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DUAL LOGARITHMIC RESIDUES AND
FREE COMPLETE INTERSECTIONS

MICHEL GRANGER AND MATHIAS SCHULZE

ABSTRACT. We introduce a dual logarithmic residue map for hypersurface sin-
gularities and use it to answer a question of Kyoji Saito. Our result extends a
theorem of Lé and Saito by an algebraic characterization of hypersurfaces that
are normal crossing in codimension one. For free divisors, we relate the latter
condition to other natural conditions involving the Jacobian ideal and the nor-
malization. We suggest a generalization of the notions of logarithmic vector
fields and freeness for complete intersections. In the case of quasihomogeneous
complete intersection space curves, we give an explicit description.
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1. INTRODUCTION
In the landmark paper | |, Kyoji Saito introduced the modules of logarithmic

differential forms and of logarithmic vector fields along a reduced divisor D in a
complex manifold S. These algebraic objects contain deep geometric, topological,
and representation theoretic information on the singularities that is only partly
understood.

The notion of freeness of a divisor, defined in terms of these logarithmic mod-
ules, generalizes that of a normal crossing divisor (see Remark 1.4.(1) below). Free
divisors can be seen as the opposite extreme of isolated singularities: They have
maximal, in fact Cohen-Macaulay, singular loci. Classical examples of free divisors
include discriminants in the deformation theory of singularities (see for instance
[ , (3.19)], [ , 861, [ ]) and reflection arrangements and discriminants
of Coxeter groups (see [ , (3.19)], | ). More recent examples are dis-
criminants in certain prehomogeneous vector spaces (see | ). The freeness
property is closely related to the complement of the divisor being a K (m, 1)-space
(see | , (1.12)], | ]), although these two properties are not equivalent (see
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[ ]). Even in special cases, such as that of hyperplane arrangements, freeness
is not completely understood. For instance, Terao’s conjecture on the combina-
torial nature of freeness for arrangements is one of the central open problems in
arrangement theory.

Another interesting construction based on logarithmic modules has been given
much less attention: Generalizing classical residue constructions of Poincaré and
Leray, Saito introduced the residue of a logarithmic differential form. Logarithmic
residues of 1-forms are meromorphic functions on the normalization D of D. In
contrast, a holomorphic function on D can be considered as a so-called weakly
holomorphic function on D, that is, a function on the complement of the singular
locus Sing D of D, locally bounded near points of Sing D (see | , Thm. 4.4.15]).
While any such weakly holomorphic function is the residue of some logarithmic 1-
form, the image of the residue map might be strictly larger than the ring of weakly
holomorphic functions. The case of equality was related by Lé and Saito (see | ,
Lem. 2.13] and | ]) to a geometric, and to a purely topological property.

Theorem 1.1 (Lé-Saito). Let D be a reduced divisor in a complex manifold S.
Then the implications (1) < (2) = (3) hold true for the following statements:

(1) The local fundamental groups of S\D are Abelian.
(2) D is normal crossing in codimension 1.
(3) The residue of any logarithmic 1-form along D is weakly holomorphic.

While most constructions in Saito’s logarithmic theory and its generalizations
have a dual counterpart (for instance, restriction maps in arrangement theory), a
notion of a dual logarithmic residue associated to a vector field was not know to
the authors. The main motivation for this article was to construct such a dual log-
arithmic residue (see Section 3). This duality turns out to translate condition (3)
in Theorem 1.1 into the more familiar equality of the Jacobian ideal and the con-
ductor ideal of a normalization. This will lead to a proof of the missing implication
in Theorem 1.1.

Theorem 1.2. The implication (2) < (3) in Theorem 1.1 holds true.

Under the additional hypothesis that D is a free divisor, there are other algebraic
conditions equivalent to those in Theorem 1.1.

Theorem 1.3. Extend the list of statements in Theorem 1.1 as follows:

(4) The Jacobian ideal of D is reduced.

(5) D is Euler-homogeneous.

(6) D has a Cohen—Macaulay normalization.

(7) The Jacobian ideal of D equals the conductor ideal of a normalization.

Then (2) < (4) = (5). If D is a free divisor then (2) < (4) < ((6) and (7)).

Remark 1.4.

(1) Faber [ ] studied condition (4) in Theorem 1.3 and raised the following
question: Is any free divisor with reduced Jacobian ideal a normal crossing divisor?
Faber gave a positive answer for special cases including plane curves, hyperplane
arrangements, and divisors with Gorenstein Jacobian ideal. She reduced the general
to the irreducible case.

(2) Saito [ , (2.11)] proved the missing implication in Theorem 1.1 for plane
curves. If D is holonomic in codimension 1, this yields the general case by analytic
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triviality along logarithmic strata (see [ , 83]). However, for example, the
equation zy(x + y)(z + yz) = 0 defines a well-known free divisor which is not
holonomic in codimension 1.

(3) Saito | , (2.9) iii) < iv)] proved the equivalence of two conditions which
are stronger than (2) and (3) of Theorem 1.1, respectively: Let Dy,..., Dy denote
the local irreducible components of D at a point p € D. Then, in the strong version
of (2), self-intersections of Dy, ..., Dy in codimension 1 near p are excluded, while
in the strong version of (3), the residues are required to be sums of functions
on D1,...,D; near p, instead of on the corresponding normalizations D1, ..., Dy.
For example, the Whitney umbrella is irreducible and, in codimension 1, normal
crossing but not smooth due to self-intersection. However it is not free. Therefore,
it does not constitute a counter-example to the question in (1).

In the last Section 5, we study a natural generalization of freeness for complete
intersections. We define an analogue of the module of logarithmic vector fields and
describe it explicitly in the case of homogeneous complete intersection space curves
(see Proposition 5.5).

2. FREENESS AND JACOBIAN

In this section, we review Saito’s logarithmic modules, the relation of freeness
and Cohen—-Macaulayness of the Jacobian ideal, and the duality of maximal Cohen-
Macaulay fractional ideals. We switch to a local setup for the remainder of the
article.

Let D be a reduced divisor defined by #p = Og - h in the smooth complex
analytic space germ S = (C™,0). Recall Saito’s definition | , §1] of the Os-
modules of logarithmic differential forms and of vector fields. We abbreviate ©g :=
Der@(ﬁ’g) = Homﬁs (Q}g, ﬁs)

Definition 2.1 (Saito).
QP(log D) := {w € Q4(D) | dw € Q% (D)}
Der(—log D) := {6 € Og | dh(d) € Ip}
These modules are stalks of analogously defined coherent &’s-sheaves which are
normal: If : S\Sing D < S denotes the inclusion of the complement of the singular
locus of D then i,i*.% = . for any of the sheaves .% in Definition 2.1. It follows

that 6 € Der(—log D) if and only if ¢ is tangent to D at smooth points, and that
Q! (log D) and Der(—log D) are mutually dual and hence reflexive.

Definition 2.2. A reduced divisor D is called free if Der(—log D) is a free Og-
module.

In particular, normal crossing divisors are free. By definition, there is an exact
sequence

(2.1) 0 I+ ey Der(—log D) +——0

where the Fitting ideal ¢#p = ﬂg;l(ﬂb) is the Jacobian ideal of D. We shall
consider the singular locus Sing D of D equipped with the structure defined by
Fp, that is,

Osingp = Op/ Zp.
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The following fundamental result is a consequence of the sequence (2.1), the Hilbert—

Burch theorem (see [ , 81 Thm.] or [ , Prop. 2.4]), and the analytic

triviality lemma | , (3.5)].

Theorem 2.3. A divisor D is free if and only if it is smooth or Sing D is Cohen—

Macaulay of codimension 1. O
Using a theorem of Scheja | , Satz 5] one deduces the following result.

Theorem 2.4. Any D is free in codimension 1. ([

We denote the ring of meromorphic functions on D by .Zp.

Definition 2.5. A fractional ideal (on D) is a finite &p-submodule of .#p which
contains a non-zero divisor.

Lemma 2.6. ¢p is a fractional ideal.

Proof. 1t follows from the Jacobian criterion, Serre’s reducedness criterion, and
prime avoidance, that #p contains a non-zero divisor in Op. O

Corollary 2.7. A singular divisor D is free if and only if it is reduced and #p is
a mazimal Cohen—Macaulay module.

Proof. This follows from Theorem 2.3, Lemma 2.6, and the depth inequalities
depth(_#p) > min{depth(&p),depth(Op/_#p) + 1},
depth(0p/_#p) > min{depth(_#p) — 1,depth(p)},

resulting from the exact sequence

0 B4 Op Op/ #p —— 0. O

Proposition 2.8. The Op-dual of any fractional ideal 7 is again a fractional ideal
IV ={feup|f I COp}. The duality functor

—Y =Homg, (-, Op)

reverses inclusions. It is an involution on the class of maximal Cohen—Macaulay
fractional ideals.

Proof. See | , Prop. (1.7)]. O

3. DUAL RESIDUES

In this section, we develop the dual picture of Saito’s residue map and apply it
to find inclusion relations of certain natural fractional ideals and their duals.

Let 7: D — D denote the normalization of D. Then .#p = .#p and Op is the
ring of weakly holomorphic functions on D. Let

0P (log D) —2 0P @4, Mp

be Saito’s residue map | , §2] which is defined as follows: By [ , (1.1)], any
w € QP(log D) can be written as

dh
(3.1) =

h g g
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where £ € Q’g—l, n e QY and g € Os restricts to a non-zero divisor in &p. Then

£
(3.2) pp(w) = §|D
is well defined by | , (2.4)]. We shall abbreviate pp := p}, and denote by its
image by

Zp = pp(Q(log D)).

Using this notation, condition 3 in Theorem 1.1 becomes 0p = Zp.

FEzxzample 3.1.
(1) Let D = {zy = 0} be a normal crossing curve. Then < € Q(log D) and
d d
(x—l—y)ﬁ zda:—&—w—dy
x YT

shows that

dey _ v |
Pp\ 7 Cz4vylp

On the components D; = {x = 0} and Dy = {y = 0} of the normalization D =
D1 ][ Do, this function equals 1 and 0 respectively and is therefore not in &p. In
particular,
Ap =0p =0p, x Op, = Iy

since #p = (z,9),,, is the maximal ideal in &p = C{z,y}/(zy). This observation
will be generalized in Proposition 3.2.

(2) Conversely assume that Dy = {hy = 2 = 0} and Dy = {he = z + y™ = 0}
are two smooth irreducible components of D. Consider the logarithmic 1-form

yde —mxdy  _,. (dhy  dho 1 1

warym Y T he (log(D1 + D2)) (log D)
Its residue pp(w)|p, = y'~™|p, has a pole along D; N Dy unless m = 1. Thus, if
Op = Zp then Dy and Dy must intersect transversally.

(3) Assume that D contains D’ = Dy U Dy U D3 with Dy and D5 as in (1) and
D3 = {x —y = 0}. Consider the logarithmic 1-form

1 d d
w= : (m — y) € Q' (log D') c Q' (log D).
r—y T Y
Its residue p(w)|p, = *i‘Dl has a pole along D; N Dy N D3 and hence O C Zp.
Examples (2) and (3) are due to Saito (see [ , (2.9) iii) = iv)]) and will be

used in the proof of Theorem 1.2.
By definition, there is a short exact residue sequence
(3.3) 0—— QL —— Ql(log D) 2= %p — 0.

Applying Homg, (—, Os) to (3.3) gives an exact sequence
(3.4)

04— Exty, (Q'(log D), O5) +— Exty (%D, Os) +— O «— Der(—log D) +— 0
The right end of this sequence extends to the short exact sequence (2.1) and

(3.5) —V 2 Exty, (—, Os)
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by the change of rings spectral sequence
(3.6) Eg’q = Ext%D(—, Extqﬁs(ﬁp, Os)) :p> EXt%J;q(—, Os).

This motivates the following

Proposition 3.2. There is an exact sequence
(3.7)

0 «— Exty, (Q'(log D), Os) %Y,

oD

Og Der(—log D) +——0
such that op(0)(pp(w)) = dh(d)-pp(w). In particular, cp(©g) = Zp as fractional

ideals. Moreover, 75 = %p as fractional ideals.
Proof. The spectral sequence (3.6) applied to %Zp is associated with
RHomg, (Qf — Q'(log D), h: O — O5).
Expanding the double complex Homg, (25 — Q'(log D), h: O — Os), we obtain
the following diagram of long exact sequences:

(3.8)
0 0

Extgs (#p,0s) + Homeg (Qf, Os) + Homyg g (Q*(log D), Os) +———0

lo h h

Exty (%D, Os) + Home, (Q, Os) + Home (2 (log D), Os) —— 0

\a
Hom . (2%, Op) < Home (2 (log D), Op) ¢—2— Y, ¢ 0

0 +———— Ext, (' (log D), Os) < Extyp (%p, Os)

0

We can define a homomorphism o p from the upper left Homg, (2, Os) to the lower
right Z), by a diagram chasing process and we find that § € ©g = Homg, (2}, Os)
maps to
op(8) = (hd, pp' (=) € £}

and that (3.7) is exact. By comparison with the spectral sequence, we can check
that « is the change of rings isomorphism (3.5) applied to Zp, and that a0 op
coincides with the connecting homomorphism of the top row of the diagram, which
is the same as the one in (3.4).

Let pp(w) € Zp where w € Q*(log D). Following the definition of pp in (3.2),
we write w in the form (3.1). Then we compute

o5(8) (pp () =
(3.9) (il = an@) - 1o+ - L2 = n5) - po(e)
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which proves the first two claims.
For the last claim, we consider the diagram dual to (3.8):

0 0

0 — Homg 4 (05, Os) - Homg g (Der(—log D), Os) - Exte ( #p, Os)

h h lo

0 — Homg 4 (Os, Os) —» Homg g (Der(—log D), Os) - Exte ( #p, Os)

dhV

0 75 Homeg (©s, 0p) » Home g (Der(—log D), Op)

Js

EXt%S(/D, Os) ——0

As before, we construct a homomorphism p/, from the upper right Hom g (Der(—log D), Os)
to the lower left _# Y such that 3o p’, coincides with the connecting homomorphism
of the top row of the diagram, where (8 is the change of rings isomorphism (3.5)
applied to _#p. By the diagram, w € Q*(log D) = Hom g, (Der(— log D), Os) maps
to
(@) = (o, dh™ (=))p € 7Y
which gives an exact sequence

’

(3.10) 0—— QL — 5 Ql(log D) —2 7Y 0

similar to the sequence (3.3). Using (3.1) and (3.9), we compute

pp(w)(0(h)) = plp(w)(dh(d)) = (hw,d)|p = pp(w) - dh(d) = pp(w) - 6(h)
for any 6(h) € #p where 6 € ©g. Hence, p}, = pp and the last claim follows using
(3.3) and (3.10). O

Corollary 3.3. (Q5 ")V = 7y.

Proof. Let w}, be the complex of regular differential forms on D. By | , 84
Thm.] and | , Prop. 3],

Rp = W) = HomﬁD(Qrffl,w}Lfl) = Homyg,, (Q’Ef&wD) = (Q%ﬁl)v
and Proposition 3.2 yields the claim. (]

Corollary 3.4. There is a chain of fractional ideals
Ip C R, C¢pCOpCOpC%p
in AMp where €p = O} is the conductor ideal of 7. In particular, fp C €p.

Proof. By Lemma 2.6, #p is a fractional ideal contained in Y, by Proposition 3.2.

By [ , (2.7),(2.8)], Zp is a finite Op-module containing &5 and hence a frac-
tional ideal. The remaining inclusions and fractional ideals are then obtained using
Proposition 2.8. O

Corollary 3.5. If D is free then #p = R}, as fractional ideals.
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Proof. This follows from Corollary 2.7 and Propositions 2.8 and 3.2. O

Corollary 3.6. If D is free then Zp = Op if and only if #p = ¢p and D is
Cohen—Macaulay.

Proof. This follows from Proposition 2.8 and 3.2, Corollary 3.5, and p = ﬁj\j/. (]

4. LE-SAITO THEOREM

In this section, we prove the missing implication in the Lé-Saito Theorem 1.1.
We begin with some general preparations.

Lemma 4.1. Any map ¢: Y — X of analytic germs with Q%,/X =0 is an immer-
Ston.

Proof. The map ¢ can be embedded in a map ® of smooth analytic germs:

Yo——o T

o]
X——35.
Setting ®; = x; 0 ® and ¢; = ®; + Fy for coordinates x1,...,x, on S and #y the

defining ideal of Y in T, we can write ® = (®4,...,®P,,) and ¢ = (¢1,...,d,) and
hence

] Qy Qr

4.1 Q = =5 = = .
(4.1) YIX TS Oydgi  Ord Iy + Y, Ord®;

We may choose T" of minimal dimension so that .#y C m2T and hence d.%y C mTQlT.
Now (4.1) and the hypothesis Q%//X = 0 show that Q. = Y7 | Ord®; + mrQi
which implies that QL. = i, Ord®; by Nakayama’s lemma. But then ® and
hence ¢ is a closed embedding as claimed. O

Lemma 4.2. If 7p = %p and D is smooth then D has smooth irreducible com-
ponents.

Proof. By definition, the ramification ideal of 7 is the Fitting ideal Z, = .% %D QL ).

D/D
By [ ] and our hypotheses, we have
(4.2) C¢p%#r = Ip0p =Cp0p = 6p.
This implies %, = Op by Nakayama’s lemma, and hence QL = 0.

. D/D
Since D is normal, irreducible and connected components coincide. By localiza-
tion to a connected component D; of D and base change to D; = 7(D;) (see [ ,
Ch. II, Prop. 8.2A]), we obtain Q}:—)‘/D = 0. Then D; — D; is an immersion by
Lemma 4.1 and hence D; = D; is smooth. ([l

We are now ready to prove our main results.

Proof of Theorem 1.2. In codimension 1, D is free by Theorem 2.4 and hence #p =
%p by Corollary 3.6 and our hypothesis. Moreover, D is smooth in codimension 1
by normality. Therefore, the local irreducible components of D in codimension 1
are smooth by Lemma 4.2. Finally, the claim follows by [ , (2.9) iii) = iv)] (see
Examples 3.1.(2) and 3.1.(3)), or | , (2.11)] applied in a transversal slice. [0
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Proof of Theorem 1.3. By the Briangon—Skoda theorem, (4) = (5) and the analytic
triviality lemma | , (3.5)] applied to _#p at smooth points of Sing D yields (2)
< (4) (see [Fab11]).

Now assume that D is free and normal crossing in codimension 1. By the first
assumption and Theorem 2.3, Sing D is Cohen—Macaulay of codimension 1 and, in
particular, satisfies Serre’s condition S;. By the second assumption, Sing D also
satisfies Serre’s condition Ry. Then Sing D, and hence #p, is reduced by Serre’s
reducedness criterion. This proves (2) = (4) for free D.

The last equivalence then follows from Theorems 1.1 and 1.2 and Corollary 3.6.
O

5. COMPLETE INTERSECTIONS

In this section, we suggest a notion of freeness for complete intersections and
study it in the case of homogeneous complete intersection space curves. We also
indicate a direction for generalizing the results in Section 3 to the complete inter-
section case.

Let C = DinN---N Dy, D; = {h; = 0}, be a reduced complete intersection in
S with normalization 7: C — C. We set D = Dy U---U Dy, h = hy---h, and
dh = dhy A --- A dhg. Then the analogue of (2.1) reads

(5.1) 0 Jc dh of Der®(—log C) «——0

where ©% := A¥©g and Der®(—log C) is defined by the sequence. Theorem 2.3
leads to the following natural generalization of freeness.

Definition 5.1. We call a complete intersection C free if it is smooth or if Sing C'
is Cohen—Macaulay of codimension 1.

In particular, any reduced complete intersection curve is trivially free. As in
Corollary 2.7, a singular complete intersection C' is free if and only if it is reduced
and _Z¢ is maximal Cohen-Macaulay. Thus, by (5.1), C is free if and only if it is
reduced and pd Der”(—log C') < k, generalizing the divisor case k = 1.

Proposition 5.2. Let w¢, be the complex of reqular differential forms on C'. Then
Der®(—log C) can be identified with the kernel of the natural map Qg_k — wg_k.

Proof. By | , Lem. 4], there is an isomorphism
dh
(5.2) wiF —— Ext},_(0c,Q%).
The latter is the dualizing module (see | , Ch. III, Prop. 7.2])

k
Exty,, (Oc, Q%) = Home, (/\ S0/ 58,0 © 00) = ws @5 weys = we
Using a logarithmic Cech complex resolving Oc(D), it can also be represented as
wo =0c ®es NVG(D) 2 Oc.
Thus, (5.2) reduces the claim to identifying Der®(—log C') with the kernel of

Qe k —dh s G ®eg 2%.

But identifying Qg_k = OF, this is just the definition of Derk(f logC)in (5.1). O
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There are two natural ways of producing elements of Der® (—log C):
(5.3) Der(—log D) ® g, ©%™" — Der*(—1log C),
(5.4) dh;: O — Der®(—log O).
Lemma 5.3. Let C' be a reduced quasthomogeneous complete intersection space

curve defined by f,g € Os, quasihomogeneous of degrees r,s with respect to the
weights a, b, c on the variables x,y,z. Then we have a resolution

K J K

0 ﬁs ﬁg 7 ﬁg ﬁs ﬁSingC’4>0

where

K:(f g fygz_fzgy f292 — f292 fmgy_fyga:)t7

0 0 —rgz —Trgy —T9g:

0 0 5z sfy sfz
J=|rg, —sfz 0 —cz by
rgy —Sfy cz 0 —ax

rg, —sf, —by ax 0

Proof. This follows from the description of codimension 3 Gorenstein algebras
in terms of Pfaffians of skew-symmetric matrices due to Buchsbaum and Eisen-
bud | ] O

Remark 5.4. In particular, Lemma 5.3 shows that Sing C' is Gorenstein, which is
well-known (see | D-

Proposition 5.5. Let C be a reduced quasihomogeneous complete intersection space
curve defined by f,g € Og, quasithomogeneous of degrees r,s with respect to the
weights a, b, c on the variables x,y,z. Then we have a resolution

K’ J’

(5.5) 0 % 0% Der?(—1logC) —— 0

where

t
K = [ g fygz*fzgy f29: — fz9: fa:gy*fygx
0 0 ax by cz ’

rg: —Sfz 0 —cz by
J=\rg, —sfy, ¢z 0 —ax

rg, —sf. —by azx 0
In particular, Der?(—log C) is generated by the images of the maps (5.3) and (5.4).
Proof. Surjectivity of J and J' o K’ = 0 follow immediately from Lemma 5.3. The
columns of J’ correspond to
(5.6) rdg(0z N Oy A 0,), —sdf (0x N0y N O.), X A0z, X AOy, XA O,
where x = az0, + bydy + cz0, € Der(—log D) is the Euler vector field. This proves
the last claim. Wedging the elements in (5.6) with x gives

789 - Op NOy N0y, —1sf -0z NOyAOD, 0, 0, 0.

Then using the first column of K’ reduces any relation of the columns of J' to
a relation of the last 3 columns of J’, which is clearly in the span of the second
row of K’. This proves exactness of (5.5) in the middle, and injectivity of K’ is
obvious. ([
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Remark 5.6. Recalling the proof of Lemma 5.3, the Buchsbaum—Eisenbud theorem
plays the role of a kind of Saito criterion in the situation of Proposition 5.5.
Ezample 5.7. For the non-reduced homogeneous complete intersection
C={zz—y?=9y*—2°>=22—w? =0},
Der®(—1log C) is not generated by the images of the maps in (5.3) and (5.4).

There is the following generalization of the first part of Definition 2.1 due to
Aleksandrov and Tsikh [ , Def. 2.2]. Weset D; =Dy U---UD;U---U Dy and
abbreviate Q% =", QL (xD;).

Definition 5.8 (Aleksandrov—Tsikh).
OP(log O) = {w € Q& (+xD) | Vj =1,...,k: hjw € O hjdw € Q%)
As opposed to what the notation suggests, these modules depend on D. Alek-

sandrov and Tsikh | , Thm. 2.4] construct a generalized residue sequence
(5.7) 0—— Ok —— QF(log C) %= %o = (QF)Y ——0

where p?, and pc = pf, are formally defined as in (3.1) and (3.2), but with n € Q%.
Proposition 5.9. 05 C Zc.
Proof. This can be proved as in | , (2.8)] using [ , Thm. 1]. O

Dualizing (5.7) and applying the change of rings spectral sequence (3.6) with
Op replaced by O¢, yields an exact complex
(5.8)

04— Ext}, (Q*(log C), O5) «— A +— Ok «— Extl; ' (Q*(log C), O5) +— 0
analogous to (3.7). How to generalize our arguments in Section 3 is unclear however.
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