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Abstract

In this article, we introduce an application of swarm intelligence to dis-
tributed visual information retrieval distributed over networks. Based on
the relevance feedback scheme, we use ant-like agents to crawl the network
and to retrieve relevant images. Agents movements are influenced by markers
stored on the hosts. These markers are reinforced to match the distribution
of relevant images over the network. We tackle the use of the information
gathered during previous search sessions. In order to match the different
categories available on the network, we use several markers. Sessions search-
ing for the same category will thus use the same makers. The system in-
volves three learning problems: the selection of relevant markers regarding
the searched category, the reinforcement of these markers and the learning
of the relevance function. All of these problems are based on the relevance
feedback loop. We test our system on a custom network hosting images taken
from the well known TrecVid dataset. Our system shows a high improve-
ment over classical content based image retrieval systems which do not use
previous sessions information.
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1. Introduction

The exponential growth of multimedia contents (i.e. images, videos or
music) available on the Internet raises the question of the adaptability of
searching tools to this highly distributed context. This is even more crucial
when considering p2p networks: no centralized structure can gather all the
information in the manner of classical web search engine. However, the de-
centralized nature of the production of multimedia content can have numer-
ous advantages, such as the possibility of sharing computational and storage
resources, the absence of data replication (and the questions of updating),
etc. To benefit from such distributed structures, searching tools must be
able to find the good location of relevant documents, e.g. to route the query
among the peers correctly. This question has been widely studied in the p2p
literature [20].

The question of image retrieval in this distributed context has been stud-
ied recently [5, 17]. Classically, in Content Based Image Retrieval (CBIR),
visual features are extracted from the images and then compiled into an index
or signature [22]. To perform the retrieval, a similarity function is computed
to compare the index of the query to those of the collection. A ranking of
the results is produced according to the similarity and shown to the users.
To further improve the quality of the retrieval, an interaction with the user,
called relevance feedback [23, 13], can be added. The user labels a fraction of
the results, and the similarity function is updated consequently. Some ma-
chine learning techniques have been widely used in this case, and have shown
very good improvements. Distributed CBIR is more challenging. In order to
be efficient, distributed systems shall include the relevance feedback scheme
but also a network exploration strategy [5]. Given a network of computers
hosting images, systems must find the locations of relevant images, before
any similarity learning. We have previously proposed such a CBIR extension
to distributed sources based on biologically inspired multi-agents systems. In
this system, the ant-like behavior of the agents leads to the optimization of
the source selection in which we perform the retrieval, with successful results
[16].

The main purpose of this paper is to deal with long-term memory of
network based system for information retrieval. Indeed, the main drawback
of classical Information Retrieval (IR) systems, is their absence of memory
regarding previous queries. In the case of a widely used and highly distributed
system, we dispose of numerous search sessions. The challenge is to be able
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to re-use the knowledge brought by users in past search sessions to improve
future sessions. In this context, the improvement can be done in two different
ways: either by updating the similarity function according to the previous
sessions, or by improving the selection of the images collections regarding
the locations previously learned. In this paper, we undertake to improve
the source selection stage by using the relevance feedback of past sessions
only. This leads to a threefold learning problem : learning paths during
the search session, merging paths learnt during previous search sessions, and
learning the similarity function. We introduce a multiple-layered architecture
to handle the three learning problems in a unified framework. We use an
ant-like multi-agents system that learns the paths leading to relevant images
collections regarding the searched category.

In the next section, we introduce a biologically inspired multi-agents sys-
tems (MAS ) for information retrieval. In section 3, we describe how the
system works for a single session, which we call our “intra-session” learning
strategy. The use of several previous sessions to further improve the system,
which is called the “inter-sessions” learning strategy, is shown in section 4.
We then present extensive experiments done on an ad hoc network, using the
TrecVid’05 image dataset.

2. Multi-agents Systems for information retrieval

Distributed information retrieval (IR) systems need to perform three
tasks [3], namely:

1. Selecting the collections in which performing the search.

2. Processing the documents on the selected collections.

3. Merging the results from the selected collections.

The second step is well known, as it does not differ from classical IR. The
third step might contain difficulties, especially when the measure used to
produce the results on each source are not directly comparable. This is of-
ten the case in distributed CBIR where different collections may not use the
same indexing techniques [1]. However, the first step is, to our minds, the
more challenging. The ever growing number of sources forbids the exhaustive
propagation of the query to each collection: Relevant sources must be identi-
fied so as to optimize the use of available resources. Typical problems involve
optimal routing to minimize bandwidth waste and correct distribution of the
processing tasks among the computational resources.
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Multi-agents system have proved to be highly efficient for these tasks
specific to distributed systems. Multi-agents systems are often used to par-
allel processes or to add robustness (by adding redundancy). In our work,
we focus on Mobile Agents, a particular subset of MAS with nice properties
for information retrieval. Mobile agents are autonomous computing software
with the ability to migrate its executable code from one peer of the network
to another and to continue its execution there [14]. Mobiles agents have
been the focus of many researches in the late 1990s. There are good reasons
to use mobile agents for information retrieval [15], such as the absence of a
global structure in the network, the natural discovery of new collections, the
automatic paralleling of the processing, etc. Recently, search engines based
on mobile agents have been built [19, 18, 2, 11].

To further improve these agent based search engine, the next step is the
introduction of swarm intelligence algorithms. Ant Colony Optimization[9]
is an optimization strategy inspired by the behavior of ants while foraging.
By modifying the environment, agents contribute to a collaborative solving
of the problem [8]. It has been shown to be efficient in various optimization
problems like Quadratic Assignment Problem, Traveling Salesman Problem
[10], with applications to network routing, for instance [4]. In the case of
information retrieval, many agents try to collectively find relevant documents
during a search session leading to a better routing of the query, like in [18].
As there are many users of the network, the interaction of different sets of
session related agents shall lead to further improvement.

In the specific case of distributed CBIR based on relevance feedback
scheme, the three steps defined at the beginning of this section have to be
done at each round. We expect the use of ACO like algorithm to be able
to boost the source selection step by merging the information gathered by
many agents (owned by several users) regarding the relevant hosts.

3. Intra-session learning strategy

In the hereby section, we recall the first system addressing distributed
CBIR we developed [16]. The design is based on the relevance feedback
scheme of classical CBIR tools, with the use of ant-like agents to handle the
step 1 of distributed retrieval.
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3.1. Selection strategy

To address the problem of the selection of sources, we introduce the rele-
vance ri of a host i, which is the number of relevant images it contains over
the number of images in its collection. Thus, a collection with only relevant
images has a relevance of 1, whereas a collection with no relevant image has
a relevance of 0. The strategy we proposed consists in selecting a higher
number of images from hosts with a high relevance. However, the relevance
of each host cannot be known prior to the query, as we do not have the
information of which image is relevant or not. Thus, we proposed to learn
the relevance of the host in interaction with the user, using the relevance
feedback loop. Let us define the approximate relevance r̂i of host i as the
number of images from i which were labeled relevant by the user over the
number images from i that were labeled by the user (regardless their labels).
In fact, as the number of labels increases, the approximate relevance tends
to the real relevance. During the relevance feedback loop, we select images
from the hosts with a high approximate relevance, thus returning a higher
number of relevant images.

The global strategy within a search session can be sum up as follows:

1. Let A(n) be the training set of images {xj}n and their
respective labels {yj}n at iteration n of the relevance
feedback loop.

2. According to A(n) the approximate relevance r̂i and the
relevance function fA(n) are computed.

3. Using fA(n) and r̂i, I images {xj}n+1 are selected, with
a number of images proportional to r̂i selected from i,
∀i.

4. The training set for the next iteration is built as A(n+
1) = A(n) ∪ {xj, yj}n+1, where yj are the labels given
by the user to the I selected images {xj}n+1.

3.2. System overview

Figure 1 describes our system. The user begins the query by giving an
example or a set of examples to an interface (1). A similarity function based
on these examples is built (2). To build the similarity, visual features are
extracted from the examples (distributions of colors and textures obtained by
quantization of color and texture spaces over a set of training images), and
machine learning techniques such as SVM are used [7, 21]. Mobile agents
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are then launched with a copy of this similarity function (3). Every host of
the network contains an agent platform in order to be able to receive and
execute incoming mobile agents. These agents travel through the network
according to movement rules related to numerical markers present on each
host reflecting the relevance of the hosts (see below 3.3) (4).
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Figure 1: Functional description of our system showing the user in interaction with the
relevance feedback loop (launching of agents, retrieval, display and labeling).

On each platform, an agent indexing the local images is run. The in-
coming mobile agent sends the similarity function to the index agent which
returns the most informative images.

As soon as they receive the answer of the index agent, the mobile agents
return to the user’s computer (5) and the results are displayed on the interface
(6). The user can label these results (1: relevant, −1: irrelevant), and
the similarity function is updated consequently (7a) as well as the relevant
paths of the network (7b). As the similarity function we use is based on
SVM analysis [7], the update stage only consists in adding the results and
their labels to the training set and to train a new SVM. Mobile agents are
then relaunched with the improved similarity function. The interactive loop
consists in several launching of mobile agents and labeling of the results (8).
At the end of the interaction, mobile agents are launched for a very last
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time in order to retrieve the best results from each host (9). The number of
retrieved images is proportional to the level of the markers leading to this
host. In combination with the ant-algorithm, this assures that most of the
best retrieved images are provided by relevant hosts.

3.3. Learning the relevance of the hosts

The main key point of the introduced strategy relies on the estimation of
the relevance of each host of the network at each relevance feedback round.
As the number of hosts increases, it is not possible to visit them exhaus-
tively to compute the approximate relevance anymore. Instead, we propose
a stochastic exploration of the network, where relevant hosts are prioritized
using and adaptation of ACO. Each host of the network is provided a marker
(a numerical value) which acts as the pheromone used in ant-like strategies.
Let us denote mi the marker associated with host i. Then, the probability
for an agent to move from host s to host i is

Ps→i =
mi

∑

k∈destmk

(1)

Where dest is the set of possible destinations from s. Thus, the higher the
value of the marker, the higher the probability for an agent to move there.

Markers are reinforced each time an agent returns to reflect the relevance
of hosts, using the following rules:

mi ← αmi + βai + γui (2)

Where ai = 1 if i contains an image collection (0 if not), and ui = 1 if
the image the agent has returned is labeled relevant (0 if not). 0 ≤ α < 1,
β ≥ 0 and γ ≥ 0 are parameters of the system. With these reinforcements
of markers, the probability for an agent to move to a host is directly linked
with its approximate relevance (see section 5).

4. Inter-sessions learning strategy

As stated in the introduction, classical CBIR tools lack the reuse of the
information injected in the system by the user through the relevance feedback
loop. For instance, suppose several users have searched for images of cars,
mountains or sporting events, each session totalizing 100 pairs of images
and associated labels (in the form of either relevant or irrelevant). If we
assume that different users have a consistent definition of the categories they
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are searching (i.e. they consider the same images as being relevant when
searching for the same category), then the use of these previous labels can be
a precious boost to the learning strategies involved in the retrieval of these
three categories for later sessions.

Yet the problem is difficult. Since we have no other indication on the
subject of a session than the set of labels gathered during the feedback loop,
we have no a priori knowledge on which previous labels could be used for a
new session. This weakly supervised learning problem has not been widely
studied. The main development in this direction have been done regarding
the update of the similarity between images to match our perception of simi-
larity better. In the case of kernel based similarity, it can be done by learning
the similarity matrix [12, 6]. To our knowledge, there has been no work on
long-term distributed CBIR.

Thus, we propose to improve the source selection stage using long-term
learning: within a search session, paths leading to relevant images are learned
using relevance feedback. We intend to reuse previously learned paths for
later sessions, so as to speed up the time taken to interactively learn the
location of relevant images.

As there might be several categories of images the users can be looking for,
a single marker on each host is not sufficient to match the relevance of hosts
for all searched category. We propose to store P markers on each host, each
one being related to a category. This forms a vector of dimension P , called
mi for host i. We call the set of all markers {mi[c], i ∈ N} of the network N
associated with a category c a plane. Let us denote pc the plane related to
concept c, and P the total number of planes. The goal of long term learning
is then to find values for each vector, such that each component of the vector
reflects the relevance of the host regarding the corresponding category (as in
figure 2).

With such an architecture, the retrieval involves three learning problems:

1. Selecting the plane corresponding to the searched category.

2. For the selected plane, improving the marker values so as to match the
relevance of hosts.

3. Learning the relevance function.

The first and the third steps have to be done during a search session,
whereas the second step can be done over many sessions by many users.
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Figure 2: Example of network with 6 hosts: the user’s computer (a), 3 hosts with an image
collection (b, e and f) and two routing hosts (c and d). The system has P = 4 planes
available. For instance, agents using the fourth plane (bold values) have more chance to
be routed to host d and to retrieve images from host e.

4.1. Learning strategies

We focus on the first two learning problems. The third one is exactly the
same as for the previously presented system, and is not detailed here. The
selection of a plane and the learning of markers problems are interdependent.
In fact, it is only possible to select a relevant plane if the markers have been
learned and match the relevance of hosts regarding the considered categories.
But is is also only possible to learn the markers if a plane has been selected.
To tackle this dependence, we propose an iterative system that improves both
stages at every step of the relevance feedback.

Let us first consider the plane selection, and suppose that markers have
been correctly learned over past sessions. We define a selection function ψs

that given a marker vector mi returns the component p corresponding to
category s:

ψs : R
P ′

→ R (3)

mi 7→mi[p]

To produce a function ψs, we assign a weight wj, 0 ≤ j ≤ P to each
component of the markers vector space. The component p is sampled using
the multinomial law M(1;w1, ..., wP ). As we have no a priori about which
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component is relevant to the searched category, we initialized the weights
to 1/P . We then propose to learn the weights wj thanks to the relevance
feedback loop. Each time the user labels an image retrieved using the plane
p, we update wp as follows:

wp ← wp + ε(u− wp) (4)

Where u is as defined in 3.3, and ε is the learning rate. A new selection
function is sampled each time an agent is launched in order to explore dif-
ferent planes before focusing on the most relevant. The learning rate is set
to ensure convergence of the selection within a few iterations of relevance
feedback.

Let us now consider the learning of markers, and suppose the relevant
plane has been selected. As we have only one value per host, we have an
optimization problem similar to the one presented in section 3 (see equation
2). Thus, we can use the same reinforcement rules so as to match the values
of the selected plane with the relevance of the corresponding hosts regarding
the searched category. The only difference with the previous system is that
the markers are now updated over several sessions (issued by different users),
improving the approximate relevance of the hosts.

4.2. Relevance feedback detail

The detail of an iteration of the relevance feedback loop can be described
as follows:

1. Let A(n) be the training set of images {xj}n and their
respective labels {yj}n at iteration n.

2. A selection function ψA(n) is generated with the help of
A(n), that selects the plan p.

3. Thanks to p and A(n), the approximate relevance r̂i is
computed based on the markers mi[p] of plane p.

4. A relevance function fA(n) is trained upon A(n).

5. fA(n) and the approximate relevance r̂i are used to se-
lect I images {xj}n+1, such that the number of images
retrieved from i is proportional to r̂i.

6. The next training set is defined by A(n + 1) = A(n) ∪
{xj, yj}n+1, where yj are the labels given by the user to
the retrieved images xj.
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At each step of the relevance feedback, all the three problems (namely
the selection of plane, the reinforcement of markers and the learning of the
relevance function) are improved. The long-term improvement comes from
the reinforcement of the markers mi[p] over several session, leading to a better
approximation of the relevance of hosts. This improves the source selection
stage of the distributed retrieval problem.

5. Theoretical Aspects

The three learning problems involved in our system are entangled, since
they are needed to perform a single iteration of the relevance feedback loop.
Moreover, the searched categories tend to a competitive specialization of the
available planes due to the lack of prior knowledge on the location of cat-
egories. Thus, the overall dynamics are very complex. However, we can
theoretically study the simpler case of a single plane used for a single cate-
gory. In that case, we can show that the system converges to the reinforce-
ment of paths leading to the relevant images regarding the category, with a
close relation to the approximate relevance of hosts. We derive the following
theorem:

Theorem 1. Let mi(n) be the marker of host i at time n, then, it converges
in probability to E[mi]:

∀ε, ∀δ,∃N | ∀n ≥ N ⇒ P (|mi(n)− E[mi(n)]| > ε) < δ (5)

To prove the theorem, we start by using Markov inequality:

∀∆ > 0, P (Y > ∆) ≤
E[Y ]

∆
(6)

on variable err defined by :

err = |mi(n)− E[mi(n)]| (7)

then

∀ε, P (err > ε) ≤
E[err]

ε
(8)

≤
E[mi(n)− E[mi(n)]]

ε
(9)

≤
E[αn−1mi(0) +

∑n−1
0 αn−1−k

(

βai(k) + γui(k)
)

− E[mi(n)]]

ε
(10)
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≤
αn−1mi(0) +

∑n−1
0 αn−1−k

(

βE[ai] + γE[ui]
)

− E[mi(n)]

ε
(11)

We remark that

∀n,
n−1
∑

0

αn−1−k <
1

1− α
(12)

thus

P (err > ε) <
αn−1mi(0) + βE[ai]+γE[ui]

1−α
− E[mi(n)]

ε
(13)

From equation 2, we can express E[mi(n)] as:

E[mi(n)] = αn−1mi(0) + βE[ai]
n−1
∑

0

αn−1−k + γE[ui]
n−1
∑

0

αn−1−k (14)

= αn−1mi(0) + βE[ai]
n−1
∑

0

αk + γE[ui]
n−1
∑

0

αk (15)

= αn−1mi(0) + (
1− αn−2

1− α
)(βE[ai] + γE[ui]) (16)

Replacing the expression of E[mi(n)], we obtain:

P (err > ε) < αn−2βE[ai] + γE[ui]

ε(1− α)
(17)

then, ∀δ, one can always choose N such that:

αN−2 <
ε(1− α)

βE[ai] + γE[ui]
δ (18)

it follows that ∀n > N :

P (err > ε) < αN−2βE[ai] + γE[ui]

ε(1− α)
(19)

P (err > ε) < δ (20)

Thus we have shown that:
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lim
n→∞

P
(

mi(n) =
βE[ai] + γE[ui]

1− α

)

= 1 (21)

We can also express the approximate relevance of host i using ui. In fact,
as the approximate relevance is the ratio of positive labels over the total
number of label from i, it is directly equal to E[ui]. Thus, using equation
21 for the special case β = 0, the probability of movement after a sufficient
evolution of all markers is:

Ps→i =
mi

∑

k∈destmk

(22)

≈
γE[ui]

1− α

1− α
∑

k∈destE[uk]
(23)

≈
E[ui]

∑

k∈destE[uk]
(24)

Which is a normalized value of the relevance of host i. As many agents
are launched (with the goal of retrieving a fixed number of images), the total
number of images retrieved has a distribution over the hosts proportional to
their relevance. Hence, the higher probability of retrieving images is from
the most relevant hosts.

6. Experiments

In the hereby section, we present experiments made on custom networks
of computers hosting images taken from the TrecVid’05 1 keyframes dataset.
These networks have a low connectivity, which is also often the case of real
world peer-to-peer networks. These experiments aim at testing the inter-
session system. A comparative experiment of the intra-session system (which
measures the gain of using the location of the relevant data) can be found in
[16]. We first introduce the setup used for the experiments, and then evaluate
the system’s overall performances. We further investigate the dynamics of
our system.

1see http://www-nlpir.nist.gov/projects/tv2005/tv2005.html
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6.1. Experimental setup

The dataset used consists in about 70000 images taken from the TrecVid’05
challenge. Images are extracted from videos of TV shows and are classified as
various categories such as objects (bus, airplanes, ...), scenes (mountains, ur-
ban, ...), or more abstract concepts (explosion and fire, entertainment, charts,
...). The features we use consist in vectors containing 32 bins of colors and
32 bins of textures as described in [16].

We set two different configurations for our experiments, with different
networks and category distribution. The first setup, noted A, tests the
performances of the system. The second setup, noted B, investigates the
evolution of the markers.

Setup A

Setup A is made of five hosts. The first computer is the starting point of
the query, where agents are launched and retrieved. The four other computers
are hosting image collections. Their contents are chosen so as to be visually
similar. Only 10 categories are used for this experiment.

The parameters of this setup are as follows :

• For each retrieval session, feedback loops are conducted until 100 labels
are gathered.

• At each new retrieval session, the search category is randomly selected.
In total, 70 search sessions are made for each category.

• At each feedback loop, 8 agents are launched, with the goal of retrieving
2 images.

• 8 planes are used.

There are 10 categories in this setup, but as there are only four hosts, we
assume that 8 planes are sufficient to match the distribution of the categories
over the network. Hence, a plane might well be associated with two different
categories having exactly the same distribution on the network.

Setup B

Setup B consists in only three hosts containing an image collection, plus
the computer initiating the queries. Three categories, namely airplanes, maps

14



and explosion-fire, are used as search categories and each is hosted on a spe-
cific computer. These categories do not share any image, hence no confusion
about the location of the category can be made while retrieving a positive
label. A fourth set contains 4000 images from the category entertainment,
which has major visual variations in its content, and thus could be visually
associated with any of the other categories. It is used as additive noise to the
specialization of the categories to reflect the difficulties to find the relevant
images in a collection containing varying topics. It is uniformly distributed
among the three other hosts.

For this setup, parameters are the following :

• For each retrieval session, feedback loops are conducted until 100 labels
were gathered.

• At each new retrieval session, the search category is randomly selected.
In total, 70 search sessions are made for each category.

• At each feedback loop, 8 agents are launched, with the goal of retrieving
2 images.

• 6 planes are used.

As there are only three hosts, each one hosting a single searchable cat-
egory, we assume 6 planes are sufficient to match the distribution of the
categories.

6.2. Overall performances

In this test, we evaluate the overall performances of the system. For this
purpose, we use the setup A. At the end of each session, we measure the
recall on the images retrieved (number of relevant images retrieved over the
number of available relevant images). Results are shown on figure 3, and
compared to results obtained without using long-term learning, as described
in [16].

We can see a significant improvement as high as 100% of the recall due
to the better learning of the localizations of the categories. The complexity
of the category (which can be evaluated by the absolute value of the recall)
has no effect over the improvement of the long-term learning.
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Figure 3: Recall obtained for the experiments of setup A. The long-term improves the
recall for all categories by a significant margin.

6.3. Markers evolution

In order to analyze the system better, we measure the evolution of the
markers during the search sessions using setup B. We first compute the
average probability over all search sessions of each plane to lead to one of
the three destinations. Results are shown on figure 4. As one can see, the
planes are specialized to one destination. For instance, the first plane has a
higher probability to lead to host one, while the second plane has a higher
probability to lead to host 3. As the values of these probabilities are clearly
above 0.5, we consider the learning of the localization as successful.

We then observe the evolution over time of the probabilities of movement
by plotting them at the end of each session. On figure 5, we introduce a
visualization where each mark shows the probability of movement of the
corresponding plane, projected on three axes given the following equation:

(xj, yj) = (
2

∑

i=0

mi[j] · cos(
i · 2π

3
),

2
∑

i=0

mi[j] · sin(
i · 2π

3
)) (25)

With (xj, yj) being the coordinate of the considered mark.
As seen on figure 5, some planes are specialized during all sessions (for

instance plane 1), while some migrate their specialization from one host to
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Figure 4: Average of the probability of leading to each host for each plane in setup B. For
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Figure 5: Distribution of the markers on the three hosts at the end of each session in
setup B. Each plane has specialized towards a specific destination for the major part of
the experiment.
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another (for instance, plane 3), explaining their lower average value on figure
4.

We then investigate the dynamics of the markers evolution. for that
purpose, we plot the value of a marker on a particular host at an instant
t + 1 against its value at time t. Such plots are shown on figure 6 for the
three hosts.

We can see that the evolution are close to the diagonal, which means that
changes are smooth. There are oscillations around a fixed point (for instance
(0.8, 0.8) for the first plane on the first host), proving experimental stability
of the association between planes and markers. Some planes (namely 3 and
5) take a longer time to reach a stable association, but end oscillating around
a high probability value on one host.

7. Conclusion

In this article, we introduced an application of swarm intelligence to dis-
tributed content based image retrieval. The hereby presented system relies
on mobile agents with ant-like behavior for optimizing their route through
the network in search of relevant images. A relevance feedback loop is used
to improve both the relevance function and the paths to relevant image col-
lections. We tackle the problem of using previous search sessions to improve
future sessions by adding several markers on the hosts, each one being asso-
ciated with a category. This multiple markers strategy raises a three layered
learning problem, namely:

1. Selecting the relevant set of markers regarding the searched category.

2. Optimizing the selected markers so as to match the distribution of
relevant images.

3. Learning the relevance function.

As these problems are interdependent, the resulting system has complex
dynamics. We introduced new learning rules dealing with this complexity.
Theoretical results on the convergence of these rules have been derived for a
simple case.

We also carried out experiments on custom networks hosting images taken
from the TrecVid’05 dataset. The long-term learning strategy results in
a high improvement over classical distributed CBIR. We investigated the
evolution of the markers, and showed that the association of a plane with
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(a) Evolution of the markers between each sessions for host 1. Marker of the first
plane converges to (0.8, 0.8) and oscillates around this point, whereas other markers
converge and oscillate around (0.1, 0.1).
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(b) Evolution of the markers between
each sessions for host 2. Markers of
the planes 3, 4 and 5 converge slowly to
(0.8, 0.8).
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(c) Evolution of the markers between
each sessions for host 3. Markers
of planes 2 and 6 converge towards
(0.8, 0.8).

Figure 6: Evolution of of markers of the six planes for the three hosts. For each of these
hosts, one or more plane converges to (0.8, 0.8) and oscillate around this point.
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a category was correctly learned. Furthermore, we found these associations
are stable and the transitions are smooth.

Perspectives on this work include testing on web-scale networks. The
challenges of these large networks is on one hand the scaling of the reinforce-
ment based learning algorithm (despite ACO has been shown to scale well).
On the other hand, it is necessary to keep the system performing in real-time,
which is needed for the relevance feedback scheme.
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