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This article propounds, in the wake of influential work of Fefferman and Graham about Poincaré extensions of conformal structures, a definition of a (Poincaré-)Schrödinger manifold whose boundary is endowed with a conformal Bargmann structure above a non-relativistic Newton-Cartan spacetime. Examples of such manifolds are worked out in terms of homogeneous spaces of the Schrödinger group in any spatial dimension, and their global topology is carefully analyzed. These archetypes of Schrödinger manifolds carry a Lorentz structure together with a preferred null Killing vector field; they are shown to admit the Schrödinger group as their maximal group of isometries. The relationship to similar objects arising in the non-relativistic AdS/CFT correspondence is discussed and clarified.

Introduction

The notion of "non-relativistic conformal symmetry" goes back to Jacobi and Lie as highlighted in, e.g., [START_REF] Roger | The Schrödinger-Virasoro Algebra: Mathematical Structure and Dynamical Schrödinger Symmetries[END_REF][START_REF] Duval | Non-relativistic conformal symmetries and Newton-Cartan structures[END_REF]. In the early seventies, Jackiw [START_REF] Jackiw | Introducing scaling symmetry[END_REF], Niederer [START_REF] Niederer | The maximal kinematical symmetry group of the free Schrödinger equation[END_REF],

and Hagen [START_REF] Hagen | Scale and conformal transformations in Galilean-covariant field theory[END_REF] rediscovered this symmetry within the quantum mechanical context; the maximal kinematical symmetry group of the free Schrödinger equation has since then been coined the "Schrödinger group". One of the key features of this symmetry is a specific action of dilations according to which time is dilated twice as much as space (the dynamical exponent is z = 2). A remarkable relationship between the Schrödinger Lie algebra and the relativistic conformal Lie algebra (in suitable dimensions) was then unveiled in [START_REF] Burdet | About the non-relativistic structure of the conformal algebra[END_REF]. The Schrödinger symmetry also happened to play a central rôle in the physics of strongly anisotropic critical systems [START_REF] Henkel | Schrödinger invariance and strongly anisotropic critical systems[END_REF], and in the description of ageing phenomena [START_REF] Henkel | Phenomenology of local scale invariance: from conformal invariance to dynamical scaling[END_REF][START_REF] Henkel | Ageing, dynamical scaling and conformal invariance[END_REF]. At a geometrical level, the (center-free) Schrödinger group has been interpreted as the group of those "conformal transformations" of a Newton-Cartan spacetime that also permute its unparametrized geodesics [START_REF] Duval | Quelques procédures géométriques en dynamique des particules[END_REF]. It soon became patent that an adapted framework to deal intrinsically with non-relativistic conformal symmetries is provided by Bargmann structures [START_REF] Duval | Bargmann structures and Newton-Cartan theory[END_REF] defined on (R, +)-or circle-bundles over Newton-Cartan spacetimes. Let us recall that a Bargmann manifold (akin to generalized pp-waves [START_REF] Ehlers | Exact solutions of the gravitational field equations[END_REF]) is such a principal fibre-bundle, endowed with a Lorentz metric, whose fundamental vector field is null and covariantly constant. This definition entailed that the conformal automorphisms of a Bargmann structure constitute a Lie group which turns out to be actually isomorphic with the Schrödinger group, yielding henceforth a clear-cut geometrical status to the latter [START_REF] Duval | Celestial mechanics, conformal structures and gravitational waves[END_REF][START_REF] Duval | The geometry of Schrödinger symmetry in non-relativistic CFT[END_REF]; see also [START_REF] Perrin | Chronoprojective invariance of the fivedimensional Schrödinger formalism[END_REF]. We refer to [START_REF] Roger | The Schrödinger-Virasoro Algebra: Mathematical Structure and Dynamical Schrödinger Symmetries[END_REF] for a modern and recent review of the Schrödinger and Schrödinger-Virasoro symmetries.

A few years ago, Son [START_REF] Son | Toward and AdS/cold atom correspondence: a geometric realization of the Schrödinger symmetry[END_REF] and, independently, Balasubramanian and McGreevy [START_REF] Balasubramanian | The particle number in Galilean holography[END_REF] have put forward a geometrical realization of the Schrödinger group as a group of isometries of some Lorentz metric on a two-parameter spacetime extension, in the framework of the AdS/CFT correspondence initiated by Maldacena [START_REF] Maldacena | The Large N Limit of Superconformal Field Theories and Supergravity[END_REF][START_REF] Aharony | Large N field theories, string theory and gravity[END_REF]. From then on, this non-relativistic holography has triggered much interest within a wide range of subjects, for instance, in ageing-gravity duality [START_REF] Minic | Correspondence between nonrelativistic anti-de Sitter space and conformal field theory, and aging-gravity duality[END_REF], non-relativistic field theory [START_REF] Goldberger | AdS/CFT duality for non-relativistic field theory[END_REF], string theory and black hole physics [START_REF] Maldacena | Comments on string theory backgrounds with non-relativistic conformal symmetry[END_REF][START_REF] Lin | Non-relativistic holography and singular black hole[END_REF]. In condensed matter physics, the Schrödinger group turns out to be also the dynamical symmetry group of the two-body interactions in ultracold fermionic atoms [START_REF] Balasubramanian | The particle number in Galilean holography[END_REF][START_REF] Son | Toward and AdS/cold atom correspondence: a geometric realization of the Schrödinger symmetry[END_REF]. See also recent work [START_REF] Bekaert | Symmetries and currents of the ideal and unitary Fermi gases[END_REF] on the conformal symmetries of the unitary Fermi gas.

It has been pointed out in [START_REF] Rooman | Uniqueness of the asymptotic AdS 3 geometry[END_REF][START_REF] Maldacena | Comments on string theory backgrounds with non-relativistic conformal symmetry[END_REF][START_REF] Blau | Geometry of Schrödinger space-times II: particles and fields probes of the causal structure[END_REF][START_REF] Compère | Asymptotic symmetries of Schrödinger spacetimes[END_REF][START_REF] Hartong | Asymptotically Schrödinger Space-Times: TsT Transformations and Thermodynamics[END_REF] that non-relativistic conformal symmetries for backgrounds arising in string theory and black hole geometry should be best viewed as asymptotic symmetries of AdS spacetime associated with a definite notion of conformal boundary. These authors also called attention to work of Fefferman-Graham [START_REF] Fefferman | Conformal invariants[END_REF] which should, conversely, provide efficient geometrical means to deal with expansions of these asymptotic symmetries to the bulk spacetime, endowed with a Poincaré metric. This is precisely the viewpoint we will espouse in this article in an effort to adapt the Fefferman-Graham (FG) construct to the particular instance of the Schrödinger symmetry. We mention, in this vein, another approach using the alternative notion of ambient space [START_REF] Fefferman | Conformal invariants[END_REF] used in [START_REF] Leistner | Ambient metrics of the n-dimensional ppwaves[END_REF] to describe conformal pp-waves.

Let us now recall that the above-mentioned extension of the AdS/CFT correspondence to non-relativistic field theory is based on using the (locally defined) metric [START_REF] Balasubramanian | The particle number in Galilean holography[END_REF][START_REF] Son | Toward and AdS/cold atom correspondence: a geometric realization of the Schrödinger symmetry[END_REF][START_REF] Blau | Geometry of Schrödinger space-times II: particles and fields probes of the causal structure[END_REF][START_REF] Lin | Non-relativistic holography and singular black hole[END_REF] 

g = 1 r 2 d i=1 (dx i ) 2 + 2dtds + dr 2 - dt 2 r 2 (1.1)
on a (d + 3)-dimensional relativistic spacetime, whose key property is that its group of isometries is the Schrödinger group of non-relativistic conformal transformations of (d + 1)-dimensional Galilei spacetime, coordinatized by (x 1 , . . . , x d , t).

The purpose of this article is to provide an appropriate geometrical interpretation of such a manifold which, as we will show, turns out to be an instance of what we will call a "Schrödinger manifold". Let us underline that we will consider the only cases where the spatial dimension is d > 0. (See, e.g., [START_REF] Hořava | Anisotropic Conformal Infinity[END_REF] for a thorough study of the AdS/CFT correspondence in the case d = 0.)

We now summarize the main outcome and results of this article.

Our approach strongly relies, on the one hand, on the general notion of a conformal Bargmann structure above non-relativistic spacetime (Definition 2.4), and, on the other hand, on an adaptation to this non-relativistic conformal structure of the FG formal theory of Poincaré metrics. This standpoint will help us introduce, via Definition 3.3, the novel notion of Schrödinger manifold, endowed with both a

Poincaré metric and a null Killing vector field, and whose conformal boundary corresponds precisely to our original conformal Bargmann structure. Such Schrödinger manifolds are, indeed, exemplified by the Poincaré metric g + = g + dt 2 /r 4 and the null Killing vector field ∂/∂s, read off Equation (1.1). This is the content of Theorem 5.14, the main upshot of our article. We will furthermore prove (Proposition 5.2) that this emblematic example actually stems from a certain homogeneous space, M , of the Schrödinger group Sch(d + 1, 1), the latter being the maximal group of isometries of M (Proposition 5.4).

The article is organized as follows.

Section 2 introduces the basics of conformal non-relativistic geometry, namely the definition of a conformal Bargmann structure above a Newton-Cartan structure on (d + 1)-dimensional spacetime. We recall, and put in a geometrical guise, the covariant Schrödinger equation and its relationship with the conformal Laplace (Yamabe) operator acting on densities. The Schrödinger group is then naturally introduced in terms of the automorphisms of a conformal Bargmann structure.

Our definition of Schrödinger manifolds is presented in Section 3. It fundamentally relies on the construction of the "Poincaré" formal deformation of a conformal (pseudo-)Riemannian structure due to Fefferman and Graham. Emphasis will be put on the Lorentzian case, relevant to deform conformal Bargmann structures. The rôle of a special null Killing vector field will also be highlighted in the definition of Schrödinger manifolds. 1 for an illustration). We furthermore show that the Schrödinger group is actually their maximal group of isometries. The AdS/CFT metric (1.1) acquires, hence, a global status as the canonical metric of our Schrödinger-homogeneous space arising as a (Poincaré-)Schrödinger metric inherited from the FG construction.

In Section 6 we summarize the content of the article and draw several conclusions. We also offer perspectives related, among others, to open problems regarding the existence and uniqueness of Schrödinger manifolds.

Schrödinger equation and conformal Bargmann structures

Let us recall that a Bargmann structure [START_REF] Duval | Bargmann structures and Newton-Cartan theory[END_REF] is a principal H-bundle π : M → M over a (d + 1)-dimensional smooth manifold M, where H ∼ = (R, +) or U(1); its total space, M, is assumed to carry a Lorentz metric, g, the fundamental vector field, ξ, of the H-action being null, g(ξ, ξ) = 0, and covariantly constant with respect to the Levi-Civita connection, ∇ξ = 0.

It has been proved [START_REF] Duval | Bargmann structures and Newton-Cartan theory[END_REF] that a Bargmann structure (M, g, ξ) projects onto a "Newton-Cartan" (NC) structure on non-relativistic spacetime M = M/H [START_REF] Künzle | Galilei and Lorentz structures on space-time: Comparison of the corresponding geometry and physics[END_REF].

The nowhere vanishing 1-form θ = g(ξ) associated with ξ via the metric, g, is closed; it therefore descends onto the time axis T = M/ ker(θ) as a 1-form which we call the "clock" of the structure. Bargmann structures are interpreted as generalized pp-waves in general relativity; see, e.g., [START_REF] Ehlers | Exact solutions of the gravitational field equations[END_REF][START_REF] Kramer | Solutions of the Gravitational Field equations[END_REF][START_REF] Duval | Celestial mechanics, conformal structures and gravitational waves[END_REF].

We recall that the canonical flat Bargmann structure on M = R d+2 , with

H = (R, +), is given by g = d i=1 dx i ⊗ dx i + 2dt ⊙ ds & ξ = ∂ ∂s (2.1)
where we have put t = x d+1 , and s = x d+2 ; we will use the shorthand notation R d+1,1 = (R d+2 , g); also will "⊙" denote the symmetrized tensor product. Here (x 1 , . . . , x d ) are "spatial" coordinates, and t stands for the absolute time coordinate on Galilei spacetime such that

θ = dt (2.2)
while s is a coordinate homogeneous to an action per mass.

Covariant Schrödinger equation

We first introduce the useful notion of λ-densities spanning the Diff(M)-module F λ (M) whose elements can be locally written as

Ψ = f |Vol| λ , with f ∈ C ∞ (M, C),
if Vol is a volume element of M. The associated Vect(M)-module structure of F λ (M) is then defined via the Lie derivative L λ X f = X(f )+λDiv(X)f , for all X ∈ Vect(M). Let (M, g) be a n-dimensional pseudo-Riemannian manifold. We recall that the Yamabe operator, or conformal Laplacian [START_REF] Besse | Einstein Manifolds[END_REF][START_REF] Duval | Conformally Equivariant Quantum Hamiltonians[END_REF][START_REF] Eastwood | Symmetries and Invariant Differential Pairings[END_REF], is the conformally-invariant dif-

ferential operator ∆ conf g : F n-2 2n (M) → F n+2 2n (M) defined by ∆ conf g = ∆ g -n-2
4(n-1) R(g), where R(g) denotes the scalar curvature of the Levi-Civita connection of (M, g). Proposition 2.1. Given a Bargmann manifold (M, g, ξ) of dimension n = d + 2, the system

∆ conf g Ψ = 0 & i L λ ξ Ψ = m Ψ (2.3)
with λ = d 2d+4 descends as the covariant Schrödinger equation of mass m on the associated Newton-Cartan spacetime.

The proof of Proposition 2.1 relies essentially on the derivation given in [START_REF] Duval | Bargmann structures and Newton-Cartan theory[END_REF], and on the fact that the fundamental vector field, ξ, is divergencefree, Div(ξ) = 0.

In the latter reference, the NC field equations, Ric(g) = 4πG̺ θ ⊗ θ, where ̺ stands for the mass density of the sources, were assumed to hold, thus implying R(g) = 0.

Remark 2.2. The structural group H may be compact in some special instances, e.g., H = U(1) for a Taub-NUT like solution of NC field equations. This leads, in view of the second equation in (2.3), to the quantization of mass [START_REF] Duval | Celestial mechanics, conformal structures and gravitational waves[END_REF]. From now on, we shall be mainly concerned with the case H = (R, +).

Symmetries of the Schrödinger equation

Denote by [Φ → Φ λ ] the action of Diff(M) on F λ (M). A symmetry of the Schrödinger

equation is a local diffeomorphism Φ ∈ Diff loc (M) such that ∆ conf g • Φ λ = Φ µ • ∆ conf g & L λ ξ • Φ λ = Φ λ • L λ ξ (2.4)
with the weights λ = d 2d+4 , and µ = d+4 2d+4 .

Proposition 2.3. [START_REF] Duval | Celestial mechanics, conformal structures and gravitational waves[END_REF] The symmetries of the Schrödinger equation form the "Schrödinger (pseudo-)group" Sch(M, g, ξ) = Conf loc (M, g) ∩ Aut(M, ξ) consisting of those

Φ ∈ Diff loc (M) such that Φ * g = Ω 2 Φ • g & Φ * ξ = ξ (2.5) for some Ω Φ ∈ C ∞ (M, R * + ) depending on Φ. 1 These Φ ∈ Sch(M, g, ξ) permute,
hence, the solutions of the Schrödinger equation (2.3) according to

Ψ → (Φ λ ) * Ψ (2.6)
with λ = d 2d+4 . This group descends onto NC spacetime M as the "center-free Schrödinger (pseudo-)group" Sch(M, g, ξ)/H.

Conformal Bargmann structures

In view of Proposition 2.3, one of the fundamental geometrical objects associated with the Schrödinger equation is clearly the conformal class [g] of the Bargmann metric g on (extended spacetime) M. Indeed, given any g ∈ [g], one duly has g(ξ, ξ) = g(ξ, ξ) = 0; now, to further insure ∇ξ = ∇ξ = 0, i.e., that g and g are Bargmann-equivalent, one finds

g ∼ g ⇐⇒ g = Ω 2 g & dΩ ∧ θ = 0 (2.7)
which infers that the conformal factor, Ω, be a function of the time axis, T . 

General definition of Schrödinger manifolds

We have, so far, unveiled new geometrical structures involving conformal structures in the presence of a null, parallel, and nowhere vanishing vector field admitting a clear-cut physical interpretation via the definition of the mass in the Schrödinger equation (2.3). Accordingly, our main goal will now be to specialize the FG definition of "Poincaré metrics" associated with conformal structures to our particular, nonrelativistic, framework featuring conformal Bargmann structures.

Formal theory of Poincaré metrics & conformal infinity according to Fefferman-Graham

In their quest of conformal invariants of a conformal structure of signature (p, q), Fefferman and Graham [START_REF] Fefferman | Conformal invariants[END_REF] have devised two equivalent constructs:

1. the ambient metric on a pseudo-Riemannian manifold of signature (p+1, q+1),

2. the Poincaré metric on a pseudo-Riemannian manifold of signature (p + 1, q).

In order to make contact with the aforementioned physics literature, involving local expressions for the metric in Poincaré patches, we restrict further considerations to item 2. Let us hence recall the general definition [START_REF] Fefferman | Conformal invariants[END_REF] of Poincaré metrics that will appear as the cornerstone of the subsequent study.

Start with a manifold M and a conformal class [g] of metrics of signature (p, q),

such that n = p + q > 2. Consider now a manifold M + such that M = ∂M + . Let r ∈ C ∞ (M + ) verify r > 0 in Int(M + ), and r = 0 & dr = 0 on ∂M + (this function is called a defining function for M). A metric g + of signature (p + 1, q) on Int(M + ) is "conformally compact" iff r 2 g + extends smoothly to M + and r 2 g + | T M
is non-degenerate [START_REF] Penrose | Conformal treatment of infinity[END_REF].

Definition 3.1. [START_REF] Fefferman | Conformal invariants[END_REF] We say that (M + , g + ) has (M, [g]) as conformal infinity when-

ever r 2 g + | T M ∈ [g]. Definition 3.2. [24] A Poincaré metric for (M, [g]) is a pair (M + , g + ) where M + is an open neighborhood of M × {0} in M × R + such that • (M + , g + ) has (M, [g]) as conformal infinity • (M + , g + ) is an asymptotic solution of Einstein's equation Ric(g + ) + kg + = 0 (normalization condition: k = n).
Poincaré metrics admit the local expression

g + = 1 r 2 n i,j=1 g + ij (x, r)dx i ⊗ dx j + dr ⊗ dr (3.1)
where the g + ij (x, r) are formal power series in the parameter r. It has been proven [START_REF] Fefferman | Conformal invariants[END_REF] that a Poincaré metric for a given pair (M, [g]) exists and is unique, up to diffeomorphisms fixing M, for n odd provided the g + ij (x, r) are even functions of r. If n is even, Ric(g + ) + kg + = O(r n-2 ) uniquely determines g + (modulo O(r n )), again up to diffeomorphisms fixing M, for which the g + ij (x, r) are even functions of r (modulo O(r n )).

Let us illustrate this construction by the well-known example of the Einstein space Ein n-1,1 = ∂(AdS n+1 ), the archetype of Poincaré metric being provided by the Anti de-Sitter (AdS) metric whose conformal infinity is the Einstein conformal structure (compactified Minkowski space). Here, M = Ein n-1,1 , and M + = AdS n+1 .

Start with R n+2 , where n = d + 2, with the following metric

G = d i=1 dx i ⊗ dx i + 2dx d+1 ⊙ dx d+2 + 2dx d+3 ⊙ dx d+4 (3.2)
of signature (n, 2), and consider the unit hyperboloid

AdS n+1 = {X ∈ R n,2 | XX = -1} (3.3) 
where X ≡ G(X) as a shorthand notation. The induced metric g

+ = G| T AdS n+1
is Lorentzian (of signature (n, 1)), and of constant sectional curvature. View now

AdS n+1 ⊂ P n+1 (R) as the projectivized open ball B = {X ∈ R n,2 | XX < 0}. Its conformal boundary is the Einstein space Ein n-1,1 = PQ (3.4)
which is the projectivization of the null cone

Q = {Q ∈ R n,2 \ {0} | QQ = 0} ∼ = R * + × (S n-1 × S 1
), and is endowed with the conformal class [g] of Lorentzian metrics inherited from G| T Q ; see, e.g., [START_REF] Frances | Géométrie et dynamique lorentziennes conformes[END_REF]. Conformal infinity of (AdS n+1 , g + ) is therefore

(Ein n-1,1 , [g]), and both AdS n+1 ∼ = R n × S 1 , (3.5) Ein n-1,1 ∼ = (S n-1 × S 1 )/Z 2 (3.6)
are homogeneous spaces of O(n, 2).

We refer to [START_REF] Gibbons | Anti-de-Sitter spacetime and its uses[END_REF] for a comprehensive review of the geometry of AdS spacetimes.

Schrödinger manifolds & conformal Bargmann structures as null infinity

In the wake of the previously reviewed work [START_REF] Fefferman | Conformal invariants[END_REF], we will introduce the new notion of a (Poincaré-)Schrödinger manifold whose "conformal infinity" is a given conformal Bargmann structure (M, [g], ξ) in the sense of Definition 2.4.

Definition 3.3. A (Poincaré-)Schrödinger manifold for a conformal Bargmann structure (M, [g], ξ) is a triple ( M, g, ξ) with M = ∂ M
, where g is a Lorentz metric on Int( M ), and ξ a nowhere vanishing lightlike Killing vector field for g such that

1. ξ | T * M = ξ 2. g -1 | T * M = µ ξ ⊗ ξ (normalization condition: µ = 1) 3. g + = g + µ θ ⊗ θ (where θ = g( ξ)) is a Poincaré metric for (M, [g]).
Let us explain and justify the different items of Definition 3.3.

The generator ξ of the structure group of the principal H-bundle π : M → M/H extends smoothly to M . In fact, the null vector field ξ enters the definition of the character of H associated with the mass in the Schrödinger equation (2.3); as such, it ought to give rise to a unique nowhere vanishing, null, Killing vector field ξ for g. This justifies our first axiom.

In Axiom 2, the real constant µ is, in fact, quite arbitrary; it allows, via the null vector field ξ, for extra terms in the metric g with higher order singularities at the conformal boundary, M. 2 The normalization condition is dictated by the form (1.1) of the metric dealt with in the literature about non-relativisic AdS/CFT correspondence.

2 See, e.g., Equations (5.16) and (5.17) below showing that the metric g exhibits a singular behavior ∼ r -4 at conformal infinity, namely

r 4 g T M ∈ [θ ⊗ θ].
The third axiom, in Definition 3.3, resorts explicitly to the conformal class of Bargmann metrics; it is thus devised to make use of the FG approach to Poincaré metrics which is at our disposal (see Definition 3.2). However, we will not address here the problem of the existence and uniqueness of (Poincaré-)Schrödinger structures of Definition 3.3. Instead, we will provide explicit examples. We duly recover the FG axioms if ξ is ignored, or if µ = 0. Proposition 3.4. Let us set θ = g( ξ), then the family of symmetric tensor fields g = g + µ θ ⊗ θ parametrized by µ ∈ R defines on M a family of Lorentzian metrics for which ξ = ξ is a null, nowhere vanishing, Killing vector field.

Proof. If {λ 1 , . . . , λ d+1 , +λ, -λ} denotes the spectrum of the Gram matrix of g with respect to some basis, then the spectrum of the corresponding Gram matrix of g is given by {λ

1 , . . . , λ d+1 , 1 2 µ + λ 2 + 1 2 µ 2 , 1 2 µ -λ 2 + 1 2 µ 2 }
, with the same Lorentz signature. Since ξ is null for g, i.e., θ( ξ) = 0, then ξ = ξ is clearly g-null.

Moreover, the fact that ξ is a Killing vector field for g entails that the same is true for g.

Had we put ξ = α ξ for some α ∈ C ∞ ( M , R * ) in Proposition 3.4, we would have found that necessarily dα = 0, i.e., α ∈ R * .

We will resort to Proposition 3.4 in Section 5 where we supply paragons of Schrödinger manifolds.

4 Global structure of the Schrödinger group

Flat conformal Bargmann structure and Schrödinger Lie algebra

The conformal automorphisms of a Bargmann structure (M, g, ξ) -which we will later on identify, for the flat structure (2.1), to the so-called "Schrödinger group" -have been introduced in Proposition 2.3. As read off Equations (2.5), they consist in (local) diffeomorphisms, Φ, of M such that Φ * g = Ω 2 Φ • g and Φ * ξ = ξ for some smooth, positive, function Ω Φ . The latter turns out to be necessarily (the pull-back of) a function of the time axis, T . See Equation (2.7).

Accordingly, at the Lie algebraic level, the infinitesimal conformal automorphisms of such a structure span the so-called Schrödinger Lie algebra, which is therefore the Lie algebra of those vector fields Z of M such that

L Z g = ϕ Z • g & L Z ξ = 0 (4.1)
for some smooth function ϕ Z , again necessarily defined on T .

The Schrödinger Lie algebra, sch(d + 1, 1), of the flat Bargmann structure (2.1) is therefore isomorphic to the Lie algebra of all smooth vector fields Z = [x → δx] of R d+2 satisfying (4.1), i.e., of vector fields of the form

δx = Λx + Γ - 1 2 α g(x, x)ξ + α g(ξ, x)x + χx (4.2)
where Λ ∈ so(d + 1, 1), Γ ∈ R d+2 , and α, χ ∈ R are such that Λξ + χξ = 0. We find that dim(sch(d + 1, 1)) = 1 2 (d 2 + 3d + 8), so that dim(sch(4, 1)) = 13 in the standard case d = 3. Homogeneous Galilei transformations are generated by Λ, Bargmann translations by Γ, while α and χ generate inversions and dilations, respectively. The centre, h ∼ = R, of sch(d+1, 1) is generated by "vertical" translations Γ, i.e., such that ξ ∧Γ = 0. The quotient sch(d+1, 1))/h acts therefore on Galilei spacetime E ∼ = R d+1 as the Lie algebra of flat NC infinitesimal automorphisms; it is sometimes called the center-free Schrödinger Lie algebra, and is isomorphic to (so(d)×sl(2, R))⋉(R d ×R d ).

Schrödinger group as a subgroup of conformal group

Taking advantage of the content of the preceding section, let us focus attention on the global structure of the Schrödinger group, Sch(d + 1, 1), of the flat (conformal) Bargmann structure (2.1). The latter will be naturally chosen so as to integrate sch(d + 1, 1) inside the "conformal group" of R d+1,1 .

Therefore, in view of (2.5), we will characterize the Schrödinger group as a subgroup of the group, O(d + 2, 2), of all linear isometries of R d+2,2 = R d+1,1 ⊕ R 1,1 endowed with the metric (3.2) that we split according to

G = d i=1 dx i ⊗ dx i + 2dx d+1 ⊙ dx d+2 + 2dx d+3 ⊙ dx d+4 (4.3)
in order to render explicit the Bargmann metric g as given by (2.1); this metric reads in matrix guise,3 

G =   g 0 0 0 0 1 0 1 0   . (4.4)
We need, at this stage, a new geometric object, namely a preferred element, Z 0 , of the Lie algebra, o(d + 2, 2), of O(d + 2, 2).

Definition 4.1. We will call "special null vector" any Z 0 ∈ o(d + 2, 2) such that:

(i) (Z 0 ) 2 = 0, and (ii) Z 0 = 0.

The following Lemma is classical; see, e.g., [START_REF] Souriau | Géométrie globale du problème à deux corps[END_REF][START_REF] Guillemin | Variations on a theme by Kepler[END_REF].

Lemma 4.2. A special null vector is of the general form Z 0 = P 0 ∧ Q 0 for some

P 0 , Q 0 ∈ R d+2,2 \{0} such that G(P 0 , P 0 ) = G(Q 0 , Q 0 ) = G(P 0 , Q 0 ) = 0. 4
The set of these vectors form a single adjoint orbit of O(d + 2, 2). 5Our choice of origin of the orbit of special null vectors is performed by selecting P 0 = e d+2 , and Q 0 = e d+3 where e i = ∂/∂x i for all i = 1, . . . , d + 4. It thus reads

Z 0 =   0 0 ξ -ξ * 0 0 0 0 0   ∈ o(d + 2, 2) (4.5)
where ξ ∈ R d+2 \ {0} is as in (2.1), the superscript " * " standing for the g-adjoint;

thus, ξ * = g(ξ) is the covector ξ * = θ(= dt), interpreted as the Galilei clock (see Section 2). This Z 0 will henceforth be identified with the null generator, ξ, of "vertical translations" on Bargmann space R d+1,1 [START_REF] Duval | L'électron de Lévy-Leblond[END_REF][START_REF] Hassaïne | Field-dependent symmetries of a nonrelativistic fluid model[END_REF].

Proposition 4.3. The Lie algebra sch(d + 1, 1) is isomorphic to the Lie algebra of the group

Sch(d + 1, 1) = {A ∈ O(d + 2, 2) | AZ 0 = Z 0 A} (4.6)
which we call the "Schrödinger group".

Proof. Straightforward computation shows that the stabilizer of

Z 0 in O(d + 2, 2)
consists of matrices of the form

A =   L aξ C B * b d -aξ * 0 e   (4.7) 
where where, again, L * stands for the g-adjoint of the linear operator L.

L ∈ End(R d+2 ), B, C ∈ R d+2 ,
In view of (2.1) and (4.4), let us put ξ = e d+2 , where (e 1 , . . . , e d+2 ) is the "canonical" basis of R d+2 ; let us complete it in R d+2 ⊕ R 2 with the canonical basis (e d+3 , e d+4 ) of R 2 . Define then (with a slight abuse of notation) A i = Ae i for all i = 1, . . . , d + 4, where A is as in (4.7). Upon specifying

X = A d+4 =   C d e   , Y = A d+3 =   aξ b 0   , (4.15) 
we trivially check that

XX = Y Y = XY -1 = 0 & Z 0 Y = 0, (4.16) 
where

X = G(X) is, as before, the G-adjoint of X ∈ R d+2,2 .
The group law of Sch(d+1, 1), plainly given by matrix multiplication using (4.7), translates as the group action Sch(d + 1, 1)

∋ A : (X, Y ) → (X ′ , Y ′ ) given by (X ′ , Y ′ ) = (AX, AY ) (4.17) 
on the (d + 4)-dimensional manifold defined by the constraints (4.16).

We then find, using (4.7), that vectors in the Lie algebra of Sch(d + 1, 1) are of the form

Z =   Λ αξ Γ -Γ * χ 0 -αξ * 0 -χ   (4.18)
where Λ ∈ so(d + 1, 1), Γ ∈ R d+2 , and α, χ ∈ R are such that Λξ + χξ = 0 (see (4.8)).

Let us now prove that the Lie algebra of Sch(d + 1, 1) is indeed isomorphic to sch(d + 1, 1), whose action on flat Bargmann space is given by (4.2).

Assuming e(= XQ 0 ) = 0, in view of (4.12), (4.14), and (4.15) we can write

X = 1 r   x -1 2 x * x 1   , Y = r   qξ 1 -qξ * x 0   (4.19)
where x = C/e ∈ R d+2 , q = ae ∈ R, and r = 1/e ∈ R * . We deduce from (4.17)

that the Schrödinger group acts projectively on Bargmann space R d+1,1 according to A : x → x ′ , viz.,

x ′ = Lx -1 2 a(x * x)ξ + C e -aξ * x (4.20)
where A ∈ Sch(d + 1, 1) is as in (4.7). We, likewise, get the transformation law

r ′ = r e -aξ * x (4.21)
with the same notation as before.

As for the infinitesimal action of the Schrödinger group on R d+1,1 , it can be computed, using (4.20), by δx = δx ′ | A=1,δA=Z , where Z is as in (4.18); we then find

δx = Λx + Γ -1 2 α(x * x)ξ + α(ξ * x)
x + χx, which exactly matches Equation (4.2). Note that we get from (4.21) δr = (αξ * x + χ)r.

The proof that the Lie algebra of Sch(d + 1, 1) is isomorphic to sch(d + 1, 1) is complete.

Proposition 4.4. The Schrödinger group (4.6) has two connected components,

π 0 (Sch(d + 1, 1)) = Z 2 . (4.22) 
Proof. Let us express the matrix Z ′ 0 of the central element Z 0 given by (4.5) in a new basis of R d+2,2 whose Gram matrix is

G ′ =   1 R d 0 0 0 D 0 0 0 D   (4.23)
where D = diag(1, -1). The sought expression is therefore

Z ′ 0 =   0 0 0 0 0 U 0 V 0   (4.24) 
where

U = 1 2 1 -1 -1 1 & V = - 1 2 1 1 1 1 . (4.25)
The group O(d+2, 2)) has four connected components, and the generators {I, P, T, P T }

of π 0 (O(d + 2, 2)) = π 0 (O(d + 2)) × π 0 (O(2)) ∼ = Z 2 × Z 2 can be defined -up to conjugation -by I =   1 R d 0 0 0 1 R 2 0 0 0 1 R 2   , P =   S 0 0 0 1 R 2 0 0 0 1 R 2   , T =   1 R d 0 0 0 1 R 2 0 0 0 D   (4.26)
where

S ∈ O(d) is such that S 2 = 1 R d and det(S) = -1.
It is a trivial matter to check that the only non-zero commutators are [T, Z ′ 0 ] and [P T, Z ′ 0 ], proving, via the definition (4.6) of the Schrödinger group, that, indeed, π 0 (Sch(d + 1, 1)) is generated by I, and P .

A nilpotent coadjoint orbit of the conformal group

We highlight that the (non-relativistic) Schrödinger group is, interestingly, associated with a special homogeneous symplectic manifold of the (relativistic) conformal group.

As we have seen in Proposition 4.3, the Schrödinger group, Sch(d + 1, 1), is the stabilizer of Z 0 ∈ o(d + 2, 2), given by (4.5), for the adjoint action of O(d + 2, 2).

The (co)adjoint orbit

O Z 0 = O(d + 2, 2)/Sch(d + 1, 1) (4.27) 
is therefore a 2(d + 1)-dimensional symplectic manifold we now describe as follows.

Consider the left-invariant Maurer-Cartan 1-form Θ = A -1 dA, and the 1-form of NT Q\ Q project to PQ as the null geodesics of its conformally flat structure.)

̟ = -
Note that O Z 0 = O + Z 0 ∪ O - Z 0 with O ± Z 0 ∼ = T S d+1 \ S d+1
, topologically [START_REF] Souriau | Géométrie globale du problème à deux corps[END_REF][START_REF] Guillemin | Variations on a theme by Kepler[END_REF][START_REF] Duval | The BRS Method and Geometric Quantization: Some Examples[END_REF].

Homogeneous Schrödinger manifolds

We 

: Q → Z 0 Q on the quadric AdS d+3 ( √ -2λ) = {Q ∈ R d+2,2 | QQ = 2λ} (5.1)
with a given λ < 0 (see (3.3)).

Lemma 5.1. The vector field δ Z 0 of AdS d+3 ( √ -2λ) nowhere vanishes.

Proof. In view of (4.5), we find

δ Z 0 :   x α β   →   βξ -ξ * x 0   (5.2)
where x ∈ R d+1,1 , and α, β ∈ R are such that QQ = x * x + 2αβ = 2λ, and where the metric (3.2) has been used. Suppose, for the moment, that δ Z 0 Q = 0 for some

Q ∈ AdS d+3 ( √ - 2λ 
), i.e., that β = 0, and ξ * x = 0. We readily get x * x = 2λ < 0.

We hence find that x ∈ R d+1,1 is at the same time g-orthogonal to the null vector ξ = 0, and timelike: contradiction! Thus, δ Z 0 Q = 0 for all Q ∈ AdS d+3 ( √ -2λ).

A special family of Schrödinger-homogeneous spaces

Let us resort to the definition (4.15) of the vectors X, Y ∈ Q (the last two column vectors of the Schrödinger matrix (4.7)), and posit

Q = X + λY (5.3)
where λ ∈ R * is fixed.

We contend, and will prove right below, that the set

M λ = {X + λY ∈ R d+2,2 | XX = Y Y = XY -1 = 0, Z 0 Y = 0} (5.4)
of these Q, with λ < 0, is actually a homogeneous manifold of the Schrödinger group, and an open submanifold

M λ ⊂ AdS d+3 ( √ -2λ).
Proposition 5.2. For every λ < 0, the manifold (5.4) is a connected, (d + 3)dimensional, homogeneous space of the Schrödinger group, viz.,

M λ ∼ = Sch(d + 1, 1)/(E(d) × R) (5.5)
where E(d) = O(d)⋉R d is the Euclidean group of R d . These manifolds have topology

M λ ∼ = (R d+2 \ {0}) × S 1 .
(5.6)

Proof. From the very definition (5.4), each manifold M λ is the image of the surjection

π λ : Sch(d + 1, 1) → M λ given by π λ (A) = λA d+3 + A d+4 .
The left-action of the Schrödinger group clearly passes to the quotient according to (4.17), and M λ is therefore diffeomorphic to a homogeneous space Sch(d + 1, 1)/K. Let us prove that

K ∼ = E(d) × R.
The coordinate system chosen in (4. [START_REF] Duval | Conformal Galilei groups, Veronese curves, and Newton-Hooke spacetimes[END_REF] provides us with the local expression

Q = 1 r   x -1 2 x * x + λr 2 1   (5.7) where x = x + λr 2 qξ ∈ R d+2 (5.8)
and r = 0. Consider now the "origin", Q 0 , defined by x = 0 and r = 1 in (5.7).

Then look for the subgroup, K, of all A ∈ Sch(d + 1, 1) such that AQ 0 = Q 0 . In view of (4. 

L * L = 1 + 2λa 2 ξξ * . The equations Lξ = L * ξ = ξ help us write L =   R u 0 0 1 0 v w 1   (5.9) where R ∈ End(R d ), u ∈ R d , v ∈ (R d ) *
, and w ∈ R. At last, the extra constraint Let us write the components of the Q = X + λY , defined by (5.3), in this frame.

L * L = 1+2λa 2 ξξ * entails that R t R = 1, v = -u t R (
Solving the equations in (5.4) for Y , namely Y Y = 0, and Z 0 Y = 0, we get

Y =       0 a ′ -a ′ b ′ b ′       ∈ R d+2,2 \{0} with a ′ , b ′ ∈ R (and a ′2 + b ′2 > 0).
As for the remaining equations satisfied by

X =       x a u b v       ∈ R d+2,2 \{0}
with x ∈ R d , and a, b, u, v ∈ R, we obtain

XX = 0 ⇐⇒ x t x + a 2 + b 2 = u 2 + v 2 > 0 (5.10) XY = 1 ⇐⇒ a ′ (u + a) + b ′ (b -v) = 1. (5.11) 
Noticing that the dilations (X, Y ) → (αX, α -1 Y ) with α ∈ R * do preserve M λ , we claim that the latter dilation invariance and the conditions (5.10) and (5.11) leave us with d + 6 -3 = d + 3 free parameters, e.g.,

yields a ′ as a function of a, b, u, v. The only remaining constraint on X is therefore given by Equation (5.10). This entails that X ∈ Q, hence M λ has the same topology as Q ∼ = (R d+2 \{0}) × S 1 , and is thus connected.

Distinguished Schrödinger-invariant structures

With these preparations, we are ready to introduce Schrödinger-invariant tensors on M λ .

Denote by g

λ = ( M λ ֒→ R d+4 ) * G the induced symmetric tensor on M λ , viz., g λ (δQ, δ ′ Q) = δQ δ ′ Q (5.12)
for all δQ, δ ′ Q ∈ T Q M λ . This tensor, g λ , is clearly Sch(d + 1, 1)-invariant. In view of (4.6), the same remains true for the one-form θ of M λ defined by

θ(δQ) = -Q Z 0 δQ (5.13) for all δQ ∈ T Q M λ .
We easily find that d θ(δQ, δ ′ Q) = -2δQZ 0 δ ′ Q. By means of the fact that Z 0 has rank 2 (as clear from Lemma 4.2 stating that Z 0 = P 0 ∧ Q 0 where P 0 and Q 0 span a totally null plane in R d+2,2 ), and by some straightforward computation, we get θ ∧ d θ = 0.

(5.14)

Remark 5.3. Local expressions for (5.12) and (5.13) are easily deduced from (5.7);

we get g λ (δQ,

δ ′ Q) = r -2 [g(δ x, δ ′ x) -2λ δrδ ′ r] or, alternatively, g λ = 1 r 2 d+2 i,j=1 g ij d x i ⊗ d x j -2λ dr ⊗ dr (5.15) 
together with

θ = θ r 2 (5.16) 
where θ = d+2 i=1 g ij ξ i d x j (= dt) is the Galilei clock of the flat Bargmann structure. The metric (5.15) is the well-known expression of the AdS d+3 ( √ -2λ) metric in Poincaré coordinates; see, e.g., [START_REF] Aharony | Large N field theories, string theory and gravity[END_REF].

Theorem 5.4. For every λ < 0, the manifold M λ admits a family of Lorentz metrics

g λ,µ = g λ -µ θ ⊗ θ (5.17) 
given by (5.12) and (5.13), parametrized by µ ∈ R. The Schrödinger group is the group of isometries of ( M λ , g λ,µ ).

Proof. The signature of the metrics g λ and g λ,µ is clearly Lorentzian since λ < 0.

Then the group of isometries of ( M λ , g λ ) is, by construction, a subgroup of the group O(d + 2, 2) of isometries of AdS d+3 ( √ -2λ), which furthermore preserves the constraint Z 0 Y = 0 in (5.4). It is thus the stabilizer of Z 0 in O(d + 2, 2), i.e., the Schrödinger group Sch(d + 1, 1) in view of (4.6). The extra term, -µ θ ⊗ θ, in (5.17)

being Sch(d + 1, 1)-invariant, Proposition 3.4 helps us complete the proof.

Remark 5.5. The expression (5.17) is -up to an overall multiplicative constant factor -the most general twice-symmetric tensor constructed by means of the only data at our disposal, namely the "ambient" metric G given by (3.2), and the central element Z 0 ∈ sch(d + 1, 1) defined in (4.5).

Remark 5.6. In view of Proposition 5.2, the manifold (5.4) is

(d + 3)-dimensional, it is thus an open submanifold M λ ⊂ AdS d+3 ( √ -2λ).
There exists a privileged vector field on M λ , namely

ξ : Q → δ Z 0 Q = Z 0 Q (5.18)
where Z 0 ∈ o(d + 2, 2) is defined by (4.5).

Proposition 5.7. The vector field ξ defined by (5.18) is a nowhere vanishing, lightlike, Killing vector field of ( M λ , g λ,µ ).

Proof. The restriction ξ to M λ of the vector field

δ Z 0 : Q → Z 0 Q of R d+2,2 is tangent to M λ at the point Q since δ Z 0 (QQ) = 2Qδ Z 0 Q = 2QZ 0 Q = 0 as a consequence of the G-skewsymmetry of Z 0 . Let us furthermore show that Z 0 Q = 0 for all Q ∈ M λ .
Resorting to (5.4), we find Z 0 Q = Z 0 X; using (4.5) and (4.15), we get

Z 0 X =   eξ -ξ * C 0   (5.19) 
and claim that the latter vector nowhere vanishes since ξ = 0. Indeed, suppose that e = 0; then Equation (4.12) would necessarily yield

ξ * C = 0, implying Z 0 X = 0, whence δ Z 0 Q = 0 for all Q ∈ M λ .
The vector field (5.18) is actually a Killing vector field of the metric (5.17) since it generates the 1-parameter additive group s → exp(sZ 0 ) = Id+sZ 0 ∈ Sch(d+1, 1), i.e., a group of isometries of ( M λ , g λ,µ ) as a consequence of Theorem 5.4.

We finally check that g λ,µ ( ξ, ξ) = 0. By Equations (5.12) and (5.13), we get

g λ,µ (δ Z 0 Q, δ Z 0 Q) = Z 0 Q Z 0 Q -µ(QZ 2 0 Q) 2 = 0 since Z 0 + Z 0 = Z 2 0 = 0.

Conformal infinity and conformal Bargmann structures

Resorting to Definition (5.4), we will consider the limit λ → 0 as a route to conformal infinity of ( M λ , g λ,µ , ξ), our candidate to the status of Schrödinger manifold.

Observe that, in view of Lemma 5.1, there holds Z 0 X = 0 in (5.4). So, the limiting manifold M 0 = lim λ→0 M λ is an open submanifold of the null cone Q. The construction (3.4) of the Einstein space therefore prompts the following definition for conformal infinity of the previous structure, namely M = M 0 / R * , i.e.,

M = {X ∈ R d+2,2 | XX = 0, Z 0 X = 0} / R * (5.20)
where X ∼ X ′ iff X ′ = αX for some α ∈ R * . and has topology

M ∼ = (R d+1 × S 1 )/Z 2 . (5.22)
Proof. If X ∈ M 0 , the same is true for AX for any A ∈ Sch(d + 1, 1) since Z 0 AX = AZ 0 X = 0, see Definition (4.6). This enables us to choose, e.g., In order to implement the latter constraint Lξ = eξ, and fully characterize A ∈ S, let us choose the constant g-null vector ξ to be of the form

X =   0 0 1   ∈ M 0 (5.
ξ =   0 0 1   ∈ R d+1,1 (5.25) 
as in the coordinate system used in (2.1). This entails that To that end, use a frame with Gram matrix (4.23) where the distinguished element

L =   R -e -1 Rv 0 0 e -1 0 v t -1 2 e -1 v t v e   (5.26 
Z 0 ∈ o(d + 2, 2
) is represented by the matrix Z ′ 0 given by (4.24). Then look for all X ∈ Q \ M 0 , i.e., for those X lying in the null cone Q, and outside M 0 . This amounts to finding all solutions

X =       x a u b v       ∈ R d+2,2 \{0}
with x ∈ R d , and a, b, u, v ∈ R of both equation XX = 0, viz., x t x+a 2 +b 2 = u 2 +v 2 , and Z 0 X = 0, i.e., u = -a, and v = b. Since X = 0, we get x t x = 0. This leaves us with x = 0, and a 2 + b 2 > 0; hence Q \ M 0 ∼ = ({pt} × S 1 ) × R * + , which reveals that, in that δ Z 0 is invariant against dilations X → αX with α ∈ R * . The push-forward, ξ, of δ Z 0 to M = P M 0 is therefore a nowhere vanishing vector field. Finally, (5.28)

yields g F 0 (ξ [X] , ξ [X] ) = δ Z 0 X δ Z 0 X/F 0 (X) = -XZ 2 0 X/F 0 (X) = 0.
Let us end by proving that the vector field ξ is indeed covariantly constant with respect to the Levi-Civita connection, ∇, of g F 0 .

Applying the general formula ∇θ = 1 2 dθ + 1 2 L ξ g, where θ = g(ξ), we readily find, using Equation (5.30), that ∇θ

F 0 = 1 2 L ξ g F 0 . Now, Equation (5.28) helps us compute L ξ g F 0 (δ ′ [X], δ ′′ [X]) = δ Z 0 δ ′ X δ ′′ X/F 0 (X) -[δ Z 0 , δ ′ ]X δ ′′ X/F 0 (X) - δ ′ X [δ Z 0 , δ ′′ ]X/F 0 (X) = -(δ ′ X δ ′′ X)δ Z 0 F 0 (X)/(F 0 (X)) 2 = 0 since δ Z 0 F 0 (X) = 0 in view of Z 0 P 0 = Z 0 Q 0 = 0.
We thus get ∇θ F 0 = 0, hence ∇ξ = 0.

We have thereby proved the following proposition. 

Main result: homogeneous Schrödinger manifolds

Consider the triple ( M λ , g λ,µ , ξ) where M λ ⊂ AdS d+3 ( √ -2λ) defined by (5.4) is the Schrödinger-homogeneous space (5.6) endowed with the metric (5.17 (5.32)

Now, positing

r = r √ -2λ (5.33) 
we find

Q = √ -2λ r   x -1 2 x * x -1 2 r 2 1   ∈ M λ (5.34)
in view of (5.7). This implies that

X = 1 r   x -1 2 x * x 1   ∈ M 0 (5.35)
in the limit r → 0 corresponding to λ → 0, hence that a representative [X] of the ray R * X ∈ P M 0 is given, with x ∈ R d+1,1 , by

[X] =   x -1 2 x * x 1   ∈ M. (5.36)
Collecting the expressions of Section 5.2, we assert that the metrics g λ,µ given by (5.15), (5.17), and the vector field ξ as defined by (5.18), viz., Furthermore, straightforward computation using (5.37) shows that .38) This readily yields g λ,µ | T * M = µ ξ ⊗ ξ in the limit r → 0, insuring that item 2 of Definition 3.3 holds true prior to imposing the normalization condition µ = 1.

g λ,µ = -2λ r 2 d+2 i,j=1 g ij d x i ⊗ d x j + d r ⊗ d r + 2λµ d t ⊗ d t r 2 & ξ = ∂ ∂ s (5.
g λ,µ = -r 2 2λ d+2 i,j=1 g ij ∂ ∂ x i ⊗ ∂ ∂ x j + ∂ ∂ r ⊗ ∂ ∂ r + µ ∂ ∂ s ⊗ ∂ ∂ s . ( 5 
Using then the form of the Poincaré metric g + of Definition 3.3, we easily deduce from (5.37) that g + λ = g λ as given by Equation (5.15). This proves that it is only the conformal class, [g], of the metric g = lim λ→0 (r 2 g + λ ) that goes over to the boundary M = P M 0 of M λ . To sum up, we find that the triple (M, [g], ξ) where The proof of Theorem 5.14 is complete. We refer to Figure 1 for a graphical representation of our construction. These equations are interpreted as Einstein's equations Ric -1 2 R g + Λ g = T with a cosmological constant Λ = (d + 1)(d + 2)/(4λ), and sources given in terms of the "null fluid" stress-energy-momentum tensor T = -µ(d + 4)/(2λ) θ ⊗ θ. See also [START_REF] Duval | The geometry of Schrödinger symmetry in non-relativistic CFT[END_REF].

g = d i=1 dx i ⊗ dx i + 2dt ⊙ ds = d+2 i,j=1 g ij dx i ⊗ dx j & ξ = ∂ ∂s ( 5 
P d+3 (R) AdS d+3 ( √ -2λ) ( M λ , g λ,µ , ξ) r = 0 r Ein d+1,1 (M = ∂ M λ , [g], ξ) S 1 × {pt} ξ ξ ξ ξ
Remark 5.17. We learn from Equation (5.14) that the distribution ker( θ) is actually integrable. This is the very condition found in [START_REF] Julia | Null-Killing vector-dimensional reduction and Galilean geometrodynamics[END_REF] to achieve a null-Killing dimensional reduction. Our Schrödinger-homogeneous manifolds ( M λ , g λ,µ , ξ) thus provide examples of those manifolds considered by Julia and Nicolai [START_REF] Julia | Null-Killing vector-dimensional reduction and Galilean geometrodynamics[END_REF].

Conclusion

This article has been triggered by the seemingly contradictory emergence of nonrelativistic Schrödinger "isometries" within the framework of an a priori relativistic AdS/CFT correspondence (in the case where the dynamical exponent is z = 2).

A closer look at the literature referred to in the introduction made it clear that the metric (1.1) appearing in the physics of non-relativistic holography should be related to the structure of what has been called a Bargmann extension of nonrelativistic spacetime; see Section 2 which also offers a general definition of the Schrödinger group. This hint has been first investigated in [START_REF] Duval | The geometry of Schrödinger symmetry in non-relativistic CFT[END_REF]. Our task, here, was thus to put this observation on more global geometrical grounds.

From this vantage point, we have chosen to specialize the construction of a Poincaré metric, due to Fefferman and Graham, to the case where conformal infinity is moreover endowed with a conformal Bargmann structure governed by a null, parallel, vector field. This has led us to our definition 3 of Schrödinger manifolds.

Let us insist that the general proof of the existence and uniqueness (in suitable dimensions) of Schrödinger prolongations of Bargmann manifold structures has not been envisaged here, being clearly beyond the scope of this article. This will be deferred to subsequent work.

Nevertheless, the purpose of this article is to supply explicit examples of such Schrödinger manifolds that would help us understand the origin of the abovementioned metric, with Schrödinger isometries, in a non-relativistic avatar of the AdS/CFT correspondence. Accordingly, we have found it useful to characterize, in the "flat" case, the Schrödinger group, Sch(d + 1, 1), as the stabilizer within O(d + 2, 2) of a distinguished nilpotent element, Z 0 , of the Lie algebra, o(d + 2, 2).

Our construction interestingly confers, as awaited and in a clear-cut fashion, a nonrelativistic status to the Schrödinger group within a purely relativistic framework.

Our main result, namely Theorem 5.14, provides us with examples of Schrödinger manifolds, ( M λ , g λ,µ , ξ); the canonical one is fixed by the normalization conditions λ = -1 2 , and µ = 1. Note that M λ is actually a homogeneous space of the Schrödinger group Sch(d+1, 1), and, besides, an open submanifold of AdS d+3 ( √ -2λ).

In a appropriate coordinate system on M -1

2

, the metric g -1 2 ,1 matches exactly the Balasubramanian-McGreevy and Son metric (1.1). See also [START_REF] Schäfer-Nameki | Coset Construction for Duals of Non-relativistic CFTs[END_REF] for a local approach in terms of a non-reductive homogeneous space of the Schrödinger group.

Let us stress that it finally appears that the Schrödinger group Sch(d + 1, 1) is, as expected, the maximal group of isometries of our Schrödinger manifolds. This definitely firms up the claims of [START_REF] Balasubramanian | The particle number in Galilean holography[END_REF][START_REF] Son | Toward and AdS/cold atom correspondence: a geometric realization of the Schrödinger symmetry[END_REF].

There remains, however, to understand, in completely general terms, the relationship between the Schrödinger group defined as the group of automorphisms of a conformal Bargmann structure and the group of automorphisms of an associated (Poincaré-)Schrödinger structure. This program for future work should indeed take advantage of a key result of Anderson [START_REF] Anderson | Topics in conformally compact Einstein metrics[END_REF] about the isometric extensions of the automorphisms of conformal infinity of a conformally compact Einstein manifold.

From another perspective, it would be worthwhile considering our construction of Poincaré-Schrödinger metrics for the canonical circle-bundle of a CR manifold (see, e.g., [START_REF] Dragomir | Differential geometry and analysis on CR manifolds[END_REF] for a general reference on CR geometry) endowed with its Fefferman metric, and a null nowhere vanishing Killing vector field, given by the generator of the S 1 -action [START_REF] Fefferman | Monge-Ampère equations, the Bergman kernel, and geometry of pseudoconvex domains[END_REF][START_REF] Lee | The Fefferman metric and pseudo-Hermitian invariants[END_REF][START_REF] Graham | On Sparling's characterization of Fefferman metrics[END_REF][START_REF] Barletta | On the curvature groups of a CR manifold[END_REF].

  and a, b, d, e ∈ R satisfy 0 = Lξ -eξ (4.8) 0 = L * ξ -bξ (4.9) 1 = L * L -a(ξB * + Bξ * ) (4.10) 0 = L * C -adξ + eB (
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 1 Tr(Z 0 Θ) of O(d + 2, 2). A classical result tells us that d̟ descends to O Z 0 as the canonical Kirillov-Kostant-Souriau symplectic 2-form, ω, of O Z 0 , viz., d̟ = (O(d + 2, 2) → O Z 0 ) * ω. Indeed, let us put again ξ = e d+2 , and A i = Ae i for i = 1, . . . d + 4 whenever A ∈ O(d + 2, 2); with the help of (4.5) we get ̟ = P dQ, where P = A d+2 , and Q = A d+3 are nonzero, and such that P P = P Q = QQ = 0. The 2-form d̟ = dP ∧ dQ (4.28) clearly descends to the slit null tangent bundle, NT Q\Q, of the null quadric Q = {Q ∈ R d+2,2 \{0} | QQ = 0}. (4.29) It defines the sought symplectic structure, ω, on O Z 0 = (NT Q\Q)/SL(2, R) (4.30) interpreted as the manifold of null geodesics of conformally compactified Minkowski spacetime PQ = Ein d+1,1 ; see (3.4) and (3.6). (The leaves of the distribution ker(d̟)

7 )

 7 we readily find C = -λaξ, d = λ(1 -b), and e = 1. Moreover, the constraints (4.8)-(4.14) yield Lξ = L * ξ = ξ, B = -C = λaξ, b = 1, d = 0, and

  where the superscript "t" stands for transposition), and w = -1 2 u t u+λa 2 . The isotropy group K ⊂ Sch(d+1, 1) of Q 0 is therefore parametrized by the triples (R, u, a) ∈ O(d) × R d × R, and easily found to be isomorphic to the direct productK ∼ = E(d) ×R. Since dim(K) = 1 2 d(d + 1) + 1, we indeed get dim( M λ ) = 1 2 (d 2 + 3d + 8) -1 2 (d 2 + d + 2) = d + 3. We now work out the topology of our Sch(d+1, 1)-homogeneous space M λ given by (5.4). We will suitably use a frame of R d+2,2 with Gram matrix(4.23) where the distinguished element Z 0 ∈ o(d + 2, 2) is represented by the matrix Z ′ 0 in (4.24).
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 58 The manifold (5.20) is diffeomorphic to the following (d + 2)dimensional homogeneous space of the Schrödinger group M ∼ = Sch(d + 1, 1)/(E(d) × T R * ) (5.21)

23 )

 23 in the frame whose Gram matrix is as in(4.4). Now, M being the projectivization of M 0 , let us determine the stabilizer, S, of the direction of X in(5.23). Seek thus the form of those A ∈ Sch(d + 1, 1) such that AX = αX, for some α ∈ R * . Using (4.7), we get C = 0, d = 0, and e = α. Equations (4.11) and (4.12) entail B = 0, and b = 1/e. From Equation (4.10) we get L * L = 1, L ∈ O(d + 1, 1) satisfying the constraint (4.8), a ∈ R, and e ∈ R * .

  ) with R ∈ O(d), and v ∈ R d . The matrix group law for this stabilizer readily yields S = (O(d) ⋉ R d ) × (R * ⋉ R) proving (5.21). We can therefore confirm that dim(M) = 1 2 (d 2 + 3d + 8) -1 2 (d 2 + d + 4) = d + 2. We now work out the topology of M, our Sch(d+1, 1)-homogeneous space (5.20).
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 513 The triple (M, [g], ξ) is a conformal Bargmann structure in the sense of Definition 2.4.
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 514 ) and the vector field(5.18). Consider next the conformal Bargmann structure (M, [g], ξ) where M defined by(5.20) is the Schrödinger homogeneous space (5.21) endowed via (5.28) with the conformal class [g] of Bargmann metrics, and where ξ is the fundamental vector field (5.31) of the group generated by Z 0 . The triple ( M λ , g λ,µ , ξ) is the (Poincaré-)Schrödinger manifold, in the sense of Definition 3.3, with conformal Bargmann boundary (M, [g], ξ) provided λ = -1 2 , and µ = 1. Proof. Our objective is thus to demonstrate that the preceding data fulfill all items of our Definition 3.3 of Schrödinger manifolds. Let us first review some previous results expressed in local coordinate systems adapted to the Schrödinger symmetry pervading our construction. To this purpose, and in order to make contact with the FG construction, we find it convenient to work now on the open domain where Q ∈ M λ admits the local form (5i = x i (i = 1, . . . , d) t = t s = s + λr 2 q.

  [START_REF] Jackiw | Introducing scaling symmetry[END_REF] constitute a family of Lorentz metrics (for λ < 0), while ξ is a nowhere zero null Killing vector field. The crux of the matter is that r = r √ -2λ defined by (5.33) is definitely (see (3.1) and (5.37)) our defining function for M, the conformal boundary of M λ (coordinatized as in (5.36)). Moreover Equations (5.32) and (5.33) entail that, locally, ∂/∂ s = ∂/∂s, a relationship which is consistent with the limit r → 0. The vector field ξ = ∂/∂ s of M λ therefore goes smoothly over to M = ∂ M λ as the vector field ξ = ∂/∂s. This justifies, in local terms, item 1 of Definition 3.3, the latter being globally accounted for by Proposition 5.12.

Figure 1 :

 1 Figure 1: Schrödinger manifold & conformal Bargmann boundary

  are now led to the following query: what Sch(d + 1, 1)-homogeneous space would

host a genuine, well-behaved, Lorentz metric whose isometries constitute the whole Schrödinger group (4.6)?

Let us first consider the distinguished element Z 0 ∈ o(d + 2, 2) represented as in (4.5) and the associated vector field δ Z 0

  Poincaré metric on M λ , consistently with Definition 3.2, if the right-hand side of Equation (5.40) vanishes, i.e., if λ = -1 2 . Item 3 of the definition 3.3 of Schrödinger manifolds is therefore fulfilled.

				.39)
	is a representative of our Schrödinger-homogeneous conformal Bargmann structure
	(see (2.1)) expressed in the adapted local coordinate system provided by (5.36).
	Direct computation moreover shows that			
	Ric(g + λ ) + (d + 2)g + λ =	(d + 2)(1 + 2λ) 2λ	g + λ	(5.40)
	which enables us to conclude that g + λ is indeed a		

We will confine considerations to conformal diffeomorphisms of (M, g) that commute with the H-action on M , hence satisfying (2.5). We will not consider, here, the larger (pseudo-)group of all conformal transformations Φ of (M, g) that permute the H-orbits, i.e., such that ξ ∧ Φ * ξ = 0.

The matrix(4.4) is the Gram matrix of some chosen basis that will not be further specified, unless otherwise stated.

We will often use the identification o(d + 2, 2) ∼ = 2 R d+2,2 .

This nilpotent orbit has two connected components; in the case d = 2 each one is symplectomorphic to the manifold of regularized Keplerian motions[START_REF] Souriau | Géométrie globale du problème à deux corps[END_REF][START_REF] Guillemin | Variations on a theme by Kepler[END_REF][START_REF] Duval | The BRS Method and Geometric Quantization: Some Examples[END_REF].
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this forbidden domain, the fibre above (a, b) = 0 is a point, {pt}. Thanks to (3.6), and (5.20), we obtain M ∼ = (S d+1 \ {pt}) × S 1 /Z 2 , i.e., M ∼ = (R d+1 × S 1 )/Z 2 .

Remark 5.9. As a consequence of (5.22), the manifold (5.20) has the topology of a Möbius band as shown in [START_REF] Duval | Quelques procédures géométriques en dynamique des particules[END_REF][START_REF] Duval | Conformal Galilei groups, Veronese curves, and Newton-Hooke spacetimes[END_REF]. It will be interpreted as an extended spacetime, fibered above the time axis T ∼ = P 1 (R); see Section 2.

Let us show that M is actually endowed with a conformal Bargmann structure (see Section 2.3) inherited from its very definition (5.20).

Consider then g λ = g λ,0 where g λ,µ is as in (5.17). The induced twice symmetric covariant tensor field g 0 = g 0 | T M 0 on M 0 ⊂ Q is degenerate, and ker(g 0 ) is spanned by E, the restriction to M 0 of the Euler vector field of the quadric Q. We find that L E g 0 = 2g 0 , which entails that g 0 defines but a conformal class [g] of Lorentz metrics on M = P M 0 (just as in the Ein d+1,1 case dealt with in Section 3.1).

We have thus proved the following result. Let us derive, at this stage, a remarkable global representative of [g] constructed via a nowhere vanishing function F 0 of M 0 , which is homogeneous of degree 2, e.g., via the function

Indeed F 0 (X) = 0 is equivalent to the defining condition Z 0 X = 0 of M 0 .

We will also denote by π : M 0 → M the projection where π(X) = [X] is the ray through X ∈ M 0 .

Lemma 5.11. A representative g F 0 ∈ [g] associated with the choice (5.27) reads as

(5.28)

Proof. Clearly, the quadratic form g 0 /F 0 is dilation-invariant, and hence passes to the quotient M as a representative g

and using the fact that XX = 0, we end up with Equation (5.28).

Moreover the action of the Schrödinger group on M, given by A :

for all A ∈ Sch(d + 1, 1) is well-defined; we further check, via Equation (5.28), that it is indeed a conformal action since it preserves [g].

Considering then the 1-form θ 0 induced by θ on M 0 , we find that θ 0 (E) = 0, and

This implies, with the above choice, that the dilation-invariant 1-form θ 0 /F 0 descends to M as the 1-form θ F 0 given by

Let us then prove that θ F 0 is closed. As a first step, we obtain

Then, using the fact that Z 0 = P 0 ∧ Q 0 (see Lemma 4.2), and the expression (5.27), one finds

where θ is the Bargmann clock introduced in Section 2.

Proposition 5.12. The vector field δ Z 0 : X → Z 0 X of M 0 descends to the quotient M defined in (5.20) as a nowhere vanishing, null, vector field ξ, viz.,

Proof. The derivation δ Z 0 preserves the constraint XX = 0; it thus defines a vector field of M 0 which is nowhere zero because of the definition (5.20). we readily check

We finally expect that the definition of Schrödinger manifolds put forward in this article, and the explicit examples that have been worked out, will foster new research in the very attractive domain of non-relativistic AdS/CFT correspondence.