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Adaptive backstepping and MEMS force sensor for an MRI-guided
microrobot in the vasculature

Laurent Arcese, Matthieu Fruchard, Felix Beyeler, Antoine Ferreira, Bradley J. Nelson

Abstract— A microrobot consisting of a polymer binded ag-
gregate of ferromagnetic particles is controlled using a Magnetic
Resonance Imaging (MRI) device in order to achieve targeted
therapy. The primary contribution of this paper is the design of
an adaptive backstepping controller coupled with a high gain
observer based on a nonlinear model of a microrobot in a blood
vessel. This work is motivated by the difficulty in accurately
determining many biological parameters, which can result in
parametric uncertainties to which model-based approaches are
highly sensitive. We show that the most sensitive parameter,
magnetization of the microrobot, can be measured using a
Micro-Electro-Mechanical Systems (MEMS) force sensor, while
the second one, the dielectric constant of blood, can be estimated
on line. The efficacy of this approach is illustrated by simulation
results.

I. INTRODUCTION

Minimally invasive cancer therapy is currently an active
research area since these techniques can, both, reach remote
places without invasive surgery and reduce drug or radiation
dosage. The techniques result in reduced side effects, better
therapeutic efficacy, and are safer overall. The drawbacks of
classical therapeutic approaches can be avoided by targeted
chemotherapy which relies on selective delivery using either
drugs linked to antibodies specific for tumor-associated
antigenes [1], or drugs carried by autonomous untethered
microrobots controlled so as to reach the tumor. However,
it have proven difficult to embed actuators sufficiently
powerful to propel such robots in the cardiovascular
system. Most swimming approaches, consequently, rely
upon magnetic fields to wirelessly transmit power to
the microrobot [2], [3], [4]. A recent magnetic actuation
technique particularly well-suited for medical purposes has
been described by Martel [5]. The authors developed a
”bead pulling” technique through the use of the gradient
coils of clinical MRI devices to provide propelling power.
The relevance of using clinical MRI devices is twofold: the
machines are wide spread in hospitals, and their imaging
ability yields fine observation of the robot’s position in the
cardiovascular system.
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To deliver drugs close to the tumor, navigating in smaller
vessels while avoiding embolization hazards suggests using
robots down to one hundred micrometers [6]. However,
clinical MRI gradients coils are not strong enough to
steer such nanorobots in larger vessels. Furthermore,
hydrodynamic wall effects show that a partial vessel
occlusion by the robot results in an optimal ratio between
the robot’s and the vessel’s radius [5], [7]. An obvious way
to overcome MRI limitations is to decrease the radius of
the robot as it enters smaller vessels, e.g. with a microrobot
made of a degradable polymer binded aggregate of magnetic
particles.

In this paper, we first develop a mechanics model (Section
II) that includes wall effects, wall interactions and the non-
Newtonian behavior of blood. Although this forces balance
results in a highly nonlinear model, the great majority
of related literature synthesizes control laws using linear
tools, and there is little consideration concerning observation
issues. Hence, instabilities and sensitivity to noise or to
unmodeled dynamics, reported for instance in [8] with a PID
controller, is important to consider. In [9], we developed a
backstepping controller that proves stable but sensitive to
some small physiological parametric errors. In this paper,
we show that an adaptive backstepping control approach
(Section III) greatly improves the quality and robustness
of the tracking along a reference trajectory. As the MRI
imager only measures the robot’s position, we use a high
gain observer to reconstruct the microrobot’s velocity, which
is required to implement the control law. In Section IV, we
show that the use of a MEMS-based force sensor is effective
in precisely measuring the magnetization of the microrobot,
and that simulation illustrates the benefits of using an
adaptive controller-observer pair to improve the robustness
of the approach with respect to physiologically uncertain
parameters. Finally, a conclusion and future prospects are
discussed.

II. MODELING

The therapeutic microrobot is a polymer binded aggregate
of ferromagnetic particles that is immersed in a blood vessel.
We briefly present forces acting on such a robot (for a more
detailed discussion on the modeling, see [9]).

The translational motion of the robot is expressed by:

m
d~v

dt
= ~Fm + ~Wa + ~Fd + ~Fc + ~Fvdw + ~Fe (1)

where~v is the translational velocity of the robot andm its
mass. In the remainder of the paper, we assume that the



orientation of the robot does not change due to magnetic
torque that constantly align the magnetization of the robot
along the external MRI field (B0 = 3T ).

A. Volumetric forces

The gradient coils of the MRI system provide magnetic
gradients that produce a magnetic forceFm on the robot:

~Fm = τmV ( ~M.∇) ~B (2)

where V is the robot’s total volume,τm = Vm

V with Vm

the ferromagnetic volume,~M is the magnetization of the
material,µ0 is the permeability of free space and∇ ~B is the
magnetic field gradient. Note thatB0 is sufficient to ensure
a saturation magnetizationMsat.

Apparent weight (combined action of weight and buoy-
ancy) also acts on the spherical robot:

~Wa = V (ρ − ρf )~g (3)

whereρ = τmρm + (1 − τm)ρpoly with ρm and ρpoly the
density of the magnetic material and polymer, respectively.

B. Hydrodynamic drag force

The hydrodynamic drag force~Fd exerted on a spherical
body is expressed as:

~Fd = −
1

2
ρf

[
‖(~v − ~vf )‖

β

]2

ACd
(~v − ~vf )

‖(~v − ~vf )‖
(4)

where~v − ~vf denotes the relative velocity of the robot with
respect to the fluid,A is the projected area of the sphere,ρf

is the density of the fluid.β, a dimensionless ratio related to
a wall effect caused by the vessel’s occlusion by the robot,
and Cd, the drag coefficient, are discussed in [9]. In the
case of blood, which exhibits a non-newtonian behavior, the
fluid’s viscosityη is a function of the vessel’s diameter and
hematocrit ratehd according to empirical relations given in
[10]. Wall effects on the fluid in a vessel traditionally result
in a parabolic profile of blood flow (see Figure 1).

C. Contact force

The contact force is expressed by a modified Hertzian
contact law [11] under the simplifying assumption of no
friction between the robot and the wall during impact:

{
~Fc = kδ3/2.~n : loading
~Fc = Fm

(
δ−δ0

δm−δ0

)q

.~n : unloading
(5)

whereδ is the elastic deformation of the wall at the contact
point, ~n the normal unit vector pointing from the robot to
the contact surface andk the stiffness.Ep and Ew are the
Young’s modulus of robot and wall, andσp is the Poisson’s
ratios of robot.Fm and δm are the maximum contact force
and deformation of the wall reached at the impact.δ0 is the
permanent wall’s deformation from loading/unloading cycle
and the exponentq varies between1.5 and2.5.
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Fig. 1. Schematic of a blood vessel with minor bifurcations.

D. Van der Waals and electrostatic forces

The Van der Waals potential and the electrostatic force
between the spherical robot and the wall considered as an
uncharged surface are given by [12], [13]:







~Vvdw = −Ah

6

(
1
H + 1

2+H + ln H
2+H

)

~n

~Fe = q2

4πǫǫ0(r+h)2 ~n
(6)

whereAh is the Hamaker constant,H = h/r is normalized
separationh between the robot and the wall,q(µC) =
120πr2(100r)−0.3 denotes the robot’s charge [14],ǫ the
dielectric density of the medium in which the interaction
occurs andǫ0 the vacuum permittivity.

III. CONTROL DESIGN

A. State space representation

Let (x, z) denote the position of the robot in the vessel
with respect to a given frameF(O,~i,~k). The state model
is established from the differential equation (1) defining the
robot’s dynamic behavior, projected on the~i and~k axes:

{
mẍ = Fmx

+ Fdx
+ Fcx

+ Fvdwx
+ Fex

mz̈ = Fmz
+ Fdz

+ Wa + Fcz
+ Fvdwz

+ Fez

(7)

where indexesx andz represent projections onto~i (~k).

Let x1, x2, (x3, x4) denote, respectively, the particle’s
position and velocity along the~i axis (respectively along~k
axis). Assuming that positionsx1 andx3 can be measured by
the MRI imaging system, lety denotes the measured state.
Using expressions of forces given by (2), (3), (4), (6), and
the projection of the local frame along the geometry of the



vessel, (7) can be written in the form:

(S)







ẋ1 = x2

ẋ2 = f2(x1, x2, x3) + au1

ẋ3 = x4

ẋ4 = f4(x1, x3, x4) + au2

y = (x1, x3)
T

(8)

where control inputsu1 = ∇Bx and u2 = ∇Bz are the
magnetic gradients, parametera = τmM

ρ , andfi are highly
nonlinear functions of the full state.

B. Adaptive backstepping

From the previous force balance, an optimal trajectory
is defined so as to minimize the control efforts. We first
define optimal points so as to minimize the control efforts
(i.e. the magnetic forceFm required), then link them using
B-splines in order to obtain aC2 reference trajectory.

An adaptive nonlinear control [15] based on a backstep-
ping approach, for system(S), can be developed. The objec-
tive of the adaptive backstepping controller is twofold. Since
the blood’s dielectric densityε is assumed to be unknown, it
must define both an update law for the estimated parameter
and control inputs for the controlled system. The update law
must ensure convergence of the estimated parameter to its
real value, while the control inputs must stabilize the tracking
error between the actual and reference trajectory to zero.
Since this design requires a triangular form for the control
system, we define the following change of variables:

{

X =

(
x1

x3

)

; Z =

(
x2

x4

)

; U = a

(
u1

u2

)

(9)
From (8) and (9), we obtain a new system in a triangular

form:

(S ′)







Ẋ = Z

Ż = F0(X,Z) + ϕ(X)θ + U
Y = X

(10)

where ϕ(X) is the electrostatic force without the
parameterε, θ the vector of unknown constant parameter
and with:

F0(X,Z) =

(
Fdx

+ Fcx
+ Fvdwx

Fdz
+ Wa + Fcz

+ Fvdwz

)

(11)

Using the change of variables given in (9), we construct
the control law in two steps.

Step 1: Let
{

X̃ = X − Xr

Z̃ = Z − Zr − α
(12)

denote the position and velocity error, respectively.Xr,
Ẋr = Zr and Ẍr are the desired reference trajectory,
velocity and acceleration, respectively.α is a stabilizing
function.

A control Lyapunov function (CLF) candidate is:

V1 =
1

2
X̃T X̃ +

1

2
(θ̂ − θ)T Γ−1(θ̂ − θ) ≥ 0 (13)

whereθ̂ is the estimated parameter andΓ a positive-definite
matrix.

Calculating the derivative ofV1 along system (10), we
obtain:

V̇1 = X̃T (Z̃ + α) + (θ̂ − θ)T Γ−1 ˙̂
θ (14)

Settingα = −k1X̃, we obtain:

V̇1 = −k1X̃
T X̃ + X̃T Z̃ + (θ̂ − θ)T Γ−1 ˙̂

θ (15)

The second term̃XT Z̃ will be cancelled at the next step.
One can notice from the previous expressions that:

˙̃X = Ẋ − Ẋr = Z̃ + α = Z̃ − k1X̃ (16)

Step 2: From (12) and (16), we have:

˙̃Z = F0 + ϕθ + U
︸ ︷︷ ︸

Ż

− Żr+k1(Z̃ − k1X̃)
︸ ︷︷ ︸

−α̇

(17)

In this step, the CLF is given by:

V2 = V1 +
1

2
Z̃T Z̃ ≥ 0 (18)

The derivative ofV2 along system (10) is expressed as:

V̇2 = V̇1 + Z̃T [F0 + ϕθ + U + k1Z̃ − k2
1X̃ − Żr]

˙̃V = −k1X̃
T X̃ + Z̃T [(1 − k2

1)X̃ + k1Z̃ − Żr + F0

+ϕθ + U ] + (θ̂ − θ)T Γ−1 ˙̂
θ

(19)
Since we haveθ = θ̂ + (θ − θ̂), we obtain:

V̇2 = −k1X̃
T X̃ + Z̃T [(1 − k2

1)X̃ + k1Z̃ − Żr + F0

+ϕθ̂ + U ] + (θ̂ − θ)T Γ−1(
˙̂
θ − ΓϕT Z̃)

(20)
To cancel the last term in (20), we set:

˙̂
θ = ΓϕT Z̃ (21)

and to ensurėV2 is negative definite, we set:

(1 − k2
1)X̃ + k1Z̃ − Żr + F0 + ϕθ̂ + U = −k2Z̃ (22)

To summarize, from (16), (21) and (22), the control law
U and the update law for the parameter estimateθ̂ can be
expressed as:






U = Ẍr − (k1 + k2)(Z − Ẋr) − (1 + k1k2)(X − Xr)

−F0 − ϕθ̂
˙̂
θ = ΓϕT [Z − Ẋr + k1(X − Xr)]

(23)



C. High gain observer

The adaptive nonlinear control (23) requires the knowl-
edge of the unmeasured robot’s velocityZ in addition to
its position, which is measured by the MRI device. The
extended Kalman filter is an observer commonly used to
estimate the full state, but the convergence of this observer
is not guaranteed. The high gain observer [16] is of particular
interest for our application since, if the state’s functions are
locally Lipschitzian and the system has the canonical form
given in (10), we can guarantee the observer’s convergence.
The high gain observer is, thus, given by:

{
˙̂

X = Ẑ + LGx(X̂ − Y )
˙̂
Z = F0(X̂, Ẑ) + ϕ(X̂)θ + U + L2Gz(X̂ − Y )

(24)

where L is the high gain, Gx =

(
g1 0
0 g3

)

and

Gz =

(
g2 0
0 g4

)

are defined from the Hurwitz matrixHu:

Hu =







g1 0 1 0
0 g3 0 1
g2 0 0 0
0 g4 0 0







(25)

IV. RESULTS

A. Magnetization measurement

The magnetization of the NdFeB N35 microrobot is
one of the most sensitive parameters, as it appears in
factor of the control inputs. To experimentally obtain
quantitative magnetization values, force measurements have
been performed inside a known magnetic field using a
FemtoTools FT-S270 capacitive MEMS force sensor. The
maximum force range of the MEMS sensor is±2000µN
and the resolution is in the sub-µN range. First, the
microrobot is glued to the MEMS sensor probe (see Figure
2). In order to get meaningful results, the direction of the
magnetization relative to the sensor probe must be known.
Unfortunately, magnetization cannot be directly seen. To
overcome this issue the microrobot was aligned prior to
gluing as shown in figure 3. It is first put onto a flat surface
made of non-magnetic material (PMMA). Then, a strong
permanent magnet is placed underneath this spacer layer
that automatically rotates the microrobot until it is aligned
with the field lines of the underlying magnet.

For hard magnetic materials the magnetization does not
depend on the externally applied field. The force generated
by the NdFeB N35 microrobot can be predicted by equation

TABLE I

FORCE AND MAGNETIZATION BY HARD-MAGNETIC MICROROBOT

Maximum Force atB = 0.18T MagnetizationM
and∇B = 25T.m−1

Microrobot 1 2020µN 1.23 × 106A.m−1

Microrobot 2 2001µN 1.22 × 106A.m−1

Microrobot 3 1890µN 1.16 × 106A.m−1

Fig. 2. Photograph of the microrobot glued to the sensor.

Fig. 3. Microrobot alignment and gluing to MEMS sensor probe tip.

(2). Table I shows the maximum force as well as the magne-
tization M for the three samples that have been measured.

B. Simulation

Simulation is performed by taking into account the tech-
nical characteristics of recent clinical MRI devices. The
magnetic field of3T is strong enough to assume that the
particles reach their saturation magnetization. The magnetic
field gradients are used to control the microrobot’s motion
in the human body. These MRI devices can provide a
maximum magnetic field gradient of80mT.m−1. So, the
applied control lawUa(t) is corrected as follows so as not to
exceed the capacity of the MRI system and to avoid damage:

Ua(t) =
U(t)

k(t)
with k(t) = max

[

1,
U(t)

Usat

]

(26)

The pulsating velocity of blood is modeled by an affine
combination of a time-varying periodic flow with a spatial
parabolic shape. To simplify the analytical expression, but
with no loss of generality, we only consider the first terms
in the time-varying Fourier series of the physiological pulse.



Fig. 4. (a) Reference (red dotted line) and simulated (blue solid line)
trajectories. (b) Tracking error.

In the case of an artery, such an approximation leads to:
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To fully take into account pulsatile flow in arteries caused
by cardiac pumping, one must consider a periodic10%
deformation of the vessel’s diameterD(t), synchronized with
the pulsative blood’s velocityvf (t).

This simulation is performed assuming an error of20%
from the nominal blood’s dielectric value. The motivation
for estimating the uncertain parameterǫ on-line is twofold.
First, among the physiological parameters of the model,
which are the most difficult to measure and are very
variable from one patient to another, sensitivity is the
highest forǫ, and, to a lesser extent, forη andAh. Second,
adaptive backstepping cannot effectively deal with nonlinear
parameters such as viscosityη.

The simulation demonstrates the relative stability of the
proposed controller-observer. It shows that the parametric
error affects neither the stability of the closed-loop system
(Figure 4(a)), nor the convergence of the observer (Figure 5).
Nevertheless, we note an important tracking error between
t = 0s and t = 1s. This phase is critical since the
control inputs (Figure 7) reach the actuator saturation in
the ranget ∈ [0 0.2]s, and the parameter is not updated.
Then, from t = 0.2s to t = 1s, the estimated parameter
is updated. The tracking error as well as the microrobot’s
velocity estimation error (Figure 5(b)) are affected by the

Fig. 5. (a) Simulated (blue solid line) and estimated (red dotted line)
trajectories. (b) Position (blue solid line) and velocity (red dotted line)
estimation error.

parametric error because the model-based controller and
observer are quite sensitive to this uncertainty. However,as
the update law gradually stabilizes the parametric error to
zero (Figure 6), we observe a noticeable improvement of both
tracking and estimation efficiency. The adaptive backstepping
approach applied in this simulation thus fulfills two goals.
During the transient phase, when estimated parameter has
not yet converged, the controller/observer pair ensures a
degraded but good tracking and estimation of velocity, thus
demonstrating robustness to parametric uncertainties. After
the estimated parameter has converged to its real value, the
controller ensures an essentially perfect stabilization of the
microrobot along the reference trajectory.

V. CONCLUSION

In this paper, we have developed an adaptive backstepping
controller in order to perform on-line estimation of key phys-
iological parameters for a therapeutic microrobot navigating
in a blood vessel. This controller has been coupled with
a high gain observer in order to reconstruct the full state
needed to compute the control law. We have also described
a method to measure the magnetization of the microrobot
using a MEMS force sensor. The simulation results have
shown the validity of our approach and the stability of
the controller/observer pair. Comparison with our previous
backstepping controller [9], where a similar parametric error
induced a tracking error’s mean value over0.5mm, clearly
illustrates the benefit of using adaptive backstepping.
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The adaptive backstepping controller developed in this
paper allows for the estimation of linear parameters, or those
in which a change of a variable results in a linear case, in the
model. The estimation of non-linearly varying parameters,
such as blood viscosity, requires further study and remains
an outstanding problem.
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Ẑ0 (0.001, 0)T

Inputs saturations Usat 80 [mT.m−1]
Controller gains k1, k2 7, 14
Observer gains L 19

g1, g2, g3, g4 −6,−13,−12,−4

[3] T. Honda, K. I. Arai, and K. Ishiyama, “Micro swimming mechanisms
propelled by external magnetic fields,”IEEE Trans. on Magnetics,
vol. 32, no. 5, 1996.

[4] J. Abbott, Z. Nagy, F. Beyeler, and B. Nelson, “Robotics in the small:
Part 1 microrobotics,”IEEE Robotics and Automation Magazine,
vol. 14, no. 2, pp. 92–103, June 2007.

[5] J.-B. Mathieu, G. Beaudoin, and S. Martel, “Method of propulsion
of a ferromagnetic core in the cardiovascular system throughmag-
netic gradients generated by an mri system,”IEEE Transactions on
Biomedical Engineering, vol. 53, no. 2, pp. 292–299, 2006.

[6] R. Bawa, “Nanoparticle-based therapeutics in humans : A survey,”
Nanotechnology Law & Business, vol. 5:(2), pp. 135–155, 2008.

[7] P. Vartholomeos and C. Mavroidis, “Simulation platform for self-
assembly structures in mri-based nanorobotic drug delivery systems,”
IEEE International Conference on Robotics and Automation, pp. 5594
– 5600, May 2010.

[8] S. Tamaz, R. Gourdeau, A. Chanu, J.-B. Mathieu, and S. Martel,
“Real-time mri-based control of a ferromagnetic core for endovascular
navigation,”IEEE Trans. on Biomed. Eng., vol. 55, no. 7, July 2008.

[9] L. Arcese, A. Cherry, M. Fruchard, and A. Ferreira, “Highgain ob-
server for backstepping control of a mri-guided therapeuticmicrorobot
in blood vessels,” inIEEE International Conference on Biomedical
Robotics and Biomechatronics, September 2010, to be published.

[10] A.-R. Pries, T.-W. Secomb, and P. Gaehtgens, “Biophysical aspects
of blood flow in the microvasculature,”Cardiovascular Research, vol.
32(4), pp. 654–667, 1996.

[11] I. Choi and C. Lim, “Low-velocity impact analysis of composite
laminates using linearized contact law,”Composite Structures, vol. 66,
pp. 125–132, 2004.

[12] K. Iimura, S. Watanabe, M. Suzuki, M. Hirota, and K. Higashitani,
“Simulation of entrainment of agglomerates from plate surfaces by
shear flows,”Chemical Engineering Science, vol. 64, pp. 1455–1461,
2009.

[13] D. Hays, “Electrostatic adhesion of non-uniformly charged dielectric
sphere,”Int. Phys. Conf. ser., vol. 118, p. 223228, 1991.

[14] ——, Role of Electrostatics in Adhesion, in Fundamentals of Adhesion,
L.-H. Lee, Ed. PLENUM PRESS, 1991.
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