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Abstract:  

The recent progress in spatial econometrics offers a number of estimators for models that treat spatial 

dependence explicitly but techniques for handling spatial dependence appear to be essentially confined to cross-

sectional studies. Despite the fact that dynamic panel models have been the object of recent important 

developments, the econometric analysis of spatial and dynamic panel models is at an early stage. 

In this context, the aim of this paper is to review the different methods used in the literature, for such space-time 

data sets, and to suggest two strategies in order to estimate spatial dynamic panel using GMM. The first is to 

extend the moment restrictions of Arellano and Bond estimator for spatial autoregressive dynamic panel. The 

second allows for spatial dependence in the error process in calculating the optimal weighting matrix at the 

second step of the Arellano and Bond estimator. 

These strategies are carried out to estimate the convergence of European regions during the last 25 years. 
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1. Introduction 

While econometric analysis of dynamic panel models is now fairly standard (Arellano and Bond, 

1991; Arellano and Bover, 1995; Blundell and Bond, 1998) and spatial econometric literature is well 

documented either on cross-sections (Anselin and Kelejian, 1997; Anselin, 2001) or on static panel 

(Elhorst, 2003),  econometric analysis of spatial and dynamic panel models is still at an early stage of 

development. Modelling space-time data is quite complex and several problems must be tackled: 

obviously, leaving correlation on each spatial unit over time and spatial dependence on the spatial 

units at each date aside would lead to misspecification but the main difficulty is that we have a priori 

no reason to believe that one problem is more important than the other is.  

Empirically, there are several examples where the presence of a dynamic process with spatial 

dependence might occur. This is the case with the regional economic convergence/divergence issue. 

Many convergence studies stems from neoclassical growth model (Solow, 1956; Swan, 1956) and 

most of them rely on a beta convergence model: regions (countries) do not have the same structural 

characteristics and thus converge towards different steady states relative per capita incomes. Factor 

mobility, trade relations and geographical spillovers (like technology spreading) can matter to 

understand how economic development of a region is likely to be influenced by neighbouring regions. 

Various recent convergence studies have found evidence for model misspecifications if spatial 

interdependencies of regional growth are ignored (Arbia et al., 2008). Working on a dynamic panel 

specification, Badinger et al. (2004) applied a GMM estimator to spatially filtered variables; Elhorst 

(2005) suggests a maximum likelihood estimation of models that are dynamic both in space and time 

for regional analysis; Piras and Arbia (2007) extend panel-data models with spatial error 

autocorrelation for a convergence analysis of EU regions. More precisely the main argument of 

applying the extended GMM in a spatial context is that it corrects for the endogeneity of the spatial 

lagged dependent variable and other potentially endogenous explanatory variables. 

In this context, the aim of this paper is to review the different methods used in the literature, for such 

space-time data sets, and to suggest an estimation strategy that consider together the dynamic 

specification and the spatial dimension of the panel with an illustration on regional conditional 

convergence framework. Estimating a per capita GDP conditional convergence model that 
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incorporates an explicit consideration of spatial dependence effects, we rely on dynamic panel 

generalised method of moment estimations that control for endogeneity, variable omission and spatial 

dependence problems. 

The reminder of the paper is organised as follows. In the next section, we address the econometric 

issues on spatial dynamic panel model and develop an empirical estimation strategy. Section 3 reports 

the main results of our empirical estimation strategy for the convergence approach on panel data. 

Section 4 concludes and suggests areas for further research. 

2. Econometric issues on spatial dynamic panel data model 

2.1. Dynamic panel model 

A general dynamic panel model can be described as follows: 
 

(1) ( ) Tt,N,iyy tiitiit ,,2        ;1     1      ,1, KK ==<++= − ανηα   

where tiy ,  is an observation on some series for individual i in period t, 1, −tiy  is the observation on the 

same series for the same individual in the previous period and tii ,νη +  is the usual “error 

components” decomposition of the error term which allows for unobserved heterogeneity (itε  

hereafter). These specific effects are supposed to be stochastic, which here implies that they are 

necessarily correlated with the lagged dependent variable. With the additional assumption that ti ,ν  is 

serially uncorrelated, the Ordinary Least Squares (OLS) estimator of α  in the levels equations is 

inconsistent. Standard results for omitted variable bias indicate that, at least in large samples, the OLS 

levels estimator is biased upwards. The Within estimator for panel data that allows to control for time 

invariant characteristics lead to substantial gains in robustness (compared with cross-section estimator) 

but it is not without costs if one do not pay attention to the dynamic of adjustment. Standard results for 

omitted variable bias indicate that, at least in large samples, the Within Group estimator is biased 

downward (Nickell, 1981). Thus, we might hope that a candidate consistent estimator will lie between 

the OLS and Within estimates. The most widely-used alternative strategy is to difference the model to 

eliminate the fixed effects and then applies the GMM using a set of appropriate instruments to address 
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the correlation between the differenced lagged dependent variable and the induced MA(1) error term 

(see Arellano and Bond, 1991). The GMM estimator is a two-step estimator. In the first step, an initial 

positive semi definite weight matrix is used to obtain consistent estimates of the parameters. Given 

this consistent estimates, a weight matrix can be constructed that is consistent for the efficient weight 

matrix, which is used for the asymptotically efficient two-step estimates. It is common practice to use 

the inverse of the moment matrix of the instruments as an initial weight matrix. More precisely the 

first step in the estimation procedure consists in eliminating the individual effects via a first difference 

transformation (GMM-DIFF) or a forward orthogonal deviation (Arellano and Bover, 1995).  

The dynamic panel-data specification has become frequent in growth convergence empirical studies. 

Since the inclusion of the time-lagged dependent variable in the equation might lead to inconsistent 

estimates, instrumental variable estimators are needed. A commonly employed estimation procedure 

to estimate the parameters in a dynamic panel data model with unobserved individual specific 

heterogeneity is to transform the model into first differences. Sequential moment conditions are then 

used where lagged levels of the variables are instruments for the endogenous differences and the 

parameters estimated by GMM (see Arellano and Bond, 1991; adopted by Caselli et al., 1996 in the 

growth context). The first step in the estimation procedure consists in eliminating the individual effects 

via a first difference transformation (GMM-DIFF) or a forward orthogonal deviation2 (as suggested by 

Arellano and Bover, 1995). Assuming that the error terms itε  are serially uncorrelated, the lagged 

difference of the endogenous variable is instrumented with  the lagged difference of the endogenous 

variable ( 1−∆ ity  ) with all lagged levels of the variable 1−ity  starting with lag two 2−ity  and going back 

to earlier lagged levels. Essentially these use an instrument matrix of the form: 
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2 First differencing and forward orthogonal deviation transformation involve the same procedure (similar 
instrument matrix) to estimate dynamic panel data specification.   
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where rows correspond to the first-differenced equations for period t=3,4,…,T for individual i and 

exploits the moments conditions ( ) 0=∆ itisyE ε  for for s=1,…,T-2 and t=2,…,T . 

The overall validity of instruments can be checked by a Sargan-Hansen test of over-identifying 

restrictions. 

This GMM estimator extends in a natural way to autoregressive-distributed lag models of the form: 

(2) ( ) Tt,N,ixyy tiititiit ,,2        ;1     1      ,,1, KK ==<+++= − ανηβα               

where itx  can be a vector of current and lagged values of additional explanatory variables. Different 

moment conditions will be available depending on what is assumed about the correlation between itx  

and the two components of the error term (Bond, 2002): 

• If itx is strictly exogenous, ( ) 0=∆ itisxE ε  for s=1,…,T and t=2,…,T. 

• If  itx  is weakly endogenous, ( ) 0=∆ itisxE ε  for s=1,…,T-1 and t=2,…,T. 

• If itx is strictly endogenous, ( ) 0=∆ itisxE ε  for s=1,…,T-2 and t=2,…,T. 

Unfortunately in the case of persistent data and for a small number of time series observations, lagged 

levels are only weak instruments for subsequent first differences and the GMM-DIFF can have very 

poor finite sample properties in terms of bias, and precision. Blundell and Bond (1998) proposed the 

system GMM estimator (GMM-SYS) that combines moment conditions for the model in first 

differences with moment conditions for the model in levels. It has been shown to correspond to the 

model in levels, with lagged differences of the endogenous variables as instruments. Blundell and 

Bond (1998) argued that the GMM-SYS estimator performs better than the GMM-DIF estimator 

because the instruments in the model remain good predictors for the endogenous variables in this 

model even when the series are very persistent. 

The choice between the two estimators (GMM-DIFF, GMM-SYS) is conducted according to a 

common test of over identifying restrictions: the validity of the additional instruments used by GMM-

SYS for the level equation can easily be tested using difference Hansen tests. 
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2.2. Spatial dynamic panel model 

Spatial econometric methods deal with the incorporation of spatial interaction and spatial structure 

into regression analysis. Spatial error model and spatial lag model are two different approaches to 

address the issue of spatial dependencies (Anselin, 2001). The first one is a nuisance form of spatial 

dependence and incorporates a spatial autoregressive process in the error term (as in time series 

analysis). Ignoring this spatial autocorrelation may lead to inefficient estimates. The second method 

incorporates spatial dependence in the form of a spatial lag variable, often considered as a spatial 

autoregression model. This specification is more appropriate for explicitly specifying as completely as 

possible the impact of nearby observations on the dependent variable so that explicit inferences can be 

made for spatially lagged variables (Beck et al. 2006; Blonigen et al., 2007).  

The design of these two specifications relies on a spatial weight matrix W describing the spatial 

arrangement of the cross-section units. As it is standard in spatial econometrics, for ease of 

interpretation, this weighting matrix W is row-standardized so that each row in W sums to one. 

Throughout the rest of the paper, we assume that W remains constant over time.   

First, we consider a "time-space simultaneous" model (Anselin et al., 2007): 

(3) ( ) Tt,N,iWyxyy tiitititiit ,,2        ;1     1      ,,,1, KK ==<++++= − ανηρβα  

where tiWy , is a first order spatial lag. The coefficient ρ  stands for the intensity of spatial effects. 

Thus whenρ =0, the model remains as section 2.1. 

According to Anselin (2001) and Abreu et al. (2005), including a spatially lagged dependent variable 

causes  simultaneity and endogeneity problems, which in turn means that this variable must be treated 

as endogenous and thus proper estimation methods must account for this endogeneity. There are only a 

limited number of available estimators for Dynamic Spatial lag Model on Panel Data. Assuming all 

explanatory variables are exogenous beside the spatial lag term3, dynamic spatial lag models are 

usually estimated using the GMM estimator (see for example, Madriaga and Poncet, 2007). Spatial lag 

                                                      

3 As underlined by Kukenova and Monteiro (2008) there is no currently available estimator to consider this 
simultaneity problem in line with the potential endogeneity of other explanatory variables.  
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term and autoregressive term are instrumented by their lagged values, by lagged values of the 

dependent variables as well as by spatially weighted explanatory variables. 

If the spatial lag is strictly endogenous, the moment restrictions of section 2.1 are not sufficient to 

provide an unbiased and consistent estimation. However, a natural way to estimate (3) is to assume 

further moment restrictions of 2.1 by considering tiWy , as endogenous variable: 

( ) 0=∆ itisWyE ε  for t=2,…,T and s=1,…,T-2. 

Moreover, we can use spatially weighted explanatory variables tiWx ,  to instrument the spatial lag 

term. In other terms, we identify the exogenous part of the spatial lag variability by a spatially 

weighted model.  

The validity of this strategy requires the following moment restrictions:  

If itWx  is strictly exogenous, ( ) 0=∆ ititWxE ε  for t=2,…,T.   

We suggest checking the robustness of this extended GMM estimator by proceeding successively to 

cross sections, Least Squares Dummy Variables (LSDV), GMM dynamic panel and GMM spatial 

dynamic panel estimation. 

 Spatial error model in dynamic panel context is more complicated to estimate than spatial lag 

model. Nevertheless, Elhorst (2005) propose maximum likelihood estimation for dynamic panel 

including spatial error autocorrelation. In a static panel model, a consistent estimator can be obtained 

from a set of moment conditions as demonstrated in Kapoor et al. (2007). Mutl (2006) extends this 

approach to a dynamic panel case. 

We consider the following specification: 

(4) Tt,N,ixyy tititiit ,,2        ;1     1  ,,1, KK ==<++= − αεβα  

( )  1     ,, <++= ρνηερε tiitiit W  



 8 

where the error term consists of the spatially lag simultaneous error and the previous error 

component( ) ,tii νη + . 

We assume that is ti,ν  independently distributed, with a constant variance 2
νσ . 

We estimate a GMM estimator using the same moment as the Arellano Bond estimator but with 

optimal weight matrix that allows for spatial error autocorrelation. According to Mutl (2006), this 

weighting matrix is constructed using first step estimation of 2
νσ , 2

1σ  and ρ  based on the Kapoor et 

al (2007) spatial GM estimator4.  

 

3. Empirical application: β-convergence of European regions  

3.1. Modelling β-convergence on spatial dynamic panel specification 

Many convergence studies stems from traditional neoclassical growth model (Solow, 1956; Swan, 

1956). Following the “model based” specification of Mankiw et al., (1992) Barro and Sala-i-Martin 

(1992), we rely on a β-convergence model where the GDP per capita (hereafter GDP p.c.) growth 

depends not only on the initial GDP level, but also on other conditioning variables. Regions do not 

have the same structural characteristics and thus converge towards different steady–state income 

levels. The further a region finds itself from its own steady state, the faster its growth rate will be. In 

this case, convergence is conditional: economies converge towards the same growth rate. Accordingly, 

the following general model is in line with the empirical growth literature: 

(5)  ti
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tigg
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ti ZXy
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, lnln επβββ ++++=
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4 Mutl (2006) demonstrates the consistency of the spatial GM in a dynamic panel data model.  
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where ( )Ttniy ti ,1;,,1, KK ==  is the GDP p.c. of region i at time t=;0β  is an intercept term,1β  is the 

convergence coefficient, X is a set of k explanatory variables related to the growth model of Solow  

(Solow, 1956) and Z is a set of variables that may affect the convergence process but are not directly 

related to the model of Solow (1956) (Durlauf et al., 2006). 

We assume that the variables sets in Zi and Xi are independent (see Mankiw et al., 1992 for a 

discussion on this point). It is now possible to extend Mankiw et al. (1992) model towards  a dynamic 

panel-data specification of the convergence model, current output is regressed on lagged output and 

control variables (Durlauf et al., 2006): 

(6) ( ) titi
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pop
 is the demographic growth rate. We introduce individual and time specific intercepts 

(respectively iα  and tµ ) in order to control for unobserved heterogeneity. Thereby,  1β   measures the 

GDP convergence conditionally of investment per capita and population growth rate. 

However, for both econometrics and economic theory, it is too restrictive to assume no cross-sectional 

dependence in testing convergence hypothesis. The restriction implies that the economies are closed, 

which is obviously inappropriate to understand regional convergence process. Regions are units 

naturally open to economic flows like trade, technology diffusion and factor mobility, which may 

affect regional convergence process.  

Following the model specification of (3) to address with spatial dependence, we estimate successively: 
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(8) ( ) titi
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3.2. Data description 

We use a panel dataset of 191 regions in 14 member states of EU-15 (see appendix A, which describes 

the set of regions, included and excluded in the sample) over a period to 25 years (1980-2005). 

Data variables come from the Cambridge Econometrics database5. The gross domestic product (GDP) 

and investment (provided by Cambridge Econometrics in 1995 constant euro) have been transformed 

into logarithm of per capita term ( 
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,ln ) in order to consider the scale effect.  The 

demographic growth rate is measured from the total population data dynamics ( 
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). 

For the estimation, we consider five aggregated time-periods (1980-84, 1985-89, 1990-94, 1995-99 

and 2000-2005) to avoid short run variations in GDP growth rates due to business-cycle effects. The 

accurate number of years required to avoid short-run variations is still under discussion in the 

literature (see Temple, 1999, for an analysis). Temple (1999) recommends 5 or 10 years long periods, 

but we preferred to follow the approach from Badinger et al. (2004) and chose quinquennial time 

periods to collect information on at least 5 periods.  Thereby, we have a panel on 955 observations of 

191 regions during 5 periods. Of course, the dynamic panel specification restricts this panel to 4 

periods because of the autoregressive term ( 
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The spatial lag term 
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,

,ln  is constructed from a weighted average of neighbouring regions' 

income level. Thus, we have chosen a geographical definition of neighbourhood based on the 

Euclidean distance between regions in order to construct the spatial weight matrix (W ). More 
                                                      

5 The Cambridge Econometrics database is available at http://www.camecon.com.  
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precisely we have chosen a k -nearest neighbours weight specification, )(kwij  represents the element 

of W  matrix in row i  and columnj : 

0)(* =kw ij  if ji =  

1)(* =kw ij if )(kdd iij ≤  

0)(* =kw ij if )(kdd iij ≥  

ijd  is the distance between the regions i  and j  centroids, and )(kdi is a cut-off distance based  on 

the distance of k -nearest neighbour for region i . The interactions are assumed to be negligible above 

this distance. Although we have constructed W  with k =10, the results are similar with k =5, 15 and 

20.  

So, the matrix is row-standardised  
∑

=

j

ij

ij

ij
kw

kw
kw

)(

)(
)(

*

*

 to provide easier interpretation (each weight 

may be interpreted as the region's share in the total spatial effect of the sample) and make parameter 

estimates more comparable (see Kelejian and Robinson, 1995 for a good discussion on the spatial 

weighting matrix). 

k -nearest neighbours' weight matrix has the most fitted to representing spatial interaction of our 

sample: this specification lead to each region has the same number of neighbouring regions (k ) 

including islands on our sample and reduce the heterogeneity problem of regional superficies (Anselin, 

2002).   
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Table 1  Descriptive statistics 

 

Table 1 depicts the dynamics of GDP p.c., investment per capita, demographic growth rate and 

spatially lagged GDP for European regions. One can see the regular evolution of each variable. The 

sample mean of regional GDP pc increases from 9.44 to 9.81, what represents a growth of 3.92% 

during the whole period. In the same time, the decreasing of GDP p.c. standard deviation points out 

the reduction of GDP p.c. disparities across time. This evolution is confirmed by the analysis of the 

distribution of that variable (Figure 1). 

 

Figure 2 graphs the GDP p.c. geographic pattern relative to the EU-14 average GDP level for the 5 

periods. The regions are split into 6 classes, from below 50 % of the European average to more than 

150 % of this average. For the first period, regions with income below 50% of the EU average can be 

found mainly in the southern periphery and most of them are in Greece or Portugal. A few number (7) 

of these regions had GDP p.c. below 50% of the EU average over the whole period. More precisely 

these are in Spain (1), Greece (3) and Portugal (3). Except these particular regions, the per capita GDP 

spatial pattern between 1980-1984 and 2000-2005 is more dynamic in the periphery, indicating a small 

catching process. Most regions in Spain, Greece, Ireland or Portugal experienced growth rates above 

the average EU-14 growth rate but one can note that for regions in Spain, Greece and Portugal the 

average in 2000-2005 is still below the EU-14 1980-1984 average, while the most spectacular result is 

for Ireland, even if only two regions are concerned. 
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Figure 2  Geographic pattern of the GDP per capita relative to the EU-14 average GDP level for 
the 5 periods (adapted from Bouayad-Agha et al, 2009, Cambridge Econometrics 
database) 

 

The next section will enable us to assess the strength of this process and to test the various factors 

which affect it. 

 

3.3. Econometric analysis 

Table 2 and 3 report respectively estimates of conditional convergence model for the period 1980-

2005. This time lag has been split into 5 periods (1980-84, 1985-89, 1990-94, 1995-99 and 2000-05).  

It has been shown that ignorance of the spatial correlation leads to potentially misleading estimates 

and tests, so we will first analyse the spatial properties of the residuals, and then present the estimation 

results and validity tests.     
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3.3.1. Validity tests 

The presence of spatial correlation has been tested using the Moran's statistics on the GMM residuals 

(Zmoran, Table 2 and 3).  This test is the most commonly used to detect spatial correlation and its 

application has been extended to residuals regression in Anselin and Kelejian (1997).  

Strong significant spatial correlation can be detected on GMM residuals of model (1) that ignore 

spatial dependence (Table 2).  This result confirms the presence of spatial effects in the European 

regional convergence. As expected, the introduction of a spatial lag term (model (2)) reduces 

significantly the spatial correlation of residuals for the GMM estimator. Moran's test fail to reject the 

null hypothesis of no spatial correlation for 1990-1994, 2000-05 and for 1985-89, 1995-99 

respectively with a 10% and 5% significance level (Table 3). Similar results are obtained with a spatial 

error specification (Table 3).  These results confirm the presence of spatial dependencies which leads 

to inconsistent results and inefficient validity tests in model (1). Hence, we are not looking on the 

remaining tests in Table 2 and we therefore proceed with the spatial lag model, concentrating on Table 

3 tests results. 

The consistency of the GMM estimator depends on whether lagged values of the autoregressive and 

spatial autoregressive terms are valid instruments for the regression. In the estimation process, we are 

using the orthogonality conditions between the error term in first difference and lagged values of the 

dependent variables. In order to test these conditions, we report tests for first and second-order serial 

correlation (Arellano and Bond, 1991) and we consider three specification tests (AR(1), AR(2) and 

Hansen tests).  

AR(1) and AR(2) tests provides further support to the model and its estimation since this statistics fails 

to reject this hypothesis of no second order correlation while reject no first-order serial correlation 

(Table 3). The overall validity of the instruments can be tested by the Hansen test of over-identifying 

restrictions. This test confirms the overall validity of the instrumental variables (Table 3) at the 10% 

level of significance in the spatial lag model. Nevertheless, the result of Hansen test on spatial error 

specification points out the weakness of the instruments in this context (0.023). Hence, the results 

must be interpreted carefully. 
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The Hansen test can be also informative on the validity of additional instruments by comparing the 

difference of Hansen statistic between two sets of instruments. The Hansen-diff reported in Table 3 

check the validity of additional instruments used by system-GMM. We report first-differenced GMM 

results because Hansen-diff (21.01) rejects the validity of additional instruments used by system-

GMM for the level equation. 

We assume that the explanatory variables are exogenous using the Hansen-diff test between 

exogenous and predetermined set of instruments (as suggested by Bond, 2001).  Overall validity tests 

do not indicate problems with instrument validity and orthogonality conditions used by first-

differenced GMM estimators. We do not use system-GMM because additional instruments of the level 

equation are not valid.             

3.3.2. Results 

Within the framework of a dynamic panel specification that considers the spatial dimension of GDP 

per capita, we find empirical evidence on conditional convergence of European regions. This process 

is strongly affected by spatial dimension.  

As explained above, the GMM estimator controls for both endogeneity and other econometric 

problems; it is expected to address the inconsistency of POLS and LSDV estimators which provide 

however upper and lower bounds for the autoregressive parameter (Bond et al., 2001)6.  For Model (6) 

and (7), LSDV values are respectively lies between 0.48 and 0.39, and around 0.89 when the POLS 

estimator is used. As expected, for these two models, the estimated autoregressive parameters fall 

between these bounds: close to 0.8 for the model (6) and 0.5 for the model (7).     

The estimated autoregressive parameter (Table 2) are close to those obtained in other studies (Caselli 

et al., 1996). this result points out that there is a significant European regional convergence, 

conditionally to investment per capita (which have a significant positive impact on regional 

                                                      

6 With fixed T, POLS gives an estimate of the coefficient of the lagged income that is biased upward in the 
presence of individual specific effects (Hsiao, 1986) and LSDV gives an biased downwards estimate for the 
same coefficients (Nickell, 1981).  
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development).  The non significant impact of demographic growth suggests that the evolution of 

labour force does not affect regional development.  

Table 2  Estimation results of Dynamic model (6) 

 

Notes: POLS: Pooled Ordinary Least Squares; LSDV: Least Squares Dummy Variable; GMM-DIFF: 
Generalized Method of Moments on forward orthogonal deviation equation.  *, ** and *** indicate significance at 
the 1%, 5% and 10% level. Robust standard errors are displayed in parentheses. GMM-DIFF estimations are 

obtained by a forward orthogonal deviation transformation with instrument set composed by (
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The results from the dynamic spatial panel data models are displayed in Table 3. The introduction of 

spatially lagged variable leads to significantly different results. The autoregressive parameter (0.453) 

in model (7) drops sharply regarding to model (6) indicating that we measure a faster regional 

conditional convergence when we consider the impact of neighbouring income on regional 

development. Spatial lagged income coefficient (0.417) suggests a strong significant impact of 

spillover effect between European regions on their development dynamics.  
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We can explain this drop by the fact that a part of yit variability previously explained by the variability 

of the lagged term yit-1 in (6) is due to spatial interdependence Wyit variability in (7). The sum of 

( )11 β+  and ρ  in (7) is close to ( )11 β+  in (6).  

ρ  reflects how spillover affect income growth rate for all regions with the same initial income. The 

development of the European regions is strongly affected by their spatial interdependence, thus 

suggesting that the convergence process is not only a "temporal" process but also a spatial process. In 

the framework of the Solow model, we can assume that speed of convergence to the steady state is 

affected by regional spillover. The rate at which the regions converge towards their steady state 

depends on the assumption of decreasing marginal product. Regional spillovers may induce this 

decline, so, the dynamics toward the steady state doesn't depend only of the gap between 0,iY  and its 

steady state value but also on the strength of spatial spillover. Thus, spatial concentration of GDP p.c. 

must impede the convergence process. However, Egger and Pfaffermayr (2006) explain that spatial 

spillover implies that the convergence speed depends on the region's location. Thus, they suggest 

amending the computation of the convergence speed in order to allow for this issue. we can 

decompose (As suggested by Egger and Pfaffermayr, 2006) the convergence speed into its "classical" 

part, a remoteness effect and the impact of initial gap. 

The spatial error model provides results similar to the other studies. The convergence speed (4.8%) is 

in line with the values computed by Badinger et al. (2004). 

 The introduction of a spatial lag does not affect the impact of investment per capita spending on 

regional development. The 2β (
ti

ti

pop

I

,

,ln ) coefficient is still significant around 0.16. Its value 

increases to 0.236 when we allow for spatial error dependence.  

The demographic growth rate is not significant for any specification. 
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Table 3   Estimation results of the Spatial Dynamic model (7) and (8) 

 

Notes: *, ** and *** indicate significance at the 1%, 5% and 10% level. Robust standard errors are displayed in 
parentheses. SGMM-DIFF estimations are obtained by a forward orthogonal deviation transformation with 

instrument set composed by (
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and the overall set of other explanatory variables (considered as exogenous) .  

 

4. Conclusion 

The aim of this paper is to review strategies to estimate Spatial Dynamic panel data model using 

GMM.  

Then, we estimate a conditional convergence model of European regions which allows both space and 

dynamic dimension to illustrate these strategies. Using a panel dataset of 191 regions over 1980-2005, 

we estimate a Spatial Dynamic Panel using spatial lag strategy estimation in addition to standard 

dynamic model on panel data techniques (Arellano and Bond, 1991; Blundell and Bond, 1998).  

We find empirical evidence on conditional convergence of European regions. European convergence 

is conditional to the investment rate. In analysing the spatial dimension, we find that convergence is 

significantly affected by the spatial disparities. 
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Note that other drivers of regional development can affect convergence process of European regions, 

as European policies (Esposti and Bussoletti, 2008; Bouayad et al., 2009). 

The Spatial Dynamic Panel data model is at early stage. In this paper, we concentrate on studying 

strategies to estimate spatial dynamic panel data. But this approach needs further development. 

First, the usual tests on spatial specification (LM-test) must be extended to time dynamic dimension.  

Furthermore, there are several possibilities to crossing Dynamic and spatial literature. In the spatial 

error model, using GMM system estimator as suggested by Blundell and Bond (1998) in time dynamic 

can improve its efficiency.   
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APPENDIX A 

 

Code Name Code Name Code Name Code Name 
Included regions (190)       

AT11 Burgenland ES13 Cantabria IE02 Southern and Eastern UKD5 Merseyside 

AT12 Niederösterreich ES21 Pais Vasco ITC1 Piemonte UKE1 
East Riding and North 
Lincolnshire 

AT13 Wien ES22 Comunidad Foral de Navarra ITC2 Valle d'Aosta UKE2 North Yorkshire 
AT21 Kärnten ES23 La Rioja ITC3 Liguria UKE3 South Yorkshire 
AT22 Steiermark ES24 Aragón ITC4 Lombardia UKE4 West Yorkshire 

AT31 Oberösterreich ES30 Comunidad de Madrid ITD1 
Provincia Autonoma 
Bolzano-Bozen UKF1 Derbyshire and Nottinghamshire 

AT32 Salzburg ES41 Castilla y León ITD2 Provincia Autonoma Trento UKF2 
Leicestershire, Rutland and 
Northants 

AT33 Tirol ES42 Castilla-la Mancha ITD3 Veneto UKF3 Lincolnshire 

AT34 Vorarlberg ES43 Extremadura ITD4 Friuli-Venezia Giulia UKG1 
Herefordshire, Worcestershire 
and Warks 

BE10 Région de Bruxelles-Capitale ES51 Cataluña ITD5 Emilia-Romagna UKG2 Shropshire and Staffordshire 
BE21 Prov. Antwerpen ES52 Comunidad Valenciana ITE1 Toscana UKG3 West Midlands 
BE22 Prov. Limburg (B) ES53 Illes Balears ITE2 Umbria UKH1 East Anglia 
BE23 Prov. Oost-Vlaanderen ES61 Andalucia ITE3 Marche UKH2 Bedfordshire, Hertfordshire 
BE24 Prov. Vlaams Brabant ES62 Región de Murcia ITE4 Lazio UKH3 Essex 
BE25 Prov. West-Vlaanderen ES70 Canarias (ES) ITF1 Abruzzo UKI1 Inner London 
BE31 Prov. Brabant Wallon FI13 Itä-Suomi ITF2 Molise UKI2 Outer London 
BE32 Prov. Hainaut FI18 Etelä-Suomi ITF3 Campania UKJ1 Berkshire, Bucks and Oxfordshire 
BE33 Prov. Liège FI19 Länsi-Suomi ITF4 Puglia UKJ2 Surrey, East and West Sussex 
BE34 Prov. Luxembourg (B) FI1A Pohjois-Suomi ITF5 Basilicata UKJ3 Hampshire and Isle of Wight 
BE35 Prov. Namur FR10 Île de France ITF6 Calabria UKJ4 Kent 

DE11 Stuttgart FR21 Champagne-Ardenne ITG1 Sicilia UKK1 
Gloucestershire, Wiltshire and 
North Somerset 

DE12 Karlsruhe FR22 Picardie ITG2 Sardegna UKK2 Dorset and Somerset 
DE13 Freiburg FR23 Haute-Normandie NL11 Groningen UKK3 Cornwall and Isles of Scilly 
DE14 Tübingen FR24 Centre NL12 Friesland UKK4 Devon 
DE21 Oberbayern FR25 Basse-Normandie NL13 Drenthe UKL1 West Wales and The Valleys 
DE22 Niederbayern FR26 Bourgogne NL21 Overijssel UKL2 East Wales 
DE23 Oberpfalz FR30 Nord - Pas-de-Calais NL22 Gelderland UKM1 North Eastern Scotland 
DE24 Oberfranken FR41 Lorraine NL23 Flevoland UKM2 Eastern Scotland 
DE25 Mittelfranken FR42 Alsace NL31 Utrecht UKM3 South Western Scotland 
DE26 Unterfranken FR43 Franche-Comté NL32 Noord-Holland UKM4 Highlands and Islands 
DE27 Schwaben FR51 Pays de la Loire NL33 Zuid-Holland UKN0 Northern Ireland 
DE50 Bremen FR52 Bretagne NL34 Zeeland Excluded regions (22) 
DE60 Hamburg FR53 Poitou-Charentes NL41 Noord-Brabant DE30 Berlin 
DE71 Darmstadt FR61 Aquitaine NL42 Limburg (NL) DE41 Brandenburg - Nordost 
DE72 Gießen FR62 Midi-Pyrénées PT11 Norte DE42 Brandenburg - Südwest 
DE73 Kassel FR63 Limousin PT15 Algarve DE80 Mecklenburg-Vorpommern 
DE91 Braunschweig FR71 Rhône-Alpes PT16 Centro (PT) DED1 Chemnitz 
DE92 Hannover FR72 Auvergne PT17 Lisboa DED2 Dresden 
DE93 Lüneburg FR81 Languedoc-Roussillon PT18 Alentejo DED3 Leipzig 
DE94 Weser-Ems FR82 Provence-Alpes-Côte d'Azur SE01 Stockholm DEE1 Dessau 
DEA1 Düsseldorf FR83 Corse SE02 Östra Mellansverige DEE2 Halle 
DEA2 Köln GR11 Anatoliki Makedonia, Thraki SE04 Sydsverige DEE3 Magdeburg 
DEA3 Münster GR12 Kentriki Makedonia SE06 Norra Mellansverige DEG0 Thüringen 

DEA4 Detmold GR13 Dytiki Makedonia SE07 Mellersta Norrland ES63 
Ciudad Autónoma de Ceuta 
(ES) 

DEA5 Arnsberg GR14 Thessalia SE08 Övre Norrland ES64 
Ciudad Autónoma de 
Melilla (ES) 

DEB1 Koblenz GR21 Ipeiros SE09 Småland med öarna FI20 Åland 
DEB2 Trier GR22 Ionia Nisia SE0A Västsverige FR91 Guadeloupe (FR) 
DEB3 Rheinhessen-Pfalz GR23 Dytiki Ellada UKC1 Tees Valley and Durham FR92 Martinique (FR) 

DEC0 Saarland GR24 Sterea Ellada UKC2 
Northumberland, Tyne and 
Wear FR93 Guyane (FR) 

DEF0 Schleswig-Holstein GR25 Peloponnisos UKD1 Cumbria FR94 Reunion (FR) 
DK00 denmark GR30 Attiki UKD2  Cheshire GR41 Voreio Aigaio 
ES11 Galicia GR43 Kriti UKD3  Greater Manchester GR42 Notio Aigaio 

ES12 Principado de Asturias IE01 Border, Midlands and Western UKD4 Lancashire PT20 
Região Autónoma dos 
Açores (PT) 




