
HAL Id: hal-00656140
https://hal.science/hal-00656140

Submitted on 3 Jan 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Framework Recommending Top-k Web Service
Compositions: A Fuzzy Set-Based Approach

Karim Benouaret, Djamal Benslimane, Allel Hadjali

To cite this version:
Karim Benouaret, Djamal Benslimane, Allel Hadjali. A Framework Recommending Top-k Web Service
Compositions: A Fuzzy Set-Based Approach. Applied Computing Review, 2011, 11, (3), pp.32-40.
�hal-00656140�

https://hal.science/hal-00656140
https://hal.archives-ouvertes.fr

A Framework Recommending Top-k Web Service
Compositions: A Fuzzy Set-Based Approach

Karim Benouaret
Lyon 1 University

69622, Villeurbanne, France
kbenouar@liris.cnrs.fr

Djamal Benslimane
Lyon 1 University

69622, Villeurbanne, France
dbenslim@liris.cnrs.fr

Allel Hadjali
Enssat-University of Rennes 1

22305, Lannion, France
hadjali@enssat.fr

ABSTRACT
Data Web services allow users to access information pro-
vided by different companies. Web users often need to com-
pose different Web services to achieve a more complex task
that can not be fulfilled by an individual Web services. In
addition, user preferences are becoming increasingly impor-
tant to personalize the composition process. In this paper,
we propose an approach to compose data Web services in
the context of preference queries where user preferences are
modeled thanks to fuzzy sets that allow for a large vari-
ety of flexible terms such as “cheap”, “affordable” and “fairly
expensive”. Our main objective is to find the top-k data
Web service compositions that better satisfy the user pref-
erences. The proposed approach is based on an RDF query
rewriting algorithm to find the relevant data Web services
that can contribute to the resolution of a given preference
query. The constraints of the relevant data Web services are
matched to the preferences involved in the query using a set
of matching methods. A ranking criteria based on a fuzzy-
fication of Pareto dominance is defined in order to better
rank the different data Web services/compositions. To se-
lect the top-k data Web services/compositions we develop a
suitable algorithm that allows eliminating less relevant data
Web services before the composition process. Finally, we
evaluate our approach through a set of experiments.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Query for-
mulation, Search process, Selection process; H.3.5 [Online
Information Services]: Web-based services

General Terms
Measurement, Theory, Performance

Keywords
Fuzzy dominance, Web service, Top-k compositions, fuzzy
preferences queries.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

1. INTRODUCTION
Nowadays, an increasing among companies are moving to-

wards a service-oriented architecture for data sharing on
the Web by putting their data sources behind Web ser-
vices, thereby providing a well-documented and interopera-
ble method of interacting with their data [8, 16, 9]. In par-
ticular, if no single Web service can satisfy the functionality
required by the user, there should be a possibility to combine
existing services together in order to fulfill the request. In
this context, we talk about Data Web Service Composition,
where services correspond to calls over the data sources, i.e.,
the invocation of a data Web service results in the execution
of a query over the data sources’ schema.

On the other hand, user preferences are becoming increas-
ingly important to personalize the composition process. For
example, when looking for items to be purchased over the
Web, customer preferences are critical in the search. A more
general and suitable approach to model preferences is based
on fuzzy sets theory [13]. Fuzzy sets are very well suited
to the interpretation of linguistic terms, which constitute
a convenient way for a user to express her/his preferences.
For example, when expressing preferences about the price
of a car, users often employ fuzzy terms like “rather cheap”,
“affordable” and “not expensive”. However as data Web ser-
vices and service providers proliferate, a large number of
candidate compositions that would use different -most likely
competing- services may be used to answer the same query.
Hence, it is important to set up an effective service compo-
sition framework that would identify and retrieve the most
relevant services and return the top-k compositions accord-
ing to the user preferences.

The following example illustrates a typical scenario re-
lated to our previous discussion, showing the challenges in
finding the top-k service compositions.

Example. Let us consider an e-commerce system support-
ing users to buy cars. The system has access to the set of
services described in Table 1. The symbols “$” and “?” de-
note inputs and outputs of data services, respectively. Ser-
vices providing the same functionality belong to the same
service class. For instance, the services S21, S22, S23 and
S24 belong to the same class S2. Each service has its (fuzzy)
constraints on the data it manipulates. For instance, the
cars returned by S21 are of cheap price and short warranty.

Assume that a user Bob wants to buy a car. He sets his
preferences and submits the following query Q1: “return the
French cars, preferably at an affordable price with a war-
ranty around 18 months and having a normal power with
a medium consumption”. Bob will have to invoke S11 to

Table 1: Example of Data Web Services
Service Functionality Constraints

S11($x, ?y)

Returns the
automakers y
made in x

-

S21($x, ?y, ?z, ?t) Returns the
cars y along
with their
prices z and
warranties t
for a given
automaker x

z is cheap, t is short

S22($x, ?y, ?z, ?t)
z is accessible,
t is [12, 24]

S23($x, ?y, ?z, ?t)
z is expensive,
t is long

S24($x, ?y, ?z, ?t)
z is [9000, 14000],
t is [6, 24]

S31($x, ?y, ?z) Returns the
power y and
the
consumption z
for a given car
x

y is weak, z is small

S32($x, ?y, ?z)
y is ordinary, z is
approximately 4

S33($x, ?y, ?z)
y is powerful,
z is high

S34($x, ?y, ?z)
y is [60, 110],
z is [3.5, 5.5]

retrieve the French automakers, he can then invoke one or
more of the services S21, S22, S23, S24 to retrieve the French
cars along with their prices and warranties, finally, he will
invoke one or more of the services S31, S32, S33, S34 to re-
trieve the power and the consumption of retrieved cars. This
manual process is painful and tedious. It raises the follow-
ing challenges: (i) how to understand the semantics of the
published data Web services to select the relevant ones that
can contribute to answering the query at hand; (ii) how to
retain the most relevant services (several similar data Web
services offer the same functionality but are associated with
different constraints) that better satisfy the user’s prefer-
ences and (iii) how to generate the best k data Web service
compositions that satisfy the whole user query.

Contributions. We already tackled the first challenge by
proposing a semantic annotation of data Web services and
an efficient RDF-based query rewriting approach that gen-
erates automatically the data Web service compositions that
cover a user query (which does not include any preference
constraints) [4]. In this paper, we focus on the second and
third challenges. We select the services that cover a part of
the query even if their constraints match only partially the
user preference constraints. Different constraints inclusion
methods are investigated to compute the matching degrees
between the services’ fuzzy constraints and the fuzzy pref-
erences involved in the query. In order to select the most
relevant services, a ranking criteria based on a multicriteria
fuzzy dominance relationship is proposed. The selected ser-
vices are then used to find the top-k service compositions
that answer the user query.

Outline. The rest of this paper is organized as follows. In
Section 2, we present the background of our paper, i.e., a re-
mainder on fuzzy sets, that constitutes a basis to our work.
In Section 3, we formally describe the studied problem. Sec-
tion 4 describes the ranking approach of data Web services
which is mainly based on the fuzzy dominance relationship.
Section 5 is devoted to the top-k data Web service com-
positions generation method. Section 6 presents the global
architecture of our Web service composition-based prefer-
ence query answering and shows some experimental results.

We review related work in Section 7. Finally, Section 8 con-
cludes the paper.

2. BACKGROUND ON FUZZY SETS

2.1 Basic Notions
Fuzzy set theory was introduced by Zadeh [31] for mod-

eling classes or sets whose boundaries are not quite defined.
For such objects, the transition between full membership
and full mismatch is gradual rather than crisp. Typical ex-
amples of such fuzzy classes are those described using adjec-
tives of the natural language, such as “cheap”, “affordable”
and “expensive”. Formally, a fuzzy set F on a referential X
is characterized by a membership function µF : X → [0, 1]
where µF (x) denotes the grade of membership of x in F .
In particular, µF (x) = 1 reflects full membership of x in F ,
while µF (x) = 0 expresses absolute non-membership. When
0 < µF (x) < 1, one speaks of partial membership. F is
normalized if ∃x ∈ X,µF (x) = 1. Two crisp sets are of
particular interest when defining a fuzzy set F :

• the core C(F) = {x ∈ X | µF (x) = 1}, which gathers
the prototypes of F ,

• the support S(F) = {x ∈ X | µF (x) > 0}, which con-
tains the elements that belong to some extent to F .

In practice, the membership function associated with F is
often of a trapezoidal shape. Then, F is expressed by the
quadruplet (A,B, a, b) where C(F) = [A,B] and S(F) =
[A− a,B+ b], see Figure 1. A regular interval [A, B] can be
seen as a fuzzy set represented by the quadruplet (A,B, 0, 0).

1

0

μF

A-a A B B+b X

Figure 1: Trapezoidal membership function

Let F and G be two fuzzy sets on the universe (i.e.,
referential) X, we say that F ⊆ G iff ∀x ∈ X,µF (x) ≤
µG(x). The complement of F , denoted by F c, is defined
by µFc(x) = 1 − µF (x). The cardinality of F is defined as
|F | =

∑
x∈X µF (x). Furthermore, F ∩ G (resp. F ∪ G) is

defined the following way:

• µF∩G = >(µF (x), µG(x)) where > is a t-norm oper-
ator that generalizes the conjunction operation (e.g.,
>(x, y) = min(x, y) and >(x, y) = x · y).

• µF∪G = ⊥(µF (x), µG(x))) where ⊥ is a co-norm op-
erator that generalizes the disjunction operation (e.g.,
⊥(x, y) = max(x, y) and ⊥(x, y) = x+ y − x · y).

As usual, the logical counterparts of the theoretical set
operators ∩, ∪ and complementation operator correspond
respectively to the conjunction ∧, disjunction ∨ and nega-
tion ¬. See [13] for more details.

A fuzzy implication is any [0, 1]2 → [0, 1] mapping I satis-
fying the boundary conditions I(0, 0) = 1 and I(1, x) = xfor

all x in [0, 1]. Moreover, we require I to be decreasing in its
first, and increasing in its second component. Two families
of fuzzy implications are studied in the fuzzy community
(due to their semantic properties and to the fact that their
results are similar with the ones of usual implications, ma-
terial implications, when the arguments are 0 or 1):

• R-implications: they are defined by I(x, y) = sup{β ∈
[0, 1],>(x, β) ≤ y}, where > is a t-norm operator. The
two most used R-implications are Godël implication
(IGd(x, y) = 1 if x ≤ y, 0 otherwise) and Goguen im-
plication (IGo(x, y) = 1 if x ≤ y, y/x otherwise).

• S-implications: they are defined by I(x, y) = ⊥(1 −
x, y), where ⊥ is a co-norm operator. The two most
popular S-implications are Kleene-Dienes implication
(IKl(x, y) = max((1− x, y)) and Lukasiewicz implica-
tion (ILu(x, y) = min(1− x+ y, 1)).

Note that Lukasiewicz implication is also an R-implication.
For a complete presentation about fuzzy implications, see
[13].

2.2 Modeling Preferences
Fuzzy sets provide a suitable tool to express user pref-

erences [12][14]. Fuzzy set-based approach to preferences
queries is founded on the use of fuzzy set membership func-
tions that describe the preference profiles of the user on each
attribute domain involved in the query.

The user does not specify crisp (Boolean) criteria, but
gradual ones like “very cheap”, “affordable” and “fairly ex-
pensive”, whose satisfaction may be regarded as a matter of
degree. Individual satisfaction degrees associated with ele-
mentary conditions are combined using a panoply of fuzzy
set connectives, which may go beyond conjunctive and dis-
junctive aggregations. Then, the result of a query is no
longer a flat set of elements but is a set of discriminated ele-
ments according to their global satisfaction w.r.t. the fuzzy
conditions appearing in the query. So, a complete pre-order
is obtained.

3. SERVICE COMPOSITION-BASED PREF-
ERENCE QUERIES ANSWERING

3.1 Preference Queries
Users express their preference queries over domain ontolo-

gies using a slightly modified version of SPARQL query lan-
guage. Preferences are modeled using fuzzy sets. For in-
stance, query Q1 given in Section 1 is expressed as follows:

SELECT ?n ?pr ?w ?pw ?co

WHERE {?Au rdf:type AutoMaker ?Au madeIn ’French’

?Au makes ?C ?C rdf:type Car ?C hasName ?n

?C hasPrice ?pr ?C hasWarranty ?w

?C hasPower ?pw ?C hasConsumption ?co}

PREFIRING {?pr is ’affordable’ ?w is ’around 18’,

?pw is ’normal’ ?co is ’medium’}

The semantics of all fuzzy terms of Table 1 are available in
the URL: http://vm.liris.cnrs.fr:36880/FuzzyTerms/.

3.2 Data Services
Assume that data services are partitioned into different

service classes. A class Sj represents services with the same
inputs, outputs, and providing the same functionality but

different (fuzzy) constraints. A data service Sji of class Sj is
described as a predicate Sji($Xj , ?Yj):-<φj(Xj , Yj , Zj), Cji>
where:

• Xj and Yj are the sets of input and output variables of
Sji, respectively. Input and output variables are also
called distinguished variables. They are prefixed with
the symbols “$” and “?”, respectively.

• φj(Xj , Yj , Zj) represents the functionality of the ser-
vice. This functionality is described as a semantic re-
lationship between input and output variables. Zj is
the set of existential variables relating Xj and Yj .

• Cji = {Cji1 , ..., Cjin} is a set of constraints expressed
as intervals or fuzzy sets on Xj , Yj or Zj variables.

Xj and Yj variables are defined in the WSDL description
of data services. Functionality φj and constraints Cji of a
data service Sji are added to the standard WSDL descrip-
tions in the form of annotations. The annotations are rep-
resented in the form of SPARQL queries. For instance, the
following SPARQL query illustrates the functionality and
service constraints of the data service S21:
SELECT ?y ?z ?t

WHERE {?Au rdf:type AutoMaker ?Au name $$x ?Au makes ?C

?C rdf:type Car ?C hasName ?y ?C hasPrice ?z

?C hasWarranty ?t ?z is ’cheap’ ?t is ’short’}

3.3 Discovering Relevant Services
Let Q be a preference query. We use an RDF query rewrit-

ing algorithm [4] to discover the parts of Q that are covered
by each service −recall that in the general case services may
match only parts (referred to by qj) of Q. The same part
qj is in general covered by one or more services that con-
stitute a class of relevant services and is designated as class
Sj . A service Sji ∈ Sj is said to be relevant to a query
Q iff the functionality of Sji completely matches the part
query qj and its constraints match completely or partially
the preference constraints of qj .

As preference constraints of a query are expressed in the
rich fuzzy sets framework, their matching degrees with data
services constraints may differ from one constraints inclusion
method (CIM) to another. Each relevant service is then as-
sociated with |M | matching degrees (if M = {m1, ...,m|M|}
is the set of the used methods). For instance, Table 2 shows
the matching degrees between each service Sji from Table 1
and its corresponding component qj (of the query Q1). The
degrees are computed by applying the following CIMs:
Let C ≡ x is E and C′ ≡ x is F be two constraints.

• Cardinality-based method (CBM) [30]. Deg(C ⊆ C′) =
|E∩F |
|E| =

∑
x∈X T (µE(x),µF (x))∑

x∈X µE(x)
where > is a t-norm op-

erator. The min operator is used in our example.

• Implication-based method (IBM) [3]. Deg(C ⊆ C′) =
minx∈XI(µE(x), µF (x)) where I stands for a fuzzy im-
plication. The following IBMs are used in our example:
Godel (IGo), Lukasiewicz (ILu) and Kleene-Diennes
(IKl).

The service S11 covering the component q1 does not have a
matching degree because there are no constraints imposed
by the user on q1. However, each service covering the com-
ponent q2 is associated with four (the number of methods)

degrees. Each matching degree is formulated as a pair of
real values within the range [0, 1], where the first and second
values are the matching degrees of the constraints price and
warranty, respectively. Similarly, for the matching degrees
of the services covering the component q3, the first and sec-
ond values represent the inclusion degrees of the constraints
power and consumption, respectively.

Table 2: Matching Degrees between services and
fuzzy preference constraints of Q1

Sji qj CBM IGoBM ILuBM IKlBM
S11 q1 - - - -
S21

q2

(1, 0.57) (1, 0) (1, 0) (0.80, 0)
S22 (0.89, 1) (0, 1) (0.90, 1) (0.50, 1)
S23 (0.20, 0.16) (0, 0) (0, 0) (0, 0)
S24 (0.83, 0.88) (0.60, 0.50) (0.60, 0.50) (0.60, 0.50)
S31

q3

(0.50, 0.36) (0, 0) (0, 0) (0, 0)
S32 (0.79, 0.75) (0, 0.25) (0.60, 0.50) (0.40, 0.50)
S33 (0.21, 0.64) (0, 0) (0, 0) (0, 0)
S34 (0.83, 0.85) (0.50, 0.50) (0.50, 0.50) (0.50, 0.50)

3.4 Problem Formulation
Given a query Q:-<q1, · · · , qn> where each qj is a sub-

query (query component). qj is a tuple (qj , Pqj), where qj
represents qj without its preferences Pqj . Given a set of
services classes S = {S1, ...,Sn} where a class Sj regroups
the services that are relevant to a query part qj and a set
M = {m1, ...,m|M|} of CIMs to compute the matching de-
grees between the constraints of relevant services and the
user’s preference. The problem we are interested in is how
to rank data services in each class Sj to select the most
relevant ones and how to rank generated data service com-
positions to select the top-k ones that answer the query Q.

4. SERVICES/COMPOSITIONS FUZZY
DOMINANCE SCORES

4.1 Fuzzy dominance vs Pareto dominance
Services of the same class Sj have the same functionality,

they only differ in terms of constraints, providing thus differ-
ent matching degrees. Traditional approaches use only one
matching criteria to discriminate among relevant services.
Most of these approaches aggregate individual matching de-
grees to compute a global score for each relevant service.
One direction is to assign weights to individual matching
degrees and, for instance, compute a weighted average of
degrees [11]. In so doing, users may not know enough to
make trade-offs between different relevancies using numbers
(average degrees). Users thus lose the flexibility to select
their desired answers by themselves. Computing the sky-
lines from service comes as a natural solution that overcomes
this limitation. Skyline computation has received significant
consideration in database research [7, 24, 18, 10, 20]. The
skyline consists of the set of points which are not dominated
by any other point.

Definition 1. (Pareto dominance)
Given two d-dimensional points u and v. We say that u
dominates v, denoted by u � v, iff u is better than or equal
to v in all dimensions, and strictly better in at least one
dimension, i.e., ∀i ∈ [1, d] , ui ≥ vi ∧ ∃k ∈ [1, d] , uk > vk.

Pareto dominance is not always significant to rank-order
points that, however, seem comparable from a user point of
view. To illustrate this situation, let u = (u1, u2) = (1, 0)
and v = (v1, v2) = (0.90, 1) be two matching degrees. In
Pareto order, we have neither u � v nor v � u, i.e. the
instances u and v are incomparable. However, one can con-
sider that v is better than u since v2 = 1 is too much higher
than u2 = 0, contrariwise v1 = 0.90 is almost close to u1 = 1.
This is why it is interesting to fuzzify the dominance rela-
tionship to express the extent to which a matching degree
(more or less) dominates another one [6]. In line with the
general fuzzification dominance approach discussed in [17],
we define below a fuzzy dominance relationship that relies
on particular membership function of a graded inequality of
the type “strongly larger than”.

Definition 2. (Fuzzy dominance)
Given two d-dimensional points u and v, we define the fuzzy
dominance to express the extent to which u dominates v as:

deg(u � v) =

∑d
i=1 µ�(ui, vi)

d
(1)

Where µ�(ui, vi) expresses the extent to which ui is more
or less (strongly) greater than vi. µ� can be seen as a
monotone membership function defined as:

µ�(x, y) =

 0 ifx− y ≤ ε
1 ifx− y ≥ λ+ ε

x−y−ε
λ

otherwise

 (2)

Where λ > 0, i.e., � is more demanding than the idea of
“strictly greater”. We should also have ε ≥ 0 in order to
ensure that � is a relation that agrees with the idea of
’greater’ in the usual sense.

Let us reconsider the previous instances u = (1, 0), v =
(0.90, 1). With ε = 0 and λ = 0.2, we have deg(u � v) =
0.25 and deg(v � u) = 0.5. This is more significant than
|u � v| = |v � u| = 0 provided by Pareto dominance, where
|u � v| = 1 if u � v, 0 otherwise. In the following, we use
the defined fuzzy dominance relationship to compute scores
of services and compositions.

4.2 Associating fuzzy score with a service
It is well known that under a single matching method

(mono criteria), the dominance relationship is unambigu-
ous. When multiple CIMs are applied (multi-criteria), re-
sulting in different matching degrees for the same couple of
constraints, the dominance relationship becomes uncertain.
The model proposed in [21], namely probabilistic skyline
overcomes this problem. Contrariwise, Skoutas et al. show
in [22, 23] the limitations of the probabilistic skyline to rank
Web services and introduce the Pareto dominating score of
individual services. We generalize this score to fuzzy domi-
nance and propose the fuzzy dominating score (FDS). An
FDS of a service Sji indicates the average extent to which
Sji dominates the whole services of its class Sj .

Definition 3. (Fuzzy dominating score of a service)
The fuzzy dominating score (FDS) of a service Sji in its
class Sj is defined as:

FDS(Sji) =
1

(|Sj | − 1) |M |2
|M|∑
h=1

∑
Sjk∈Sj

k 6=i

|M|∑
r=1

deg(Shji � Srjk)

(3)

where Shji is the matching degree of the service Sji obtained

by applying the hth CIM. The term (|Sj | − 1) is used to
normalize the FDS score and make it in the range [0, 1].
Table 3 shows the fuzzy dominating scores of the data Web
services in our running example.

4.3 Associating fuzzy score with a composi-
tion

Different data service compositions can be generated from
different Sj service classes to answer a user query. To rank
such generated compositions, we extend the previous FDS
definition to service composition and associate each compo-
sition with an FDS. The FDS of a composition C is an
aggregation of different FDSs of its component services.

Let C = {S1i1 , ..., Snin} be a composition of n services.
Let also d = d1 + ... + dn be the number of user preference
constraints where dj is the number of constraints involved in
the service Sjij . The FDS of C is then computed as follows:

FDS(C) =
1

d

n∑
j=1

dj · FDS(Sjij) (4)

It is important to note that not all compositions are valid.
A composition C of data Web services is valid if (i) it covers
the user query Q, (ii) it contains one and only one ser-
vice from each service class Sj and (iii) it is executable. A
composition is said to be executable if all input parameters
necessary for the invocation of its component services are
bound. For more details see [4].

Table 3: Services’ scores and services
Services Class Score Top-k
S11 S1 - S11

��S21

S2

0.487
S22 0.653 S22

��S23 0.035 S24

S24 0.538

��S31

S3

0.094
S32 0.593 S32

��S33 0.130 S34

S34 0.743

5. TOP-K DATA SERVICE COMPOSITIONS

5.1 An Efficient Generation of Top-k Compo-
sitions

A straightforward method to find the top-k data Web
service compositions that answer a query is to generate all
possible compositions, compute their scores, and return the
top-k ones. However, this approach results in a high com-
putational cost, as it needs to generate all possible compo-
sitions, whereas, most of them are not in the top-k. In the
following, we provide an optimization technique to find the
top-k data Web service compositions. This technique allows
eliminating relevant services Sji from their classes Sj be-
fore generating the compositions, i.e., services that we are
sure that if they are composed with other ones, the obtained
compositions are not in the top-k. The idea is: we first com-
pute the score of each service in its class, then only the best
services in each class are retained, after that we compose

the retained services, finally, we compute the score of the
obtained compositions and return the top-k ones. To this
end, we introduce the following lemma and theorem.

Lemma 1. Let C = {S1i1 , · · · , Snin , S} and C′ = {S1i1 ,
· · · , Snin , S′} be two similar service compositions that only
differ in the services S and S′. Then, the following state-
ment holds: FDS(S) > FDS(S′) =⇒ FDS(C) > FDS(C′).

Proof. Denoting by d′ the number of constraints in-
volved in S and S′, we have:

FDS(C) = 1
d

∑n
j=1 dj · FDS(sjij) + d′

d
· FDS(S) and

FDS(C′) = 1
d

∑n
j=1 dj ·DSf (sjij) + d′

d
· FDS(S).

Then, FDS(C) − FDS(C′) = d′

d
(FDS(S) − FDS(S′)).

Since d′

d
> 0 and FDS(S)−FDS(S) > 0, we have FDS(C) >

FDS(C′).

Lemma 1 indicates that the best services in their classes
will generate the best compositions.

Theorem 1. Let C = {S1i1 , ..., Snin} be a service com-
position and top-k(Sj) (resp. top-k(C)) be the top-k ser-
vices of the class Sj (resp. the top-k compositions). Then,
∃Sjij ∈ C;Sjij /∈ top-k(Sj) =⇒ C /∈ top-k(C)

Proof. Assume that C ∈ top-k(C) ∧ ∃Sjij ∈ C;Sjij /∈
top-k(Sj). This means that ∃S′ji1 , . . . , S

′
jik
∈ Sj ;FDS(S′ji`) >

FDS(Sjij). Now, by replacing Sjij in C with the services
S′ji1 , . . . , S

′
jik

we obtain k compositions C1, ..., Ck such as
FDS(Ci) > FDS(C) according to the Lemma 1. This con-
tradicts our hypothesis. Hence, C /∈ top-k(C)

Theorem 1 means that the top-k sets of the different ser-
vice classes are sufficient to compute the top-k data Web
service compositions that answer the considered query.

The fourth column of Table 3 shows the top-k (where
k = 2) data services in each service class using the FDS
scores. Thus, relevant data services that are not in the top-
k of their classes are eliminated. They are crossed out in
Table 3. The other data services are retained. The top-k
data service compositions are generated from the different
top-k Sj classes. Table 4 shows the possible compositions
along with their fuzzy dominating scores and the top-k ones
of our example.

Table 4: Compositions’ scores and top-k ones
Compositions Score Top-k

C1 = {S11, S22, S32} 0.623
C2 = {S11, S22, S34} 0.698 C2

C3 = {S11, S24, S32} 0.566 C4

C4 = {S11, S24, S34} 0.640

5.2 Top-k Data Service Compositions Algorithm
The algorithm, hereafter referred as TKDSC, computes

the top-k data service compositions according to the fuzzy
dominatind scores. The algorithm proceeds as following.

Step.1 computing the matching degrees (lines 1-13).
Each service class whose services cover a query component is
added to the list of relevant classes. If its services touch the
query’s user preferences, we compute its different matching
degrees according to the number of methods.

Step.2 eliminating less relevant services (lines 14-23).
For each class whose services do not touch the user prefer-
ences, we select randomly k services since they are all equal

Algorithm 1 TKDSC

Require: Q a preference query; S = {S1, ...,Sn} a set of
service classes; M = {m1, ...,m|M|} a set of methods;
k ∈ N; ε > 0; λ > 0;

Ensure: the top-k service compositions
1: for all Sj in S do
2: S ← random(Sj , 1);
3: if ∃qj ∈ Q; cover(S, qj) then
4: R← R∪ Sj ;
5: if Pqj 6= ∅ then
6: for all Sji in Sj do
7: for all m in M do
8: ComputeMatchingDegree(Cji, Pqj ,m);
9: end for

10: end for
11: end if
12: end if
13: end for
14: for all Sj in R do
15: if Pqj = ∅ then
16: top-k.Sj ← random(Sj , k);
17: else
18: for all Sji in Sj do
19: ComputeServiceScore(Sji);
20: end for
21: top-k.Sj ← top(k,Sj);
22: end if
23: end for
24: C ← ComposeServices(top-k.Sj1 , ..., top-k.Sjm);
25: for all C in C do
26: ComputeCompositionScore(C);
27: end for
28: return top(k, C);

with respect to user preferences. Otherwise (i.e., its services
touch the user preferences), we first compute the score of its
services and then retain only the top-k ones.

Step.3 returning top-k compositions (lines 24-28).
First, we compose services from only the retained ones, i.e.,
the top-k in each class. Then we compute the score of gen-
erated compositions and finally we provide the user with the
top-k ones.

6. SYSTEM ARCHITECTURE AND EXPER-
IMENTAL EVALUATION

6.1 System Architecture
Figure 2 presents our implemented top-k data service com-

positions system. The system consists of the three major
modules: Annotation Module, Interactive Query Formula-
tion Module and Top-k Service Compositions Module.

The Annotation Module allows service providers to anno-
tate WSDL description files of services with fuzzy sets to
represent linguistic terms and with SPARQL queries to rep-
resent the functionality and constraints of services. This
annotation is implemented by adding a new element called
“rdfQuery” to the XML Schema of WSDL as in WSDL-S
approach. The annotated WSDL files are then published on
a service registry. The ontology manager uses Jena API to
manage domain ontology, i.e., to add/delete concepts.

The Interactive Query Formulation Module provides users

Query

formulator

Ontology

RDF Query

Rewriter

Top-k Service Composition Module

Service

Locator

Execution

Engine

SPARQL

Query

Composite

Service

Service

Registry

WSDL-S

Users

Q

Composition

Plan Generator

Interactive Query

Formulation Module

WSWS WSWS

WSDL

Annotator

Annotation Module

WSDL-SWSDL-S

Service

Providers

SOAP Messages

Ontology

Manager

Top-K

Compositions

System Interface

Figure 2: Data Service Composition Architecture

with a GUI implemented with Java Swing to interactively
formulate their queries over a domain ontology. Users are
not required to know any specific ontology query languages
to express their queries.

The Top-k Service Compositions Module consists of five
components. The RDF Query Rewriter implements an effi-
cient RDF query rewriting algorithm (RDF Query Rewriter)
to identify the relevant services that match (some parts of) a
user query. For that purpose, it exploits the functionalities
in the service description files. The Service Locator feeds
the Query Rewriter with services that most likely match
a given query. The Top-K Compositions component com-
putes (i) the matching degrees of relevant services, (ii) the
fuzzy dominating scores of relevant services, (iii) the top-
k services of each relevant service class and (iv) the fuzzy
compositions scores to return the top-k compositions. The
top-k compositions are then translated by the composition
plan generator into execution plans expressed in the XPDL
language. They are executed by a workflow execution en-
gine; we use the Sarasvati execution engine from Google.

6.2 Experimental Evaluation
Our objective is to prove the efficiency and the scalabil-

ity of our proposed top-k data Web service composition.
For this purpose, we implemented a Web service generator.
The generator takes as input a set of (real-life) model ser-
vices (each representing a class of services) and their associ-
ated fuzzy constraints and produces for each model service a
set of synthetic Web services and their associated synthetic
fuzzy constraints. In the experiments we evaluated the ef-
fects of the following parameters: (i) the number of services
per class, (ii) the service classes number, (iii) the number
of fuzzy constraints per class, (iv) the number of matching
methods and (v) the parameter k. The default values of
these parameters are : 400, 4, 4, 4, 5, respectively.

The algorithm (i.e., TKDSC is implemented in Java. The
experiments were conducted on a 2.00 GHz Intel dual core
CPU and 2 GB of RAM, running Windows. The results of
the experiments are presented in Figure 3.

6.2.1 Performance vs. number of services per class
We measured the average execution time required to solve

the top-k service compositions problem as the number of
services per class increases, varying the number of services
per class from 100 to 1000. The results of this experiment

T
im

e
(m

s
e

c
)

T
im

e
(m

s
e

c
)

T
im

e
(m

s
e

c
)

T
im

e
(m

s
e

c
)

Number of candidat services per class Service classes (query components) Max preferences involved in a service class

Number of matching methods k

(a)

(d) (e)

(b) (c)

T
im

e
(m

s
e

c
)

0

2000

4000

6000

8000

10000

12000

14000

16000

200 400 600 800 1000

TKDSC

0

500

1000

1500

2000

2500

3000

3500

4000

2 3 4 5 6

TKDSC

0

1000

2000

3000

4000

5000

2 4 6 8 10

TKDSC

0

2000

4000

6000

8000

10000

12000

14000

2 4 6 8 10

TKDSC

1900

2000

2100

2200

2300

2400

2500

2600

2700

3 4 5 6 7

TKDSC

Figure 3: Performance results

are presented in Figure 3 (plot-a). The results show that
our framework can handle hundreds of services per class in
a reasonable time.

6.2.2 Performance vs number of classes
We measured the average execution time required to solve

the top-k service compositions problem as the number of
service classes increases. We varied the classes number from
1 to 6. The results of this experiment in Figure 3 (plot-b)
show that the execution time is proportional to the number
of service classes.

6.2.3 Performance vs number of constraints per ser-
vice

We varied the fuzzy constraints number from 1 to 10 and
measured the average execution time required to compute
the top-k service compositions. Figure 3 (plot-c) shows the
time required to compute the top-k service compositions.

6.2.4 Performance vs. number of matching methods
We varied the number of matching methods from 1 to

10. We measured the average execution time required to
compute the top-k service compositions. The results of this
experiment are shown in Figure 3 (plot-d).

6.2.5 Performance vs. k

We measured the average execution time required to com-
pute the top-k service compositions as the value of k in-
creases. We varied the value of k from 3 to 5. The results of
this experiment in Figure 3 (plot-e) show that the execution
time increases as the value of k increases.

7. RELATED WORK
Preferences in Web service selection/composition have re-

ceived much attention in the service computing community
during the last years. Taking user preferences into account
allows to rank candidate services/compositions and return
only the best ones to the user. Hereafter, we review some
works for ranking and selecting Web services.

ServiceTrust [15] calculates reputations of services from
users. It introduces transactional trust to detect QoS abuse,
where malicious services gain reputation from small transac-
tions and cheat at large ones. However, ServiceTrust models
transactions as binary events (success or failure) and com-
bines reports from users without taking their preferences

into account. In [26], the authors use a qualitative graphical
representation of preference, CP-nets, to deal with services
selection in terms of user preferences. This approach can
reason about a user’s incomplete and constrained preference.
In [19], a method to rank semantic web services is proposed.
It is based on computing the matching degree between a set
of requested NFPs (Non-Functional Properties) and a set of
NFPs offered by the discovered Web services. NFPs cover
QoS aspects, but also other business-related properties such
as pricing and insurance. Semantic annotations are used
for describing NFPs and the ranking process is achieved by
using some automatic reasoning techniques that exploit the
annotations. However, the problem of composition is not
addressed in these works.

Agarwal and Lamparter [1] propose an automated Web
service selection approach for composition. Web service
combinations can be compared and ranked according to user
preferences. Preferences are modeled as a set of fuzzy IF-
THEN rules. The IF part contains fuzzy descriptions of
the various properties of a service (i.e., a concrete Web ser-
vice composition) and the THEN part is one of the fuzzy
characterizations of a special concept called Rank. A fuzzy
rule describes which combination of attribute values a user
is willing to accept to which degree, where attribute val-
ues and degrees of acceptance are defined in a fuzzy way.
ServiceRank [27] considers the QoS aspects as well as the
social perspectives of services. Services that have good QoS
and are frequently invoked by others are more trusted by
the community and will be assigned high ranks. In [25], the
authors propose a system for conducting qualitative Web
service selection in the presence of incomplete or conflicting
user preferences. The paradigm of CP-nets is used to model
user preferences. The system utilizes the history of users to
amend the preferences of active users, thus improving the
results of service selection.

The work most related to ours is [22, 23], where the au-
thors consider dominance relationships between Web ser-
vices based on their degrees of match to a given request in
order to rank available services. Distinct scores based on
the notion of dominance are defined for assessing when a
service is objectively interesting. However, that work only
considers selection of single services, without dealing with
the problem of composition nor the user preferences.

Recent approaches, focus on computing the skyline from
Web services. All these approaches focus on selecting Web
services based on QoS parameters. The work in [2] focuses
on the selection of skyline services for QoS based Web service
composition. A method for determining which QoS levels of
a service should be improved so that it is not dominated by
other services is also discussed. In [29], the authors propose a
skyline computation approach for service selection. The re-
sulting skyline, called multi-service skyline, enables services
users to optimally and efficiently access sets of service as an
integrated service package. In the robust work [28], Yu and
Bouguettaya address the problem of uncertainty inherent in
QoS and compute the skylines from service providers. A ser-
vice skyline can be regarded as a set of service providers that
are not dominated by others in terms of QoS aspects that
interest all users. To this end, a concept called p-dominant
service skyline is defined. A provider S belongs to the p-
dominant skyline if the probability that S is dominated by
any other provider is less than p. The authors provide also
a discussion about the interest of p-dominant skyline w.r.t.

the notion of p-skyline proposed in [21]. In [5], we propose
a new concept called α-dominant service skyline based on a
fuzzy dominance relationship to address the majors issues of
the traditional service skyline, i.e., privileging Web services
with a bad compromise between QoS attributes and not al-
lowing users to control the size of the returned set of Web
services. However, these works do not take user preferences
into account and except for [2] the problem of composition
is not addressed.

8. CONCLUSION
In this paper, we addressed the problem of top-k retrieval

of data Web service compositions to answer fuzzy preference
queries under different matching methods. We presented a
suitable ranking criteria based on a fuzzification of Pareto
dominance and developed a suitable algorithm for comput-
ing the top-k data Web service compositions. Our experi-
mental evaluation shows that our approach can retrieve the
top-k data Web service compositions in a reasonable time.
In the future, we plan to use a user study to evaluate the
quality of the results and combine this work with QoS as-
pect.

9. REFERENCES
[1] S. Agarwal and S. Lamparter. User preference based

automated selection of web service compositions. In
K. V. A. S. M. Z. C. Bussler, editor, ICSOC
Workshop on Dynamic Web Processes, pages 1–12,
Amsterdam, Netherlands, Dezember 2005. IBM.

[2] M. Alrifai, D. Skoutas, and T. Risse. Selecting skyline
services for qos-based web service composition. In
WWW, pages 11–20, 2010.

[3] W. Bandler and L. Kohout. Fuzzy power sets and
fuzzy implication operators. Fuzzy Sets and Systems,
9:149–183, 1983.

[4] M. Barhamgi, D. Benslimane, and B. Medjahed. A
query rewriting approach for web service composition.
IEEE T. Services Computing, 3(3):206–222, 2010.

[5] K. Benouaret, D. Benslimane, and A. Hadjali. On the
use of fuzzy dominance for computing service skyline
based on qos. In ICWS, page to appear, 2011.

[6] K. Benouaret, D. Benslimane, and A. Hadjali. Top-k
service compositions: A fuzzy set-based approach. In
SAC, pages 1033–1038, 2011.

[7] S. Börzsönyi, D. Kossmann, and K. Stocker. The
skyline operator. In ICDE, pages 421–430, 2001.

[8] M. J. Carey. Data delivery in a service-oriented world:
the bea aqualogic data services platform. In SIGMOD
Conference, pages 695–705, 2006.

[9] M. J. Carey. Declarative data services: This is your
data on soa. In SOCA, page 4, 2007.

[10] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang.
Skyline with presorting. In ICDE, pages 717–816,
2003.

[11] X. Dong, A. Y. Halevy, J. Madhavan, E. Nemes, and
J. Zhang. Simlarity search for web services. In VLDB,
pages 372–383, 2004.

[12] D. Dubois and H. Prade. Using fuzzy sets in database
systems: Why and how? In FQAS, pages 89–103,
1996.

[13] D. Dubois and H. Prade, editors. Fundamentals of
Fuzzy Sets . The Handbooks of Fuzzy Sets Series.
Kluwer, Boston, Mass., 2000.

[14] A. HadjAli, S. Kaci, and H. Prade. Database
preferences queries - a possibilistic logic approach with
symbolic priorities. In FoIKS, pages 291–310, 2008.

[15] Q. He, J. Yan, H. Jin, and Y. Yang. Servicetrust:
Supporting reputation-oriented service selection. In
ICSOC/ServiceWave, pages 269–284, 2009.

[16] A. Jhingran. Enterprise information mashups:
integrating information, simply. In In Proccedings of
the 2006 VLDB, pages 3–4, 2006.

[17] M. Köppen, R. Vicente-Garcia, and B. Nickolay.
Fuzzy-pareto-dominance and its application in
evolutionary multi-objective optimization. In EMO,
pages 399–412, 2005.

[18] D. Kossmann, F. Ramsak, and S. Rost. Shooting stars
in the sky: An online algorithm for skyline queries. In
VLDB, pages 275–286, 2002.

[19] M. Palmonari, M. Comerio, and F. D. Paoli. Effective
and flexible nfp-based ranking of web services. In
ICSOC/ServiceWave, pages 546–560, 2009.

[20] D. Papadias, Y. Tao, G. Fu, and B. Seeger. An
optimal and progressive algorithm for skyline queries.
In SIGMOD Conference, pages 467–478, 2003.

[21] J. Pei, B. Jiang, X. Lin, and Y. Yuan. Probabilistic
skylines on uncertain data. In VLDB, pages 15–26,
2007.

[22] D. Skoutas, D. Sacharidis, A. Simitsis, V. Kantere,
and T. K. Sellis. Top- dominant web services under
multi-criteria matching. In EDBT, pages 898–909,
2009.

[23] D. Skoutas, D. Sacharidis, A. Simitsis, and T. K.
Sellis. Ranking and clustering web services using
multicriteria dominance relationships. IEEE T.
Services Computing, 3(3):163–177, 2010.

[24] K.-L. Tan, P.-K. Eng, and B. C. Ooi. Efficient
progressive skyline computation. In VLDB, pages
301–310, 2001.

[25] H. Wang, S. Shao, X. Zhou, C. Wan, and
A. Bouguettaya. Web service selection with
incomplete or inconsistent user preferences. In
ICSOC/ServiceWave, pages 83–98, 2009.

[26] H. Wang, J. Xu, and P. Li. Incomplete
preference-driven web service selection. In IEEE SCC
(1), pages 75–82, 2008.

[27] Q. Wu, A. Iyengar, R. Subramanian, I. Rouvellou,
I. Silva-Lepe, and T. A. Mikalsen. Combining quality
of service and social information for ranking services.
In ICSOC/ServiceWave, pages 561–575, 2009.

[28] Q. Yu and A. Bouguettaya. Computing service skyline
from uncertain qows. IEEE T. Services Computing,
3(1):16–29, 2010.

[29] Q. Yu and A. Bouguettaya. Computing service
skylines over sets of services. In ICWS, pages 481–488,
2010.

[30] L. A. Zadeh. A computational approach to fuzzy
quantifiers in natural languages. Computer
Mathematics with Applications, 9:149–183, 1965.

[31] L. A. Zadeh. Fuzzy sets. Information and Control,
8(3):338–353, 1965.

