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Dynamic behavior investigation for trajectory control of a microrobot in blood vessels

This paper reports modeling and control of a microsized polymer aggregate of magnetic particles inside an artery, using a MRI device for supplying propulsion in order to achieve targeted chemotherapy. Non-newtonian behaviour of blood is took into account, as well as wall effects and interactions, resulting in a highly nonlinear model. A backstepping approach is synthesized to ensure Lyapunov stability along a pre-planned trajectory inherited from the model, with robustness concerns.

I. INTRODUCTION

Autonomous microrobots designed to perform targeted therapy by navigating in the cardiovascular system are a prolific research area for minimally invasive surgery purposes [START_REF] Abbott | Robotics in the small: Part 1 microrobotics[END_REF]. Untethered robots are particularly well suited either for reaching remote parts of the body which remain inaccessible to present tools without operating, or for targeting therapy in such places. In the case of chemotherapy, such robots carrying drugs can both improve the therapy's efficiency, reduce drug dose and in turn side effects. On such a scale, it proves difficult to embed actuators sufficiently powerful to propel the robot, especially when swimming against the tide. Therefore, the great majority of swimming approaches considers magnetic fields to wirelessly transmit power to the robot [START_REF] Gillies | Magnetic manipulation instrumentation for medical physics research[END_REF], [START_REF] Honda | Micro swimming mechanisms propelled by external magnetic fields[END_REF].

Bead pulling has first been studied using magnets [START_REF] Quate | Goniometric motion controller for the superconducting coil in amagnetic stereoaxis system[END_REF] or superconducting magnets [START_REF] Takeda | Development of magnetically targeted drug delivery system using superconducting magnet[END_REF]. The last innovation in this domain has been provided by Martel [START_REF] Mathieu | Method of propulsion of a ferromagnetic core in the cardiovascular system through magnetic gradients generated by an mri system[END_REF], where the basic idea is to use the gradients coils of a clinical MRI to pull the robot. Since medical applications are the underlying theme of these works, using a MRI device to actuate the robot combines several advantages. MRI devices are widely implanted and provide magnetic gradients that can be used for propelling purposes. Besides, the MRI imager can provide fine observation of the scene for navigation, using multiplexing for controlling and imaging [START_REF] Tamaz | Real-time mri-based control of a ferromagnetic core for endovascular navigation[END_REF].

What is the optimal size for such a robot? On the one hand -from a therapeutic viewpoint-the smaller the better, so as to avoid embolization far from the tumor and to drive the drugs as close as possible to the tumor. On the other hand, since magnetic forces are volumic, they decrease in cubic with size. Besides, partial vessel occlusion by the robot results in an optimal ratio between robot's and vessel's radii evocated in [START_REF] Mathieu | Method of propulsion of a ferromagnetic core in the cardiovascular system through magnetic gradients generated by an mri system[END_REF]. Along the reference trajectory, from injection point to tumor's area, vessels radius decreases. It is thus necessary to make the radius of the robot decrease as it goes in smaller vasculature. This can be done if the robot is a polymer binded aggregate of magnetic particles, loosing substance with time.

This paper deals with both modeling and controlling such a robot along a reference trajectory. This contribution mainly relies on defining a precise forces balance (Section II), which includes wall effects (parabolic profile of blood flow, pulsatile arterial walls and effect of the ratio of robot's on vessel's radii), wall interactions (Van der Waals, contact and electrostatic forces) and non-newtonian behaviour of blood. The goal is not only to describe the robot's behaviour accurately, but also to make a link with off-line approaches [START_REF] Vartholomeos | Simulation platform for selfassembly structures in mri-based nanorobotic drug delivery systems[END_REF] without their time-consuming drawbacks. An optimal reference trajectory is hence deduced from the nonlinear model (Section III), in order to minimize the control efforts.

A state space representation is then inherited from the forces balance model (Section IV), so as to synthesize a backstepping control law (Section V). To our knowledge, most of feedback controller schemes designed in the scope of microrobotics facing drag are PID approaches [START_REF] Tamaz | Real-time mri-based control of a ferromagnetic core for endovascular navigation[END_REF], [START_REF] Mathieu | In-vivo validation of a propulsion method for untethered medical microrobots using a clinical magnetic resonance imaging system[END_REF]. Authors report instabilities and important oscillations around the equilibrium, especially when the blood stream is modeled as a pulsatile flow. They also indicate a lack of robustness to noise and unmodeled dynamics. In this paper, the control design is based on the backstepping approach recently developed in [START_REF] Arcese | Nonlinear modeling and robust controller-observer for a magnetic microrobot in a fluidic environment using mri gradients[END_REF], which ensures Lyapunov stability. Since backstepping can be regarded as a pre-compensation of the model's nonlinearities, working with a more accurate model is a real improvement of our previous work. Some simulations results illustrate the strengths and limitations of the overall study (Section VI). Lastly we sum up results and discuss prospects (Section VII).

II. MODELING: FORCES BALANCE

The purpose of this section is to present a 2D state space model of a ferromagnetic microrobot of radius r immersed in blood vessel. The model encompasses the different forces that affect the robot's motion as well as its interaction with the vessel wall. The translational and rotational motions of the robot are expressed by:

m d v dt = F m + F d + W a + F c + F vdw + F elec J d w dt = T m + T d + M c (1) 
where v and w are, respectively, the translational and rotational velocity of the robot, m and J its mass and moment of inertia. F m , F d , W a , F c , F vdw and F elec respectively denote the magnetic force produced by the MRI gradient coils, blood hydrodynamic drag force, apparent weight, the robot-to-wall contact force, the Van der Waals force and the electrostatic force. T m , T d and M c denote respectively the magnetic torque, hydrodynamic drag torque and the robotto-wall contact moment.

In the rest of this paper, we assume that the orientation of the robot does not change due to the magnetic torque which tends to align the magnetization of the robot along the external field. T d and M c are much smaller order than T m .

To determine whether statistical mechanics or continuum mechanics formulations of fluid dynamics should be used, we refer to the dimensionless Knudsen number K n = k b T P πr 3 2 5/2 , where T , k b and P respectively denote temperature, the Boltzmann constant and pressure. In our case, the low value K n ≈ 10 -13 (≪ 10 -3 ) ensures that the robot is large enough to neglect the effect of Brownian motion: the robot's motion is subjected to generic Navier-Stokes equations.

A. Magnetic force

The gradient coils of the MRI system provide magnetic gradients which produce a magnetic force F m on the robot:

F m = τ m µ 0 V ( M .∇) H (2) 
where V is the robot's total volume, τ m = Vm V with V m the ferromagnetic volume, M is the magnetization of the material, µ 0 is the permeability of free space, H is the external magnetic field and ∇ is the gradient operator.

B. Hydrodynamic drag force

The hydrodynamic drag force F d exerting on a spherical body in an infinite extent of fluid is expressed as:

F d = - 1 2 ρ f ( v -v f ) 2 ∞ AC d∞ (3) 
where v -v f denotes the relative velocity of the robot with respect to the fluid, A is the frontal area of the core and ρ f is the density of the fluid. C d∞ is the drag coefficient, a dimensionless quantity used to quantify the drag or resistance of an object in a fluid.

C d∞ is a function of the Reynolds number Re ∞ = 2rρ f | v-v f | ∞ η
; its expression for a spherical body in laminar flow is given by [START_REF] White | Viscous Fluid Flow[END_REF]:

C d∞ = 24 Re ∞ + 6 1 + √ Re ∞ + 0. 4 
1) Non-Newtonian fluid: In case of blood, which exhibits a non-newtonian behavior, the fluid's viscosity η is a function of vessel diameter d (in micron) and hematocrit rate h d according to the following empirical relations [START_REF] Pries | Biophysical aspects of blood flow in the microvasculature[END_REF]:

η = η plasma d 2 (d -1.1) 2 1 + (η 0.45 -1)d 2 (d -1.1) 2 (1 -h d ) c -1 (1 -0.45) c -1 B A Output Blood Profile Input Blood Profile W a F c F m W a F e + F vdw F d F m i θ k C r e f
Fig. 1. Scheme of a blood vessel with minor bifurcations with parameters η plasma and η 0.45 denoting respectively the plasma's viscosity and the relative apparent blood viscosity for a fixed discharge hematocrit of 0.45, given by: η 0.45 = 6 e -0.085d + 3.2 -2.44 e -0.06d 0.645

The shape of the viscosity dependance on hematocrit is: 2) Wall effects: For endovascular applications, influence of the vessel walls on the velocity of the robot has to be taken into account. In general, this wall effect is expressed as a ratio between the terminal relative velocity of the robot ( v -v f ) t and its velocity ( v -v f ) ∞ in an infinite extent of fluid [START_REF] Kehlenbeck | Empirical relationships for the terminal settling velocity of spheres un cylindrical columns[END_REF]:

c = 10
| v -v f | t | v -v f | ∞ = 1 -λ α0 1 + λ λ0 α0 (4) 
with ratio λ = 2r/D and D denoting the vessel diameter (in meter). Parameters α 0 and λ 0 are functions of Reynolds number, but are commonly set to 1.5 and 0.29, respectively. Thus, equation ( 3) is corrected as follows:

F d = - 1 2 ρ f     1 + λ λ0 α0 1 -λ α0   ( v -v f ) t   2 AC dt (5) 
Wall effects on the fluid in the vessel traditionally result in a parabolic profile of blood flow (see Figure 1). Besides, to fully take into account pulsatile flow caused by heart pumping in arteries, one has to consider a periodic deformation of the vessel's diameter D(t) synchronized with v f (t). 

C. Apparent weight

In addition to the magnetic and hydrodynamic forces, apparent weight (combined action of weight and buoyancy) is acting on the spherical robot:

W a = V (ρ -ρ f ) g (6) 
where ρ = τ m ρ m + (1 -τ m )ρ poly with ρ m and ρ poly the magnetic material's and polymer's densities.

D. Contact force

The normal and tangential interaction between the robot and the wall are assumed to be expressed by a Voigt model with the spring constant K and the decay coefficient of dashpot b, as shown in Figure 2, where the indexes n and t indicate respectively the normal and tangential normalized vectors.

The normal component of the contact force F cn acting on the robot is given by the sum of a non-linear elastic component and a linear viscous damping: [START_REF] Tijskens | Discret element modelling for process simulation in agriculture[END_REF]:

F cn = (K n δ 3/2 + b n δ) n ( 7 
)
where δ is the elastic deformation of the wall at the contact point and n is the normal unit vector pointing from the robot to the contact surface. The stiffness K n can be calculated by Hertzian contact theory [START_REF] Tsuji | Lagragian numerical simulation of plug flow of cohesionless particles in a horizontal pipe[END_REF] as follows:

K n = 4 √ r 3 1-σ 2 p Ep + 1-σ 2 w
Ew where E p and E w are the Young's modulus of robot and wall, and σ p , σ w are respectively the Poisson's ratios of robot and wall. The damping coefficient b n is deduced from K n using b n = 2 √ mK n . The tangential component of the contact force takes part when the robot is rotating or in case of oblique collision with the wall:

F ct = (K t ζ + b t ζ) t ( 8 
)
where ζ is the displacement in the tangential direction and t is the tangential unit vector. The stiffness K t and damping coefficient b t are given by:

K t = 8 √ rG p 2 -σ p δ 1/2 , b t = 2 mK t
where G p is the shear modulus related to the Young's modulus E p and Poisson ratio σ p , i.e. G p = Ep 2(1+σp) .

E. Van der Waals and electrostatic forces

When the robot and the wall are not in contact, they interact each other through Van der Waals and electrostatic forces. These two interaction forces have different dominant regimes. In fact, when the robot is close to the wall, Van der Waals force is dominant. As the robot move away from the wall, the Van der Waals force rapidly decrease and the electrostatic force becomes dominant.

The Van der Waals potential between the robot and the wall is given by [START_REF] Iimura | Simulation of entrainment of agglomerates from plate surfaces by shear flows[END_REF]:

V vdw = - A h 6 1 h + 1 2 + h + ln h 2 + h n (9)
where A h is the Hamaker constant and h is the distance between robot and wall. Then, the Van der Waals interaction force is given by differenciating ( 9) F vdw = -∇ V vdw . The electrostatic force between the robot and the wall considered as an uncharged surface is given by [START_REF] Hays | Electrostatic adhesion of non-uniformly charged dielectric sphere[END_REF]:

F elec = q 2 4πǫǫ 0 (r + h) 2 n ( 10 
)
with q the robot charge, ǫ the dielectric density of the medium in which the interaction occurs and ǫ 0 the vacuum permittivity. [START_REF]Role of Electrostatics in Adhesion, in Fundamentals of Adhesion[END_REF] gives the expression of the maximum allowable charge Q = 30 × (100r) -0.3 for a spherical body of radius r.

III. MODELING: OPTIMAL TRAJECTORY

Previous forces balance gives us sufficient informations to plan an optimal trajectory. At least two cases A and B, shown on the Figure 1, should be taken into account. In the first one, the robot is in a vertical vessel and the magnetic force F m should counter both contributions of the robot's apparent weight W a and the drag force F d when blood is flowing back (Curve A of Figure 3). The drag force decreases when the robot approaches the wall due to the parabolic profile of velocity. Thus the reference trajectory should be as near as possible to wall. In the second case, the robot is in a horizontal vessel and the magnetic force should counter contributions of the robot's apparent weight, electrostatic and Van der Waals forces, F elec and F vdw (Curve B of Figure 3). This case shows that near the wall, F elec and F vdw , which point to the wall, are dominant and the magnetic force is no more sufficient to counter it. Nevertheless there is an optimal position where the sum of the two forces compensates perfectly the robot's weight. Moreover, the curve A shows that at this point, the magnetic force exceeds the drag force. From these observations, we define an optimal path as an arc passing through the point C.

IV. MODELING: STATE SPACE REPRESENTATION

Let (x, z) denote the position of the robot in the vessel with respect to a given frame F (O, i, k). The state model is established from differential equation (1) defining the robot's dynamic behavior, projected on i and k axes: where indexes x (respectively z) denote projections on i ( k).

mẍ = F mx + F dx + F cnx + F ctx + F vdwx mz = F mz + F dz + W a + F cnz + F ctz + F vdwz ( 11 
)
Let x 1 , x 2 , x 3 , x 4 denote respectively the particule's position and velocity along i axis, and the position and velocity along k axis. Assuming that positions x 1 and x 3 can be measured thanks to the MRI imaging system, let y denote the state's measure. Using expressions of forces given by ( 2), ( 5), ( 6), ( 7), ( 8), [START_REF] Kehlenbeck | Empirical relationships for the terminal settling velocity of spheres un cylindrical columns[END_REF] and Van der Waals interaction derivated from potential (9), and adequate projection of local frame along the geometry of the vessel 1 , system (11) can be written in the form:

(S)                ẋ1 = x 2 ẋ2 = f 2 (x 1 , x 2 , x 3 , x 4 ) + au 1 ẋ3 = x 4 ẋ4 = f 4 (x 1 , x 2 , x 3 , x 4 ) + au 2 y = x 1 x 3 (12) 
where control inputs u 1 = ∇B x and u 2 = ∇B z are the magnetic gradients, parameter a = τmM ρ , and f i are very highly nonlinear functions of the full state.

V. CONTROL APPROACH

In this section, we present a control design for Lyapunovstabilizing trajectories for system (S). Since determination of Lyapunov functions is generically a challenging issue, it is preferable to use Lyapunov control functions in a backstepping control approach [START_REF] Krstić | Nonlinear and Adaptative Control Design[END_REF], [START_REF] Kanellakopoulos | A toolkit for nonlinear feedback design[END_REF]. Since this design requires a triangular form for the control system, we propose the following change of coordinates:

X = x 1 x 3 ; Y = x 2 x 4 ; U = u 1 u 2 (13) 
Thus, we obtain a new system in a triangular form:

(S ′ )    Ẋ = Y Ẏ = F (X, Y ) + U y = X (14) 
1 The drag force is not linearly distributed between i and k axis. Denoting X ref , Ẋref and Ẍref respectively the desired reference trajectory, velocity and acceleration, the control law for system (S ′ ) can be expressed as [START_REF] Arcese | Nonlinear modeling and robust controller-observer for a magnetic microrobot in a fluidic environment using mri gradients[END_REF]:

U = Ẍref + (k 1 + k 2 ) Ẋref + (1 + k 1 k 2 )X ref -(1 + k 1 k 2 )X -(k 1 + k 2 )Y -F (X, Y ) (15) 
where k 1 and k 2 are the strictly positive backstepping gains.

VI. SIMULATIONS

The robot is made of τ m = 80% NdFeB particles which has a combination of very high remanence and coercivity, and 20% of binding polymer. Simulations are performed by taking into account the limitations of a clinical MRI system. In order not to exceed the capacity of existing MRI systems, the applied control law ( 15) is now corrected as ui k(t) , with k(t) = max 1, ui ui,max .

A pulsatile flow is included by imposing a time-varying velocity. As a first approximation of a physiological pulse, we use a time-sinusoidal profile with spatial parabolic form. In the case of artery, such an approximation leads to:

v f (t) = 0.035(1 + 1.15 sin 2πt) × 1 - D/2 -h r 2
Our studies assume the presence of minor bifurcations (see Figure 1). This geometry leads to only slight change in the velocity's profile and amplitude (see Figure 4). The developed controller must be sufficiently robust to compensate this effect which could be considered as a disturbance. Major bifurcations will require a further study of velocity's field profile.

The purpose of the control is to ensure a null error between desired and a pre-planned trajectory. In the following, the performances and stability of the controller with respect to I. A first simulation is led so as to pinpoint robustness to model errors, and the second one to study sensitivity to output noise.

Simulation of Figures 5,6 is performed by assuming that the blood's viscosity and permittivity are affected by uncertainties of 100% of their nominal values and the vessel's diameter by uncertainties of 10%. This simulation shows that after a transient phase, the position tracking performance is robust enough to model's error (subfigure of Figure 5). Despite these uncertainties, Figure 6 shows that the control inputs don't reach saturation. This is due to the choice of an optimal reference trajectory deduced from the analysis of Section III.

In a second simulation (Figures 7 and8), we assume a white gaussian noise is applied on the position measurement. This noise is about 10% of the measured signal. Figure 7 illustrate that the controller is quite stable despite the noise, and does not even reach saturations (Figure 8). Nevertheless, it's clear that the system is sensitive to noise. We can expect that this drawback effect can be reduced using an observer. In addition to estimate some parameters like blood's velocity (assumed to be known in this paper), an observer will tend to smooth the output signals.

VII. CONCLUSION

In this paper, we have presented a highly nonlinear model for a MRI guided microrobot in blood vessels. This model takes into account the non-newtonian behavior of blood, as well as wall effects and interactions. It makes it possible to hence deduce an optimal trajectory. Besides, we have developed a nonlinear control law based on the backstepping approach. Parameters uncertainties and noise effects have been illustrated by simulations. It appears that the system is robust to uncertain physiological parameters, but proved quite sensitive to output noise, though remains stable.

As stated in Section VI, system robustness to noise can be improved by implementing a high gain observer based on [START_REF] Arcese | Nonlinear modeling and robust controller-observer for a magnetic microrobot in a fluidic environment using mri gradients[END_REF] but fitted for this more complete and complex model. We are also working on estimating the blood's velocity and frequency, assumed to be known at the moment, using Kazantis-Kravaris Luenberger observers [START_REF] Andrieu | On the existence of a kazantis-kravaris / luenberger observer[END_REF]. Additionnaly, the modeling of impact of major bifurcations on the blood's velocity profile is underway. 
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Fig. 7 .Fig. 8 .

 78 Fig. 7. XZ trajectory : reference trajectory (red dotted) and real trajectory (blue solid line)

  

TABLE I SIMULATIONS

 I 

	Robot's Poisson's ratio	σp	0.27
	Wall's Poisson's ratio	σw	0.30
	Hamaker constant A Controller gains k 1	15
		k 2	30

DATA Plasma's viscosity η plasma 5 × 10 -3 [P a.s] Blood's density ρ f 1060 [kg.m -3 ] Robot's density ρm 8000 [kg.m -3 ] Robot's radius r 300 [µm] Vessel's diameter D 3 [mm] Polymer's density ρ poly 1500 [kg.m -3 ] Ferromagnetic ratio τm 0.8 Magnetization M 1.95 × 10 6 [A.m -1 ] Hematocrit h d 0.45 Robot's Young's modulus Ep 10 9 [P a] Wall's Young's modulus Ew 0.75 × 10 6 [P a] h 4 × 10 -19 [J] Blood's dielectric density ε 77 [C 2 .N -1 .m -2 ] Initial condition on x x 0 (0, 0, 0, 0) T Inputs saturations u i,max 45 [mT.m -1 ]
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