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High Gain Observer for Backstepping Control of a MRI-guided
Therapeutic Microrobot in Blood Vessels

Laurent Arcese, Ali Cherry, Matthieu Fruchard, Antoine Ferreira

Abstract— This paper reports modeling, control and obser-
vation of a microsized polymer aggregate of magnetic particles
inside an artery, using a MRI device for supplying propulsion
in order to achieve targeted chemotherapy. Non-newtonian
behaviour of blood is took into account, as well as wall
effects and interactions, resulting in a highly nonlinear model.
A backstepping approach is synthesized to ensure Lyapunov
stability along a pre-planned trajectory inherited from th e
model, with robustness concerns.

This paper reports modeling and control of a microsized
polymer aggregate of magnetic particles inside an artery, using
a MRI device for supplying propulsion in order to achieve
targeted chemotherapy. Non-newtonian behaviour of blood is
took into account, as well as wall effects and interactions,
resulting in a highly nonlinear model. A backstepping approach
is synthesized to ensure Lyapunov stability along a pre-planned
trajectory inherited from the model, with robustness concerns.

I. INTRODUCTION

Minimally invasive cancer therapy is currently an active
research area since related techniques can both reach remote
places without operating and reduce drug or radiation dose.
Thereby, they result in lessened medical side effects and
a better therapeutic efficiency and safety. Among these
approaches, cathetered embolization, focused ultrasound
or radiotherapy [12] are commonly used, though restricted
to accessible places or limited by the non ability to target
precicely tumor cells. These drawbacks can be avoided by
targeted chemotherapy, which relies on a selective delivery
using either drugs linked to antibodies specific for tumor-
associated antigenes [16], or drugs carried by autonomous
untethered microrobots controlled so as to reach the tumor.
However, it proves difficult to embed actuators sufficiently
powerful to propel such robots in the cardiovascular system,
especially when swimming against the blood flow. Most
of swimming approaches consequently rely upon magnetic
fields to wirelessly transmit power to the microrobot [5],
[8], [1].

A recent magnetic actuation, particularly well-suited
for medical purposes, has been provided by Martel [14].
The authors improve the classical bead pulling through
the use of the gradients coils of clinical MRI devices to
provide propelling power. On top of that, the relevance
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of using clinical MRI devices is twofold: they are widely
spread in hospitals, and their imaging ability yields fine
observation of the robot’s position in the cardiovascular
system. The control and imaging multiplexing has already
been experimented in [17].

As the smallest capillaries are under a dozen micrometers
large, the size of the robot should not exceed100 nanometers
[4] to avoid embolization hazards and to drive the drugs as
close as possible to the tumor. However, forces induced by
clinical MRI coils are not strong enough to steer nanorobots
in larger vessels. Besides, hydrodynamics wall effects
show that a partial vessel occlusion by the robot results
in an optimal ratio between the robot’s and the vessel’s
radii [14], [20]. A natural way of overcoming the MRI
limitations is thus to make the radius of the robot decrease
as it enters smaller vessels, e.g. with a microrobot made of
a degradable polymer binded aggregate of magnetic particles.

We first define a precise forces balance (Section II),
which includes wall effects (parabolic profile of blood flow,
pulsatile arterial walls and effect of the ratio of robot’s
on vessel’s radii), wall interactions (Van der Waals and
electrostatic forces) and non-Newtonian behaviour of blood.
Although this forces balance results in a highly nonlinear
model (even if considering the sole hydrodynamics forces),
the great majority of related literature, to our knowledge,syn-
thesizes control laws using linear tools. Besides, there isno
consideration about observation issues. Hence, instabilities
or sensitivity to noise or to unmodeled dynamics, reported
for instance in [17] with a PID controller, could have been
expected. We show that a backstepping control approach
(Section III), designed for this specific non linear model,
improves the quality and robustness of the tracking along a
reference trajectory. As the MRI imager only measures the
robot’s position, we develop a high gain observer (Section
IV) to rebuild the microrobot’s velocity, which is requiredto
implement the control law. In Section V, simulation experi-
ments illustrate the benefits of using this controller-observer
pair in an arteriole with minor bifurcations. In particular, the
high gain observer, designed so as to ensure robustness to
noise measurement, greatly smoothen the output and in turn
improves the overall tracking efficiency. Finally, conclusion
and prospects are discussed in the last section.

II. M ODELING: FORCESBALANCE

The purpose of this section is to present a 2D state space
model of a ferromagnetic microrobot of radiusr immersed



in blood vessel. The model encompasses the different forces
that affect the robot’s motion as well as its interaction with
the vessel wall. The translational and rotational motions of
the robot are expressed by:

{

md~v
dt = ~Fm + ~Fd + ~Wa + ~Fc + ~Fvdw + ~Felec

J d~w
dt = ~Tm + ~Td + ~Mc

(1)

where~v and ~w are, respectively, the translational and rota-
tional velocity of the robot,m andJ its mass and moment
of inertia. ~Fm, ~Fd, ~Wa, ~Fc, ~Fvdw and ~Felec respectively
denote the magnetic force produced by the MRI gradient
coils, blood hydrodynamic drag force, apparent weight, the
robot-to-wall contact force, the Van der Waals force and the
electrostatic force.~Tm, ~Td and ~Mc denote respectively the
magnetic torque, hydrodynamic drag torque and the robot-
to-wall contact moment.

In the rest of this paper, we assume that the orientation
of the robot does not change due to the magnetic torque
which tends to align the magnetization of the robot along
the external field.~Td and ~Mc are much smaller order than
~Tm.

To determine whether statistical mechanics or continuum
mechanics formulations of fluid dynamics should be used, we
refer to the dimensionless Knudsen numberKn = kbT

Pπr325/2
,

where T , kb and P respectively denote temperature, the
Boltzmann constant and pressure. In our case, the low value
Kn ≈ 10−13 (≪ 10−3) ensures that the robot is large
enough to neglect the effect of Brownian motion: the robot’s
motion is subjected to generic Navier-Stokes equations.

A. Magnetic force

The gradient coils of the MRI system provide magnetic
gradients which produce a magnetic forceFm on the robot:

~Fm = τmµ0V ( ~M.∇) ~H (2)

whereV is the robot’s total volume,τm = Vm

V with Vm

the ferromagnetic volume,~M is the magnetization of the
material, µ0 is the permeability of free space,~H is the
external magnetic field and∇ is the gradient operator.

B. Hydrodynamic drag force

The hydrodynamic drag force~Fd exerting on a spherical
body in an infinite extent of fluid is expressed as:

~Fd = −1

2
ρf (~v − ~vf )

2
∞ACd∞

(3)

where~v − ~vf denotes the relative velocity of the robot with
respect to the fluid,A is the frontal area of the core and
ρf is the density of the fluid.Cd∞

is the drag coefficient, a
dimensionless quantity used to quantify the drag or resistance
of an object in a fluid.Cd∞

is a function of the Reynolds
numberRe∞ =

2rρf |~v−~vf |
∞

η ; its expression for a spherical
body in laminar flow is given by [21]:

Cd∞
=

24

Re∞
+

6

1 +
√
Re∞

+ 0.4

1) Non-Newtonian fluid:In case of blood, which exhibits
a non-newtonian behavior, the fluid’s viscosityη is a function
of vessel diameterd (in micron) and hematocrit ratehd

according to the following empirical relations [15]:

η =
ηplasmad

2

(d− 1.1)2

[

1 +
(η0.45 − 1)d2

(d− 1.1)2
(1− hd)

c − 1

(1 − 0.45)c − 1

]

with parametersηplasma andη0.45 denoting respectively the
plasma’s viscosity and the relative apparent blood viscosity
for a fixed discharge hematocrit of0.45, given by:

η0.45 = 6 e−0.085d + 3.2− 2.44 e−0.06d0.645

The shape of the viscosity dependance on hematocrit is:

c =
1011

d12
− (0.8 + e−0.075d)

(

d12

d12 + 1011

)

2) Wall effects:For endovascular applications, influence
of the vessel walls on the velocity of the robot has to be
taken into account. In general, this wall effect is expressed
as a ratio between the terminal relative velocity of the robot
(~v − ~vf )t and its velocity(~v − ~vf )∞ in an infinite extent of
fluid [11]:

|~v − ~vf |t
|~v − ~vf |∞

=
1− λα0

1 +
(

λ
λ0

)α0
(4)

with ratio λ = 2r/D andD denoting the vessel diameter
(in meter). Parametersα0 andλ0 are functions of Reynolds
number, but are commonly set to1.5 and0.29, respectively.

Thus, equation (3) is corrected as follows:

~Fd = −1

2
ρf









1 +
(

λ
λ0

)α0

1− λα0



 (~v − ~vf )t





2

ACdt (5)

Wall effects on the fluid in the vessel traditionally result in
a parabolic profile of blood flow (see Figure 1). Besides, to
fully take into account pulsatile flow caused by heart pump-
ing in arteries, one has to consider a periodic deformation of
the vessel’s diameterD(t) synchronized withvf (t).

C. Apparent weight

In addition to the magnetic and hydrodynamic forces,
apparent weight (combined action of weight and buoyancy)
is acting on the spherical robot:

~Wa = V (ρ− ρf )~g (6)

whereρ = τmρm + (1 − τm)ρpoly with ρm and ρpoly the
magnetic material’s and polymer’s densities.

D. Contact force

The normal and tangential interaction between the robot
and the wall are assumed to be expressed by a Voigt model
with the spring constantK and the decay coefficient of
dashpotb, as shown in Figure 2, where the indexes~n and
~t indicate respectively the normal and tangential normalized
vectors.
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Fig. 1. Scheme of a blood vessel with minor bifurcations

Fig. 2. Model of contact forces: robot-to-wall

The normal component of the contact force~Fcn acting
on the robot is given by the sum of a non-linear elastic
component and a linear viscous damping: [18]:

~Fcn = (Knδ
3/2 + bnδ̇)~n (7)

whereδ is the elastic deformation of the wall at the contact
point and~n is the normal unit vector pointing from the robot
to the contact surface. The stiffnessKn can be calculated by
Hertzian contact theory [19] as follows:

Kn =
4
√
r

3
1−σ2

p

Ep
+

1−σ2
w

Ew

whereEp andEw are the Young’s modulus of robot and wall,
andσp, σw are respectively the Poisson’s ratios of robot and
wall. The damping coefficientbn is deduced fromKn using
bn = 2

√
mKn.

The tangential component of the contact force takes part
when the robot is rotating or in case of oblique collision with
the wall:

~Fct = (Ktζ + btζ̇)~t (8)

whereζ is the displacement in the tangential direction and~t
is the tangential unit vector. The stiffnessKt and damping

coefficientbt are given by:

Kt =
8
√
rGp

2− σp
δ1/2 , bt = 2

√

mKt

where Gp is the shear modulus related to the Young’s
modulusEp and Poisson ratioσp, i.e. Gp =

Ep

2(1+σp)
.

E. Van der Waals and electrostatic forces

When the robot and the wall are not in contact, they
interact each other through Van der Waals and electrostatic
forces. These two interaction forces have different dominant
regimes. In fact, when the robot is close to the wall, Van
der Waals force is dominant. As the robot move away from
the wall, the Van der Waals force rapidly decrease and the
electrostatic force becomes dominant.

The Van der Waals potential between the robot and the
wall is given by [9]:

~Vvdw = −Ah

6

(

1

h
+

1

2 + h
+ ln

h

2 + h

)

~n (9)

whereAh is the Hamaker constant andh is the distance
between robot and wall. Then, the Van der Waals interaction
force is given by differenciating (9)~Fvdw = −∇~Vvdw. The
electrostatic force between the robot and the wall considered
as an uncharged surface is given by [6]:

~Felec =
q2

4πǫǫ0(r + h)2
~n (10)

with q the robot charge,ǫ the dielectric density of the
medium in which the interaction occurs andǫ0 the vacuum
permittivity.
[7] gives the expression of the maximum allowable charge
Q = 30× (100r)−0.3 for a spherical body of radiusr.

III. M ODELING: OPTIMAL TRAJECTORY

Previous forces balance gives us sufficient informations
to plan an optimal trajectory. At least two cases A and B,
shown on the Figure 1, should be taken into account. In the
first one, the robot is in a vertical vessel and the magnetic
force ~Fm should counter both contributions of the robot’s
apparent weight~Wa and the drag force~Fd when blood is
flowing back (Curve A of Figure 3). The drag force decreases
when the robot approaches the wall due to the parabolic
profile of velocity. Thus the reference trajectory should be
as near as possible to wall. In the second case, the robot is
in a horizontal vessel and the magnetic force should counter
contributions of the robot’s apparent weight, electrostatic and
Van der Waals forces,~Felec and ~Fvdw (Curve B of Figure 3).
This case shows that near the wall,~Felec and ~Fvdw, which
point to the wall, are dominant and the magnetic force is no
more sufficient to counter it. Nevertheless there is an optimal
position where the sum of the two forces compensates
perfectly the robot’s weight. Moreover, the curve A shows
that at this point, the magnetic force exceeds the drag force.
From these observations, we define an optimal path as an
arc passing through the point C.
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Fig. 3. Forces balances in vertical (A) and horizontal (B) artery

IV. M ODELING: STATE SPACE REPRESENTATION

Let (x, z) denote the position of the robot in the vessel
with respect to a given frameF(O,~i,~k). The state model is
established from differential equation (1) defining the robot’s
dynamic behavior, projected on~i and~k axes:
{

mẍ = Fmx + Fdx + Fcnx + Fctx + Fvdwx

mz̈ = Fmz + Fdz +Wa + Fcnz + Fctz + Fvdwz

(11)

where indexesx (respectivelyz) denote projections on~i (~k).
Let x1, x2, x3, x4 denote respectively the particule’s

position and velocity along~i axis, and the position and
velocity along~k axis. Assuming that positionsx1 and x3

can be measured thanks to the MRI imaging system, lety
denote the state’s measure. Using expressions of forces given
by (2), (5), (6), (7), (8), (10) and Van der Waals interaction
derivated from potential (9), and adequate projection of local
frame along the geometry of the vessel1, system (11) can be
written in the form:

(S)































ẋ1 = x2

ẋ2 = f2(x1, x2, x3, x4) + au1

ẋ3 = x4

ẋ4 = f4(x1, x2, x3, x4) + au2

y =

(

x1

x3

)

(12)

where control inputsu1 = ∇Bx and u2 = ∇Bz are the
magnetic gradients, parametera = τmM

ρ , and fi are very
highly nonlinear functions of the full state.

V. CONTROL APPROACH

In this section, we present a control design for Lyapunov-
stabilizing trajectories for system(S). Since determination
of Lyapunov functions is generically a challenging issue,
it is preferable to use Lyapunov control functions in a
backstepping control approach [13], [10]. Since this design

1The drag force is not linearly distributed between~i and~k axis.

Fig. 4. Comsol results : Velocity profile in a blood vessel with minor
bifurcations

requires a triangular form for the control system, we propose
the following change of coordinates:
{

X =

(

x1

x3

)

; Y =

(

x2

x4

)

; U =

(

u1

u2

)

(13)

Thus, we obtain a new system in a triangular form:

(S ′)







Ẋ = Y

Ẏ = F (X,Y ) + U
y = X

(14)

Denoting Xref , Ẋref and Ẍref respectively the desired
reference trajectory, velocity and acceleration, the control law
for system(S ′) can be expressed as [3]:

U = Ẍref + (k1 + k2)Ẋref + (1 + k1k2)Xref

−(1 + k1k2)X − (k1 + k2)Y − F (X,Y )
(15)

wherek1 andk2 are the strictly positive backstepping gains.

VI. SIMULATIONS

The robot is made ofτm = 80% NdFeB particles which
has a combination of very high remanence and coercivity,
and 20% of binding polymer. Simulations are performed
by taking into account the limitations of a clinical MRI
system. In order not to exceed the capacity of existing MRI
systems, the applied control law (15) is now corrected as
ui

k(t) , with k(t) = max
{

1, ui

ui,max

}

.

A pulsatile flow is included by imposing a time-varying
velocity. As a first approximation of a physiological pulse,
we use a time-sinusoidal profile with spatial parabolic form.
In the case of artery, such an approximation leads to:

vf (t) = 0.035(1 + 1.15 sin2πt)×
[

1−
(

D/2− h

r

)2
]

Our studies assume the presence of minor bifurcations
(see Figure 1). This geometry leads to only slight change



Fig. 5. XZ trajectory : reference trajectory (red dotted) and real trajectory
(blue solid line)

in the velocity’s profile and amplitude (see Figure 4).
The developed controller must be sufficiently robust to
compensate this effect which could be considered as a
disturbance. Major bifurcations will require a further study
of velocity’s field profile.

The purpose of the control is to ensure a null error between
desired and a pre-planned trajectory. In the following, the
performances and stability of the controller with respect to
noise measurement, parameters variations and uncertainties
are illustrated by two simulations, whose parameters are
given in Table I. A first simulation is led so as to pinpoint
robustness to model errors, and the second one to study
sensitivity to output noise.

Simulation of Figures 5, 6 is performed by assuming that
the blood’s viscosity and permittivity are affected by un-
certainties of100% of their nominal values and the vessel’s
diameter by uncertainties of10%. This simulation shows that
after a transient phase, the position tracking performance
is robust enough to model’s error (subfigure of Figure 5).
Despite these uncertainties, Figure 6 shows that the control
inputs don’t reach saturation. This is due to the choice of
an optimal reference trajectory deduced from the analysis of
Section III.

In a second simulation (Figures 7 and 8), we assume a
white gaussian noise is applied on the position measurement.
This noise is about10% of the measured signal. Figure 7
illustrate that the controller is quite stable despite the noise,
and does not even reach saturations (Figure 8). Nevertheless,
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Fig. 6. Control input : magnetic field gradients on~i-axis (dotted) and on
~k-axis (solid line)

TABLE I

SIMULATIONS DATA

Plasma’s viscosity ηplasma 5× 10−3 [Pa.s]
Blood’s density ρf 1060 [kg.m−3]
Robot’s density ρm 8000 [kg.m−3]
Robot’s radius r 300 [µm]

Vessel’s diameter D 3 [mm]
Polymer’s density ρpoly 1500 [kg.m−3]

Ferromagnetic ratio τm 0.8
Magnetization M 1.95× 106 [A.m−1]

Hematocrit hd 0.45
Robot’s Young’s modulus Ep 109 [Pa]
Wall’s Young’s modulus Ew 0.75× 106 [Pa]
Robot’s Poisson’s ratio σp 0.27
Wall’s Poisson’s ratio σw 0.30

Hamaker constant Ah 4× 10−19 [J ]
Blood’s dielectric density ε 77 [C2.N−1.m−2]

Initial condition onx x0 (0, 0, 0, 0)T

Inputs saturations ui,max 45 [mT.m−1]
Controller gains k1 15

k2 30

it’s clear that the system is sensitive to noise. We can expect
that this drawback effect can be reduced using an observer.
In addition to estimate some parameters like blood’s velocity
(assumed to be known in this paper), an observer will tend
to smooth the output signals.

VII. CONCLUSION

In this paper, we have presented a highly nonlinear model
for a MRI guided microrobot in blood vessels. This model
takes into account the non-newtonian behavior of blood, as
well as wall effects and interactions. It makes it possible
to hence deduce an optimal trajectory. Besides, we have
developed a nonlinear control law based on the backstepping
approach. Parameters uncertainties and noise effects have
been illustrated by simulations. It appears that the system
is robust to uncertain physiological parameters, but proved
quite sensitive to output noise, though remains stable.

As stated in Section VI, system robustness to noise can
be improved by implementing a high gain observer based on



Fig. 7. XZ trajectory : reference trajectory (red dotted) and real trajectory
(blue solid line)
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Fig. 8. Control input : magnetic field gradients on~i-axis (dotted) and on
~k-axis (solid line)

[3] but fitted for this more complete and complex model.
We are also working on estimating the blood’s velocity
and frequency, assumed to be known at the moment, using
Kazantis-Kravaris Luenberger observers [2]. Additionnaly,
the modeling of impact of major bifurcations on the blood’s
velocity profile is underway.
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nonlinear feedback design,”SCL, vol. 18, pp. 83–92, 1992.

[11] R. Kehlenbeck and R. D. Felice, “Empirical relationships for the
terminal settling velocity of spheres un cylindrical columns,” Chemical
Eng. Technology, vol. 21, pp. 303–308, 1999.

[12] U. Kraus-Tiefenbacheret al., “Intraoperative radiotherapy for breast
cancer using intrabeam system,”Tumori, vol. 91, no. 4, pp. 339–345,
2005.
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