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A note on online and recursively arbitrarily vertex-partitionable balloons

In this note, we study arbitrarily vertex-partitionable balloons. In particular, we show that an online arbitrarily vertex-partitionable balloon has maximum degree at most 5. Moreover, we exhibit some infinite families of online and recursively vertex-partitionable balloons with four and five branches.

Preliminaries

In this note, the specific class of balloons is studied:

) is called a k-balloon with roots r 1 and r 2 and branches P 1 , . . . , P k .

We will also need the following definition. Definition 2 We denote by P B(b 1 , . . . , b i , . . . , b j , . . . , b k ) the partial k-balloon with branches of sizes b 1 , . . . , b k and roots r 1 , r 2 where the branches denoted b i are not adjacent to r 1 and the ones denoted b j are not adjacent ro r 2 .

Let n, τ 1 , . . . , τ k be positive integers such that 1≤i≤k τ i = n. Then τ = (τ 1 , . . . , τ k ) is called a decomposition of n.

We study the problem of partitioning the vertex set of graphs according to certain conditions. The following definitions have been introduced in [1], [4] and [3], respectively.

Definition 3 Let G be a connected graph on n vertices.

• G is said to be arbitrarily vertex-partitionable (AP for short) if for every decomposition τ = (τ 1 , . . . , τ k ) of n, there exists a partition V 1 . . . , V k of V (G) such that each part V i has order τ i and induces a connected subgraph of G.

• G is said to be online arbitrarily vertex-partitionable (OLAP for short) if for every decomposition τ = (τ 1 , . . . , τ k ) of n, there exists a partition V 1 . . . , V k of V (G) such that each part V i has order τ i , induces a connected subgraph of G, and V (G) \ V i induces an OLAP subgraph of G.

• G is said to be recursively arbitrarily vertex-partitionable (RAP for short) if for every decomposition τ = (τ 1 , . . . , τ k ) of n, there exists a partition V 1 . . . , V k of V (G) such that each part V i has order τ i , and both

V i and V (G) \ V i induce a RAP subgraph of G.
It is worth noting that every graph with a hamiltonian path is RAP, every RAP graph is OLAP, every OLAP graph is AP, and every AP graph contains a (quasi)-perfect matching. 

OLAP balloons have maximum degree at most 5

It is shown in [START_REF] Baudon | Recursively arbitrarily vertex-decomposable graphs[END_REF] that every RAP balloon has maximum degree at most 5. We show that this holds as well for OLAP balloons.

Theorem 6 Let G be an OLAP k-balloon. Then k ≤ 5.

Proof The proof is by contradiction. Let G be a minimum counterexample to the theorem: G is an OLAP k-balloon (k ≥ 6) with least possible order.

For each λ < n, it is possible to find a subset of vertices

V λ with |V λ | = λ, G[V λ ] is connected, and G[V \ V λ ] is OLAP. Since by the minimality of G, G ′ = G[V \ V λ ]
cannot be a partial k-balloon (otherwise adding an edge to G ′ would provide an OLAP k-balloon with order strictly less than G), for each λ, one of the following conditions must be fulfilled:

1. G[V \ V λ ] is a k ′ -balloon with k ′ = k -1 (i.e. V λ is a branch of G), or 2. G[V \ V λ ] is a path (i.e. V λ consists of a root of G together with k -2 branches), or 3. G[V \ V λ ] is an OLAP caterpillar (i.e. V λ consists of a root of G together with k -2 branches but one vertex), or 4. G[V \ V λ ] is the tripode T 3 (2, 4, 6) (i.e. V λ consists of a root of G together with k -2

branches but two vertices of the same branch)

We claim that G has branches of sizes respectively 1, 2, 3, 4, 5 and 6. We show this using contradiction. Let λ ∈ {1, 2, 3, 4, 5, 6} and suppose there is no branch of size λ in G.

• λ ∈ {1, 2, 3}: for any choice of V λ , G[V \V λ ] is either a partial k-balloon or a tree with a vertex of degree 4 (since at most two branches can be completely included in V λ ), a contradiction.

• λ = 4: similarly as in the previous case, for any choice of V λ , G[V \ V λ ] is either a partial k-balloon or a tree with a vertex of degree 3. By Observation 4, G[V \ V λ ] cannot be a caterpillar, thus it is T 3 (2, 4, 6) and G = B 6 (1, 1, 1, 2, 4, 6), a contradiction since G has a branch of size 4.

• λ = 5: by the previous cases we know that G has branches of sizes 1, 2, 3 and 4. G[V \ V λ ] cannot be a path since by Observation 4, five vertices cannot cover four branches and a root.

If G[V \ V λ ] is an OLAP caterpillar, then necessarily k = 6, the caterpillar is Cat(4, 5) and G contains three branches of size 1:

G = B 6 (1, 1, 1, 2, 3, 4). But then following Observation 4, G is not OLAP. Finally, if G[V \ V λ ] is T 3 (2, 4, 6
), V λ must either totally cover the branch of size 3, or the branch of size 2 plus a vertex of the one of size 3. But then it is only possible to totally cover two branches, and the remaining part has a vertex of degree at least 4 and is not T 3 (2, 4, 6).

• λ = 6: by the previous cases we know that G has branches of sizes 1, 2, 3, 4 and 5. Now suppose there is one additional branch b i (i ≤ 6) such that b i ≤ 5. By Lemma 5 there can be at most one such additional branch, and then b i = 1. Thus G = B k (1, 1, 2, 3, 4, 5, ...). But now the only potential choice for V λ would be the three smallest branches, a root and one additional vertex.

If k > 6, G[V \ V λ ]
is a tree with a vertex of degree at least 4, which is not OLAP. Otherwise it is T 3 (2, 4, 5), which is not OLAP either. Thus, G = B k (1, 2, 3, 4, 5, b 6 , ...) with b 6 ≥ 7. But again for λ = 6 it is not possible to decompose it. Thus G is not OLAP, a contradiction.

So, G = B k (1, 2, 3, 4, 5, 6, ...). But using Lemma 5, G is not AP, a contradiction.

Families of OLAP balloons

In this section, we show that there are infinitely many OLAP k-balloons, for each k ≤ 5. The case where k ≤ 3 is trivial since then any k-balloon has a hamiltonian path and is therefore RAP.

OLAP 4-balloons

Proposition 7 B(1, 1, n, m) is OLAP iff at most one of n and m is odd.

Proof Easily partitionable for λ = 1, 3. For λ = 2, one can prove by induction that B(1, 1, 2k, m) and B(1, 1, n, 2k) is OLAP.

Proposition 8 Let a ≤ b ≤ c be such that Cat(b + 1, a + c + 2) or Cat(c + 1, a + b + 2) or Cat(a + 1, b + c + 2) is OLAP. Then B(1, a, b, c) is OLAP.
Proof These caterpillars are spanning subgraphs of B(1, a, b, c).

Proposition 9 B(1, 2, 2, k), k ≥ 3, is OLAP iff k ≡ 0, 1 mod 3.
Proof Easily partitionable for λ = 3. If k ≡ 0, 1 mod 3, also OK for λ = 3 because of Cat(3, k + 1) which is OLAP. Now suppose k ≡ 2 mod 3. For λ = 3, for the balloon to be partitionable we should have either:

• P B(1, 2, 2, k -3) OLAP. • P B(1, 2, 2, a, b) (a + b = k -3) OLAP
But in both cases these partial balloons are not (3, . . . , 3)-partitionable.

Proposition 10 B(1, 2, 3, k), k ≥ 3, is OLAP.
Proof Observe that it is true for k ≤ 3 since Cat(3, 5) and Cat(4, 5) are spanning subgraphs of P B(1, 1, 2, 1), P B(1, 1, 2, 2) and P B(1, 1, 2, 3), respectively. Now, suppose the proposition is true for all i ≤ k -1 and consider P B(1, 1, 2, k). For λ ≤ 4, P B(1, 1, 2, k) can be partitioned into P λ and P n-λ . For λ = 5, it can be partitioned into Cat(2, 3) and P k+1 . For λ = 6, it can be partitioned into B(1, 1, 2) and P k . Finally, for λ ≥ 7, it can be partitioned into P B(1, 1, 2, λ -6) and P k-λ+6 , the first being RAP by induction hypothesis. Proof For any λ ≤ n 2 , P B(1, 2, 3, k) must be partitionable into two vertex-disjoint RAP subgraphs of orders λ and nλ.

• λ = 1: P 1 + P n-1

• λ = 2: P 2 + P n-2

• λ = 3: P 3 + P n-3

• λ = 4: P 4 + P k+4

• λ = 5: P 5 + P k+3

• λ = 6: P 6 + P k+2

• λ = 7: Cat(3, 4) + P k+1

• λ = 8: B(1, 2, 3) + P k Note that by the previous cases, the proposition is true for n ≤ 16 (i.e. k ≤ 8). Now, let λ ≥ 9, suppose it is true for any i ≤ k -1, and consider P B(1, 1, 2, 3, k). Now one can partition the graph into P n-λ and P B(1, 2, 3, λ -8), which is RAP by induction hypothesis. Note that by the previous cases, the proposition is true for n ≤ 14 (i.e. k ≤ 2). Now, let λ ≥ 8, suppose it is true for any i ≤ k -1, and consider P B(1, 1, 2, 3, 2k).

RAP 5-balloons

• λ even:

if λ ≤ 2k, one can partition the graph into P λ and P B(1, 1, 2, 3, 2kλ) by placing P λ at the end of the last branch, and use the induction hypothesis.

if λ > 2k, then nλ ≤ 7 (since both 2k and λ are even), thus one can use the cases where λ ≤ 7.

• λ odd. Then partition the graph into P B(1, 1, 2, 3, λ -9) (note that it is RAP by induction hypothesis since λ -9 is even and positive) and P 2k-λ+9 .

This proves the existence of an infinite family of RAP 5-balloons:

Corollary 19 B(1, 1, 2, 3, 2k) is RAP for any k ≥ 1.

In [START_REF] Baudon | Recursively arbitrarily vertex-decomposable graphs[END_REF], it is shown that B(1, 1, 1, 2, 4) and B(1, 1, 2, 2, 3) are RAP.

Proposition 20 Other RAP 5-balloons are B(1, 2, 2, 3, 4) and B(2, 2, 3, 4, 6).

Observation 4 (

 4 [3]) Let B = B(b 1 , ..., b k ) be an AP balloon with b 1 ≤ ... ≤ b k . If n is odd, B contains at most three branches of odd size. If n is even, B contains at most two branches of odd size. Lemma 5 ([2]) Let B(b 1 , ..., b k ) be an AP balloon with b 1 ≤ ... ≤ b k . Then for each i ≤ k we have 2b i ≥ j<i b j .

  Proposition 18 P B(1, 1, 2, 3, 2k) is RAP for any k ≥ 0.Proof For any λ ≤ n 2 , P B(1, 1, 2, 3, 2k) must be partitionable into two vertex-disjoint RAP subgraphs of orders λ and nλ.• λ = 1: P 1 + B(1, 2,3, 2k) (RAP by Proposition 17) • λ = 2: P 2 + B(1, 1, 3, 2k) (RAP by Proposition 14) • λ = 3: P 3 + B(1, 1, 2, 2k) (RAP by Proposition 15) • λ = 4: P 4 + Cat(4, 2k + 1) • λ = 5: Cat(2, 3) + P 2k+4 • λ = 6: P 6 + Cat(2, 2k + 1) • λ = 7: Cat(3, 4) + P 2k+2

  Proposition 16 P B(1, 2, 2, k) and B(1, 2, 2, k) are RAP iff k ≡ 1, 2 mod 3.Proof On the one hand, observe that Cat(3, k + 4) is a spanning subgraph of P B(1, 2, 2, k) and B(1, 2, 2, k), which is RAP when k ≡ 1, 2 mod 3. On the other hand, if k ≡ 0 mod 3, they are not (3, . . . , 3)-partitionable.

	Proposition 17 P B(1, 2, 3, k) is RAP for any k ≥ 3.

OLAP 5-balloons

The proof of the following result is omitted.

Proposition 13 Let G be a graph of Table 1. Then G is OLAP. 

Families of RAP balloons

In this section, we show that there are infinitely many RAP k-balloons, for each k ≤ 5. 

RAP 4-balloons