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Abstract: In this paper, we consider a reaction-diffusion process described by a linear parabolic
partial derivative equation (PDE). Two radically different control approaches are compared:
the model predictive control (MPC) and the backstepping approach. The stabilization of the
unstable reaction-diffusion process is first studied. Then, to deal with parameter uncertainties,
an adaptive backstepping controller is developed and compared to a model predictive controller
based on an internal model control (IMC) structure. Simulation results illustrate the efficiency
of the two approaches in terms of precision and computational time.
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1. INTRODUCTION

The reaction-diffusion process is involved in different appli-
cation fields, like physics, chemistry and biology involving
transport of materials and interactions between chemical
compounds. This process can be modeled by a parabolic
PDE. The control of PDE systems differs strongly depend-
ing on the location of sensors and actuators. If the latter
are inside the process domain, a distributed control is
required, whereas the boundary control, which is more dif-
ficult to synthesize thought physically more realistic, is ad-
dressed if the actuators are located along the boundary of
the process domain. The present paper addresses the latter
issue. Among the numerous existing approaches of PDE
boundary control (optimal control, flatness, etc), we have
selected the MPC approach Camacho and Bordons [1998]
and the backstepping approach Krstić and Smyshlyaev
[2008b]. The reason for this choice is the radical difference
between the two approaches. Backstepping is a theoretical
strategy, yielding to an explicit stabilizing control law. On
the contrary, MPC is an efficient practical strategy which
suffers from the lack of theoretical stability result in certain
cases due to the implicit numerical control law.

The MPC approach has been applied either to linear
parabolic PDEs Dubljevic et al. [2006] or to nonlinear PDE
Dufour et al. [2003], Santos et al. [2005]. The inherited
control, which is the solution of an optimization problem,
is generically implicit. From a practical point of view, one
advantage of MPC is its ability to take constraints on input
and states into account. However, the resolution of the
optimization problem may be time consuming.

The backstepping approach was initially developed to
provide a generic procedure for synthesizing Lyapunov
stabilizing control laws for triangular nonlinear ordinary
differential equation (ODE) systems Kanellakopoulos et al.
[1992]. However, extensions to the boundary control of lin-

ear PDEs were recently reported in Krstić and Smyshlyaev
[2008b]. Despite some applications to particular nonlinear
systems Vasquez and Krstić [2008], boundary control of
nonlinear PDEs largely remains an outstanding problem.
The advantage of backstepping is to provide explicit Lya-
punov stabilizing control laws. Besides the more recent
backstepping syntheses do not require any model’s dis-
cretization.

From a practical point of view, modeling errors or param-
eter uncertainties are inevitable. To deal with this issue,
one usually relies either on a dedicated Lyapunov approach
or on robustness. The latter solution is achieved using
an IMC structure to robustify the MPC approach. The
former issue is addressed using an adaptive backstepping.
Backstepping control of PDE systems with non-constant
parameters were treated in Smyshlyaev and Krstić [2005].
The adaptive backstepping control of parabolic PDE sys-
tems with unknown parameters was addressed using either
Lyapunov design Krstić and Smyshlyaev [2008a], passive
estimator Smyshlyaev and Krstić [2007a], or swapping
identifiers Smyshlyaev and Krstić [2007b].

In this paper, after a brief recap of the reaction-diffusion
process, the MPC concept and the backstepping principle,
we compare the advantages and disadvantages of the two
approaches for the boundary control of a reaction-diffusion
process. The control objective is the stabilization of the
process in the ideal case (reaction rate known) and in
the usual case (reaction rate unknown). The robustness
of the MPC-IMC approach is addressed and an adaptive
backstepping is developed in the usual case. In that case,
we also provide a more reactive update law than in Krstić
and Smyshlyaev [2008a] in the case of Dirichlet boundary
conditions. In the usual case, the MPC strategy proves to
be performant in simulations despite a computational cost
lower than the backstepping’s ones.
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Fig. 1. Evolution of the open-loop process.

2. BACKGROUND

2.1 Reaction-diffusion process

We consider the reaction-diffusion process modeled by a
linear parabolic PDE of the form:

(S1)





vt(x, t) = vxx(x, t) + αv(x, t)
µ0vx(0, t) + (1− µ0)v(0, t) = 0
µ1vx(1, t) + (1− µ1)v(1, t) = U(t)
v(x, 0) = v0(x)

(1)

where the subscripts t and x denote the derivation of the
state variable v(x, t) with respect to time and space, re-
spectively. The parameter α is a reaction rate, µ0vx(0, t)+
(1− µ0)v(0, t) = 0 is the free-end boundary condition and
U(t) is the boundary control with (µ0, µ1) ∈ {0, 1}. The
initial condition of the system is denoted v0(x).

In open-loop, i.e. U(t) ≡ 0 at x = 1, integrating (1) using
the separation of variables and the superposition principle
gives, for Neumann boundary conditions (µ0 = µ1 = 1):

v(x, t) =

∞∑

n=0

cne
λnt cos (nπx)

∫ 1

0

cos (nπx)v0(x) dx (2)

with the coefficients c0 = 1 and cn = 2, ∀n ≥ 1 and the
eigenvalues λn = α − n2π2. Hence it is obvious that such
a system is unstable as soon as the reaction rate α > 0 1 .
As can be seen in Fig. 1, system (S1) is unstable for
U(t) ≡ 0, v0(x) = sin(πx) and α = 0.66. The state v(x, t)
is dominated by the unstable eigenfunction φ0(x) = 1 and
consequently diverges.

2.2 Model Predictive Control

Model Predictive Control has been extensively studied for
the control of constrained linear or nonlinear processes
described by ordinary differential equations. The MPC
strategy is based on the receding horizon principle and
is formulated as solving on-line a nonlinear optimization
problem; see Camacho and Bordons [2007] for a survey.
The basic concepts of MPC are the explicit use of a model
to predict the process behavior over a finite prediction
horizon Np and the minimization of a cost function with
respect to a sequence ofNc controls whereNc is the control
horizon. The control objective is usually a trajectory or
setpoint tracking. Considering x(t), the state vector of the
model at time t, the cost function is defined by:

1 In the case of Dirichlet boundary conditions, eigenfunctions are
φn(x) = sinnπx, so that the system is unstable for α > π2.

J(x, u) = F (x(t+Np)) +

∫ t+Np

t

L(x(τ), u(τ), yref (τ))dτ (3)

where L is a quadratic function and F (x(t + Np)) is a
terminal constraint added to ensure the stability of the
closed-loop system. The classical MPC can be formulated
as follows:

min
ũ

J(x, u). (4)

Only the first element of the computed optimal sequence
of controls ũ is really applied to the process. At the next
sampling instant, the prediction horizon moves one step
forward and the whole procedure is repeated with the
updated measurements.

The main advantage of MPC is its ability to handle
constraints. Constraints on states, inputs or outputs can
explicitly be added to the optimization problem (4).

2.3 Backstepping control design

Backstepping control was originally developed for nonlin-
ear EDO systems Kanellakopoulos et al. [1992]. Backstep-
ping controller design is based on a triangular transforma-
tion of the source system into a target system in the lower
triangular form. It provides an iterative choice of control
Lyapunov functions and finally leads to a control law that
stabilizes the state variables step by step.

In the case of boundary controlled PDEs, the principle of
triangular transformation is preserved, but the objective
is now to use this transformation to map the source
unstable system (S1) into a stable target PDE system
in closed-loop Liu [2003], Krstić and Smyshlyaev [2008b].
This method has two main advantages: the control is
synthesized directly using the PDE system, i.e., with no
discretization, and the resulting control law is explicit.

The purpose of the backstepping approach is to control the
trajectories of system (S1) along a stable target system, by
eliminating the source of instability given by the reaction
term αv(x, t). For µ0 = µ1 = 1, we can consider, for
instance, the following target system:

{
wt(x, t) = wxx(x, t)− gw(x, t)
wx(0, t) = 0
wx(1, t) = −κ

2w(1, t)
(5)

where parameters κ > 1 and g are used as gains to tune
the rate of convergence of the Lyapunov function to zero.

A possible Lyapunov candidate funtion is:

V (t) =
1

2
‖w(x, t)‖2 =

1

2

∫ 1

0

w2(x, t)dx. (6)

Differentiating equation (6) with respect to time, using the
chain rule and integrating by parts, gives:

V̇ (t) = w(1, t)wx(1, t)− w(0, t)wx(0, t)

−
∫ 1

0
w2

x(x, t)dx − g
∫ 1

0
w2(x, t)dx.

(7)

Applying the Poincare inequality
∫ 1

0

w2(x, t)dx ≤ 2w2(1, t) + 4

∫ 1

0

w2
x(x, t)dx (8)

and the boundary conditions of (5), we obtain:

V̇ (t) ≤ −(
1

4κ
+ g)

∫ 1

0

w2(x, t)dx = −2(g +
1

4κ
)V (t). (9)



Hence the system (5) is stable for g > − 1
4κ .

The difficulty of the backstepping approach is to find the
transformation that maps system (S1) onto system (5).
We set the following integral Volterra transformation:

w(x, t) = v(x, t) −
∫ x

0

K(x, y)v(y, t)dy (10)

where K is the function that characterizes the transforma-
tion, called kernel of the Volterra transformation.

It is important to note that this transformation is in-
vertible, which guarantees that the stability of the target
system (5) will induce the stability of system (S1) along
the closed-loop trajectory of the controlled system. The
integral in (10) is within the interval [0, x], and induces
a spatial causality that can be assimilated to the well-
known triangular transformation of standard backstepping
approaches developed for ODE systems.

3. CONTROL DESIGN WITH MPC APPROACH

As for all predictive strategies, a reference trajectory, a
model of the dynamic process, a cost function and an
optimization solver are necessary. In the sequel, the choice
of these four points is discussed with regard to the two
distinct control objectives: stabilization of the unstable
PDE system (S1) with the parameter α known and robust
control in the case of uncertainty on the parameter α.

3.1 Stabilization of the system (S1)

The reference. The control task is to regulate to zero the
unstable part of the process described by equation (1). The
reference yref is constant and equal to zero.

The prediction model. In order to simplify the pre-
diction of the model, the original model is decomposed
into a finite-dimensional system describing the slow dy-
namics and an infinite-dimensional system modeling the
fast dynamics Dubljevic and Christofides [2006]. For this
purpose, the modal decomposition technique is used. For
µ0 = µ1 = 1 (Neumann conditions), we define the state
function v̄(t) on the state space H as

v̄(t) = v(x, t), t > 0, 0 < x < 1, (11)

and the differential operator F as

Fφ =
d2φ

dx2
+ αφ, 0 < x < 1, (12)

where φ(x) is a smooth function on [0, 1]. The boundary
operator B : H 7−→ R is defined by:

Bφ(x) = dφ(1)

dx
+ φ(1). (13)

Considering (11), (12) and (13), the original system (1)
can be rewritten as follows:{

˙̄v(t) = F v̄(t), v̄(0) = v̄0
Bv̄(t) = u(t).

(14)

The above equation has inhomogeneous boundary con-
ditions owing to the presence of u(t) in the boundary
conditions. To transform this boundary control problem
into an equivalent distributed control problem Fattorini
[1968], Curtain [1985], we assume that a function B(x)
exists such that for all the u(t), Bu(t) ∈ D(F) satisfies:

BBu(t) = u(t). (15)

The change of variable p(t) = v̄(t) − Bu(t) leads to the
following system:{

ṗ(t) = Ap(t) + FBu(t)−Bu̇(t)
p(0) = p0

(16)

where the operator A is such that Aφ(x) = Fφ(x). The
state p(t) can be split into slow and fast states respectively
noted ps(t) and pf (t): p(t) = ps(t)+pf (t). The system (16)
can be written as:{

ṗs(t) = Asp(t) + (FB)su(t)−Bsu̇(t)
ṗf(t) = Afp(t) + (FB)fu(t)−Bf u̇(t)

(17)

where As is a diagonal matrix of finite dimension and Af

is an infinite dimensional operator. The latter represents
the fast and stable dynamics, whereas As represents the
slow dynamics, which may be unstable (As = diag{λk},
k = 1, ..,m with λk, the eigenvalues).

The system is still not under a suitable form to be used in
an MPC strategy because of the derivative of the control.
Therefore, a new variable ū(t) is introduced and the system
becomes:

(
u̇
ṗs
ṗf

)
=

(
0 0 0

(FB)s As 0
(FB)f 0 Af

)(
u
ps
pf

)
+




1

−B̂s

−B̂f



 ū (18)

Due to the stabilization objective, we can neglect the fast
(stable) dynamics and finally the state representation of
the reaction-diffusion process has the form:(

u̇(t)
ṗs(t)

)
=

(
0 0

(FB)s As

)(
u(t)
ps(t)

)
+

(
1

−B̂s

)
ū(t). (19)

The model state is noted Xm(t) = (u(t), ps(t))
T .

The cost function. The control objective is to steer the
state to the origin. The quadratic function L in (3) is then
defined as:

L = (Xm)TQ(Xm) (20)

where Q is a symmetric positive definite matrix.
The terminal constraint is given by (Q > 0):

F (Xm(t+Np)) = (Xm(t+Np))
TQ(Xm(t+Np)). (21)

The solving method. In order to implement the MPC
strategy, a discrete-time formulation is generally used. The
optimization problem (4) becomes:

min
ũ

k+Np∑

j=k+1

[Xm(j)]TQ [Xm(j)]+

[Xm(k +Np)]
TQ [Xm(k +Np)] (22)

subject to the model equation given by (19) in its discrete-
time formulation, where k is the current time. Numerous
nonlinear optimization routines are available in software
libraries to solve this kind of problem.

3.2 Robust control of (S1)

We now consider the system (S1) with µ0 = µ1 = 0
(Dirichlet conditions); the reaction rate is an unknown
parameter denoted α̂, an estimate of α. Hence, we define
the model used for prediction by:

(S2)






vt(x, t) = vxx(x, t) + α̂v(x, t)
v(0, t) = 0
v(1, t) = U(t)
v(x, 0) = v0(x).

(23)
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Fig. 2. MPC with IMC control structure.

To deal with this uncertainty, the well-known IMC struc-
ture is chosen Morari and Zafiriou [1989].

Control Structure. (see Fig. 2)
The process block contains the reaction-diffusion system
described by equation (1) with µ0 = µ1 = 0. The control
input is the boundary control U(t). The process output is
the measured state v(x, t). Due to the control structure,
to track the reference state vref by the process output
is equivalent to tracking the desired state vdes by the
model output vm. The spatial signal error ε represents
all modeling errors and disturbances between the process
and the model outputs. It is considered constant over
the prediction horizon Np but updated at each sampling
instant k. The reference state is still zero.

The prediction model. The system (S2) is spatially
discretized by a finite difference method yielding the state
space representation in discrete-time:

vm(k + 1) = Amvm(k) +BmU(k) (24)

with Am and Bm matrices of adequate dimensions.

The cost function. In order to compare the two ap-
proaches (MPC, backstepping), constraints on the input
control should be considered. The robust stabilization of
(S2) can be formulated into the optimization problem:

min
Ũ

k+Np∑

j=k+1

[−ε(j)− vm(j)]T Q [−ε(j)− vm(j)] (25)

s.t. 




vm(k + 1) = Amvm(k) +BmU(k)

Ũ = [U(k), U(k + 1), ...U(k +Np − 1)]
Umin < U(k) < Umax.

The simulations presented in section 5 illustrate the effi-
ciency of the MPC strategy in the usual case.

4. CONTROL DESIGN WITH BACKSTEPPING
METHOD

As stated in section 2.3, boundary control using the back-
stepping approach aims at mapping the original unstable
system into a Lyapunov stable target PDE. When the
reaction parameter is known, the sole issue is to find
the kernel analytical expression. In the case of parameter
uncertainties, an adaptive backstepping control law needs
to be synthesized. In the case of Lyapunov design of the
adaptive control law, the target PDE has to be stabilized
using an appropriate update law. Despite a more complex
analysis, this approach is less time consuming than passive
or swapping identifiers approaches, for there is here no
need for an observer.

4.1 Stabilization of the system (S1)

Since boundary backstepping control depends on the ker-
nel expression, e.g., for Neumann boundary conditions
(µ0 = µ1 = 1), vx(1, t) = U(t) with

U(t) =

∫ 1

0

Kx(1, y)v(y, t)dy +K(1, 1)v(1, t), (26)

the main difficulty in the backstepping controller synthesis
consists in finding the analytical expression of the kernel
K of transformation (10). To do so, we differentiate (10)
along the PDE of the source system (S1) and use the PDE
and boundary conditions of the target system (5). We thus
obtain the following kernel PDEs:





Kxx(x, y)−Kyy(x, y) = (α+ g)K(x, y)

Ky(x, 0) = 0

K(x, x) = −α+g
2 x.

(27a)

(27b)

(27c)

Setting ξ = x + y, η = x − y and g(ξ, η) = K(x, y), the
PDE system (27) can be rewritten as an integral equation.
Integrating (27a) i) with respect to η on [0, ξ] then with
respect to ξ on [0, ξ], and ii) with respect to η on [0, η]
then with respect to ξ on [0, η], and using conditions
(27b)–(27c) to simplify expressions, we have the following
integral equation:

g(ξ, η) = (α+g)
4

(
− (ξ + η) +

∫ ξ

η

∫ η

0
g(ε, κ)dεdκ

+
∫ η

0

∫ ε

0 g(ε, κ)dεdκ
)
.

(28)

We use successive approximations to solve (28). We a

priori set g0(ξ, η) =
(α+g)

4 (ξ + η) and define gn+1(ξ, η) as
the solution of (28) evaluated at g = gn. If the sequence
converges, then the same goes for the associated series
Gn = gn+1 − gn. Inductively we get:

Gn(ξ, η) = −
(α+ g

4

)n+1 (ξ + η)ξnηn

n!(n+ 1)!
, (29)

so passing to the limit gives:

G(ξ, η) = −(ξ + η)
∞∑
n=0

(
α+g
4

)n+1
ξnηn

n!(n+1)!

= − (α+g)(ξ+η)
2

I1(
√

(α+g)ξη)√
(α+g)ξη

(30)

with In denoting the nth-order modified Bessel fonction

In(x) =
∞∑

m=0

( x

2 )
n+2m

m!(m+n)! that satisfies d
dx (x

−nIn(x)) =

x−nIn+1(x). We hence deduce from (30) the kernel of (10):

K(x, y) = −(α+ g)x
I1(
√
(α+ g)(x2 − y2))√
(α+ g)(x2 − y2)

. (31)

Set z(y) = (α + g)(1 − y2). The Lyapunov stabilizing
boundary control is thus given by (26) using (31) and its
derivative with respect to x:

U(t) =− (α+ g)

∫ 1

0

(
I1(

√
z(y))√

z(y)
+

I2(
√

z(y))

(1−y2)

)
v(y, t)dy

− (α+ g)v(1,t)2 . (32)

For Dirichlet boundary conditions (µ0 = µ1 = 0), a similar
approach leads to the following boundary controller:

U(t) = v(1, t) =

∫ 1

0

K(x, y)v(y, t)dy, (33)



with the kernel

K(x, y) = −(α+ g)y
I1(
√

(α+ g)(x2 − y2))√
(α+ g)(x2 − y2)

. (34)

4.2 Adaptive backstepping control of the system (S1)

We now consider the process (S1) with µ0 = µ1 = 0
(Dirichlet conditions) and the model used for synthesizing
the controller is given by system (S2).

Replacing the unknown parameter α by the estimated one
α̂(t) in the kernel (34), we have:

K(x, y, α̂) = −(α̂+ g)y
I1(
√
(α̂+ g)(x2 − y2))√
(α̂+ g)(x2 − y2)

. (35)

Then, the integral Volterra transformation (10) maps
system (S1) into

2 :

(S3)





wt = wxx + (α̃− g)w + ˙̂α

∫ x

0

y
2w(y, t)dy

w(0) = 0
w(1) = 0

(36)

where α̃ = α − α̂ is the parameter estimation error,
updated by the parameter update law ˙̂α = uα(t).

Proposition 1. The estimated parameter update law and
boundary controller:




uα(t) = γ
‖w‖2

1 + ‖w‖2 , γ ∈
(
0; 4

√
3(g + π2)

)

v(1, t) =

∫ 1

0

K(x, y, α̂(t))v(y, t)dy

(37a)

(37b)

with kernel (35) achieve regulation of v(x, t) to zero for
all x ∈ [0, 1], for arbitrarily initial condition v(x, 0) and
estimate α̂(0).

The proof, detailed in Appendix, is based on the one
developed in Krstić and Smyshlyaev [2008a], but we here
exploit the Dirichlet boundary conditions and gain g to
obtain a wider range for the choice of the update gain γ.

5. SIMULATION RESULTS

The simulations were performed using the centered finite
difference method. The optimization problem of MPC was
solved by using the Matlab subroutine Quadprog.

Simulation 1: Stabilization of (S1) in the ideal case.
Conditions: v0(x) = sin(πx) ; α = 0.66 ; Te = 7 10−4 (s) ;
Np = 10 ; Nc = 1 ; Q = diag(0.01; 0.07; 0.07) ; g = 0.5.

The MPC and backstepping strategies stabilize the unsta-
ble part of the reaction-diffusion process (see Fig. 3(a) and
3(b)). For both, the control input applied at the boundary
x = 1 reaches its maximum absolute value at the beginning
so as to compensate for non-null initial conditions and the
instability caused by the reaction term (see Fig. 3(c)).

Concerning the computational load, the backstepping
method requires less computing time (2ms) than the MPC
method (4.6ms) which is due to both modal decomposition
and the optimization processing. Moreover, the maximum
absolute value of control is less aggressive in the case
2 For the sake of readability, we have dropped the (x, t) dependency
if there is no possible confusion.

of backstepping control (Umax = −0.87), which means
that the latter is more efficient than the MPC method
(Umax = −1) in this case.

Simulation 2: Stabilization of (S1) in the usual case.
Conditions: v0(x) = 10 sin(πx) ; α = 15 ; Te = 12 10−4 (s)
; Np = 40 ; Nc = 1 ; Q = diag(1; 0.2; 0.2) ; γ = 60.

We add to the optimization problem (25) the control
constraint, U ∈ [−8, 8] which is equivalent to a time scale
change for adaptive backstepping control.

Contrary to Simulation 1, the control law profiles sig-
nificantly differ due to the basic difference between the
two approaches. Indeed, MPC stability is assumed by the
robustness of the strategy to modeling errors whilst, in
the adaptive backstepping case, the stability is ensured
thanks to the model update through the update law. In
both cases, the closed-loop process is stabilized (see Fig.
4(a) and 4(d)). The prediction horizon is chosen in order
to satisfy a compromise between the stability of the closed
loop and the computational time requirement. It should
be pointed out that the higher the reaction rate —and
in turn the instability of the process— the higher the
prediction horizon that should be chosen so as to preserve
the stability of the MPC-IMC design (Np = 40, Nc = 1).

The error signal ε (Fig. 4(c)) shows a transient behavior
relative to both the initial condition error (between the
model and the process) and to the model error caused by
the unknown reaction parameter α̂.

Fig. 4(f) shows that the parameter estimation is improved
with respect to the initial value α̂(0) = 1 when the norm is
non null. The nominal value is not exactly reached because
the Lyapunov derivative V̇ in (A.6) is only negative semi-
definite. The closed-loop state is yet stable in accordance
with the result presented in section 4.2.

The computational time by step required for robust MPC
(4.7ms) is less than for the adaptive backstepping method
(5.5ms). This difference of calculation burden is explained
firstly by the double spatial integral to calculate the norm
needed to compute the update model in the adaptive
backstepping approach, and secondly by the subsampling
of the MPC prediction model.

6. CONCLUSION

Two boundary control approaches to stabilize the reaction-
diffusion process have been compared for two cases. The
first one (ideal case) with a known reaction rate, the second
one (usual case) with an unknown reaction rate.

Stabilization, theoretically proven with the backstepping
approach, was achieved in both cases. In the ideal case, the
backstepping technique requires less computing time than
the MPC. However, the double space integrals required to
determine the norm ‖w‖ at each step are time consuming
in the usual case. The adaptive backstepping method
entails a heavier computational burden than MPC strategy
combined with the IMC structure. As expected, the MPC
approach is robust to modeling errors. Different boundary
conditions have been considered to highlight the easiest
way to adapt the control strategy. The MPC approach
remains a very robust and flexible control approach despite
its non-explicit control.



(a) Closed loop state with MPC. (b) Closed loop state with backstepping.
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Fig. 3. Simulation 1: control of process (S1) with Neumann-Neumann boundary conditions and a known reaction
parameter. MPC approach (a), backstepping control (b) and the control law U(t) = vx(1, t) (c).

(a) Closed loop state with MPC-IMC.
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(b) MPC-IMC control input U(t).
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(d) Closed loop state with Adaptive back-
stepping controller.
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(e) Adaptive backstepping control input
U(t).
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Fig. 4. Simulation 2: control of system (S1) with Dirichlet-Dirichlet boundary conditions and an unknown reaction
parameter. MPC approach (a)-(c), backstepping control (d)-(f).

ACKNOWLEDGEMENTS

This work was supported by the French Ministère de
l’Industrie and the Région Centre in the national frame-
work FUI under the project CORTECS (Centralising
Operating-Room Tower with Energy-Caring System).

Appendix A. PROOF OF PROPOSITION 1

Proof. Consider the candidate Lyapunov function:

V (t) =
1

2
ln (1 + ‖w‖2) + 1

2γ
α̃2. (A.1)

Using the chain rule and integration by parts, we obtain
along (36):

1

2

˙︷ ︷
‖w‖2 = −‖wx‖2 + (α̃− g)‖w‖2 + ˙̂αF (t) (A.2)

with F (t) =
∫ 1

0
w(x, t)

( ∫ x

0
y
2w(y, t)dy

)
dx. Hence we have

V̇ (t) =
uαF (t)− ‖wx‖2 − g‖w‖2

1 + ‖w‖2 + α̃
( ‖w‖2
1 + ‖w‖2 − uα

γ

)
.

(A.3)
Since α̃ is unknown, we set the update law uα(t) as defined
by (37a), so as to cancel the last factor in (A.3). Using
twice Cauchy-Schwarz inequality, we have

|F (t)| ≤ ‖w‖2/(4
√
3). (A.4)

Since system (S3) has homogeneous Dirichlet boundary
conditions, we apply the Poincaré-Wirtinger inequality
Hardy et al. [1952]:



‖w‖2 ≤ ‖wx‖2/π2. (A.5)

Besides, since (37a) also implies that |uα(t)| < γ, we finally
have:

V̇ (t) ≤ −(1 +
g

π2
− γ

4
√
3π2

)
‖wx‖2

1 + ‖w‖2 . (A.6)

Consequently, V̇ (t) is negative semi-definite and V (t) ≤
V (0) is bounded for γ ∈

(
0; 4

√
3(g + π2)

)
. In turn, ‖w‖

and α̂ are bounded in time.

To show the boundedness of w in space and time, we
first bound ‖wx‖. Integrating by parts and using boundary
conditions, we have

1

2

˙︷ ︷
‖wx‖ = −uαwx(1)

2

∫ 1

0

yw(y)dy−‖wx‖2−‖wxx‖2−
uα

4
‖w‖2.
(A.7)

Using the variation of Wirtinger’s inequality, we find

−‖wxx‖2 ≤ −π2

4 (‖wx‖2 + w2
x(1)). Using Cauchy-Schwarz

and Young inequalities, we have |
∫ x

0
yw(y)dy| ≤ ‖w‖√

3
and

|‖w‖wx(1)| ≤ ε
2‖w‖2 + 1

2εw
2
x(1). Using |uα| < γ, choosing

ε = γ√
3π2

, and using the Poincaré-Wirtinger inequality, we

finally have:

1

2

˙︷ ︷
‖wx‖ ≤ L(t)‖wx‖2, L(t) = α̃(t)−g−π2

4
+

γ2

12π4
. (A.8)

Integrating (A.8) with respect to time, we have

‖wx(t)‖2 ≤ ‖wx(0)‖2 + 2 sup
[0,t]

|L|
∫ t

0

‖wx(τ)‖2dτ. (A.9)

V (t) ≤ V (0) both implies that

α̃2(t) ≤ 2γV (0) and (A.10a)

1 + ‖w(t)‖2 ≤ (1 + ‖w0‖2)e
α̃
2(0)
γ . (A.10b)

Set σ = 1+ g
π2 − γ

4
√
3π2

. Integrating (A.6) on [0, t], we have
∫ t

0

‖wx‖2
1 + ‖w‖2 (τ)dτ ≤ [V (τ)]t0

σ
≤ V (0)

σ
. (A.11)

Using (A.10a) to bound sup[0,t] |L|, and (A.10b), (A.11) in
the inequality
∫ t

0

‖wx(τ)‖2dτ ≤ sup
[0,t]

(1 + ‖w(τ)‖2)
∫ t

0

‖wx‖2
1 + ‖w‖2 (τ)dτ,

(A.12)
we get the boundedness of ‖wx(τ)‖2:

‖wx(τ)‖2 ≤ ‖wx(0)‖2 +
√
8γ

σ
(1 + ‖w0‖2)e

α̃
2(0)
γ V

3
2 (0).

(A.13)
Using (A.5) and homogeneous Dirichlet condition in Ag-
mon’s inequality max |w(x, t)|2 ≤ w2(0) + 2‖w‖‖wx‖, we
finally have the boundedness of w in both time and space:

max |w(x, t)|2 ≤ 2

π
‖wx‖2. (A.14)

Using both (A.2) and (A.4), it is straightforward that:

|1
2

˙︷ ︷
‖w‖2| ≤

(
|α̃− g|+ π2 +

γ

4
√
3

)
‖w‖2. (A.15)

Since ‖w‖ is bounded, it follows that it is also uniformly
continuous. Barbalat’s lemma thus implies that w(x, t)
asymptotically converges to zero. To infer the boundedness
of ‖v‖, we use the inverse transformation of (10) to bound
‖ux‖ and ‖u‖ using bounds found on ‖wx‖ and ‖w‖. The

stabilization of v(x, t) to zero is finally inherited from the
stabilization of w(x, t) to zero.
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