacterial epidemics in hospitals[END_REF].

In this study, we have investigated the dynamics of virulence both per-forming experimental measures and building a mathematical model for interpreting the results. We have used a collection of clinical strains of the opportunistic human pathogen Pseudomonas aeruginosa to perform co-culture experiments with Dictyostelium. The interaction between the two organisms is characterized by a cross action between amoeba, feeding on bacteria, and bacteria exerting their pathogenic action against amoeba. In order to classify bacteria virulence, independently of this cross interaction, we have also performed killing experiments of bacteria against the nematode C. elegans.

A mathematical model was developed to describe the growth of the amoeba-bacteria system, taking into account the specific features underlying the interaction. We discuss the behavior of the model with respect to a basic parameter representing the virulence of the bacterium. The theoretical results are compared with the experimental ones. The model does not fall within the class of traditional prey-predator models because not only does an amoeba feed on bacteria, but it is in turn attacked by bacteria that kill its cells, so that the model must include a feedback term modeling this further aspect of the interaction. The resulting model shows existence of multiple steady states and bi-stability that seems to be responsible for the observed behavior.

Virulence assays

The focus of this study is the investigation of the mechanisms underlying the interaction of different virulent strains of P. aeruginosa with D. discoideum NC4; nevertheless a first set of experiments with C. elegans N2 as a target of the pathogenic process has been performed, in order to get a measure of the pathogenic action of P. aeruginosa independently of the predation exerted by D. discoideum. In fact in our context the nematode C. elegans N2 can be considered completely passive because during the time of the culture it does not feed on P. aeruginosa; thus the killing percentage that we obtain in the culture can be assumed as a measure of virulence, allowing us to order the different strains of P. aeruginosa according to their pathogenic strength.

Strains and growth media

A set of 27 P. aeruginosa clinical strains, isolated from patients suffering from urinary tract infections, wound ulcer and respiratory tract infections, were used in the experiments. Pseudomonas aeruginosa strains were obtained from the microbiology departments at S. Chiara Hospital of Trento (Italy) and at the University Hospital of Verona (Italy). Growth media were LB for P. aeruginosa culture and maintenance, SM broth for D. discoideum NC4 using Klebsiella aerogenes as a food source, and NGM agar for C. elegans using E. coli OP50 as a food source.

Virulence assays with C. elegans N2

Virulence of different strains of P. aeruginosa was measured independently of its interaction with D. discoideum by performing killing assays with C. elegans.

Table 1

The C. elegans fast killing assays [START_REF] Tan | Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis[END_REF] The percentage of killing ranged from 6.6% to 100% (Table 1). No mortality of C. elegans was observed using the non-pathogenic strain E. coli DH5α as a control. Among the 27 P. aeruginosa specimens tested, 15 were highly virulent (80-100% C. elegans killing), 7 strains were moderately virulent (50-80% killing) and 5 were weakly virulent or non-virulent (less than 50% killing).

Virulence assays with D. discoideum NC4

Measurements of D. discoideum growth on a lawn of P. aeruginosa were performed. Note that D. discoideum actually feeds only on P. aeruginosa.

Table 2

Pseudomonas aeruginosa cells were harvested during exponential phase, resuspended into SM broth at a final O.D 600 of 1, diluted into 5 ml of SM broth and spread on SM agar plates. A total of 9 suspensions of D. discoideum cells in 5μl droplets corresponding to three-fold serial dilutions of the initial culture containing 4.0x10 6 cells/ml were then spotted on lawns of each P. aeruginosa strain. The most concentrated droplets therefore contained about 20.000 cells, whereas the most diluted ones contained less than 10 cells. The number of D. discoideum cells in each dilution was controlled using an automated cell counter (Countess, Invitrogen). Serial dilutions were performed in infection medium containing HL5 and 1x Soerensen buffer mix in 1:1 ratio [50 x Soerensen buffer, K 2 HPO 4 (99.86 g), Na 2 HPO 4 (17.8 g), add H 2 O 1000 ml]. The plates were incubated for 6 days at 19 • C to visualize the growth of D. discoideum.

Three patterns of Dictyostelium growth in the presence of P. aeruginosa could be easily recognized: inability to form phagocytic plaques on the bacterial lawn (pattern 0, Table 2), formation of phagocytic plaques without radial dissemination of cells (pattern 1), and formation of phagocytic plaques with radial dissemination of cells leading to the formation of an annular, transparent zone around the region were Dictyostelium cells were spotted (pattern 2). Only the most concentrated droplets containing 2 • 10 4 or 7 • 10 3 cells were able to form phagocytic plaques on the most virulent P. aeruginosa isolates (growth pattern 1, Table 2), whereas the presence of a transparent annular zone (growth pattern 2) was observed only in the less virulent P. aeruginosa isolates, therefore confirming the reliability and coherence of results obtained from both virulence assays. Dictyostelium cells were also spotted on a lawn of the non-pathogenic strain E. coli DH5α as a control. As expected, the amoeba was able to form phagocytic plaques on DH5α, even at the lowest cell concentrations and showed the formation of the annular zone (indicating radial dissemination) when 250 cells or more were spotted.

A mathematical model

The experimental results reported in Table 2 possibly reveal a complex dynamics underlying the interaction between amoeba and bacteria. In fact the occurrence of survival and extinction depending on virulence and on the initial concentration of amoeba suggests the existence of different states with roles changing as virulence changes.

The process we have to model, in order to describe the interaction amoebabacteria, does not fall within the traditional interactions between different species because, in our case, the amoeba is at the same time a predator (since it feeds on bacteria) and a victim (since bacteria belonging to a virulent strain are able to kill amoeba cells by their pathogenic action). Having in mind this main aspect, our model is based on the following description:

• in the absence of the amoeba, bacteria follow logistic growth, with intrinsic growth rate r and carrying capacity K;

• in the absence of bacteria, the amoeboid population undergoes an exponential decay with death rate m; in fact we suppose that bacteria are their unique source of food;

• amoeba cells feed on bacteria through a mass-action like mechanism with attack rate a;

• amoeba growth occurs at a rate proportional to the uptake of bacteria, with proportionality constant d;

• bacteria attack and kill amoeba cells with a functional response of Holling type with handling time T and attack rate b.

All the previous statements have a precise interpretation from the modeling point of view. Denoting respectively by u(t) and v(t) the number of bacteria and the number of amoeba cells, our model can be written as follows:

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ u (t) = r 1 - u(t) K u(t) -au(t)v(t), v (t) = -mv(t) + du(t)v(t) - bu(t)v(t) 1 + bT v(t) .
(1)

By introducing the following non-dimensional variables

t = rt , ũ = u K , ṽ = a r v
and dropping all superscripts for simplicity, system (1) becomes

⎧ ⎪ ⎨ ⎪ ⎩ u (t) = (1 -u(t))u(t) -u(t)v(t), u (0) = u 0 , v (t) = -μv(t) + δu(t)v(t) -γ u(t)v(t) 1 + τv(t) , v(0) = v 0 , (2) 
where

μ = m r , δ = dK r , γ = bK r , τ = bT r a
and u 0 and v 0 are the initial conditions.

This rescaling has reduced the number of parameters to four and we shall discuss the model dynamics with respect to γ representing the bacterial virulence. All other parameters will be considered as fixed. In particular, since our experimental framework suggests that amoeba life-time is very large if compared with the time scale of the interactions, we will assume μ 1.

(3)

Moreover since we have classified virulence on the basis of killing percentage in the first four hours (see Table 1), while the amoeba growth process is measured for 6 days, we will assume

τ 1 ( 4 )
to mean that the pathogenic process is rather fast.

A first analysis to determine the dynamics of the model concerns existence of steady states.

Steady states

Here we look for steady states of system (2), namely we look for nonnegative solutions of the system

⎧ ⎪ ⎨ ⎪ ⎩ (1 -u -v)u = 0, -μ + δu -γ u 1 + τv v = 0.
(5)

It is immediately seen that there are always the trivial steady state O ≡ (0, 0) and the bacteria-only state B ≡ (1, 0). However, the existence of coexistence steady states, for which amoeba and bacteria densities are both strictly positive, is not so straightforward and we need to analyze the system

⎧ ⎨ ⎩ 1 -u -v = 0, -μ + δu -γ u 1 + τv = 0, (6) 
or, equivalently, the intersection of the curves

v = φ 1 (u) = 1 -u, v = φ 2 (u) = (γ -δ)u + μ τ (δu -μ) = 1 τ γu δu -μ -1 . (7) 
Actually, we look for meaningful intersections of φ 1 (u) and φ 2 (u), i.e. such that

0 < u * < 1, 0 < v * < 1. (8) 
Thus, noticing that

φ 2 (u) < 0 for 0< u < μ δ , φ 2 (u) > γ -δ τδ for u > μ δ ,
we conclude that

No coexistence equilibrium exists if at least one of the following conditions is satisfied

μ > δ (9) γ > δ(1 + τ ) (10) 
However we note that we can exclude case (9) because condition (3) allows to restrict to the case

μ δτ 1 + τ < δ (11)
and, in view of (10), we will investigate existence of equilibria against different values of the parameter γ ∈ [0, δ(1 + τ )]. To this aim we transform system (6), by substitution, into

⎧ ⎨ ⎩ i) 1 -u -v = 0, ii) τδu 2 + [γ -δ(1 + τ ) -μτ ] u + μ(1 + τ ) = 0, ( 12 
)
and solve equation (12, ii) to get

u ± (γ) = [δ(1 + τ ) -γ + μτ ] ± Δ(γ) 2δτ , (13) 
where

Δ(γ) = [δ(1 + τ ) -γ + μτ ] 2 -4τδμ(1 + τ ).
We have indicated dependence on γ and we actually note that the discriminant Δ(γ) is a decreasing function of γ, on the interval [0, δ(1+τ )], vanishing at the point

γ + = δ(1 + τ ) - √ μτ 2 < δ(1 + τ ). ( 14 
)
Figure 1 As a consequence, ( 13) provides two branches u ± (γ) of real positive solutions of (12, ii) for γ ∈ [0, γ + ], glued at γ + where

u -(γ + ) = u + (γ + ) = μ(1 + τ ) δτ < 1. ( 15 
)
Moreover, u + (γ) is decreasing with γ and

u + (0) = 1 + 1 τ > 1, u + (γ * ) = 1,
where

γ * = δ -μ < γ + , (16) 
so that u + (γ) satisfies ( 8) only for γ in the interval [γ * , γ + ]. Concerning the other branch u -(γ), we have that, since

u -(γ)u + (γ) = μ(1 + τ ), then u -(γ) is increasing and (see (15)) 0 < u -(γ) < u -(γ + ) < 1.
Thus u -(γ) satisfies ( 8) for γ ∈ [0, γ + ]. Finally, taking v ± (γ) = 1-u ∓ (γ), we have solutions of system ( 12) for γ ∈ [0, γ + ]. We note (see ( 12)) that v ± (γ)

are the two solutions of

δτ v * 2 + [δ -γ -τγ * ] v * + γ -γ * = 0 (17)
and that for γ < γ * only v + (γ) is positive.

In Figure 1 and Figure 2 we respectively show the bifurcation graphs of u ± (γ) and v ± (γ), with γ as a bifurcation parameter.

Figure 2

Next we discuss stability of the equilibria.

Stability

First of all we consider the trivial steady state O ≡ (0, 0) and the bacteriaonly state B ≡ (1, 0). The respective Jacobian matrices for these states are

J(O) = ⎛ ⎝ 1 0 0 -μ ⎞ ⎠ , J(B) = ⎛ ⎝ -1 -1 0 γ * -γ ⎞ ⎠ .

Consequently we have that

The trivial state O is always unstable, while B is stable if γ > γ * and unstable otherwise.

For analyzing the coexistence steady states we have to consider the Jacobian matrix

J(E * ) = ⎛ ⎜ ⎝ -u * -u * δ - γ 1 + τv * v * γτ u * v * (1 + τv * ) 2 ⎞ ⎟ ⎠ , (18) 
and analyze the sign of trace and determinant of J(E * ) versus γ, along the different branches shown in Figure 2. Actually, we have

trJ(E * ) = u * (1 + τv * ) 2 τ 2 v * 2 + τ (2 -γ)v * + 1 det J(E * ) = u * v * (1 + T v * ) 2 δτ 2 v * 2 + 2δτ v * + δ -γ -γτ and, considering first the upper branch v + (γ) = 1 -u -(γ), for γ ∈ [0, γ + ],
we are led to analyze the sign of

T + (γ) = τ 2 v 2 + (γ) + τ (2 -γ)v + (γ) + 1 = = τ 2 (v + (γ) -t + (γ)) (v + (γ) -t -(γ)) , (19) 
and

D + (γ) = δτ 2 v 2 + (γ) + 2δτ v + (γ) + δ -γ -γτ = = δτ 2 (v + (γ) -d + (γ)) (v + (γ) -d -(γ)) , (20) 
where

t ± (γ) = γ -2 ± γ(γ -4) 2τ , d ± (γ) = -δ ± δγ(1 + τ ) δτ ,
looking for positive T + (γ) and D + (γ) in order to have stability.

First we prove that

D + (γ) is positive for γ ∈ [0, γ + ). (21) 
In fact, first of all, for γ ≤ δ 1 + τ , d ± (γ) are both non-positive so that

D + (γ) = δτ 2 (v + (γ) + |d + (γ)|) (v + (γ) + |d -(γ)|) > 0.
To check the case γ > δ 1 + τ , we note that, since v -(γ) = 1u + (γ) and

v + (γ) = 1 -u -(γ)
are the roots of equation ( 17), then the quadratic polynomial

P (z) = δτ z 2 + [δ -γ -τγ * ] z + γ -γ *
can be written as

P (z) = δτ (z -v -(γ)) (z -v + (γ)) ,
so that, for z > 0,

P (z) < 0 if and only if v -(γ) < z < v + (γ).
Then, after some algebra and using ( 14), we get

τδP (d + (γ)) = 2δτ (1 + τ ) -(δ + γ + τγ * ) δγ(1 + τ ) = 2 δγ(1 + τ ) -γ -δ(1 + τ ) + τμ δγ(1 + τ ) = τμ - δ(1 + τ ) - √ γ 2 δγ(1 + τ ) < τμ - δ(1 + τ ) -γ + 2 δγ(1 + τ ) = 0, so that v -(γ) < d + (γ) < v + (γ)
and by ( 20), since d -(γ) < 0, we have (21).

Now we consider T + (γ) and prove

T + (γ) is positive for γ ∈ [0, γ + ). (22) 
First we note that, for γ < 4, t ± (γ) are complex conjugate so that

4T + (γ) = (2τv + (γ) + 2 -γ) 2 + (4 -γ)γ > 0.
Thus, ( 22) is true if γ + ≤ 4, while if γ + > 4 we are left with the case 4 ≤ γ < γ + . To analyze this case, using

τ 2 t 2 ± (γ) + τ (2 -γ) t ± (γ) + 1 = 0,
we compute

P (t ± (γ)) = [(δ -1)γ -δ -τγ * ] t ± (γ) + γ -γ * - δ τ . (23) 
Then, since τ < 1 (see ( 4)) and noticing that γ + ≥ 4 implies δ > 2, we have

P (t ± (4)) = 2μ + 2 τ (δ -2)(1 -τ ) > 0. ( 24 
)
Now, it is easy to check that, for γ > 4, the functions t + (γ) and γt -(γ) are increasing with γ, while the function t -(γ) is decreasing. Moreover, since δ > 2, γ > 4 and τ < 1, we have

(δ -1)γ -δ -τγ * > (2δ -4) + δ(1 -τ ) + τμ > 0,
that, used in ( 23) implies that P (t ± (γ)) is increasing and, due to (24), it is positive for 4 ≤ γ < γ + . As a consequence, either

t -(γ) < t + (γ) < v -(γ) < v + (γ), or v + (γ) < t -(γ) < t + (γ)
In both cases T + (γ) > 0 and ( 22 As before we analyze the sign of

D -(γ) = δτ 2 v 2 -(γ) + 2δτ v -(γ) + δ -γ -γτ = = δτ 2 (v -(γ) -d + (γ)) (v -(γ) -d -(γ)) , (25) 
with

d ± (γ) = -δ ± δγ(1 + τ ) δτ .

Figure 3

To discuss this point we represent the data of Tables 1 and2 in a more significant way introducing the variable

m = -ln (1 -k) ( 27 
)
where k is the killing percentage of a strain as determined in Table 1. m is actually proportional to the mortality induced by the pathogenic strain and is then proportional to the parameter γ introduced in the model. In Figure 3 we represent the outcome of the culture at different values of m and of the number v 0 of amoeba cells. Namely, we label each point (m, v 0 ), available from Table 2, by an index 0, 1, 2, with the following meaning 0 = amoeba extinction , 1 = amoeba survival at a low density , 2 = amoeba survival at a high density .

( • for values greater than m = 4 amoeba does not survive whatever be the initial number of cells; this situation corresponds to values of γ greater than γ + , for which only the state B ≡ (1, 0) exists and is attractive.

The correspondence described in the present work is somewhat qualitative and could be better defined if the initial and final number of amoeba cells could be counted with more accuracy. This study still provides a first insight into the mathematical laws underlying the behavior of this complex biological system made of prey-predator and host-pathogen relationships.

The model and its bi-stability confirmed the importance of assessing the correct experimental parameters (mainly the initial number or concentration of amoeba cells) for an adequate application of the virulence assay for bacterial species or strains of unknown aggressiveness. Future work will focus on the

Figures Captions

• Caption for Figure 1 Bifurcation graph concerning existence of steady states. The component u(γ) corresponding to bacteria is represented as a function of γ.

Both branches u + (γ) and u -(γ), given in (13) are shown. γ * and γ + are respectively given in ( 16) and ( 14).

• γ * and γ + are respectively given in ( 16) and ( 14).

• Caption for Figure 3 Results from co-cultures of Dictyostelium amoebae with different strains of Pseudomonas aeruginosa. Different outcomes are represented according to (28) for different points (m, v 0 ) where m is defined in ( 27) and v 0 is the initial number of amoeba cells. After m = 5 the scale unit has been reduced. 

  were performed with P. aeruginosa cells harvested during exponential phase, re-suspended into PG broth at a final O.D 600 of 1 and spotted on PG-agar plates in a final volume of 200μl on Peptone Glucose agar plates containing sorbitol at 0.15 M. The plates were initially incubated at room temperature for 18 hours. The adult nematodes (on average 60 -70 individuals) were grown on E. coli OP50 on NGM plates, picked and placed on the P. aeruginosa spots. As a control, one plate was seeded with the non-pathogenic E.coli strain DH5α. The plates were subsequently incubated at 22 • C for 4 hours. The viability/mortality of C. elegans was observed under an optical microscope at 10X magnitude. Non-motile individuals were considered as dead, and the killing percentage was calculated as the ratio between dead and total C. elegans individuals. Clinical isolates of P. aeruginosa showed a wide range of virulence against C. elegans.

  ) is true. Now we consider the lower branch of Figure 2, v -(γ) = 1-u + (γ), existing only for γ ∈ [γ * , γ + ].

)

  Figure 3 we see that

  Caption for Figure 2 Bifurcation graph concerning existence of steady states. The component v(γ) = 1-u(γ) corresponding to the amoeba is represented versus γ. Both branches v + (γ) = 1u -(γ) and v -(γ) = 1u + (γ) are shown.

Table 1 :

 1 C. elegans killing assays: different strains of P. aeruginosa tested agains C. elegans. The killing percentage is measured after 4 hours.

	strain	% killing
	Hpu45	100,00
	N-10	98,99
	N-54	98,83
	N5	96,77
	N1	95,30
	Hpu49	95,30
	N-89	94,15
	N101	94,00
	N47	93,30
	Hpu26	92,50
	N-3	90,65
	N60	89,50
	N-36	89,20
	N-81	85,76
	Hpu75	84,84
	Hpu105	79,94
	Hpu47	78,00
	N-85	76,00
	Hpu92	70,6
	N106	68,61
	Hpu28A	61,30
	N-30	52,64
	N-11	45,47
	N29	29,00
	Hpu28	27,60
	Hpu56	26,96
	N-116	6,66
	DH5-α	0,00

1 5. Tables
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The previous results can be summarized in the following statement on the coexistence state

The coexistence state

is stable, while the state

is unstable.

Comparing experiments and model behavior

The previous analysis of the model reveals that the so called bi-stable behavior, for a certain range of the parameter representing virulence, is a characteristic feature of the amoeba-bacteria interaction. A qualitative comparison of the model with the experimental results shows that the behavior is actually confirmed by data.

assessment of growth properties of bacteria and amoeba separately, including spatial patterns.
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