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Abstract:

The recent progress in spatial econometrics offers a number of estimators for models that treat spatial
dependence explicitly but techniques for handling spatial dependence appear to be essentially confined to cross-
sectional studies. Despite the fact that dynamic panel models have been the object of recent important
developments, the econometric analysis of spatial and dynamic panel models is at an early stage.

In this context, the aim of this paper is to review the different methods used in the literature, for such space-time
data sets, and to suggest two strategies in order to estimate spatial dynamic panel using GMM. The first is to
extend the moment restrictions of Arellano and Bond estimator for spatial autoregressive dynamic panel. The
second allows for spatial dependence in the error process in calculating the optimal weighting matrix at the
second step of the Arellano and Bond estimator.

These strategies are carried out to estimate the convergence of European regions during the last 25 years.
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1. Introduction

While econometric analysis of dynamic panel modglsow fairly standard (Arellano and Bond,
1991; Arellano and Bover, 1995; Blundell and Boh8l98) and spatial econometric literature is well
documented either on cross-sections (Anselin andjide, 1997; Anselin, 2001) or on static panel
(Elhorst, 2003), econometric analysis of spatil dynamic panel models is still at an early stafge
development. Modelling space-time data is quite lem and several problems must be tackled:
obviously, leaving correlation on each spatial wnier time and spatial dependence on the spatial
units at each date aside would lead to misspetidicdut the main difficulty is that we hawgepriori

no reason to believe that one problem is more itapbthan the other is.

Empirically, there are several examples where thesgnce of a dynamic process with spatial
dependence might occur. This is the case with eélgeonal economic convergence/divergence issue.
Many convergence studies stems from neoclassicaltbrmodel (Solow, 1956; Swan, 1956) and
most of them rely on a beta convergence modelonsg(countries) do not have the same structural
characteristics and thus converge towards diffestgddy states relative per capita incomes. Factor
mobility, trade relations and geographical spilievelike technology spreading) can matter to
understand how economic development of a regitikaby to be influenced by neighbouring regions.
Various recent convergence studies have found ew@&dor model misspecifications if spatial
interdependencies of regional growth are ignoreigtet al, 2008). Working on a dynamic panel
specification, Badingeet al. (2004) applied a GMM estimator to spatially fikidrvariables; Elhorst
(2005) suggests a maximum likelihood estimatiomotiels that are dynamic both in space and time
for regional analysis; Piras and Arbia (2007) edtepanel-data models with spatial error
autocorrelation for a convergence analysis of Egiores. More precisely the main argument of
applying the extended GMM in a spatial contexthigttit corrects for the endogeneity of the spatial
lagged dependent variable and other potentiallpgadous explanatory variables.

In this context, the aim of this paper is to revig different methods used in the literature,siach
space-time data sets, and to suggest an estimatiategy that consider together the dynamic
specification and the spatial dimension of the pamiéh an illustration on regional conditional
convergence framework. Estimating a per capita G&wdditional convergence model that
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incorporates an explicit consideration of spatiabehdence effects, we rely on dynamic panel
generalised method of moment estimations that ebfur endogeneity, variable omission and spatial

dependence problems.

The reminder of the paper is organised as folldwdhe next section, we address the econometric
issues on spatial dynamic panel model and deveiggmirical estimation strategy. Section 3 reports
the main results of our empirical estimation sggtéor the convergence approach on panel data.

Section 4 concludes and suggests areas for fuebearch.

2. Econometric issues on spatial dynamic panel data model

2.1. Dynamic panel model

A general dynamic panel model can be describedls\s:

(1) yn:ayiyt_l+(/7i+|/i’t) lal<1 i=1...,N; t=2...,T

where Y, ; is an observation on some series for individualperiod t, Y, , is the observation on the

it-1
same series for the same individual in the previpasod and/}, +V, is the usual “error

components” decomposition of the error term whidloves for unobserved heterogeneity,(
hereafter). These specific effects are supposebetatochastic, which here implies that they are

necessarily correlated with the lagged dependemihia. With the additional assumption tHat, is

serially uncorrelated, the Ordinary Least Squa@ksS) estimator of@ in the levels equations is
inconsistent. Standard results for omitted variddides indicate that, at least in large samplesQh8
levels estimator is biased upwards. The Withimessttor for panel data that allows to control fordim
invariant characteristics lead to substantial gainebustness (compared with cross-section estirnat
but it is not without costs if one do not pay atiemto the dynamic of adjustment. Standard regatts
omitted variable bias indicate that, at least ilgdasamples, the Within Group estimator is biased
downward (Nickell, 1981). Thus, we might hope thatandidate consistent estimator will lie between
the OLS and Within estimates. The most widely-uséglnative strategy is to difference the model to

eliminate the fixed effects and then applies theNGMsing a set of appropriate instruments to address



the correlation between the differenced lagged gget variable and the induced MA(1) error term
(see Arellano and Bond, 1991). The GMM estimat@ i&/0-step estimator. In the first step, an ihitia
positive semi definite weight matrix is used toaibtconsistent estimates of the parameters. Given
this consistent estimates, a weight matrix candresttucted that is consistent for the efficientgiei
matrix, which is used for the asymptotically effiot two-step estimates. It is common practice & us
the inverse of the moment matrix of the instrumeagsan initial weight matrix. More precisely the
first step in the estimation procedure consistsliminating the individual effects via a first défence
transformation (GMM-DIFF) or a forward orthogonaMiition (Arellano and Bover, 1995).

The dynamic panel-data specification has beconguénet in growth convergence empirical studies.
Since the inclusion of the time-lagged dependenalke in the equation might lead to inconsistent
estimates, instrumental variable estimators arelegeeA commonly employed estimation procedure
to estimate the parameters in a dynamic panel datdel with unobserved individual specific
heterogeneity is to transform the model into fasterences. Sequential moment conditions are then
used where lagged levels of the variables areumsnts for the endogenous differences and the

parameters estimated by GMM (see Arellano and B&881; adopted by Case#t al, 1996 in the
growth context)The first step in the estimation procedure congmstdiminating the individual effects
via a first difference transformation (GMM-DIFF) arforward orthogonal deviatidias suggested by

Arellano and Bover, 1995). Assuming that the etesms &, are serially uncorrelated, the lagged

difference of the endogenous variable is instruexntith the lagged difference of the endogenous
variable Ay, _, ) with all lagged levels of the variablg, _;, starting with lag twoy,_, and going back

to earlier lagged levels. Essentially these usestnument matrix of the form:

y,0 0 -0 -0
7 = O vy Y0 - 0

00 0 vy Vi

2 First differencing and forward orthogonal deviatitoransformation involve the same procedure (simila
instrument matrix) to estimate dynamic panel datcHication.



where rows correspond to the first-differenced &quoa for periodt=3,4,....T for individuali and
exploits the moments conditiori%(yiSAfit ) =0 for fors=1,...,T-2andt=2,...,T.

The overall validity of instruments can be check®da Sargan-Hansen test of over-identifying
restrictions.

This GMM estimator extends in a natural way to ezgoessive-distributed lag models of the form:
2 Y. =ay..* B, +(/7i +Vi’t) o<1 i=1...N; t=2..T
where X, can be a vector of current and lagged values ditiadal explanatory variables. Different

moment conditions will be available depending oratib assumed about the correlation betwken
and the two components of the error term (Bond2200

s If X, is strictly exogenousE(xiSAsit ) =0 fors=1,...,Tandt=2,...,T.
« If X, is weakly endogenouf(xiSAsit ) =0 fors=1,...,T-landt=2,...,T.

« If X, is strictly endogenous],:_(xiSAgit ) =0 fors=1,...,T-2andt=2,...,T.

Unfortunately in the case of persistent data amdfemall number of time series observations, ldgge
levels are only weak instruments for subsequest fiifferences and the GMM-DIFF can have very
poor finite sample properties in terms of bias, arecision. Blundell and Bond (1998) proposed the
system GMM estimator (GMM-SYS) that combines momeanditions for the model in first

differences with moment conditions for the modeléawels. It has been shown to correspond to the
model in levels, with lagged differences of the @gehous variables as instruments. Blundell and
Bond (1998) argued that the GMM-SYS estimator penfo better than the GMM-DIF estimator

because the instruments in the model remain goedigiors for the endogenous variables in this

model even when the series are very persistent.

The choice between the two estimators (GMM-DIFF, MH8YS) is conducted according to a
common test of over identifying restrictions: thadidity of the additional instruments used by GMM-

SYS for the level equation can easily be testedgudifference Hansen tests.



2.2. Spatial dynamic panel model

Spatial econometric methods deal with the incompamaof spatial interaction and spatial structure
into regression analysis. Spatial error model guatial lag model are two different approaches to
address the issue of spatial dependencies (An&€li1,). The first one is a nuisance form of spatial
dependence and incorporates a spatial autoregeepsdcess in the error term (as in time series
analysis). Ignoring this spatial autocorrelationyntead to inefficient estimates. The second method
incorporates spatial dependence in the form ofaiaplag variable, often considered as a spatial
autoregression model. This specification is mongregriate for explicitly specifying as completely a

possible the impact of nearby observations on #peddent variable so that explicit inferences @n b

made for spatially lagged variables (Batlal. 2006; Blonigeret al, 2007).

The design of these two specifications relies ospatial weight matrix W describing the spatial
arrangement of the cross-section units. As it sndard in spatial econometrics, for ease of
interpretation, this weighting matrix W is row-stiamdized so that each row in W sums to one.

Throughout the rest of the paper, we assume thanfdins constant over time.

First, we consider a "time-space simultaneous” i@deselinet al, 2007):
() YV, = QY+ O, oWy, +(/7i +Vivt) o<1 i=1..N; t=2..T

where Wy,  is a first order spatial lag. The coefficiept stands for the intensity of spatial effects.

Thus wherp =0, the model remains as section 2.1.

According to Anselin (2001) and Abre al. (2005), including a spatially lagged dependeniaide
causes simultaneity and endogeneity problems,hwihicurn means that this variable must be treated
as endogenous and thus proper estimation methosisaccount for this endogeneity. There are only a
limited number of available estimators for DynarSipatial lag Model on Panel Data. Assuming all
explanatory variables are exogenous beside théabpad terni, dynamic spatial lag models are

usually estimated using the GMM estimator (seeef@mple, Madriaga and Poncet, 2007). Spatial lag

% As underlined by Kukenova and Monteiro (2008) ¢hi no currently available estimator to consides t
simultaneity problem in line with the potential @ggneity of other explanatory variables.



term and autoregressive term are instrumented bir thgged values, by lagged values of the

dependent variables as well as by spatially wedybtglanatory variables.

If the spatial lag is strictly endogenous, the momestrictions of section 2.1 are not sufficient t

provide an unbiased and consistent estimation. Mewe natural way to estimate (3) is to assume

further moment restrictions of 2.1 by consideriMy; , as endogenous variable:
E(WyiSAé‘it ) =0 fort=2,...,T and s=1,...,T-2.

Moreover, we can use spatially weighted explanat@wyablesWx, to instrument the spatial lag

term. In other terms, we identify the exogenoust pérthe spatial lag variability by a spatially

weighted model.

The validity of this strategy requires the follogimoment restrictions:
If WX, is strictly exogenousE(\N)gtAgit ) =0 fort=2,...,T.

We suggest checking the robustness of this exte@@déll estimator by proceeding successively to
cross sections, Least Squares Dummy Variables (DSE¥IM dynamic panel and GMM spatial

dynamic panel estimation.

Spatial error model in dynamic panel context igentomplicated to estimate than spatial lag
model. Nevertheless, Elhorst (2005) propose maxintikglinood estimation for dynamic panel
including spatial error autocorrelation. In a stgganel model, a consistent estimator can be d@stain
from a set of moment conditions as demonstratedajpoor et al. (2007). Mutl (2006) extends this

approach to a dynamic panel case.

We consider the following specification:

@)  Yy=ay, B, te, lol<l i=1..N;  t=2..T

& = PNE +(’7i +Vi,t) o<1



where the error term consists of the spatially kopultaneous error and the previous error

componen(/]i +V,, ) :

We assume thatis, independently distributed, with a constant vargsf.

We estimate a GMM estimator using the same momsrtha Arellano Bond estimator but with

optimal weight matrix that allows for spatial errantocorrelation. According to Mutl (2006), this
weighting matrix is constructed using first stefimation of UVZ, 012 and o based on the Kapoet

al (2007) spatial GM estimatbr

3. Empirical application: B-convergence of European regions
3.1. Modelling B-convergence on spatial dynamic panel specification

Many convergence studies stems from traditionatlassical growth model (Solow, 1956; Swan,
1956). Following the “model based” specificationMénkiw et al, (1992) Barro and Sala-i-Martin
(1992), we rely on @-convergence model where the GDP per capita (htere@DP p.c.) growth
depends not only on the initial GDP level, but alspother conditioning variables. Regions do not
have the same structural characteristics and tbnsecge towards different steady—state income
levels. The further a region finds itself from d&n steady state, the faster its growth rate véll In
this case, convergencedsnditional economies converge towards the same growthAatardingly,
the following general model is in line with the engal growth literature:

Yi
%) |n(_'t J =L, +AIny , + Z:kak,i,t +anzg,i,t T &,
k g

i,0

* Mutl (2006) demonstrates the consistency of tkiabGM in a dynamic panel data model.



where y; , (i =1...,nt =1...,T) is the GDP p.c. of region i at time {5 is an intercept terng, is the

convergence coefficient, X is a setloéxplanatory variables related to the growth maxfebolow
(Solow, 1956) and Z is a set of variables that afgct the convergence process but are not directly
related to the model of Solow (1956) (Durlatfal, 2006).

We assume that the variables setsZirand X; are independent (see Mankist al, 1992 for a
discussion on this point). It is now possible teeexi Mankiwet al. (1992) model towards a dynamic
panel-data specification of the convergence madekent output is regressed on lagged output and

control variables (Durlauf et al., 2006):

(6) ln[ Y ]=(1+/31)In( Yo ]%In[ L stln( PoR. J+ai+ut+a,t
pon; PoQ pon; PoR 4

Yi,t Ii,t

pop,  pop,

where are respectively the gross domestic product badnivestment per capita and

0
In(&J is the demographic growth rate. We introduce iiailial and time specific intercepts
poR 11

(respectivelya; andy, ) in order to control for unobserved heterogendityereby, 5 measures the
GDP convergence conditionally of investment pelitaaggnd population growth rate.

However, for both econometrics and economic thebig,too restrictive to assume no cross-sectional
dependence in testing convergence hypothesis. 8dtgction implies that the economies are closed,
which is obviously inappropriate to understand @agi convergence procesRegions are units

naturally open to economic flows like trade, tedbgy diffusion and factor mobility, which may

affect regional convergence process.

Following the model specification of (3) to addresth spatial dependence, we estimate successively:

(7) |n(LJ=(1+,81)|n(LJ+pVVIn(LJ+,BZIn[ i J+,83In[ POR. J+ai+yt +g,

poR; PoOR4 poR, poR; PoR;,4

and



®) ln( Y j=(1+ﬂl)ln{ Yo j%ln( L ]w’sln{ PoR. ]+ai+ut+si,t
pon, PON 1 pon, PON
& = PWE;, +(’7i +Vi,t)

3.2. Data description

We use a panel dataset of 191 regions in 14 mestais of EU-15 (see appendix A, which describes
the set of regions, included and excluded in timepda) over a period to 25 years (1980-2005).
Data variables come from the Cambridge Econometiatabase The gross domestic product (GDP)

and investment (provided by Cambridge Econometnick995 constant euro) have been transformed

Y, I
into logarithm of per capita term L1 In o ) in order to consider the scale effect. The
poRn PoR

0]
demographic growth rate is measured from the pmpllation data dynamicstr({ﬂ] ).

0
For the estimation, we consider five aggregatecyimriods (1980-84, 1985-89, 1990-94, 1995-99
and 2000-2005) to avoid short run variations in GIp®wth rates due to business-cycle effects. The
accurate number of years required to avoid shartvariations is still under discussion in the
literature (see Temple, 1999, for an analysis). gleni1999) recommends 5 or 10 years long periods,
but we preferred to follow the approach from Badingt al. (2004) and chose quinquennial time
periods to collect information on at least 5 pesiod hereby, we have a panel on 955 observations of

191 regions during 5 periods. Of course, the dynapainel specification restricts this panel to 4

Y
periods because of the autoregressive ténE»—(LJ).
PoR 4

Y
The spatial lag ternWIn[ L ] is constructed from a weighted average of neighhbguegions'

PoR;
income level. Thus, we have chosen a geographietihiion of neighbourhood based on the

Euclidean distance between regions in order to toactsthe spatial weight matrixV{). More

® The Cambridge Econometrics database is availatbiepa//www.camecon.com
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precisely we have chosenkanearest neighbours weight specification,(k) represents the element
of W matrix in rowi and columnj :

Wi (K)=0if i =]

wi (K) = Lif d; =d (k)

w'i (K) = Oif d; =d (k)

d; is the distance between the regianand j centroids, and; (k) is a cut-off distance based on
the distance ok -nearest neighbour for regidn The interactions are assumed to be negligibleeabo
this distance. Although we have construc#dwith k=10, the results are similar witk=5, 15 and

20.

W*ij (k)

ZW*ij (k)

]

So, the matrix is row-standardised, (k) = to provide easier interpretation (each weight

may be interpreted as the region's share in tla $patial effect of the sample) and make parameter
estimates more comparablee¢Kelejian and Robinson, 199%r a good discussion on the spatial

weighting matrix).

k -nearest neighbours' weight matrix has the mostdfito representing spatial interaction of our
sample: this specification lead to each region thessame number of neighbouring regiorks) (
including islands on our sample and reduce thebgdaeity problem of regional superficies (Anselin,

2002).
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Table 1 Descriptive statistics

Variable 1980-84  1985-89  1990-94  1995-99  2000-04

In( “‘:‘r_'r )

ﬂmnplﬁ mean 9.44 9.54 0.63 0.71 9.81

Standard deviation (.40 0.39 0.39 0.38 0.37

In( -131' j

H:uup]-:r' mean T.82 7.95 T7.99 .08 8.21

Standard deviation  0.47 0.44 0.41 0.37 .34

'!I”[ 'I:J'Il: 'I_I 1 )

Sample mean 2,84 3.37 328 3.29

Standard deviation 1.39 1.19 1.24 1.30
. Yie o

Win( sops7)

Sample mean 9.46 9.55 0.64 9.72 9.83

Standard deviation (.34 0.34 0.34 0.34 .32

Table 1 depicts the dynamics of GDP p.c., investnpEr capita, demographic growth rate and
spatially lagged GDP for European regions. Onesmmthe regular evolution of each variable. The
sample mean of regional GDP pc increases from ®©49.81, what represents a growth of 3.92%
during the whole period. In the same time, the elesing of GDP p.c. standard deviation points out
the reduction of GDP p.c. disparities across tifif@s evolution is confirmed by the analysis of the

distribution of that variable (Figure 1).

Figure 2 graphs the GDP p.c. geographic patteativel to the EU-14 average GDP level for the 5
periods. The regions are split into 6 classes, fbetow 50 % of the European average to more than
150 % of this average. For the first period, regiaith income below 50% of the EU average can be
found mainly in the southern periphery and moghefm are in Greece or Portugal. A few number (7)
of these regions had GDP p.c. below 50% of the #ttage over the whole period. More precisely
these are in Spain (1), Greece (3) and PortugaE{@ept these particular regions, the per capid® G
spatial pattern between 1980-1984 and 2000-206%mie dynamic in the periphery, indicating a small
catching process. Most regions in Spain, Greeedarid or Portugal experienced growth rates above
the average EU-14 growth rate but one can notefthategions in Spain, Greece and Portugal the
average in 2000-2005 is still below the EU-14 19884 average, while the most spectacular result is

for Ireland, even if only two regions are concerned
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1980-1984 1985-1989 1990-1994

1995-1989 2000-2005

Relative log of GDP

per capita (% of the EU-14
average)

Over 150 %

125 % to less than 150 %
100 % to less than 125 %
75 % to less than 100 %
50 % to less than 75 %

Below 50 %
o o
Figure 2 Geographic pattern of the GDP per capita relative to the EU-14 average GDP level for
the 5 periods (adapted from Bouayad-Agha et al, 2009, Cambridge Econometrics
database)

The next section will enable us to assess the gitreof this process and to test the various factors

which affect it.

3.3. Econometric analysis

Table 2 and 3 report respectively estimates of itimmél convergence model for the period 1980-

2005. This time lag has been split into 5 perid®@80-84, 1985-89, 1990-94, 1995-99 and 2000-05).

It has been shown that ignorance of the spatiaklaion leads to potentially misleading estimates
and tests, so we will first analyse the spatiapprties of the residuals, and then present thenastn

results and validity tests.
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3.3.1. Validity tests

The presence of spatial correlation has been testied the Moran's statistics on the GMM residuals
(Zmoran Table 2 and 3). This test is the most commordgduto detect spatial correlation and its

application has been extended to residuals regressiAnselin and Kelejian (1997).

Strong significant spatial correlation can be degoon GMM residuals of model (1) that ignore
spatial dependence (Table 2). This result confities presence of spatial effects in the European
regional convergence. As expected, the introducttbna spatial lag term (model (2)) reduces
significantly the spatial correlation of residufds the GMM estimator. Moran's test fail to rejéioe

null hypothesis of no spatial correlation for 198884, 2000-05 and for 1985-89, 1995-99
respectively with a 10% and 5% significance levelle 3). Similar results are obtained with a gpati
error specification (Table 3). These results comfihe presence of spatial dependencies which leads
to inconsistent results and inefficient validitystie in model (1). Hence, we are not looking on the
remaining tests in Table 2 and we therefore progétdthe spatial lag model, concentrating on Table

3 tests results.

The consistency of the GMM estimator depends ontlvgrdagged values of the autoregressive and
spatial autoregressive terms are valid instrumimtthe regression. In the estimation process, e a
using the orthogonality conditions between therereom in first difference and lagged values of the
dependent variables. In order to test these camditiwe report tests for first and second-orddalser
correlation (Arellano and Bond, 1991) and we coasithree specification tests (AR(1), AR(2) and

Hansen tests).

AR(1) and AR(2) tests provides further supporti® tnodel and its estimation since this statistds f

to reject this hypothesis of no second order catia while reject no first-order serial correlatio
(Table 3). The overall validity of the instrumetn be tested by the Hansen test of over-identjfyin
restrictions. This test confirms the overall valjdof the instrumental variables (Table 3) at ti@861
level of significance in the spatial lag model. BMeteless, the result of Hansen test on spatiafl err
specification points out the weakness of the ims&mts in this context (0.023). Hence, the results

must be interpreted carefully.
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The Hansen test can be also informative on thalitsalof additional instruments by comparing the
difference of Hansen statistic between two setmsifuments. The Hansen-diff reported in Table 3
check the validity of additional instruments usgdsigstem-GMM. We report first-differenced GMM

results because Hansen-diff (21.01) rejects thaitsalof additional instruments used by system-

GMM for the level equation.

We assume that the explanatory variables are ewogemising the Hansen-diff test between
exogenous and predetermined set of instrumentsu@gested by Bond, 2001). Overall validity tests
do not indicate problems with instrument validitpda orthogonality conditions used by first-
differenced GMM estimators. We do not use systemMGihécause additional instruments of the level

equation are not valid.
3.3.2. Results

Within the framework of a dynamic panel specifioatithat considers the spatial dimension of GDP
per capita, we find empirical evidence on condiioconvergence of European regions. This process

is strongly affected by spatial dimension.

As explained above, the GMM estimator controls Bmth endogeneity and other econometric
problems; it is expected to address the inconsigte®i POLS and LSDV estimators which provide
however upper and lower bounds for the autoregregsirameter (Bonettal., 20015. For Model (6)
and (7), LSDV values are respectively lies betwe&8 and 0.39, and around 0.89 when the POLS
estimator is used. As expected, for these two nsodbke estimated autoregressive parameters fall

between these bounds: close to 0.8 for the modlein@ 0.5 for the model (7).

The estimated autoregressive parameter (Tablee2glase to those obtained in other studies (Caselli
et al., 1996). this result points out that there is ani§igant European regional convergence,

conditionally to investment per capita (which hasesignificant positive impact on regional

® with fixed T, POLS gives an estimate of the caiéiint of the lagged income that is biased upwarthn
presence of individual specific effects (Hsiao, @P&nd LSDV gives an biased downwards estimatetfer
same coefficients (Nickell, 1981).
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development). The non significant impact of derapyiic growth suggests that the evolution of

labour force does not affect regional development.

Table 2 Estimation results of Dynamic model (6)

POLS LSDV GMM-DIFF

Yie—1

In(—=—) 0.898%*%*  0.4T7Q*** 0.829%**
‘Pop; 1’

. (0.01) (0.05) (0.19)
In( 2 0.0R0FF*  Q.218%%%  (.193%**

. (0.01) (0.02) (0.03)
) 0.006***  -0.000 -0.002

(0.00) (0.00) (0.00)
constant 0.335%**  3.201%**
(0.07) (0.55)

Convergence speed 2.15% 14.7% 4.0%
Observations 764 764 57:
r2 0.983 0.926
AR(1) -5.88
AR(1) (p.v.) (0.00)
AR(2) 0.54
AR(2) (p.v.) (0.59)
Hansen .J 20.77
Hansen .J (p.v.) (0.00)
Hansen-Ditf .J G.44
Hansen-Diff J (p.v.) (0.04)
Zmoran
Z85—80 10.517 4.579 11.831
Zgs —so(p.v.) (0.00) (0.00) (0.00)
Zgn—o04 9.691 12.504 9.087
Zan—g4(p-v.) (0.00) (0.00) (0.00)
Zag—g0 14.57 6.601 14.632
Zos—ao(p.v.) (0.00) (0.00) (0.00)
Zan—o04 6.617 4.147 7.631
Zoo—o04(p.v.) (0.00) (0.00) (0.00)

Notes: POLS: Pooled Ordinary Least Squares; LSDV: Least Squares Dummy Variable; GMM-DIFF:
Generalized Method of Moments on forward orthogonal deviation equation. *, ** and *** indicate significance at
the 1%, 5% and 10% level. Robust standard errors are displayed in parentheses. GMM-DIFF estimatifns aje

obtained by a forward orthogonal deviation transformation with instrument set composed by (In Y
1

In[ AE Jln[ Yir-2 ]) and the overall set of other explanatory variables (considered as exogenous) .
pop,Z pon,T—Z

The results from the dynamic spatial panel dataetsodre displayed in Table 3. The introduction of
spatially lagged variable leads to significantlifetient results. The autoregressive parameter 8).45
in model (7) drops sharply regarding to model (®li¢ating that we measure a faster regional
conditional convergence when we consider the impafctneighbouring income on regional

development. Spatial lagged income coefficient {®)4suggests a strong significant impact of

spillover effect between European regions on tteirelopment dynamics.
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We can explain this drop by the fact that a past,ofariability previously explained by the variabjlit

of the lagged termyy in (6) is due to spatial interdependence;Wariability in (7). The sum of

(1+ ) and p in (7) is close td1+ B,) in (6).

p reflects how spillover affect income growth rate &ll regions with the same initial income. The

development of the European regions is stronglgcdéd by their spatial interdependence, thus
suggesting that the convergence process is noteottgmporal” process but also a spatial process. |

the framework of the Solow model, we can assumedpeed of convergence to the steady state is
affected by regional spillover. The rate at whitke tregions converge towards their steady state

depends on the assumption of decreasing margimalupt. Regional spillovers may induce this

decline, so, the dynamics toward the steady stasrdt depend only of the gap betweép and its

steady state value but also on the strength ofadgillover. Thus, spatial concentration of GDE. p
must impede the convergence process. However, EggePfaffermayr (2006) explain that spatial
spillover implies that the convergence speed depamdthe region's location. Thus, they suggest
amending the computation of the convergence spredrder to allow for this issue. we can
decompose (As suggested by Egger and Pfafferm@96)2he convergence speed into its "classical”

part, a remoteness effect and the impact of irigd.

The spatial error model provides results similathi® other studies. The convergence speed (4.8%) is

in line with the values computed by Badinger e(2004).

The introduction of a spatial lag does not affdw impact of investment per capita spending on

Ii,t

regional development. ThesB,(In ) coefficient is still significant around 0.16. Itglue

t

increases to 0.236 when we allow for spatial edegrendence.

The demographic growth rate is not significantdoy specification.
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Table 3 Estimation results of the Spatial Dynamic model (7) and (8)

POLS FE25LS GMM-DIFF GMM-DIFF
Spatial autoregressive lag  Spatial autoregressive lag  Spatial autoregressive lag  Spatial autoregressive error
In(it=1 ) 0.887%* 0.308% %% 0.453%%* 0.786*+*
\POPi 1’
(0.02) (0.08) (0.09) (0.04)
1-"'5'?%%';,} 0.018 0.433++ 0.417**
(0.02) (0.09) (0.11)
In(at) 0.087%+ 0.178%#+ 0.159%+* 0.236%++
(0.01) (0.02) (0.03) (0.03)
In( p;’;f"r-_‘ -) 0.006%** -0.001 -0.001 0.002
(0.001) (0.001) (0.001) (0.001)
constant 0.288***
(0.08)
W s 0.8439
Convergence speed 2.4% 19.0% 15.7% 4.8%
Observations 764 764 573 LYE
r? 0.983 0.928
AR(1) -2.152
AR(1) (p.v.) (0.031)
AR(2) 1.005
AR(2) (p.v.) (0.315)
Hansen .J 1.352 13.69 17.77
Hansen J (p.v.) (0.245) (0.134) (0.023)
Hansen-Dift J 32.93
Hansen-Diff J (p.v.) (0.000)
Zn?.ornn
Zss—s0 10.057 4.201 1.651 -1.309
Zgs so(p.v.) (0.00) (0.00) (0.049) (0.095)
Zgn—o4 9.128 11.881 0.567 -2.068
Zap—o4(p-v.) (0.00) (0.00) (0.285) (0.019)
Zogr_ag 14.234 6.195 1.373 -1.094
Zag—00(p.v.) (0.00) (0.00) (0.085) (0.137)
Zoo—o4 6.315 3.696 0,021 -2.603
Zoo—o4(p.v.) (0.00) (0.00) (0.492) (0.004)

Notes: *, ** and *** indicate significance at the 1%, 5% and 10% level. Robust standard errors are displayed in

parentheses. SGMM-DIFF estimations are, obtained by a forward orthogonal deviation transformation with
H Yi.l Yi2 YiT—2 . Yil Yi2 YiT—2
instrument set composed by (In ,In 2|, In| — iWin L, Win| —2 |, ..., Win| —=-1)

pon . poR . pon r-; pon poR , poR r-»

and the overall set of other explanatory variables (considered as exogenous) .

4. Conclusion

The aim of this paper is to review strategies trmege Spatial Dynamic panel data model using

GMM.

Then, we estimate a conditional convergence mddeloopean regions which allows both space and
dynamic dimension to illustrate these strategiesngya panel dataset of 191 regions over 1980-2005,
we estimate a Spatial Dynamic Panel using spadiglstrategy estimation in addition to standard

dynamic model on panel data techniques (ArellartbBond, 1991; Blundell and Bond, 1998).

We find empirical evidence on conditional conveigeiof European regions. European convergence
is conditional to the investment rate. In analysiing spatial dimension, we find that convergence is

significantly affected by the spatial disparities.
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Note that other drivers of regional development aHiact convergence process of European regions,
as European policies (Esposti and Bussoletti, 2B08ayadet al, 2009).

The Spatial Dynamic Panel data model is at eadgestIn this paper, we concentrate on studying
strategies to estimate spatial dynamic panel @atathis approach needs further development.

First, the usual tests on spatial specification {ld€it) must be extended to time dynamic dimension.
Furthermore, there are several possibilities tesirmy Dynamic and spatial literature. In the spatia
error model, using GMM system estimator as sugddsgeBlundell and Bond (1998) in time dynamic

can improve its efficiency.
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APPENDIX A

Code Name Code Name Code Name Code Name
Included regions (190)
AT11 Burgenland ES13 Cantabria IEO2  Southern arstieffa UKD5 Merseyside
East Riding and North
AT12  Niederosterreich ES21 Pais Vasco ITC1 Piemonte UKE1 Lincolnshire
AT13 Wien ES22 Comunidad Foral de Navarra ITC2 &dlAosta UKE2 North Yorkshire
AT21 Karnten ES23 La Rioja ITC3 Liguria UKE3 Souwthrkshire
AT22  Steiermark ES24 Arag6n ITC4 Lombardia UKE4 Wéarkshire
Provincia Autonoma
AT31 Oberésterreich ES30 Comunidad de Madrid ITDBolzano-Bozen UKF1 Derbyshire and Nottinghamshire
Leicestershire, Rutland and
AT32  Salzburg ES41 Castillay Ledn ITD2 Provinciaténoma Trento  UKF2 Northants
AT33  Tirol ES42 Castilla-la Mancha ITD3  Veneto UKF3Lincolnshire
Herefordshire, Worcestershire
AT34  Vorarlberg ES43 Extremadura ITD4  Friuli-Vereegiulia UKG1 and Warks
BE10 Région de Bruxelles-Capitale = ES51 Catalufia 5ITDEmilia-Romagna UKG2 Shropshire and Staffordshire
BE21  Prov. Antwerpen ES52 Comunidad Valenciana ITEToscana UKG3 West Midlands
BE22  Prov. Limburg (B) ES53 llles Balears ITE2  Uiabr UKH1 East Anglia
BE23  Prov. Oost-Vlaanderen ES61 Andalucia ITE3 Marc UKH2 Bedfordshire, Hertfordshire
BE24  Prov. Vlaams Brabant ES62 Region de Murcia 4ITELazio UKH3 Essex
BE25 Prov. West-Vlaanderen ES70 Canarias (ES) ITFAbruzzo UKI1  Inner London
BE31  Prov. Brabant Wallon FI13  It&-Suomi ITF2  Maelis UKI2  Outer London
BE32  Prov. Hainaut FI18 Etela-Suomi ITF3  Campania KJU Berkshire, Bucks and Oxfordshire
BE33 Prov. Liege FI19 L&nsi-Suomi ITF4  Puglia UKJZSurrey, East and West Sussex
BE34  Prov. Luxembourg (B) FI1A  Pohjois-Suomi ITF5 adiicata UKJ3  Hampshire and Isle of Wight
BE35  Prov. Namur FR10 Tle de France ITF6  Calabria KJ& Kent
Gloucestershire, Wiltshire and
DE11  Stuttgart FR21 Champagne-Ardenne ITG1 Sicilia UKK1 North Somerset
DE12 Karlsruhe FR22 Picardie ITG2 Sardegna UKK2 <¢eband Somerset
DE13 Freiburg FR23 Haute-Normandie NL11 Groningen KKB Cornwall and Isles of Scilly
DE14 Tibingen FR24 Centre NL12 Friesland UKK4 Devon
DE21 Oberbayern FR25 Basse-Normandie NL13 Drenthe KLIU West Wales and The Valleys
DE22 Niederbayern FR26 Bourgogne NL21 Overijssel LPK East Wales
DE23  Oberpfalz FR30 Nord - Pas-de-Calais NL22 Geided UKM1 North Eastern Scotland
DE24  Oberfranken FR41 Lorraine NL23 Flevoland UKMRastern Scotland
DE25 Mittelfranken FR42 Alsace NL31 Utrecht UKM3outh Western Scotland
DE26  Unterfranken FR43 Franche-Comté NL32 Noordidtal UKM4 Highlands and Islands
DE27  Schwaben FR51 Pays de la Loire NL33 Zuid-Hhalla UKNO Northern Ireland
DE50 Bremen FR52 Bretagne NL34 Zeeland Excluded regions (22)
DE60 Hamburg FR53 Poitou-Charentes NL41 Noord-Braba DE30 Berlin
DE71 Darmstadt FR61 Aquitaine NL42  Limburg (NL) DE4 Brandenburg - Nordost
DE72 GieBen FR62 Midi-Pyrénées PT11 Norte DE42 @eahurg - Sudwest
DE73 Kassel FR63 Limousin PT15 Algarve DES80 Mechleng-Vorpommern
DE91 Braunschweig FR71 Rhoéne-Alpes PT16 Centro (PT) DED1 Chemnitz
DE92 Hannover FR72 Auvergne PT17 Lisboa DED2 Dresde
DE93 Luneburg FR81 Languedoc-Roussillon PT18 Ajente DED3 Leipzig
DE94  Weser-Ems FR82 Provence-Alpes-Cote d'Azur SE@tockholm DEE1 Dessau
DEAl1 Ddusseldorf FR83 Corse SE02  Ostra Mellansverige DEE2 Halle
DEA2 Koéln GR11 Anatoliki Makedonia, Thraki SE04  Sydsverige DEE3 ddeburg
DEA3 Munster GR12 Kentriki Makedonia SE06 Norra Mellansverige DEGO Umihgen
Ciudad Autbnoma de Ceuta
DEA4 Detmold GR13 Dytiki Makedonia SE07 Mellersta Norrland ES63 (ES)
Ciudad Auténoma de
DEA5 Arnsberg GR14 Thessalia SE08  Ovre Norrland ES64 Melilla (ES)
DEB1 Koblenz GR21 Ipeiros SE09 Smaland med 6arna FI20 Aland
DEB2  Trier GR22 lonia Nisia SEOA Vastsverige FR91 Guadeloupe (FR)
DEB3 Rheinhessen-Pfalz GR2®ytiki Ellada UKC1 Tees Valley and Durham FR92 Martinique (FR)
Northumberland, Tyne and
DECO Saarland GR24Sterea Ellada UKC2 Wear FR93 Guyane (FR)
DEFO  Schleswig-Holstein GR25Peloponnisos UKD1 Cumbria FR94 Reunion (FR)
DKOO denmark GR30 Attiki UKD2 Cheshire GR41 Voreio Aigaio
ES11  Galicia GR43Kriti UKD3 Greater Manchester GR42 Notio Aigaio
Regido Auténoma dos
ES12  Principado de Asturias IEO1  Border, Midlandd Western  UKD4 Lancashire PT20 Acores (PT)
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