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Abstract

In this note, we study arbitrarily vertex-partitionable balloons. In particular, we show that

an online arbitrarily vertex-partitionable balloon has maximum degree at most 5. Moreover,

we exhibit some infinite families of online and recursively vertex-partitionable balloons with

four and five branches.

1 Preliminaries

In this note, the specific class of balloons is studied:

Definition 1 We denote by B(b1, . . . , . . . , bk) the graph of order 2 +
∑

1≤i≤k bi consisting of two
vertices r1, r2, with k vertex-disjoint paths P1, . . . , Pk of order b1, . . . , bk joining r1 to r2. The graph
B(b1, . . . , . . . , bk) is called a k-balloon with roots r1 and r2 and branches P1, . . . , Pk.

We will also need the following definition.

Definition 2 We denote by PB(b1, . . . , bi, . . . , bj , . . . , bk) the partial k-balloon with branches of

sizes b1, . . . , bk and roots r1, r2 where the branches denoted bi are not adjacent to r1 and the ones
denoted bj are not adjacent ro r2.

Let n, τ1, . . . , τk be positive integers such that
∑

1≤i≤k τi = n. Then τ = (τ1, . . . , τk) is called a
decomposition of n.

We study the problem of partitioning the vertex set of graphs according to certain conditions. The
following definitions have been introduced in [1], [4] and [3], respectively.

Definition 3 Let G be a connected graph on n vertices.

• G is said to be arbitrarily vertex-partitionable (AP for short) if for every decomposition
τ = (τ1, . . . , τk) of n, there exists a partition V1 . . . , Vk of V (G) such that each part Vi has
order τi and induces a connected subgraph of G.
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• G is said to be online arbitrarily vertex-partitionable (OLAP for short) if for every decompo-
sition τ = (τ1, . . . , τk) of n, there exists a partition V1 . . . , Vk of V (G) such that each part Vi

has order τi, induces a connected subgraph of G, and V (G) \ Vi induces an OLAP subgraph
of G.

• G is said to be recursively arbitrarily vertex-partitionable (RAP for short) if for every de-
composition τ = (τ1, . . . , τk) of n, there exists a partition V1 . . . , Vk of V (G) such that each
part Vi has order τi, and both Vi and V (G) \ Vi induce a RAP subgraph of G.

It is worth noting that every graph with a hamiltonian path is RAP, every RAP graph is OLAP,
every OLAP graph is AP, and every AP graph contains a (quasi)-perfect matching.

Observation 4 ([3]) Let B = B(b1, ..., bk) be an AP balloon with b1 ≤ ... ≤ bk. If n is odd, B
contains at most three branches of odd size. If n is even, B contains at most two branches of odd
size.

Lemma 5 ([2]) Let B(b1, ..., bk) be an AP balloon with b1 ≤ ... ≤ bk. Then for each i ≤ k we
have 2bi ≥

∑
j<i bj.

2 OLAP balloons have maximum degree at most 5

It is shown in [3] that every RAP balloon has maximum degree at most 5. We show that this holds
as well for OLAP balloons.

Theorem 6 Let G be an OLAP k-balloon. Then k ≤ 5.

Proof The proof is by contradiction. Let G be a minimum counterexample to the theorem: G is
an OLAP k-balloon (k ≥ 6) with least possible order.

For each λ < n, it is possible to find a subset of vertices Vλ with |Vλ| = λ, G[Vλ] is connected, and
G[V \ Vλ] is OLAP. Since by the minimality of G, G′ = G[V \ Vλ] cannot be a partial k-balloon
(otherwise adding an edge to G′ would provide an OLAP k-balloon with order strictly less than
G), for each λ, one of the following conditions must be fulfilled:

1. G[V \ Vλ] is a k′-balloon with k′ = k − 1 (i.e. Vλ is a branch of G), or

2. G[V \ Vλ] is a path (i.e. Vλ consists of a root of G together with k − 2 branches), or

3. G[V \Vλ] is an OLAP caterpillar (i.e. Vλ consists of a root of G together with k−2 branches
but one vertex), or

4. G[V \Vλ] is the tripode T3(2, 4, 6) (i.e. Vλ consists of a root of G together with k−2 branches
but two vertices of the same branch)

We claim that G has branches of sizes respectively 1, 2, 3, 4, 5 and 6. We show this using
contradiction. Let λ ∈ {1, 2, 3, 4, 5, 6} and suppose there is no branch of size λ in G.

• λ ∈ {1, 2, 3}: for any choice of Vλ, G[V \Vλ] is either a partial k-balloon or a tree with a vertex
of degree 4 (since at most two branches can be completely included in Vλ), a contradiction.

• λ = 4: similarly as in the previous case, for any choice of Vλ, G[V \ Vλ] is either a partial
k-balloon or a tree with a vertex of degree 3. By Observation 4, G[V \ Vλ] cannot be a
caterpillar, thus it is T3(2, 4, 6) and G = B6(1, 1, 1, 2, 4, 6), a contradiction since G has a
branch of size 4.
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• λ = 5: by the previous cases we know that G has branches of sizes 1, 2, 3 and 4. G[V \ Vλ]
cannot be a path since by Observation 4, five vertices cannot cover four branches and a root.
If G[V \Vλ] is an OLAP caterpillar, then necessarily k = 6, the caterpillar is Cat(4, 5) and G

contains three branches of size 1: G = B6(1, 1, 1, 2, 3, 4). But then following Observation 4,
G is not OLAP. Finally, if G[V \ Vλ] is T3(2, 4, 6), Vλ must either totally cover the branch of
size 3, or the branch of size 2 plus a vertex of the one of size 3. But then it is only possible
to totally cover two branches, and the remaining part has a vertex of degree at least 4 and
is not T3(2, 4, 6).

• λ = 6: by the previous cases we know that G has branches of sizes 1, 2, 3, 4 and 5. Now
suppose there is one additional branch bi (i ≤ 6) such that bi ≤ 5. By Lemma 5 there can
be at most one such additional branch, and then bi = 1. Thus G = Bk(1, 1, 2, 3, 4, 5, ...). But
now the only potential choice for Vλ would be the three smallest branches, a root and one
additional vertex. If k > 6, G[V \Vλ] is a tree with a vertex of degree at least 4, which is not
OLAP. Otherwise it is T3(2, 4, 5), which is not OLAP either. Thus, G = Bk(1, 2, 3, 4, 5, b6, ...)
with b6 ≥ 7. But again for λ = 6 it is not possible to decompose it. Thus G is not OLAP, a
contradiction.

So, G = Bk(1, 2, 3, 4, 5, 6, ...). But using Lemma 5, G is not AP, a contradiction. �

3 Families of OLAP balloons

In this section, we show that there are infinitely many OLAP k-balloons, for each k ≤ 5. The case
where k ≤ 3 is trivial since then any k-balloon has a hamiltonian path and is therefore RAP.

3.1 OLAP 4-balloons

Proposition 7 B(1, 1, n,m) is OLAP iff at most one of n and m is odd.

Proof Easily partitionable for λ = 1, 3. For λ = 2, one can prove by induction that B(1, 1, 2k,m)
and B(1, 1, n, 2k) is OLAP. �

Proposition 8 Let a ≤ b ≤ c be such that Cat(b + 1, a + c + 2) or Cat(c + 1, a + b + 2) or
Cat(a + 1, b + c + 2) is OLAP. Then B(1, a, b, c) is OLAP.

Proof These caterpillars are spanning subgraphs of B(1, a, b, c). �

Proposition 9 B(1, 2, 2, k), k ≥ 3, is OLAP iff k ≡ 0, 1 mod 3.

Proof Easily partitionable for λ 6= 3. If k ≡ 0, 1 mod 3, also OK for λ = 3 because of Cat(3, k+1)
which is OLAP.

Now suppose k ≡ 2 mod 3. For λ = 3, for the balloon to be partitionable we should have either:

• PB(1, 2, 2, k − 3) OLAP.

• PB(1, 2, 2, a, b) (a + b = k − 3) OLAP

But in both cases these partial balloons are not (3, . . . , 3)-partitionable. �

Proposition 10 B(1, 2, 3, k), k ≥ 3, is OLAP.
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Proof Straightforward. �

Proposition 11 PB(2, 2, 2, k), is OLAP iff k ≡ 0 mod 3.

Proof By induction on k. �

Observation 12 B(2, 2, 2, 3), B(2, 2, 3, 4), B(2, 2, 3, 6), B(2, 2, 3, 18), B(2, 2, 4, 6), B(2, 3, 4, 6),
are OLAP.

3.2 OLAP 5-balloons

The proof of the following result is omitted.

Proposition 13 Let G be a graph of Table 1. Then G is OLAP.

B(1, 1, 1, 2, k) with k ≡ 0, 4 mod 6
B(1, 1, 1, 4, k) with k ∈ {6, 8, 10, 18}
B(1, 1, 1, 6, k) with k ∈ {8, 10, 12, 14}

B(1, 1, 1, 8, 10)
B(1, 1, 2, 2, 3)
B(1, 1, 2, 2, 6)

B(1, 1, 2, 3, k) with k ≡ 0 mod 2
B(1, 1, 2, 4, 6)

B(1, 1, 2, 5, k) with k ≡ 0, 4 mod 6
B(1, 1, 3, 4, 6)
B(1, 1, 4, 4, 6)
B(1, 2, 2, 3, 4)
B(1, 2, 2, 4, 6)
B(1, 2, 3, 4, 5)
B(1, 2, 3, 4, 6)
B(1, 2, 3, 4, 7)
B(2, 2, 3, 4, 6)

Table 1: Some OLAP 5-balloons

4 Families of RAP balloons

In this section, we show that there are infinitely many RAP k-balloons, for each k ≤ 5.

4.1 RAP 4-balloons

Proposition 14 PB(1, 1, 1, k), B(1, 1, 1, k), PB(1, 1, 3, k) and B(1, 1, 3, k) are RAP iff k is even.

Proof If k is odd, they are not AP by Observation 4. On the other hand, Cat(2, k + 3) is
a spanning subgraph of PB(1, 1, 1, k)/B(1, 1, 1, k) and Cat(2, k + 5) is a spanning subgraph of
PB(1, 1, 3, k)/B(1, 1, 3, k). These caterpillars are RAP when k is even. �

Proposition 15 PB(1, 1, 2, k) is RAP for any k ≥ 1.
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Proof Observe that it is true for k ≤ 3 since Cat(3, 5) and Cat(4, 5) are spanning subgraphs of
PB(1, 1, 2, 1), PB(1, 1, 2, 2) and PB(1, 1, 2, 3), respectively.

Now, suppose the proposition is true for all i ≤ k − 1 and consider PB(1, 1, 2, k). For λ ≤ 4,
PB(1, 1, 2, k) can be partitioned into Pλ and Pn−λ. For λ = 5, it can be partitioned into Cat(2, 3)
and Pk+1. For λ = 6, it can be partitioned into B(1, 1, 2) and Pk. Finally, for λ ≥ 7, it can be
partitioned into PB(1, 1, 2, λ− 6) and Pk−λ+6, the first being RAP by induction hypothesis. �

Proposition 16 PB(1, 2, 2, k) and B(1, 2, 2, k) are RAP iff k ≡ 1, 2 mod 3.

Proof On the one hand, observe that Cat(3, k + 4) is a spanning subgraph of PB(1, 2, 2, k) and
B(1, 2, 2, k), which is RAP when k ≡ 1, 2 mod 3. On the other hand, if k ≡ 0 mod 3, they are not
(3, . . . , 3)-partitionable. �

Proposition 17 PB(1, 2, 3, k) is RAP for any k ≥ 3.

Proof For any λ ≤ n
2

, PB(1, 2, 3, k) must be partitionable into two vertex-disjoint RAP subgraphs
of orders λ and n− λ.

• λ = 1: P1 + Pn−1

• λ = 2: P2 + Pn−2

• λ = 3: P3 + Pn−3

• λ = 4: P4 + Pk+4

• λ = 5: P5 + Pk+3

• λ = 6: P6 + Pk+2

• λ = 7: Cat(3, 4) + Pk+1

• λ = 8: B(1, 2, 3) + Pk

Note that by the previous cases, the proposition is true for n ≤ 16 (i.e. k ≤ 8).

Now, let λ ≥ 9, suppose it is true for any i ≤ k − 1, and consider PB(1, 1, 2, 3, k). Now one can
partition the graph into Pn−λ and PB(1, 2, 3, λ− 8), which is RAP by induction hypothesis. �

4.2 RAP 5-balloons

Proposition 18 PB(1, 1, 2, 3, 2k) is RAP for any k ≥ 0.

Proof For any λ ≤ n
2

, PB(1, 1, 2, 3, 2k) must be partitionable into two vertex-disjoint RAP sub-
graphs of orders λ and n− λ.

• λ = 1: P1 + B(1, 2, 3, 2k) (RAP by Proposition 17)

• λ = 2: P2 + B(1, 1, 3, 2k) (RAP by Proposition 14)

• λ = 3: P3 + B(1, 1, 2, 2k) (RAP by Proposition 15)

• λ = 4: P4 + Cat(4, 2k + 1)

• λ = 5: Cat(2, 3) + P2k+4
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• λ = 6: P6 + Cat(2, 2k + 1)

• λ = 7: Cat(3, 4) + P2k+2

Note that by the previous cases, the proposition is true for n ≤ 14 (i.e. k ≤ 2).

Now, let λ ≥ 8, suppose it is true for any i ≤ k − 1, and consider PB(1, 1, 2, 3, 2k).

• λ even:

– if λ ≤ 2k, one can partition the graph into Pλ and PB(1, 1, 2, 3, 2k − λ) by placing Pλ

at the end of the last branch, and use the induction hypothesis.

– if λ > 2k, then n − λ ≤ 7 (since both 2k and λ are even), thus one can use the cases
where λ ≤ 7.

• λ odd. Then partition the graph into PB(1, 1, 2, 3, λ− 9) (note that it is RAP by induction
hypothesis since λ− 9 is even and positive) and P2k−λ+9.

�

This proves the existence of an infinite family of RAP 5-balloons:

Corollary 19 B(1, 1, 2, 3, 2k) is RAP for any k ≥ 1.

In [3], it is shown that B(1, 1, 1, 2, 4) and B(1, 1, 2, 2, 3) are RAP.

Proposition 20 Other RAP 5-balloons are B(1, 2, 2, 3, 4) and B(2, 2, 3, 4, 6).
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