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POLYMER DYNAMICS IN THE DEPINNED PHASE: METASTABILITY
WITH LOGARITHMIC BARRIERS

PIETRO CAPUTO, HUBERT LACOIN, FABIO MARTINELLI, FRANCOIS SIMENHAUS,
AND FABIO LUCIO TONINELLI

ABSTRACT. We consider the stochastic evolution of a (1 + 1)-dimensional polymer in the de-
pinned regime. At equilibrium the system exhibits a double well structure: the polymer lies
(essentially) either above or below the repulsive line. As a consequence, one expects a metastable
behavior with rare jumps between the two phases combined with a fast thermalization inside
each phase. However, the energy barrier between these two phases is only logarithmic in the
system size L and therefore the two relevant time scales are only polynomial in L with no
clear-cut separation between them. The whole evolution is governed by a subtle competition
between the diffusive behavior inside one phase and the jumps across the energy barriers. Our
main results are: (i) a proof that the mixing time of the system lies between L3 and L%”; (i1)
the identification of two regions associated with the positive and negative phase of the polymer
together with the proof of the asymptotic exponentiality of the tunneling time between them
with rate equal to a half of the spectral gap.

2000 Mathematics Subject Classification: 60K35, 82C20

Keywords: reversible Markov chains, polymer pinning model, metastability, spectral gap, mixing
time, coupling, quasi-stationary distribution.

1. INTRODUCTION, MODEL AND RESULTS

Random polymers are commonly used in statistical mechanics to model a variety of inter-
esting physical phenomena. A rich class of models with a non-trivial behavior is obtained by
considering a simple random walk path interacting with a defect line in the thermodynamic
limit when the length of the path tends to infinity. The equilibrium of these so-called polymer
pinning models has been studied in depth in the mathematical literature, and the associated
localization/delocalization phase transition is, nowadays, a well understood phenomenon, even
in the presence of non-homogeneous interactions; see [9] for a recent survey.

Markovian stochastic dynamics of random pinned polymers, on the other hand, have received
much less attention from a mathematical point of view. Besides its importance in bio-physical
applications (see e.g. [5, 6] and references therein), the stochastic evolution of polymer models
poses new challenging probabilistic problems from many points of view and the connection
between the equilibrium and dynamical properties of the model is still largely unexplored. In
particular, we feel that the problem of how the polymer relaxes to the stationary distribution
(time scales, overcoming of energy barriers, metastability, patterns leading to equilibrium) still
lacks a satisfactory solution even in the simplest homogeneous models; see [7] for some initial
results in this direction.

In this paper we consider the dynamics of a homogeneous polymer model interacting with a
repulsive defect line with two main motivations in mind:

This work was supported by the European Research Council through the “Advanced Grant” PTRELSS 228032.
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(i) the repulsive regime is characterized by a relaxation to equilibrium occurring on a time scale
certainly much larger [7] than the usual diffusive one which is typical e.g. of the neutral
case' [21]. The new scale is clearly the result of a subtle competition in the polymer
evolution between diffusive behavior and jumps against energy barriers.

(ii) The whole relaxation mechanism should show certain typical features of metastable evo-
lution but in a very atypical context? in which the relevant relaxation time scales are only
polynomial in the size L of the system (i.e. the energy barriers are only logarithmic in
L), with little separation between the mixing time inside one phase and the global mixing
time. A signature of this fact can be found in the anomalous growth with L of the global
mixing time, a growth which is much more rapid than the naive guess based on the usual
rule Thix =~ exp(AFE), with AFE the so-called activation energy. In order to appreciate the
novelty of such a situation it is useful to compare it to another well known case, namely the
Glauber dynamics for the low temperature Ising model in a square box with free bound-
ary [14], for which a very precise analysis of the metastable behavior was possible exactly
because of a sharp separation, at an exponential level, between the two time scales.

1.1. Dynamics of the polymer pinning model. Let 2 = Q97 denote the set of all lattice
paths (polymers) starting at 0 and ending at 0 after 2L steps, L € N:

Q:{UGZQL‘H: N-r=nL=0,Npp1=my 1, x=—L,...,L—1}.

The stochastic dynamics is defined by the natural spin-flip continuous time Markov chain with
state space 2. Namely, sites + = —L + 1,...,L — 1 are equipped with independent rate 1
Poisson clocks. When site x rings, the height 7, of the polymer at x is updated according to
the rules: if 7,1 = ny41 = 2 then do nothing; if n,—1 = ny4+1 = h, and |h| # 1, then set
1N = h £ 1 with equal probabilities; if 1,1 = 7,41 = +1, then set n, = 0 with probability
%H and 7, = 2 with probability %—H; similarly, if 91 = nz4+1 = —1, then set n, = 0 with
probability %H and 1, = —2 with probability /\%rl Here A > 0 is a parameter describing the
strength of the attraction (A > 1) or repulsion (A < 1) between the polymer and the line n = 0.

The infinitesimal generator of the Markov chain is given by

L-1 L-1
Lim = Y res [fO"D) = F]+ Y re-) [f0™7)=fm)] . (L1)
x=—L+1 r=—L+1

where: f is a function Q — R; n®* denotes the configuration which coincides with 7 at every
site y # x and equals 7, + 2 at site z; the rates 7, 4 are zero unless n®* € Q, while if n®* € Q
and 1z—1 = 7g+1 = h they satisfy 7, + = % for h # £1, and r, + = %—‘rl =1—-7r44, for h ==+1.

The process defined above is the heat bath dynamics for the homogeneous polymer pinning
model, with equilibrium measure = = w%L on €2 defined by
AN

)\ b
Zar,
where N(n) = #{zr € {—-L+1,...,L — 1} : n, = 0} denotes the number of zeros in the path

n € Q and ZQ)‘L = Zn’eﬁ AN For every A > 0 and L € N, 7 = ﬂé\L is the unique reversible
invariant measure for the Markov chain.

A

mor(n) = (1.2)

n the neutral case (absence of an interaction between the polymer and the line) our process is nothing but
the usual (finite) symmetric simple exclusion model.

2Qver the years there have been many different formulations of “metastability”; see [18, 20, 4]. We also refer
to the recent contributions [2, 3] where, as in our case, energy barriers are only logarithmic in the characteristic
size of the system. We feel however that our situation does not fit completely in any of the mentioned contexts.
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1.2. Relaxation to equilibrium. The equilibrium properties of the polymer pinning model
have been studied in detail, cf. e.g. [10] or [9, Section 2] for an extensive review. In particular, it
is well known that, under the measure W%‘L7 for A > 1 the path is strongly localized with a non-
vanishing density of zeros, while for A < 1 the path is delocalized with /L height fluctuations
and with the number of zeros stochastically dominated by a geometric random variable with A-
dependent parameter. The dynamical counterpart of this localization/delocalization transition
has not been fully understood yet. Some progress in this direction has been reported in [7],
where various bounds on the spectral gap and mixing time of the Markov chain were obtained,
together with estimates on the decay of time correlations.

We recall that the spectral gap is the smallest nonzero eigenvalue of —£, and one is often
interested in the relazation time Ty = 1/gap which governs decay to equilibrium in Ly(7), while
the mizing time Tiyix(6), for § € (0, 1), is the smallest time ¢ such that

mf]iXHPt(ﬁv ) _7TH <9, (13>

where P;(n, -) denotes the distribution of the Markov chain at time ¢ with initial state n € €2, and
|| —v|| is the usual total variation distance between two probability measures. When § = 5- we
often write simply Thix instead of Tinix(0). With these conventions one has Ty < Thnix always,
and the inequality is strict in general.

A dynamical phase transition occurs when we move from the localized regime A > 1 to the
delocalized regime A < 1. It was shown in [7], see Theorem 3.4 and Theorem 3.5 there, that for

A > 1 one has Ty = O(L?) and Tyix = O(L?log L), while for A < 1 one has
Toa > L37%, (1.4)

for all € > 0, provided L is large enough.

We refer to [7] for results and conjectures concerning the localized regime A\ > 1. Here, we
consider the delocalized regime, i.e. in the repulsive case A < 1. The first question we address
concerns an upper bound on the relaxation time T}, and the mixing time Tyx. It is worth
noting that even a crude polynomial bound is non-trivial. We refer to [15, 7] for polynomial
bounds for the model with a horizontal wall at level zero, i.e. when lattice paths are constrained
to be non-negative. On the other hand, without the wall constraint, the equilibrium measure 7
is known to be concentrated, as L — oo, on configurations in which the density of monomers
in the upper (lower) half plane is approximately one (zero). However, a mathematical working
definition of the plus or minus phase for the polymer is not so obvious and we have been forced
to introduce a mesoscopic parameter £ (i.e. L > £ >> 1) and define QF by

Qt={neQ:n >0, -L+l<x< L1}, 0 =-Qf, (1.5)

where for any set A of polymer configurations —A :={n € Q : —n e A}.

The presence of the two phases associated to QF dramatically changes the relaxation scenario,
with a bottleneck at the set 2\ (2T UQ™). As explained in [7, Section 6], one may suspect that
Trel ~ L3 is the correct asymptotic behavior in the delocalized regime. Let us briefly recall the
heuristic reasoning behind this prediction.

The time to reach equilibrium can be roughly thought of as the time needed to switch from,
say, Q™ to Q7. A point x such that 7, = 0 and n,_1 # 1,11 is called a crossing of the polymer.
Note that any zero (and therefore any crossing) = must belong to the set Ey, of points in the
segment {—L, ..., L} which have the same parity as L. Since there are typically very few zeros
at equilibrium, one may consider the extreme case where at most one crossing ¢ is allowed at all
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FiGURE 1. From left to right a snapshot sequence of the motion of a single

crossing & which allows the system to switch from a mostly negative to a mostly
positive configuration.

times. In this case, the time evolution of £ should be essentially described by a suitable birth
and death process or random walk on Ep; see Figure 1.

From equilibrium considerations, one knows that this random walk should have reversible
invariant measure p roughly proportional to

p(z) o< L3*(L + 2)73/%(L — z)~%/2, x € Fp, (1.6)

and that its relaxation time can be bounded from above and below by constant multiples of
L5/2; see Lemma 2.2 and Lemma 4.6 below for more details. Notice that, although the measure
p gives uniformly (in L) positive mass to the two attractors x* = +L, the drift which pushes
the random walk away from the saddle x = 0 is proportional to the inverse of the distance from
the attractors.

This heuristics is turned into the rigorous bound (1.4) by using a suitable test function in the
variational principle that characterizes the spectral gap; see [7, Section 6]. However, it seems
very hard to give a rigorous upper bound on Ty of the same order of magnitude. We obtain a
bound that can be off by at most two powers of L.

Theorem 1.1. For any A < 1,
. log Timix _ 5
hzn_}s;p log L < 5 + 2.

The main tool for the proof of Theorem 1.1 is the analysis of an effective dynamics for the
crossings of the polymer. To describe this, we introduce the variable o € {—1,+1}°%, where
O ={-L,...,L}\ Er, denotes the sites with the same parity of L+ 1. If 7 is a configuration of
the polymer, then 7, # 0 at any « € O, and we define o(n) by o, = sign(n,;). The projection
of mon & = {~1,+1}9 is then

vio)= Y =), (1.7)

n:n~o
where the sum is over all configurations 17 compatible with the signs . The field v has non-trivial
long range correlations. Consider the heat bath dynamics for the variables o: sites x € Of, are
equipped with independent rate 1 Poisson clocks; when site x rings we replace o, by ol where
the new sign o, is distributed according to the conditional probability v(-|oy,, y # x), ie.
the probability (1.7) conditioned on the value of o, , y # . Denote by T‘S1 the corresponding

re
relaxation time. For this process, the exponent 5/2 can be shown to be optimal.

Theorem 1.2. For any A < 1,
log TS

rel __

. 5
im =—.
L—oo log L 2
The proof of Theorem 1.1 and Theorem 1.2 combines several different tools which play a
prominent role in the analysis of convergence to equilibrium of Markov chains: decomposition
methods, spectral gap analysis, comparison inequalities, and coupling estimates. An outline of
the main steps of the proof is given at the beginning of Section 4.
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1.3. Metastability. Recall the definition (1.5) of the two sets QF, and define the associated
phases as the restricted equilibrium measures 7+ := 7(- | QF), so that (cf. Section 2)

HTF— %(ﬂ++ﬂ_))‘ =o0(1). (1.8)
The notation o(1) refers to asymptotics as L — oo. In the thermodynamic limit, we expect
relaxation to equilibrium within each phase to occur on time scales Trtl such that T,¢ > Trfl,
while on a time scale proportional to T one should see the system jump from one phase to the
other according to i.i.d. exponentially distributed times. A strong indication of this metastable
behavior comes from the following theorem. Below, we use 7(t) to denote the state at time ¢ of

the Markov chain with generator (1.1).

Theorem 1.3. There exists a set ST C Q1 such that 7(ST) =1/2+ o(1), and that uniformly
inmn € ST and uniformly in t > 0:

P (17 > t) = e /) (1),

where

77 =inf{t >0: n(t) € S}, S™ =_9T.

Here P7 stands for the law of the process with initial state n € (2. By symmetry, Theorem
1.3 also implies that uniformly in n € S~ = —S* and uniformly in ¢ > 0,

[pﬂ? (7—+ > t) — e_t/(gTrel) —+ 0(1) ,
where 77 =inf{t > 0: n(t) € ST}.

Remark 1.4. From the proof of Theorem 1.3 it will be clear that the set ST is increasing
w.r.t. the natural partial order among polymer configurations defined in Section 2.5, so that in
particular the maximal configuration (in the sequel denoted by A) is in ST.

If we define the renormalized process
we =1 (n(sTrel) € Q+) -1 (n(sTrel) € Qf) ,

we expect that, starting from any configuration in QF, {w,, s > 0} converges to the simple
two-state Markov chain with switching rate (from +1 to F1) equal to 1/2, whose spectral gap
equals 1. Such a strong uniform result seems very hard to obtain for our model. The difficulty
is that, in contrast with familiar metastability results [18], here there is no clear-cut separation
of time scales: while (1.4) and Proposition 2.6 below imply Ty¢ > T;erl, the ratio Tye /T r‘; is only
polynomially large in L. However, we do have a detailed description of the renormalized process
when the initial condition is the maximal configuration. Namely, define the maximal element of
Q as Nmax = A, L.e. Ay =2+ L for x <0 and A, = L — z for > 0, and let T, (¢) denote the
first time ¢ such that |P:(A,-) — 7| <e.

Theorem 1.5. For any 6 > 0, uniformly in t > L>*9

1 + e_t/Trel 1— e_t/Trel _
| = | ==+ =]

and uniformly int > 0

s B |: ]_—|_62_t/Trel ++ 1_62_t/Tre1 ﬂ,fi|H
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where Vt”Jr denotes the law at time t of the process started from the initial distribution 7.
Moreover, for any ¢ € (0,1/2) one has

Thix(€) = Trel log (21€> (1+0(1)). (1.11)

Remark 1.6. Theorem 1.5 shows in particular that, when the dynamics is started from either
7T or A, there is no cut-off phenomenon [13], i.e. the variation distance from equilibrium does
not fall abruptly to zero, but rather does so smoothly (on the timescale Ty ). That is another
signature of the metastable behavior of our system and it is in contrast with what one expects
for the neutral or attractive case A > 1.

One of the key features of metastability is that, once the system decides to jump from e.g.
St to S, then it does so very quickly on the time scale of the mixing time. We verify that this
is indeed the case for most starting configurations inside S* U S~.

Let 7 denote the random time spent outside ST U S~ up to the hitting time of S~

T = /0 1{7](3)6(S+US*)C} ds. (1.12)

From Theorems 1.3 and 1.5 one easily deduces that, for most initial conditions in S*, 7= > 7

Corollary 1.7. There exists a subsetﬁ'+ of the set ST of Theorem 1.3 satisfying w(S1) =
1/2+o0(1) such that, uniformly onn € ST, T = o(7™) in probability, i.e. there exists a sequence
01, tending to zero as L — oo such that for everyn € ST,

P" [T > 67| <dr. (1.13)

Along the same lines of the proof of the Corollary, one can establish the weak convergence of
the renormalized process w; to the two-state Markov chain, provided that the initial configuration
is inside a suitable subset of ST U S~ with almost full measure. We decided to omit details for
shortness.

1.4. Organization of the paper. The rest of the paper consists of three sections. Section 2
starts with standard material and then proceeds with the introduction of some essential tools
to be used in the proof of the main results, including general results for monotone systems
that can be of independent interest. This section contains also some new results concerning the
relaxation within one phase and the properties of the principal eigenfunction of the generator.
The metastability results are discussed in Section 3. Here, we start with the proof of Theorem 1.5.
In later subsections we develop the construction needed for the proof of Theorem 1.3. Finally,
Section 4 proves Theorem 1.1 and Theorem 1.2. This section is broken into several subsections
corresponding to the various steps of the proof. A high level description of the arguments
involved is given at the beginning of the section.

Notational conventions. Whenever we write o(LP) or O(LP) for some p € R it is understood
that this refers to the thermodynamic limit L — oo. Also, we use the notation f(L) = Q(LP)
when there exists a constant ¢ > 0 such that f(L) > ¢ LP for all sufficiently large L. For positive
functions f, g, we use the notation f(L) > ¢g(L) whenever liminf; . f(L)/g(L) = +o0, and
f(L) ~ g(L) when limy . f(L)/g(L) = 1. Also, we write f < g if there exists some constant
¢ > 0 such that cilg < f<eg.
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2. SOME TOOLS

We begin with some generalities about reversible Markov chains. Then, we recall the definition
of the polymer dynamics and derive some consequences of monotonicity. Next, we give some
estimates on convergence to equilibrium in the “plus” phase. Finally, we characterize in detail
an eigenfunction of £ with eigenvalue —gap.

2.1. Preliminaries. We will consider reversible continuous time Markov chains with finite state
space X, defined by the infinitesimal generator £ acting on functions f: X — R,

[Lf1(@) =Y ez, y)[f(y) = f(@)], (2.1)

yeX

where ¢(-, ) is a bounded non-negative function on X x X satisfying 7(z)c(x,y) = 7(y)c(y, x),
for a probability measure m on X. In the applications below, the rates c(z,y) will always be
such that the Markov chain is irreducible and the reversible invariant measure 7 is positive on
X. We refer e.g. to [1, 13] for more details on reversible Markov chains.

Let v = P(vf € -) denote the law of the state vf of the Markov chain at time ¢ with initial
condition x € X. We shall investigate the rate of convergence of v{ to 7. If the initial condition x
is distributed according to a probability  on X, we write v}’ = >~y p(x)vf for the distribution
at time t. As usual, one can associate a semi-group {F;, t > 0} to the generator £ in such a
way that [P.f](z) = [e“f](z) = > yex Vi) f(y). We also use the notation Fi(z,y) = v{(y),
and v}’ = uP;.

The mixing time of the Markov chain is defined by

Tinix(¢) = inf {t >0, max|[vf — 7| < 5} : (2.2)
rzeX

where

= vl = 5 3 ) ()

is the total variation distance. We shall use the convention that Ti,;x stands for T; mix(%e). It is
well known that with this notation one has

v — | < oLt/ Tund (2.3)

for all ¢ > 0, where |a| denotes the integer part of a > 0. The spectral gap and the relaxation
time of the process are defined by

e ) 1
b = f&.IER Varg(f)’ e = gap’ (24)

where for f: X — R,

E(fof) = m(@)f(2)[-Lf)(x) = % > m@e(@y)lfy) - f@) (2.5)

zeX z,yeX

is the quadratic form of the generator, a.k.a. the Dirichlet form, while Var,(f) stands for the
variance 7(f?) —w(f)2. Thus, gap is the lowest non-zero eigenvalue of —£. The following bound
relating total variation distance and relaxation time is an immediate consequence of reversibility
and Schwarz’ inequality:

1
Iof = 7l < 5 B\ Var (), (2.6)
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where f(o) = p(o)/m(o) and p is a probability on X. Another standard relation between total
variation and relaxation time is the identity

1
gap = — lim — logmax ||v] — /| (2.7)
t—oo ¢ z,y
Combining (2.3), (2.7) and (2.6), one can obtain the following well known relations:

Trel € Tmix < (1 —log )Ty, where 7, = minn(z). (2.8)
zeX

2.2. A general decomposition bound on the spectral gap. We shall need a continuous
time version of a general decomposition bound obtained by Jerrum et al. [11]. Consider the
continuous time reversible Markov chain defined by (2.1). Suppose the space X is partitioned

in the disjoint union of subspaces X7y, ..., X,,, for some m € N and define the generators
yeX

Then L; is the generator of the Markov chain restricted to Xj;, its reversible invariant measure
being given by m; = 7(- | X;). Let Apin denote the minimum of the spectral gaps of the Markov
chains generated by L;, ¢ = 1,...,m. Next, let £ denote the infinitesimal generator defined by

(Lol (i) = Z c(i, g)le(d) — e(@)],

for ¢ € R™, where
i)=Y, w@|Xi)clx,y).
z€X;, yeX;

This defines a continuous time Markov chain on {1,...,m} with reversible invariant measure
(i) = m(X;). Let A denote the gap of this chain. A straightforward adaptation of [11, Theorem
1] yields the following estimate.

Proposition 2.1. Define v = max; max,ex; ZyEX\Xi c(z,y) . Then, with the notation of (2.4),

gap 2 min {é B\Amin }

- 3A+3y)
2.3. Killed process and quasi-stationary distribution. Here we recall some standard facts
about killed processes, their generators and quasi-stationary distributions for reversible Markov
chains; we refer to [1] for an introduction. Given a reversible Markov chain with generator £ as
above and a subset I' C X, we consider the process killed upon entering I', with sub-probability
law defined by

(2.9)

v (B)=P"(v, € B; m>t), wzel", (2.10)
where B C X, vy denotes the state of the Markov chain with generator £ at time ¢, P* denotes

the law of the process started at x, and 7 denotes the hitting time of the set I'. The associated
semi-group P/ is given by
r By
[PLf)(x) = [ fl(e) =Y v () fly), wel”, (2.11)
yele
where the killed generator £! satisfies, for every x € T'°:

1L f1(x) = [L(f1re)l(z) = [LF(z) = ez, ) (). (2.12)

yel
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We assume that PtF is irreducible. Then £ is a negative definite, self-adjoint operator in La(m),
and its top eigenvalue —~r is characterized by

(LA SR D
TR0k T A2 e w(f2) (2.13)
f1r=0 f1r=0

where we use (-, ), for the scalar product in Ly(7), and E(f, f) is defined by (2.5).
Let gr denote the (unique, positive on I'®) eigenfunction of £!" associated to —yr. Extending
gr to all z € X by setting gr(z) = 0 for z € T, one defines the quasi-stationary distribution v/',

i.e. the probability on X given by

(y)gr ()
vp(y) = —"—~, yeX. 2.14
() (o0) (2.14)
An equivalent characterization of vp is as the limit
vr(B) = tlim P*(v € Bl > t), (2.15)
—00

where B C X, and the chosen initial point z € I'¢ is arbitrary. The fundamental property of
the quasi-stationary distribution is that, starting from vp, the hitting time 7 is exponentially
distributed with parameter ~r:

P (> t) = e Tt (2.16)
where P*I' stands for the law of the process when the initial state is distributed according to
vr. Another way of expressing quasi-stationarity is v1' P} = e ¢0 for all ¢ > 0. A general
property of 4 (cf. Lemma 3.1 below) is that yp > 7(T") gap.

2.4. Polymer model. Let @ = 9, stand for the space of all lattice paths defined in the
introduction. A partial order in € is given by

n<n <= n.<n,, v=-L,...,L. (2.17)

Given (, & € Q such that ¢ < ¢ we define the restricted space Q¢ of all paths 1 € € such that
¢ <1 <& The dynamics is defined by the continuous time Markov chain with state space Q¢¢,
with infinitesimal generator £&¢ given by (1.1) where the rates 7, +(n) are replaced by

S8 () = o e (n)1(™F € Q6F) (2.18)

This process is the heat bath dynamics associated to the probability measure 7ré\ ,LC7§ on Q%4
defined as in (1.2) with the normalization now given by

>\7 , /
Zyet = N AN, (2.19)
n'esE

Equivalently, N0 = ) (1] Q%€). This is referred to as the polymer model with top/bottom
2L 2L

constraints (¢ is the bottom, & is the top). For simplicity, when no confusion arises, we often
omit the superscripts A, (, ¢ and the subscript L from our notation in what follows. We write
vy for the state of the Markov chain at time ¢ when the initial configuration is some 7, and let
v;! denote its distribution. When the initial condition 7 is distributed according to a probability
measure p on ) we write yf as in Section 2.1.

Note that the generator £ can be written in the form (2.1) by setting c(n,7’) = rfci (m1(n =
n®T), and 7 = 7r5\ f’g is reversible. While this holds for every value A > 0 of the parameter

describing the strength of the interaction, we will only consider the case A < 1 below, which
corresponds to a strictly delocalized regime for the polymer.



10 P. CAPUTO, H. LACOIN, F. MARTINELLI, F. SIMENHAUS, AND F.L. TONINELLI

The minimal path V and maximal path A for the order (2.17) are defined by V, = —z — L
for <0, Vy, =L+ forz >0, and A = —V. Clearly, if ( = V and £ = A, then Q¢ = Q.
This case is referred to as the polymer model with no top/bottom constraint.

The following well known estimates will be often used in our proofs. We refer e.g. to [9, Section
2] for the proof of Lemma 2.2 below, as well as for other known properties of the delocalized
equilibrium measure. Let Zo, = Z3; denote the partition function (2.19) with no top/bottom

boundaries and write Z,; = Z;L’)‘ for the partition function (2.19) with £ = A and ¢ given by
the minimal non-negative element of Q, i.e. ¢, = 0 if z € E, (x has the same parity as L) and
(; = 1 if z € Op, (x has opposite parity w.r.t. L); Z; is the partition function of the polymer
with a horizontal wall at height zero. Recall that N = N(n) stands for the number of zeros
in the path n lying strictly between —L and L. Considering reflections of the path between
consecutive zeros one obtains

275 = 7007 (2.20)
Lemma 2.2. Consider the polymer with no top/bottom constraint with A € (0,1). There ezist
constants ¢; = ¢;(A) >0, i = 1,2 such that

272L 72 ~ ey LT3 (2.21)
and
m(N(np) > k) <cpe ™2, VEkeN. (2.22)
An immediate implication of (2.20) and (2.21) is that
2 2L zd A ey L2, (2.23)

for some constant ¢y > 0 as soon as A < 2. Moreover, (2.21) and (2.23) imply the bounds
m(ny >0 Vye{-L,...,z}, and 1, =0) < 7 (n, =0)
= L2(L+2)32(L — )%, (2.24)

for every x € Er.

2.5. Monotonicity. An important property satisfied by the Markov chains introduced above
is the monotonicity with respect to the partial order (2.17). A convenient way of stating the
monotonicity property is that there exists a coupling P of the trajectories of the Markov chains
corresponding to distinct initial conditions such that if n < 7’ then P almost surely v;! < v?/ for
all t > 0. More generally, one can define a coupling P of trajectories corresponding to distinct
top/bottom constraints and distinct initial conditions such that if { < ', £ < &', and n < 7/,
then P almost surely U?;C’g < U?’;C/,ﬁ/ for all t > 0. Recall that a function f : Q — R is said to be
increasing if f(n) < f(n') whenever n < 7. An event A is increasing if the indicator function 14
is increasing. The monotonicity property of the dynamics implies the so-called FKG property
of the equilibrium measures = = 75;>>: for every pair of increasing functions f,g : 2 — R, one
has 7(fg) = w(f)m(g). We refer to [7, Section 2| for a more detailed discussion of the monotone
coupling and the consequences of monotonicity.

Lemma 2.3. Let p be a probability on Q and write f(n) = u(n)/m(n), and fi(n) = vi'(n)/m(n),
t > 0. If f is increasing then, for every t > 0, f; is increasing. As a consequence, there exists
an increasing event A such that

Iy = 7l = v (A) = =(A). (2.25)
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Proof. Write v'(n) = > e 1(n0) Pe(no, n), where Py(-,-) stands for the kernel of the Markov
chain. Reversibility then gives

=Y f(no)w(n0) Pi(mo0, ) =Y f(no)Pu(n,mo) - (2.26)

10 € M0€EN

Next, let P denote the monotone coupling introduced above and let E denote expectation w.r.t.
P. Then, (2.26) coincides with E[f(v/)], and if n < 7/,

fen') = fen) = E[f (0] ) = fo)] = Elf (v]) = f(v); v = vf].
Thus, f; is increasing whenever f is. Finally, it is well known that the total variation distance
can be written in the form (2.25) where A = {n : v/'(A) > 7(A)}. Since A = {f; > 1}, A is
increasing whenever f is. O

Lemma 2.4 compares arbitrary initial conditions to the extremal initial conditions. Lemma 2.5
states a useful sub-multiplicativity property satisfied by extremal evolutions. For lightness of
notation, we state these results only in the case of no top/bottom boundaries, i.e. { =V, £ = A,
but the same applies for general (, ¢ with exactly the same proof.

Lemma 2.4. For anyt > 0 and any n,1 € Q:
v = | <AL v = .
As a consequence,
1
gap = — lim ~log|jv;" —v)/| .
t—oo t

Proof. Let P denote the monotone coupling as above. Then,

I = vl < (v?#v?)ép(v?#vtv)

L—1 —
T3 B > B — B > B)

r=—L+1h=—L
<AL ||y =]

The second point follows from the first one and the classical characterization (2.7) of the spectral
gap. ]

Lemma 2.5. For any s,t >0,
1 s = vl < Ul = vl v =]
Proof. With the same argument of Lemma 2.3, for some increasing event A
HVtAJrs - Vtv—i-sH = VIS/\+3(A) - Vtv+s(A) .
Let p be a coupling beween v)* and v, at fixed time ¢ > 0. Then

() = 1 (4) = [0204) = v ()dpln, )

_ / (VI(A) — vI(A))1(o # n)dp(n, o)

< (2 (A) = v (A)plo # )
< e = vl plo #n).

To conclude, we take p as the maximal coupling, i.e. such that p(c # n) = || — /|| O
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2.6. Relaxation in one phase. Here we obtain results concerning the polymer dynamics in the
phase 77 = 7(-|Q") with Q" defined after (1.5); cf. Proposition 2.6 below. Then, we show that
the polymer started at the maximal configuration A relaxes first to the restricted equilibrium
7t in a time O(L?19) for arbitrarily small § > 0, while it takes much longer to reach the full
equilibrium 7; cf. Lemma 2.7 and Lemma 2.8 below.

Recall the definition (1.5) of the subspace Q1 C Q, where L > ¢, and /¢ diverges as L — oo;
see (2.29) below. The corresponding restricted equilibrium is given by 7 = 7(-|Q"). Note that
this is a particular instance of the polymer equilibrium W;LC’E with top/bottom boundaries: the
top is & = A while the bottom ¢ = ((27) is the lowest element of QF. Similarly, one defines

Q™ = -7, ie. use (1.5) with 1, > 0 replaced by 7, < 0, and the equilibrium 7~ is defined
accordingly.
Since A < 1, the equilibrium bounds (2.24) imply that
1
() =7(Q7) = 5+ o172y, (2.27)
see e.g. [7, Section 2|. In particular, if ¢ diverges as L — oo, then
1
Hﬂ' - 5(7?+ + 71'_)H =o(1). (2.28)

What follows depends only marginally on the precise dependence of ¢ on L, provided that
L > ¢ > 1. For the sake of simplicity we shall fix its value as
oL) = |(log L)1]. (2.29)

This choice turns out to be convenient in the proof of Proposition 2.6 below, but we point out
that any choice of the form ¢(L) = O(L?) for small € > 0 would be sufficient to obtain the same
conclusion with a little more work.

We start by establishing a mixing time upper bound for the dynamics constrained to stay in
Q7 i.e. the process evolving with bottom boundary given by ¢ = ¢(Q"). To avoid confusion we
shall write ; (instead of 1) for the law at time ¢ of this Markov chain with state space QO and
initial condition 7. We write £ for its generator and gap™ for the associated spectral gap.

Proposition 2.6. For every € > 0, there exists Lo = Lo(g) such that for all L > Ly, for all
t > 0 and all initial conditions n € Q7T :

| — 7| < 4L% exp (- t/L2+E) . (2.30)
In particular, gap™ > L™27¢.

Proof. The last statement follows from (2.30) and (2.7). To prove (2.30) we establish that for
every € > 0, there is a constant Lo = Lo(g) > 0 such that, taking 7' = L**¢, we have

I — pgl <1-L7°, (2.31)

for all L > Lo(g), where ¢ stands for the minimal element ¢ = ((Q") of QT. Once (2.31) is
available, we obtain (2.30) (with a new value of €) from Lemma 2.4, since Lemma 2.5 (which is
also valid for the restricted dynamic) and (2.31) imply

[t/T]
Ip = < (s — 1)
< exp (= [t/T]L™%)) < 2exp (— t/L*+%) |

for any L large enough.
To prove (2.31), we divide the sites € {—L, ..., L} in three overlapping regions:

11:{_L,...,_L+£2}7 122{_L+€7'--7L_€}7 and[3:{L_£2""’L}’
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where ¢ = ((L) is given by (2.29). Let Ty = L?>™¢1, T} = L' with some &1 > 0 such that
T = L?>" > T' := 2Ty + Ty. We shall prove (2.31) with T replaced by T (this implies the
claim since by Lemma 2.4 the left hand side of (2.31) is monotone as a function of T'). Call
pwiv¢ the law of the “censored” process obtained as follows. Start from 79 at time 0 and, for
time ¢ € [0, T3] reject all the updates involving x ¢ I». For time t € (Ta,T> + T3] reject all
updates involving = ¢ I U I3, and for time ¢ € (Ty + T1,2T> + Th = T'] reject all the updates
involving x ¢ I,. From the Peres-Winkler censoring inequality [19, Theorem 16.5] one has that
u?,c stochastically dominates p/,. Similarly, MC’

other hand, as in Lemma 2.3, one has

is stochastically dominated by ,ugp,. On the

1 — 15| = ph (A) — S (A),

where A C Q7 is an increasing event. Therefore,

1 — pS || < i (A) — u§iE(A) < ||t — 15l

and the lemma follows once we show that
I — el < 1— L= (2.32)

To prove (2.32) we shall couple the two configurations nT, , 77 7 with law ,uT, , /f’ respectively.
From the analysis of the polymer with the wall [7, Section 4], it is not hard to infer that uniformly
in the boundary values at —L 4+ ¢ — 1 and L — ¢ 4 1 the system evolving in the region I has
a mixing time O(L?log L). Therefore, after a time T = L?*°1, up to O(L~P) corrections for a
large constant p > 0, for any event F, MQ’C(E) coincides with the equilibrium probability of E

in Iy with boundary conditions A at —L + ¢ — 1 and L — £ + 1. The same applies to ,uc’ (E)
provided the equilibrium is taken with boundary conditions  at —L+¢—1 and L—/¢+1. Choose
the event F that the configuration is minimal (in Q%) at both —L +¢? — 1 and L — ¢ + 1 (i.e.
Nepyer—1 = Np—py1 =0 if L—¢*is odd, and n_j o = np_p2q = 1 if L — £? is even). From
known equilibrium estimates [9, Section 2], it is not difficult to show that at equilibrium, with
either of the two boundary conditions considered above, the probability of E is bounded below by
c1 £~ for some constant ¢; > 0 depending only on \. Therefore, using an independent coupling
in the time-lag [0, 73], we have that the event FE occurs for both nT , 7]% with probability at
least c 12,

Next, conditioned on the event E we see that from time 75 up to time 75 + 77 the two
processes evolve (in the regions I; and I3 only) with the same boundary conditions (equal to the
minimal configuration at both —L + ¢2 and L — ¢2). Since T} = L¢ and the mixing time of the
system in the regions I1 and I3 (which evolve independently) is certainly at most eo(ﬂ), with
probability 1+ O(L™P) (conditionally on event E) we have that the two configurations coincide
in both regions I, I> at time T 4+ 1. Therefore if we let the system run only in I» now for an
additional time T we have a probability close to 1 to have the two configurations coinciding
everywhere. It follows that, conditionally on the event E, there is a probability of, say, at least
1/2 of no discrepancy between n@}c and n%’,c . Therefore, letting P denote the coupling described
above,

(s # 05%)

(s # 05’ | BYP(E) + 1 — P(E)
1

1—~P(E).
5 P(E)

HIU’T/ - MT’ < P
<P

N

Since P(E) > ¢/¢'? > 2/L¢, for L > Lo(¢), this implies (2.32). O



14 P. CAPUTO, H. LACOIN, F. MARTINELLI, F. SIMENHAUS, AND F.L. TONINELLI

We now go back to the model with no top/bottom boundaries, that is the law v corresponds

to the evolution with £ = A, ( = V. The next result is crucially based on estimates obtained in
[7, Section 6] for the delocalized regime A\ < 1.

Lemma 2.7. Uniformly in t < L*?(log L)~?,
() =1+0(1).
Proof. Define the event A = { Zi:—L ne < L3/?(log L)~ }. Proposition 6.2 in [7] proves that
v/ (A) = o(1) uniformly in t < L5/?(log L)~°. Since 2~ C A we have
v Q) =o0(1), t<L*(ogL)™. (2.33)

Next, let us check that

VAR = R(@F (@), 0. (2:34)
To this end, observe that since (27)¢ is increasing, using Lemma 2.3 the function

vMo | ()¢ vlMo) m((Q27)°
710) = e o) gy =) 1 ey

is increasing. Since QT C (Q7)¢ is increasing, with the FKG property for 7, this implies (2.34).
From (2.33) and (2.34) we obtain

v () = (1+0(1)y QT [(Q7)%) = (L+o(1) (@ [(27)) =1 +0(1),
where the last bound follows from (2.27). O

Lemma 2.8. For any ¢ > 0, uniformly in t € [L**%, L?(log L)™Y] :
vt =7 = o(1),
where ™ is defined by 7 = w(- | Q).
Proof. Using Lemma 2.7 it is enough to prove
[ (- 1) = 7| = o(1),
uniformly in ¢ € [L?*¢, L5/2?(log L)~°]. Consider the function f : Q — R given by

vMo | QF vMo) w(QF
F0) = o () "L 100 () 8 0L

Since Q1 is increasing, Lemma 2.3 shows that f is increasing. Therefore, the event
A={ocecQ" v (c|Q") >nT(0)}
is increasing. Using monotonicity we have
v (A1) =1 (A) /v (QF) < g (A) /v (1),

where ;' denotes the evolution constrained to stay in Q7; see Proposition 2.6. Therefore,

I C190) = = (A1) = (4) < ZEk — wt (4).

The conclusion now follows from Lemma 2.7 and Proposition 2.6. O

The full power of Lemma 2.8 will be seen in the next sections. One of its consequences is the
fact that the mixing time T ,;x can be bounded in terms of the relaxation time via

Thix < Lt 4 cTrerlog L, (2.35)
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for some constant ¢ > 0. Indeed, (2.35) follows quite easily from Lemma 2.4, Lemma 2.8 and
(2.6); see Lemma 4.1 below for a more subtle application of the same reasoning. Note that, since
Tre > L%/ the bound (2.35) improves considerably the standard estimate (2.8) by replacing
the factor —logm, = O(L) with a factor O(log L).

2.7. Characterization of the principal eigenfunction. What follows refers to the model
with no top/bottom boundaries. Recall that A, (resp. V) denotes the maximal (resp. minimal)
configuration in Q. A function g : Q +— R is called antisymmetric if g(—n) = —g(n) for all n € Q.
The following result gives a precise characterization of one eigenfunction corresponding to —gap.

Proposition 2.9. There exists an increasing antisymmetric eigenfunction g of L, such that
9llLy(ry = 1. It satisfies

Lg=—gap g. (2.36)
Moreover, when L tends to infinity

9(A) = llgllLe =14 0(1)

and
lg = (Aa+ — Lo-) L, (x) = o(1). (2.37)
Proof. By decomposing 1, — 1y, on a basis of eigenfunctions of £ one sees that
FP(1p—1
g := lim (L v)

t—oo || P(1n — 1v)[lLy(r)

is an eigenfunction with unit Ly norm. It is increasing and antisymmetric as P;(15 — 1y) is
antisymmetric and increasing for all ¢ (P; preserves monotonicity and symmetries). To prove
(2.36), it suffices to show that the projection of 1, — 1, on the eigenspace of L associated to
—gap is non-zero. To do so, first observe that by reversibility,
1
m(A)

Then, by the second point of Lemma 2.4

1P (A8 = 1)Ly ) = 21 = /.

1 im L
tli)r& : log || P(1 — 1\/)HL2(7r) = tlggo n log || P(1n — 1V)||L1(7f)
o1
= thm —log |v}* — v/|| = —gap,
—o0o T

(where we used equivalence of the norms in finite dimensional spaces).

We now estimate the Lo, norm of g. Let € > 0 be small and fixed, and let fy be such that
L*te < tg < LP/27¢. The function g is an eigenfunction for P, = exp(toL), with eigenvalue
e~ togap  Therefore

e 8P g(A) = E [g(vyy)] <7 (g) +29(A)llvgy — 7,
where the last inequality follows from the fact that for any two measures u, v and any function
[
u(f) = v(NI <2 fllielle = vl
Hence, by Lemma 2.8 and the fact that gap=! > ¢ (cf. (1.4)):

™ (9) B
e—togap _ 2||,/t/(\) — | 7 (g)(1 + 0(1)). (2.38)

g(N) <
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Moreover, by symmetry and Jensen’s inequality
L=m(g%) =2 ) w(n)g(n)?=2m(Q)r" (%) = 2r(Q)x*(9)?,
neQ+
so that
7t (g) < (2m(Q7) TV =1+ 0(1).
Therefore g(A) <1+ o(1) (and it is trivial to notice that ||g||L., = [|gllL,x) = 1)-

We turn to the proof of (2.37). First notice that by (2.38) one has 77 (g) > (1+o0(1))g(A) > 1+
o(1) so that

7 (g) =14 o(1). (2.39)
Next, we prove that the variation of g within Q7 is small:
Var,+(g) = o(1). (2.40)

Indeed, Var,+(g9) = 77 (g%) — 77 (9)? < g(A)? — 77 (g)? and the claim follows from (2.38). Next,

lg = 1o+ + Lo |lL,(x) < 1o+ (g — DL, + 1o (g + DL, (r) + 910\ @+ uo—) L, () -

The first two terms of the right-hand side are equal by symmetry. Adding and subtracting
7 (g), and using Schwarz’ inequality,

I+ (g = Dl < (@) [ (9) = 1]+ v/Varr(g)| = o(1),

where the conclusion follows from (2.39) and (2.40). The third term [|glo\+uo—)llL,(x) 18
smaller than [|g||L_m(Q2\ (2T UQ7)) =o(1). O

3. METASTABILITY

In this section we first prove Theorem 1.5, which is mainly a consequence of the technical
lemmas of the previous section and then move to the proof of Theorem 1.3 and its corollary.

3.1. Proof of Theorem 1.5. We use the notation 7' = L?>™%. Equation (1.11) is an easy
consequence of (1.9) and (2.28). Indeed, assuming (1.9), for ¢ > T, one has

1 _|_ t/Trel 1 _ _t/Trel 1
1PN, ) — 7| = H[eiﬁ + %ﬂ - WH T o(1) = ge T+ o(1). (3.)

To prove (1.9), one writes

1 7t/Tre1 1— t/Trel
oo - [ =

1 + eft/Trel n 1—e t/Trel
2 } H

This is just triangular inequality, combined with the observation that v Pt 7 = ). The first
term on the right hand side is smaller than ||[vp — 77| (as P,—p contracts the norm) which is
itself small, by Lemma 2.8 and the definition of T'. It remains to estimate the second term i.e.
to prove (1.10).

To do this, we use the fact that the density of 71 w.r.t. 7 is very close to g + 1, where g
is the eigenfunction described in Proposition 2.9, so that the density of 77 P, must be close to

< |[pPr - W+pt,TH o agz | (3.2)



DYNAMICS OF A POLYMER WITH REPULSION 17

Pi(g+1). Using reversibility, one can express the densities as follows: d”dtrp t = Pt%. Then we
rewrite the second term in (3.2) as an L; norm (omitting a harmless factor 1/2)

HPt—TdFJr - (1o+ +1g-) — e Tl (1g+ — 1g-) ‘
dr 27(Q1) 27 (1) Ly (w)
drt 1 1
< Pi - (1 160-) — 7t/Trel
H T4 27 (1) (lo+ +1o-) 27 (2F) c g L1 (7)
1 _
+ 27 () le™ /Tt (1g+ — 1g- — ) ||, (m)-

The last term above is small by Proposition 2.9. From (2.27) we know that 27(Q") =1+ o(1).
One can then estimate the first term
drt 1

Prp—— — ——(1g+ +1g-) —
H T 27T(Q+)( o+ +1a-)

e_t/Trclg

27 (QF) L1 (r)

dr ™
<o +10) = Uy + || B (T —1-9))

where we used the triangular inequality, the fact that P;1 = 1, and

which follows from T' = 0(T}e1). On the right hand-side of (3.3), the first term is small by (2.28)

and the second is bounded by H% — 1 — gllL, (x), Which is small by Proposition 2.9. O

Lo To)s (33)

3.2. Proof of Theorem 1.3. Theorem 1.5 gives some intuition on why the result should be
true, and it will be used to determine the time of the jump from one state to the other. However,
one needs another key ingredient to get the result, namely the description of the quasi-stationary
distribution. The reason for this is that starting from the quasi-stationary distribution, a killed
process dies exactly at exponential rate; see Section 2.3. Therefore, most of our effort will fo-
cus on stochastic comparison with the quasi-stationary distribution. Let us first give a brief
roadmap to help the reader through the proof of Theorem 1.3.

Step 1. The sets ST of Theorem 1.3 for which we have the desired exponential hitting time
description are constructed by successively refining a first attempt. One first defines S%* as the
sets of polymer configurations where the eigenfunction ¢ in Proposition 2.9 is positive (negative)
and one verifies that their equilibrium probability is 3 + o(1). Then one examines the Dirichlet
problem associated to the process killed in S%~ (S%*) and one proves that the corresponding
eigenvalue 7y is of the same order as the spectral gap apart from a crucial unspecified multiplica-
tive factor in [1/2,1]. Similarly one verifies that the corresponding quasi-stationary measure is
very close to the equilibrium measure 7 conditioned to be in S* (S%7). In this way we get the
exponentiality of the hitting time of e.g. S%~ starting from 7+ with a rate which is, modulo a
multiplicative factor in [1/2, 1], the spectral gap (see Lemma 3.3).

Step 2. Next one appropriately defines new sets S+ C S% in order to guarantee that this time
the corresponding Dirichlet eigenvalue ~; is equal to (% + o(1))gap, and that the hitting time of
SLF starting from equilibrium conditioned to S+ is exponential (with the correct rate). Again
one of the key points is to show that 7™ is close to the quasi-stationary distribution associated
the process killed on entering S%~, and that the equilibrium probability of ST is still % +o(1).
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Step 3. Finally, one defines the sets S>T c Sb* in such a way that: a) the hitting time of
S2F starting from any configuration in S>* (and not just from the conditional equilibrium) is
also exponential with the correct rate % gap; b) the equilibrium probability of S%¥ is still %4—0(1).

It is now time to begin the implementation of the above strategy. Let

SOt = {neq, g(n) >0}, (3.4)
where g is the eigenfunction defined by Proposition 2.9 and set S~ = —S%*. From Proposi-
tion 2.9,

[1s0.+ — Lo+, (x) = o(1). (3.5)

In particular, m(S%%) = 1/2 + o(1). Let S~ C S%~ be a decreasing event. We consider the
quasi-stationary distribution vt := vg- of the process killed when it hits S~. Let P = Pts_,
resp. £* = L£5, denote the semi-group, resp. the generator, associated to this process (see
Section 2.3), —vyg- = —7 be the largest eigenvalue of £* and 7= = 7¢- be the hitting time of
S~. From (2.16):

P (r > t) =, (3.6)
Our first step is to prove that if S~ has non-negligible measure, then ~ is of the same order of
the gap. More precisely:
Lemma 3.1. For any S~ C 8%, one has 7(S7) < yTya < 1.

Proof. The bound 7(S™) < 7T is rather standard, but we include its proof for the sake of
completeness. Let fo = gg- denote the minimizer in the variational principle defining v = v4-;
see (2.13). Then

Varz(fo) = (fo. fo)r — <f071(s—)c>fr 2 (fo, fo)ym(S7),

where we used the Cauchy-Schwarz inequality for < Jos 1 57)C>72T. Therefore

(fo, fo) . €(fo, fo) -
y=—"—2n(S) ——=<>7(5)gap.
D 7 Va7 T
As for the bound 7Ty < 1, 79~ being a non-decreasing function of S~ (for the inclusion),
it is sufficient to prove the result for the maximal case S~ = S%~. Let g be the eigenfunction

defined in Proposition 2.9. From (2.12), for all n € (S%7)¢

~(L*g) o)) = =(Lo)m) + > clnn)gl) < — (Lg)(m) = gap g(n),
n'eS0—
where we use the fact that g(n') < 0 for ¥ € S%~. Plugging this into (2.13), and using

950, e > 0, one gets

<—E*g| 9 >
(50,7)0’ (SO,f)c
v < (& ) T < gap.

‘(SO,—)C

O

Next, we prove that the quasi-stationary distribution v+ for the process killed on S~ is very
close to T if S~ has probability close to 1/2.

Lemma 3.2. Uniformly for all decreasing events S~ C S%—,
ot = 7] < (2 - 4m(S7)) + o(1).
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Proof. We use triangular inequality to get

lv* =7t < ™ = a( (ST + llmt == (ST (3.7)
We start with the first term. First, from (2.15) one has the characterization
N
+_ N
A N EOIR
Since the operator P;* preserves monotonicity (S~ is decreasing), arguing as in [19, Lemma 16.6],

the density W dPAPE] 55 seen to be an increasing function for every fixed ¢t > 0. Hence, passing to

the limit ¢ — oo dvt /dr is an increasing function. Therefore,

A= {77 € (8S7)¢, such that NHZT(S?()S)C) > 1}

is an increasing event. From standard properties of the total variation distance

ot = w157 = v (4) — w(A [(S7)°).
We shall prove that vt (A) is smaller than 7 (A) + o(1) by the use of monotonicity and a chain
of comparisons. Recall the notation T = L**9 (§ € (0,1/4)). We first compare v+ to vT Pr:
remark that
I/+PT = VJer*: + V+(PT — Pj*w)
where the two terms of the decomposition are positive measures. From quasi-stationarity one
has v Py = e "Iyt and therefore the total mass of the second term above is 1 — e~7". Hence

H dv*(Pr—Pp)]  dv*
2 dm dm

The last equality comes from Lemma 3.1 and the fact that T,¢ > T. Next, §, Pr stochastically
dominates v Pr so that [ Pr|(A) < [0 Pr](A). Hence, from Lemma 2.8 and (3.8):

vT(A) < v Pp(A) 4 o(1) < 0, Pr(A) + o(1)
<7 (A) + |60 Pr — 7t + 0(1) = 7 (A) 4 o(1).
Therefore, going back to (3.7)
[T =7l < vT(A) = a(A[(ST)) + 7T =7 (- [(ST))] (3.9)
<Sa(A) = m(ANST)) + |77 =7 (ST +o(1) < 2™ =7 (- [(ST))] +o(1).

To estimate the right-hand side of (3.9), notice that

lx* = a( (SN < 7™ = (- (S )+ (- [(8%7)) =7 (- (ST, (3.10)
and the first term is o(1) by Proposition 2.9. Moreover, since S~ C S%~

g0 gy RS~ w(5%7)°)
[l [(5%7)) = w(- [(ST))l (5

_1/2—7(S7) +o(1) _
= TG S s o). (3.11)

Combining (3.9), (3.10) and (3.11), the desired result follows. O

v+ Pp — || = (1- e*WT)‘ <1-e 7T = o(1). (3.8)

Now one uses the fact that v and 7+ are close in total variation distance to estimate the
jumping time to S~ starting from either A or from 7. For the rest of this section, one defines,
in analogy with 77, the hitting times 7%~ (resp. 74F), (i = 0,1,2) of the sets S%~ (resp. S*T)
to be defined.
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Lemma 3.3. Uniformly for all t > 0 and all decreasing S= C S%~, setting v = vg-

() PN r= >t —e " < (2—47(S7)) + o(1)

(i) [P™" 7~ > t] — e | < (2 —47(S7)) + o(1).
In particular, for S~ = S%~, setting yo = ygo0.- :

(iii) PM [79%7 > t] = e + 0(1)

(iv) Pt [7’0’_ > t] = et 4+ 0o(1).
Proof. Ttem (ii) follows from (3.6) and Lemma 3.2. Indeed,

P 77 >8] P [rT > 4] < 7t = v
For item (i) (lower bound), we use the fact that S~ is a decreasing event to get that
P [7'_ > t] > Pt [7'_ > t] =e N,
For the upper bound it is sufficient to prove the result for t > T = L*t9 since v~ ! > T (a
consequence of Lemma 3.1 and (1.4)). One defines
7o =inf{t > T, n(t) e S }.
Then, by the Markov property and quasi-stationarity
PN [r7 >t] KPM[FT > t] =P [17 >t = T] < ||0aPr — v + e
<|oAPr — 7t || + |7t — vt ||+ e +0(1), (3.12)

where we use e 7¢=T) = ¢~ 4 (1), which follows from v~ >> T. The result then follows from
Lemma 2.8 and Lemma 3.2. Items (iii) and (iv) are consequences of (i) and (ii) and the fact

that 7(S%7) = 1/2 + o(1). O

From the previously stated results, one may conclude that there exists dr, a decreasing se-
quence tending to zero when L tends to infinity, such that for every ¢ > 0:

PN 797 > ] < e 44y,

S (3.1
T(QY) >1/2-6L
7 (S%T) > 1 - 6p.
Given such a d7,, one defines St to be
Sht=80"n{net : P[0 >t] e —3(0)Y4, V>0,

and St~ = — gL+,
Lemma 3.4. The set S¥T satisfies

r(Sth) = % +o(1l), and (3.14)

P7 [t > t] =e 7 +0o(1), wuniformly int >0, andn € ST

Proof. The lower bound in the second point follows from the definition of Sb*. For the upper
bound, it is just a consequence of the fact that
P[0 > ¢] <P [P0 >t <e "+, (3.15)

for any £ € Q, by monotonicity, where the last bound is the first line in (3.13).
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We turn to a proof of the first point. For ¢t > 0, one defines
Shhti={neQt: P1[r" >¢t] e~ 25?4}.
From the second line in (3.13), and using (3.15) for all £ € S+
e 0t 5, <P [707 > ¢] <at(SVH) (e +6) + (1 -7t (ShTh)) (e 0! — 25?4) . (3.16)
This gives —207, < 2(5?477*(81’*”5)) — 2(5?4, ie.
At (St > 1 - 63, (3.17)

Next, define S; := SLtasy g 1, i € N. We claim that for all L sufficiently large:

16,7
SYto (] Sinst. (3.18)
=1

Eraded —1/4 1
Indeed, let n € ;25 ~S;. If t <6, 'y /2, then clearly n € S

In particular,

705, /4] if L is large enough.

_ /
PO > 4] = PO > [tyo0; V16051 > emot=ort _ggl/t 5 oot 354 (3.19)
If on the other hand ¢t > 6;1/470_1/2, then

e 0 — 3574 <0 < PO > 1,

provided ¢y, is small enough, i.e. L is large enough. This proves (3.18). Moreover one has, from
(3.17) and the fourth line of (3.13),

( A g S = 1-5/t -0
From the third line of (3.13), one gets that
w( A g S‘”) > (1— 0/ —6,)(1/2—61).
This last estimate together with (3.18) implies the first statement of the lemma. O

The previous results allow us to compute the value of v = vg1,-.

Lemma 3.5. Let —v; be the largest eigenvalue of Esl’_, the generator of the process killed when
it hits S»~. We have
Y1 Trel = 1/2 + 0(1).

It is important to recall that, in contrast to 1, the eigenvalue 7, of the process killed in £5""
was estimated only up to a factor 2 (cf. Lemma 3.1).

Proof. The inequality v1Te1 = 1/2 + o(1) comes from Lemma 3.4 and Lemma 3.1. Recall the
definitions
7 = inf {t

70t = inf {t

0,n(t) € S¥},

P
>0,n(t) € %"} .
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According to Theorem 1.5, (3.5), Lemma 3.1, Lemma 3.3(i) and Lemma 3.4, one can find a new
sequence dr, going to zero such that

NSO < (1 — e*t/Trel)/Q +dr forevery t>0,
P[0t > 4] > e — 5, forevery t>0 and e S5,
PP ] <M s,  forevery ¢30,

Next, define
FoT =inf {t > V7« p(t) € SO}
to be the first time the process enters S%* after entering for the first time S»~. One has
1 — e /T Ar( a0+ AT 1,— ~0,4
f—l—(&kyt (SPT)) =P 717 <, 70T > ]

> BN 1{rh < )P ) [0 > t]} >P [T < ] min P [79F > ¢]
nes-T

> (1—e M —5p)(e7™0 —61). (3.20)

We use this inequality for ¢ = 'yl_léi/?) and get (using the fact that z — 22 < 1 —exp(—z) < z
for z small enough)

017 )@ Ta) = (8% = 67° = 81)(1 = 6,/ * 10/ — d1) — b1
As 1 < /7 <3 (for L large enough, cf. Lemma 3.1), all of this gives us
1

2((1— 617 = 523 (1 - 3613 — 51) — 677
which ends the proof. O

Y1Trel <

Once again assume that d7, is a sequence going to zero, this time such that one has for every
t>0

P b > 4] > et - 4y, (3.21)

Note that the sets ST'F are not yet good candidates for the sets ST of Theorem 1.3, the reason
being that (3.21) and Lemma 3.5 say that the hitting time of S»~ is exponential with the correct
rate, but only if one starts from either the maximal configuration or from 7", while we want
this to hold uniformly in the initial condition in S*. We need therefore a final step in order to
fix this problem. We set

G2t = {77 e St PI[rhT > t] 2 et —35," v > 0} :
and define S>~ = —5%%. The same computations of Lemma 3.4 prove
Lemma 3.6. 7(S%>T) =1/2+ o(1).

Now we are ready to finish the proof of Theorem 1.3, with ST := $%%. Let —v5 be the largest
eigenvalue of the generator £5%7 of the process killed when it reaches S%~. From Lemma 3.1,
one has 7(S%%) gap < 72 < 1. Therefore, Lemma 3.6 yields

Y2 = (1/2+0(1)) gap. (3.22)
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Let 72~ be the hitting time of S*~. For any n € S*>¥ (this is actually true for any 7 in Q), we
get from monotonicity, Lemma 3.3(i), Lemma 3.6 and (3.22)

ot
PI(r2" > 1) PO > 1) e 4 o(1) + (2 4n(577)) < ¢ Tl 4 o(1),
where o(1) is uniform in . On the other side, the definition of S>* and the obvious bound
72~ > 71~ give that for any n € §>+
ot
P (7%~ > t) > P rh™ > 1) = e M 4 o(1) = e el 4 0(1),

where the last inequality comes from Lemma 3.5. This ends the proof of Theorem 1.3. U

3.3. Proof of Corollary 1.7. We use the same notation as in the previous proof. We set
[ := (5% U S?7)¢ and denote the local time spent by the Markov chain (1s)s > o in I' by

t
H, = Hy(T) := / 1, (s)erds. (3.23)
0

Notice that, if 7% := 7(- | S*7), then ||#%* — 7T || = o(1). Equation (1.10) implies that there
exists a sequence 7, going to zero such that

Pﬁ2’+(7]3 el)<dy, Vs=0.
Integrating between zero and (5;1/ 2Trel one gets

B [ Hyoroy | <01 T

Trel

We set
Bt . {77 c §2+ . En {H o,

6L rel

1/4
} < 6L/ Trel} .
By Markov’s inequality we see that
7~r2,+(33,+) >1-— 52/4

which immediately implies that 7(S%%) = 1/2+0(1) since 7(S%*) = 1/2+40(1). Using Markov’s
inequality again we obtain

6; 1/QT}EI

P H >0/ Ta| <8%, e st

Moreover, by Theorem 1.3, there exists a sequence ¢} going to zero such that

1

P? 727 € (0,0 Tha] U 16, V*That, 00)| <67, v e S,

On the event {72~ € [5}/16Tr61,521/2Tr61]}, one has Ho2- < Hy 1y, 1 and hence, for every
L re
ne S,

P [Hfz,_ > 5%1672’—] <P [H g > &/gTrel] +6, <5/%+ 6.

5L rel
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4. MIXING TIME UPPER BOUND

In this section we prove Theorem 1.1. Our approach will also yield a proof of Theorem 1.2.
The main ideas of the proof can be sketched as follows.

Step 1. Lemma 2.8 shows that after a burn-in time O(L?"¢) the distribution ' has a smooth
density w.r.t. the equilibrium 7. The first step consists in using this fact together with (2.6)
and Lemma 2.4 to reduce the mixing time upper bound to a lower bound on the spectral gap
of the chain.

Step 2. To bound the spectral gap we decompose the polymer configurations using the variables
oy = sign(n,) introduced in (1.7). From the decomposition estimates in Proposition 2.1, we
shall roughly obtain that the spectral gap of the chain is bounded below by gap, x gap,, where
gap, denotes the spectral gap of the heat bath dynamics for the variables o, while gap, stands
for the spectral gap of the polymer with a wall (i.e. the polymer constrained to be non-negative).
From (7], we know that gap, = Q(L72).

Step 3. To prove a lower bound on gap, we shall perform a second decomposition, this time by
fixing the number of crossings (i.e. the number of sign switches) in the configuration . Another
application of the bound from Proposition 2.1 will then show that gap, is roughly bounded
below by a product of two spectral gaps, say gapil) and gapf). Here gapg) = min, gap, .,
where gap, ,, is the spectral gap of the dynamics on the variables o constrained to have n

crossings, while gapg) denotes the spectral gap of a birth and death chain associated to the

number of crossings. We establish a lower bound gapg) = Q(1). Moreover, we show that when
n =1, one has gap, ; = Q(L‘5/ 2). To prove a similar bound for every n we introduce a new
dynamics involving a fixed number n of crossings: with rate 1, independently, each crossing
equilibrates its position between the two neighboring crossings positions. If gapg, denotes the
spectral gap of this process, a comparison argument shows that gap, ,, > gap, ; X gapeq-

Step 4. The final step consists in obtaining the lower bound gapg, = Q(L™°). The first ob-
servation is that if n < elog L this estimate can be obtained by means of a direct coupling
argument. The proof of the estimate for larger values of n is based on a block dynamics argu-
ment which allows us to reduce the problem to the case of n < elog L crossings. The analysis of
the block dynamics uses a further coupling argument. It is worth observing that the coupling
arguments used here make crucial use of the heavy tailed nature of the distribution of excursions
at equilibrium; see Lemma 2.2.

Before starting the actual proof, let us pause for a few remarks. The lower bound on gap,
described in Step 3 and Step 4 above is sharp (up to O(L?) corrections). As detailed in Section 4.5
below, Step 3 and Step 4 will essentially prove Theorem 1.2. On the other hand, the final bound
Tmix = O(LP/?72%¢) for Theorem 1.1 is likely to be off by a factor O(L?). As explained in
Step 1 above, this comes from the use of a decomposition estimate that involves the product
gap, x gap, rather than the minimum min{gap,,gap, }, as it would be the case if one could
efficiently decouple the mode associated to the variables o from the rest.

The following four subsections will develop the four steps described above in the given order.
However, we warn the reader that, because of various technical obstacles, the above plan will
not be followed very strictly and several detours will be needed.

4.1. Reduction to spectral gap. We start with the implementation of Step 1. For later
purposes it is necessary to consider a variant of the original dynamics which avoids (very unlikely)
configurations with too many crossings or too many zeros between consecutive crossings.
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Call x the number of crossings in a configuration #:
L—2

X = > 1ne=0, me1 # not1)- (4.1)

r=—L+2
Note that only sites z € Er \ ({—L} U {L}) appear in the summation. Define v, = 1(n, =
0) Nx—1 7é 7]:0+1)7 so that X = ZQZ;;E[A_Q Yz and write

o=—-L, &=L, (4.2)
and if 1 < j < x, let & denote the position in {—L + 2,...,L — 2} of the j-th “1” in the
sequence {y_ry2,...,vr—2}. Thus, &,..., & denote the positions of the internal crossings.

Finally, denote by N(&;,&;+1) the number of zeros in the path 7 strictly between &; and &;;.
See Figure 2.

FIGURE 2. A configuration n of the polymer with x(n) = 4 internal crossings in
positions &1, &2, &3, &4. Note that in this case N (&, &) = N(&2,&3) = N(€3,&) =
0, and N(&1,&2) = N(&4,&5) = 1. Below, the corresponding configuration of signs

o = sign(n).

Fix a constant ¢, > 0 and define the event

Q° = {77 €Q: x(n) <cologL, and _max N(&,&+1) < co logL} . (4.3)
=U,.., X
Clearly n € (2°)¢ implies that there are at least ¢,log L zeros in the path 1. Since A < 1, the
bound of Lemma 2.2 shows that the number of zeros is exponentially integrable at equilibrium.
Therefore, for any p > 0, taking ¢, = ¢,(p) large enough, we have

Q%) =1+ 0(L7P). (4.4)

The reason for introducing the restricted set 2° will be apparent in the sequel. For the moment,
we point out that the restriction y < ¢, log L is essential for our estimates in Section 4.4, while
both restrictions x < colog L and N(&;,&+1) < ¢olog L will be needed in the estimate of the
parameter v appearing in the decomposition of the spectral gap; see the proof of Proposition 4.2
and Proposition 4.4 below.

Next, consider the polymer process restricted to the set 29, i.e. the continuous time Markov
chain with state space Q°, and generator (1.1), where the rates 7, +(n) are replaced by

ra(n) = rex(n) 1" € Q°). (4.5)

Let also m° denote its reversible invariant measure, which is easily seen to coincide with 7(- | 2°).
Let T2, denote the relaxation time of the process defined above.
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Lemma 4.1. Assume that T2, = O(LP) for some p > 0. There exists ¢ > 0, such that for any
e >0 and for all L > Lo(e):

Tix < L*T 4+ ¢T2) log L. (4.6)
Proof. Let t = L?*¢/2 4+ s with s = c1Ty, for some c; to be fixed below. We prove that
v = v/l < 1/2. (4.7)

From Lemma 2.4 and Lemma 2.5, (4.7) implies that Tpix < co(L***/2 + 5)log L, for some other

constant cg, which implies the lemma. To prove (4.7), we first introduce some notation. We

write v,° for the distribution at time u of the state of the Markov chain restricted to 2°, when

the initial configuration is some n € Q°. If n ¢ Q° we define 1v,]"° = §, for all u. Next, we write
= >, u(nvi® for a probability measure p on Q. Using symmetry we can write

+ + + + -
I =l < 20w = v I+ 20w — v 2+ i —vf ). (4.8)

We start with the observation that

v =

+
vy — v < v =7l = 0(1),

l//\
where the first bound is obtained by writing vs"° — V;r = [(wd—vd ) p(n,n") with p the maximal
coupling of v{* ; and 7T, and the last bound follows from Lemma 2.8.
We turn to the last term in (4.8). Let 71° = 77 (-|Q°) and observe that

=o(1).

This last bound follows easily from (4.4) and (2.27). Moreover, the bound (2.6) applied to the
process restricted to Q° yields

+—7T

7

||V17Lr+,o7o . 7TO|| < Ce—u/Troel ’

for some ¢ > 0 and for all u > 0. Therefore, the third term in (4.8) can be made smaller than,
say, 1/4 by taking c; large enough in the definition of the time s. It remains to prove that the
second term in (4.8) is o(1). Since the initial condition is sampled from the same distribution

7+ we can couple the two processes (V7 ), >0 and (l/ff’o)u >0 in such a way that they coincide
until the first time when the unrestricted process exits from the set Q°. (Note that this time
can be zero.) Thus,

From (2.27) we know that 7 () < (2 + o(1))7(no), so that the time-invariance with a union

bound implies

Tt

Hys _l/;r

| < 2sL(1 —m(Q2%)(2+0(1)),

where we use the fact that the average number of updates up to time s is bounded by 2sL. Since,

by assumption, s = O(LP) for some p, we can use (4.4) to conclude that |7 —V§+’°|| =o0(1). O

The following three subsections will focus on the upper bound T, = O(L>/?t2%¢). Once this
bound is established, Theorem 1.1 will follow immediately from Lemma 4.1.



DYNAMICS OF A POLYMER WITH REPULSION 27

4.2. Decomposing along crossings configurations. Recall the definition of the variables
o € {—1,+1}9% given by o, = sign(n,), where Oy, is the set of sites in {—L,...,L} with the
same parity as L + 1. Note that the field o specifies uniquely the field £ defined after (4.2),
while & specifies o up to a global sign switch; see Figure 2. The space €2° can be decomposed
into disjoint subspaces

0° =U,02, (4.9)

where Q2 denotes the set of n € Q° such that sign(n,) = o, for all z € Op. Let S, denote the set
of all o € {—1,4+1}9L such that Q2 # 0, i.e. the set of o € {—1,4+1}°L such that x(o) < ¢,log L,
where x(-), defined in (4.1), is seen as a function of o = sign(n). Consider the continuous time
Markov chain on S, with infinitesimal generator

Go(o) = Y 02(0) [p(0") = p(0)] (4.10)

zeOp,

where ¢ : S, — R, ¢” is the configuration o flipped at x, i.e. it is defined as o everywhere except
at © where it equals —o,, and the rates 6, (o) are given by

0.(0) = D 7(n| Q) [re () Lo (™) = 0*) + 17 _(n) Lo(n™) = 0")] . (4.11)
neQy

The rates 77 4 are given in (4.5). Note that the measure

vo(o) = Y w(n]Q°), (4.12)

neqQg

is the reversible distribution, i.e. v,(0)0,(0) = vo(0%)0,(c®) holds for all x € Of, and o € S,.

In words, the process with generator G is described as follows. Attach independent rate 1
Poisson clocks to all sites x € Op,. Let o be the current configuration. When site = rings, choose
a configuration 7 sampled from the distribution 7(-|Q%) and set 7 = n®" with probability
o +(n), 0" = 1™~ with probability ry _(n), and 1’ = n with probability 1 — ¢ , (n) — 75 _(n).
Finally, update o to o’ given by o/ = sign(n.,). Let gap®° denote the spectral gap of this Markov
chain.

Proposition 4.2. There exists ¢ > 0 such that for all L:
%1 < cLP(log L)? (gap®) ™"

rel

Proof. We apply Proposition 2.1 with the decomposition (4.9). To each o we can associate the
continuous time Markov chain with state space 29, defined by the generator (1.1) with the rates
Tz +(n) replaced by

r () =7 (10" € QF), (4.13)
where the rates 79 | (1) are defined in (4.5), with reversible equilibrium measure 7°(- | ). Call
gap? the spectral gap of this Markov chain. For a given o, this corresponds to independent
continuous time Markov chains for each interval {;, ... &1}, where the crossing positions &;
have been defined in (4.2). On a given interval {&;,...,&+1}, we have a polymer dynamics
with a horizontal wall constraint (polymer above or below the wall depending on the sign of
the field o inside that interval). Moreover, within each interval the polymer is constrained to
have less than c,log L zeros. Let gap®® denote the spectral gap of this process on the interval
{&,...,&+1}. From the independence recalled above, one has

gap’ = min gap”™’, (4.14)

=U,...,
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where x is the number of interior crossings defined in (4.1). It follows from Lemma 4.3 below
and (2.8) that (gap®)~! = O(L?log L), uniformly in o € S,.

Next, observe that the generator G in (4.10) coincides with the generator £ from Proposi-
tion 2.1 for the present choice of the decomposition. We can then use the bound of Proposition 2.1
with A = gap®°, and Ay, = mingcs, gap”:

oIS C (gap®°) ' max{1, L? log L(gap® + )}, (4.15)
where ¢ > 0 is a constant, and
L-1
y = max max 70 Lo(™h) = 0%) 415 _( L™ ) = 0%)] . (4.16)
€S, nENS oo T4 ’ ’

It is immediate to check that gape is smaller than a constant, so that T?, < cL?log L (1 +
7) (gap®°)~!, by (4.15). It remains to give an upper bound v = O((log L)?). From the definition
(4.16), we see that 7 is bounded above by the maximum over n € Q° of the number of sites
x € O, such that n,—1 = .41 = 0. By definition of the set Q°, the latter quantity is bounded
by (colog L)? in our setting. This ends the proof. O

We turn to the lower bound on the gaps defined in (4.14), that was needed in the proof of
Proposition 4.2. In Lemma 4.3, we prove upper bounds for mixings times and (2.8) allows us
to get the corresponding lower bounds for the spectral gap. Consider the polymer dynamics
under the constraints N(n) < M (where N(n) is the total number of zeros and M is a positive
constant) and n > 0, i.e. let I'; 5; denote the set

F+7M:{77€Q : N(np) < M, andanOforalla:},

and write p; for the law at time ¢ of the polymer dynamics restricted to I'y ps. This is the
continuous time Markov chain with generator (1.1) with rates replaced by 7, +(7)1(n®* € Ty a/)
and with reversible measure (- |I'y ar).

Lemma 4.3. There exists a constant ¢ > 0 such that for anyn € I'; yr and for any M > c log L:
||:0¥ —7m(-|Tym)]| =0(1), T= cL? log L.

Proof. Let u; denote the evolution without the constraint N(n) < M, i.e. the Markov chain
with generator (1.1) with rates given by 7, +(7)1(n®* > 0) and with reversible measure 7% =
7m(-|n = 0). The mixing time of this “wall” constrained model has been analyzed in [7, Theo-
rem 3.1], where it is shown that, for some constant ¢ > 0, for all initial n > 0:

i =7l < e L2 exp (- (4.17)

L)
cL?)
As in (4.4), standard equilibrium estimates imply that for any p > 0 one can choose ¢ > 0 such
that for all M > c log L:

PN > M) = |7 = 7(-| Ty )| = O(L 7). (4.18)

Next, observe that by monotonicity g is stochastically dominated by p;. Let 777 denote the
hitting time of the set N(-) > M for the process with law (11{): > 0, and introduce the event

Gr:={n=0: P(r"<t)< L '}.

Note that, for fixed ¢, G; is an increasing event, and therefore pd(Gy) < pd(Gy), for any s,t > 0.
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Let us fix now ¢t = ¢; L?log L. For any p > 0, using the time-invariance and a union bound
with the fact that the expected number of updates up to time t is bounded by 2tL, one has

> m(P(r < t) < 2ALTY(N > M) = O(L*?),
n

where we use (4.18). Markov’s inequality then implies that
T(GS) = O(L°7P).
From (4.17) we then deduce that if ¢; is sufficiently large (in the definition of t):
pl(GY) < i} (GF) = O(L°7P). (4.19)
On the other hand, writing p1,(A4) — 7% (A) = Doy pi () (pf (A) — 7@ (A)) for any set A one has
1p% — 7l < Y plm)llp} — 7l + P} (Gy) -
n'€Gy
To estimate the first term above, note that the processes with laws (1)) >0, (p{)t >0 can be
coupled in such a way that they coincide until time 77. Therefore, by definition of Gy, for any
77/ S Gti
lp? =7 <SP <t) + [l — 7] = O(L™), (4.20)
where we have used again (4.17) to bound the last term above. In conclusion, using
o3 — 7 (- T an) | < (|7 = 7 (- [ Tpan) | + o3, — =1l
together with (4.18), (4.19), and (4.20), we arrive at ||p9, — 7(- | T4+ ar)|| = O(L™1) which implies
the desired estimate. 0

Thanks to Lemma 4.1 and Proposition 4.2, Theorem 1.1 will follow from the estimate
Proposition 4.4. For any e > 0 and for all L > Lo(¢):
gapS > L73°¢. (4.21)
The following two subsections are devoted to the proof of Proposition 4.4.

4.3. Decomposing according to the number of crossings. We first decompose S, accord-
ing to whether the first excursion has positive or negative sign, i.e.

S,=8tus™, St={0€eS,: o 1 ==+1}. (4.22)
An application of Proposition 2.1 with the decomposition (4.22) yields
gap® > min{\/3, Mmin/(A + 37)}, (4.23)

where A\pin = gap‘s+ denotes the gap of the process restricted to ST (by symmetry, this equals
the gap of the process restricted to S7), while ) is the gap of the symmetric two state Markov
chain with transition rate
et m) = el 4) = 3 vl(0]8)0-141(0), 7= maxd (o),
ceSt

where v, is given in (4.12), and 6_141(0) is the probability of a flip at © = —L + 1 in o; see
(4.11). The probability measure v, is defined in (4.12). Clearly, v < 1. Since at equilibrium the
polymer has a uniformly positive probability of taking the value n_r+o = 0, cf. (2.24), it follows
easily that c(4, —) > ¢(A) > 0 for some L-independent constant c¢(\). Thus, A is of order 1, and
for some ¢ = ¢(A) > 0 one obtains

gap®e > cgap® . (4.24)
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Next, consider the number of crossings x defined in (4.1). Since x is a function of the signs o
only, we can write (o) for the number of crossings in a given o € S,. Thus, the space ST is
partitioned as

ST =ur, ST, (4.25)
where m = [c,logL|, and ST = {0 € ST : x(0) = n}. We apply Proposition 2.1, this
time with the decomposition (4.25). Thus, gapS’ can be bounded below as in (4.23) where
Amin = MiNg < n <m gap™" now stands for the minimum of gaps of the processes restricted to

St while A stands for the gap of the random walk on {0, ..., m} with transition rates
clnntl)= Y > w0 8TM)0:(0)1(c" € STEY), (4.26)
ceStnze0y,
cnn£2)= Y > v(0]|STM0.(0)1(c" € STE). (4.27)

ceStn xzeOy,

Note that the transition n — n + 1 is necessarily obtained by creating a new crossing at the
rightmost position &, = L — 2, while the transition n — n + 2 can be obtained by creating two
adjacent crossings between two existing consecutive crossings. These are the only transitions
that are induced by the single flips ¢ — ¢”®. By construction, the reversible invariant measure
of the chain defined by the rates (4.26), (4.27) is given by

pn) =vo(x =n|S8t) =r(x =n|Q%, n=0,...,m.

Lemma 4.5. The gap A of the chain defined by (4.26), (4.27) satisfies ¢ > X\ > ¢! for some
¢ =c(A) > 0 uniformly in L > 2.

Proof. By Lemma 2.2, w(x = n) is exponentially decaying in n, and the same applies to u(n) =
m(x =n|Q°), up to O(L™P) corrections; see (4.4). To prove an upper bound on A one can take
the test function y counting the number of crossings in the variational principle defining A\. The
variance of x w.r.t. u(-) is a positive constant. On the other hand the Dirichlet form can be
bounded from above by

4 Z c(n,n+1)+c(n,n+2)]. (4.28)

Observe that uniformly in o € S+ " one has

D bu(0)[1(c" € STE) +1(0" € STF)] = O(n). (4.29)
€0y,

Indeed, each excursion can only contribute O(1) to this sum since at equilibrium, in the delocal-
ized phase, the expected number of zeros between consecutive crossings is finite (depending on
A < 1); see Lemma 2.2. Now, (4.29) implies that (4.28) is bounded above by ¢ > pu(n)n = O(1).
This ends the proof of A < ¢ for some constant c.

To prove a lower bound on )\, we can neglect the additional rates (4.27). Then, we are left
with a birth and death chain on the set {0,...,m} (m being the maximal number of crossings
allowed) with jump rates c¢(n,n £ 1) and reversible measure u(n) as above. It is well known (see
e.g. [12]) that the spectral gap of this chain can be estimated via Cheeger’s inequality A > ¢ ®,
where c¢ is a universal constant and @ is defined by

O =min{®(,0), 0< <l <m: p([,0]) <1/2}
p()e(, £ —1) + p(l)e(, 0 + 1)

B = (6,07) |
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where pu([¢,0']) = Zf{zg w(n). Thus, one has to prove a lower bound on ®. Below, we prove that
the birth rate ¢(n,n+1) in (4.26) is bounded away from zero uniformly: for a universal constant
a > 0 one has

cn,n+1)>a, 0<n<m-—1 (4.30)

By reversibility, it is easily checked that the same holds for the death rate c(n,n — 1), for
1 < n < m. To prove a lower bound on ®, consider two cases: either 1) ® = ®(¢,¢) with £ > 0
or2) & = ®(¢,¢') with £ = 0. In the first case, one has that ® > au(?)/u([¢, ¢']) is uniformly
positive, since p decays exponentially. In the second case, one has ® > au(¢')/u([0, ¢']), which
is uniformly positive because the requirement u([0,¢']) < 1/2 and the decay of p force ¢ to be
uniformly bounded.

It remains to prove (4.30). We have

c(n,mn+1) > cv(ép =L —4|8T"), (4.31)

for some constant ¢ = ¢(A) > 0, where &, denotes the rightmost internal crossing. We introduce
some extra notation to characterize more explicitly the measures vy, , := v,(- | ST"). Let Q;“O
denote the set of polymers

Q;“O:{n;(]; n=1n=0,Nu=n=%1,2=0,...,j—1, and N(n) <c,logL}.

Note that these paths start at 0 and end at j, so that j must be even for this set to be non-empty.
Define the probability law p, , on the set of even positive integers by
27171
pi.o(j) = ———, where Z[* = Z AN
Z+70 T
ner ’

where z; , is the normalization. From Lemma 2.2, (2.23) one has that 2_jZ;“O = 0(j73/?)
for large j, so that the probability py , is well defined. Then, it is not hard to check that the
measure v, introduced above is given by

_ P01+ L)pso(@2 — x1) -+ pio(@n — Tn—1)py,0(L — Tn)
Zn

Unol(Z1,...,2n) (4.32)
where vy o(x1,...,2n) = Uno(§1 = 21,...,& = ap), if —L < 1 < -+ < x, < L is any
allowed configuration of the crossing positions &1, ..., &,, and Zy g s the normalizing constant.

. . 1 e .
In particular, Un,o 18 & product measure pf(g +1) over n + 1 positive increments x;11 — ; (Wlth

xg = —L,xp41 = L), conditioned to have Y " (xit1 — x;) = 2L.
Going back to (4.31), with the notation in (4.32) we have

_ Pro@WpTS) (S0 (6 — & 1) = 2L — 1)
LU (I — 6m1) = 2I)

Since V'L 3> m > n, and py ,(4) > 0, with the same arguments of Lemma 4.12 below one easily
sees that v,(§, = L —4|S8™™) > 0 uniformly. (We omit the details here to avoid repetitions).
This ends the proof of (4.30) for n > 1. A bound on ¢(0, 1) can be obtained similarly. O

Vol = L —4] S+

We return to the application of Proposition 2.1 with decomposition (4.25). The constant ~ is
now given by

¥ = max max 9$(0) [1(096 e 8+,n:|:1) + I(UI c S-i-,n:I:Q)] .
n UES+7”I
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Recall (4.29). Since n < m = O(log L) we obtain that v = O(log L). In conclusion, using (4.24)
and Lemma 4.5, we arrive at

gap® > ¢ (log L)~ . gmlg mgap (4.33)
Thanks to (4.33), the proof of Proposition 4.4 has been reduced to the proof of a lower bound
gap™™ = Q(L%/27¢), uniformly in n < ¢,log L. Note that the case n = 0 does not appear
n (4.33). Indeed, in that case the corresponding equilibrium is concentrated on the single “all
plus” element S%*. We start with the simplest case, i.e. n = 1, which can be analyzed by rather
standard arguments.

Lemma 4.6. There exists a constant ¢ = ¢(\) > 0, such that
gap ™! > ¢ L7%2, (4.34)

Proof. When n = 1, the process restricted to ST consists of a nearest neighbor random walk
on Er \ ({—L}U{L}), the sites in {—L +2,..., L — 2} with the same parity as L. Letting o(x)
denote the element of ST! with unique crossing at z, the corresponding jump rates are given
by

clz,z£2)= Y 0, (z)Y = o(x +2)). (4.35)

y€0L,

These rates are of order 1 (except at © = —L + 2 where ¢(—L +2,—L) =0and at z = L — 2
where ¢(L —2, L) = 0) since there is a uniformly positive probability for the polymer conditioned

to have signs o(z) of having a 0 at £+ 2. Moreover, the reversible invariant probability measure
p(x) for this chain is given by

p(x) = 7 (o1, Nw1 = (1,0, —1) | sign(n) € ST). (4.36)

Recalling (4.4) and Lemma 2.2, the event sign(n) € S™! has uniformly positive probability at
equilibrium, and p(x) < po(x), where pg is the probability

2)V-3/2(L — ) -3/2
pola) = EFI D e g (-nyu ), (4.37)

where 2y, is the normalizing constant. Since the rates (4.35) are of order 1, a standard comparison
argument shows that it is sufficient to prove the bound gap, 1> ¢L75/? for the gap of the
chain with reversible measure pg given by (4.37) with rates defined by co(z,z + 2) = 1 and
co(z,x —2) = po(x — 2)/po(x). The latter process has the Dirichlet form

L—4

)= > po(@)|f(x+2)— fz). (4.38)

r=—L+2

On the other hand, writing f(y) — f(z) = Zg;z[f(j +2) — f(j)], = < y, and using Schwarz’
inequality, the variance Var,,(f) can be bounded above as follows:

Vary, () = 5 3 pol@)oo(w) £ (w) — F(a))

L—4
<2L Y )G +2) - ZZPO p"

j=—L+2 T < JyY>j
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From (4.37) one has
max Z Z Po(@ﬂ_o(y) _ O(L%).
)
It follows that gapar 1> ¢L75/2, which implies (4.34). O

Remark 4.7. The bound of Lemma 4.6 is optimal in the sense that
gapt! < ¢V L7/, (4.39)

This can be seen by taking a test function ¢(z) in the variational principle for gap™!, of the
form o(z) = g(z/L), where g : [-1,1] — R is given by g(s) = —1if s < —1/2, g(s) = 1 if
s > 1/2, and is linear between —1/2 and 1/2. With this choice one has that the variance of ¢
w.r.t. p defined by (4.36) is of order 1, while the Dirichlet form - given by (4.38) with p instead
of po - is bounded above by the probability of z € [~L/2,L/2] times L=2, i.e. L=%/2. This
implies (4.39). We point out that the results in (4.34) and (4.39) could have been obtained by
appealing to a known criterium for birth and death chains; see [17].

We turn to the proof of a lower bound on gap™™ for n > 1. Recall the definition (4.32)
of the measure v, ,. We introduce a further dynamics. We view the &; as particle positions.
Each particle ¢ = 1,...,n has an independent Poisson clock with parameter 1. When particle
i rings, we freeze all positions &, k # i, and update & with the new position & sampled from
the conditional distribution v, := vy, (- | &, k # i), where vy, is given in (4.32). The Dirichlet
form of this process is given by

5:(io(fv f) = Z Vn,o [Vary;g(f)] ) (440)
=1

where Var,; (f) = vi(f?) — vi(f)? is the variance conditioned on the values of &, k # i. Let
gapeq  denote the associated spectral gap:

Eei’(f, f)

apv® = inf ——2 | 4.41
g peq f Va’rVn,o(f) ( )
where the infimum ranges over all functions of the crossing positions &1,...,&,. The next

estimate allows one to reduce the proof of Proposition 4.4 to the proof of a lower bound gapeq” =
Q(L~¢), uniformly in n < ¢, log L.

Lemma 4.8. There ezists a constant ¢ = c¢(\) > 0, such that for alln > 1.
gap™" > cL_5/2gapQ(f. (4.42)

Proof. For n =1 this coincides with the result of Lemma 4.6, since in this case vy o[Var,1(f)]
coincides with Var,, ,(f). The general case follows from the observation that Lemma 4.6 can be
applied with the segment {§;,_1,...,&+1} replacing the usual {—L,..., L}, to obtain
1 , 1 ,
Vary, (f) <~ (€1 = 6-0)Y2E(f, ) < - LOPES, ),

where ¢; = ¢/2%/2, and E'(f, f) denotes the Dirichlet form of the random walk corresponding
to the rates (4.35), with the segment {&_1,...,&+1} in place of {—L,..., L}. Taking the vy, o-
expectation, and summing over ¢ = 1,...,n one obtains the estimate

D < IS o [0
i=1
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The desired conclusion follows from the observation that ", vno [EX(f, f)] = ET™(f, f), where

ETM(f, f) is the Dirichlet form of the process restricted to S™" with spectral gap given by
+,n

gap . ]

4.4. Lower bound on gape;’. To complete the proof we need the lower bound gapey” = Q(L ™).
We first remove the restriction N(n) < ¢,log L in the definition of the measure v, ,. Namely,
introduce the probability measure

_ p+(@1 + L)py (w2 — 1) -+~ py (20 — Tp—1)p4 (L — 20)

Un(z1, ... 2p) Zni , (4.43)
defined by the kernel
2797} N
prli) == Zf = 3N, (4.44)
nEQj

where

sz{n)O: n=1n=0,Mpu=n=+1,2=0,...,j—1}.
Note that (4.43) coincides with (4.32) except for the removal of the constraint N(n) < ¢,log L in
the definition of the kernel p;. As in (4.4) one can check that p, is equal to p4 , up to O(L7P)

corrections for some large p > 0 and therefore vy (z1,...,2n) = Vpo(T1,...,2,)(1 + O(L7P)),
uniformly. Proceeding as in (4.40) and (4.41) we define

Eglq(f» f) = Z Un [Varujl (f)] ) (4'45)
i=1

and gapg,, the spectral gap associated to the measure v, and the Dirichlet form (4.45). From
the previous observations we see that Var,, (f) < ¢ Var,, ,(f) and &q°(f, f) < c&%(f, f), for
some constant ¢ > 0, for every function f. Therefore gapg, < c? gapeq - For later purposes it is
important to keep track of the dependence on L in our notation, and therefore we write gapgq(L)
below. The desired bound gapey’ = Q(L~¢) follows from the comparison mentioned above and

Proposition 4.9. For any € > 0, there exists Lo(e) > 0 such that for L > Ly and n < ¢, log L
gapeq (L) > L7°. (4.46)
As a preliminary step towards the proof of Proposition 4.9, we establish the following lemma.

Lemma 4.10. There exists ¢ > 0 such that for any n, uniformly in L > n:
gapl (L) > ce /e,

The crucial point of the above estimate is that it does not depend on the size of the system
L, but only on the number of particles n. Note that Lemma 4.10 gives the required lower bound
(4.46) if we take n < e;1log L with 7 suitably small. The case of larger n will be considered
afterwards.

Proof of Lemma 4.10. Every particle has an independent Poisson(1) clock. When particle 4
rings we update its position according to the equilibrium measure conditioned on the neighboring
positions &_1 and &1, that is the probability for the i-th particle to be in position & = &_1 +F,
k=24,...,&+1 —&—1 — 2, is given by

e Sit1—&i—1—2
p+(k)p+(€z+z1 i k), where Z= Y pi(k)py (& — &1 — k). (4.47)

k=2




DYNAMICS OF A POLYMER WITH REPULSION 35

An important property of (4.47) is that the probability « of the event & = &_; + 2 (or & =
&i+1 — 2) is positive, uniformly in the length &1 — &_1. The idea is to use this property to
prove that with probability at least %a”, uniformly in the initial configuration, the process hits
the minimal configuration

&=—-L+2,&=—-L+4,....6,=—L+2n, (4.48)

before time n?. Once this result is available, one concludes with a simple coupling argument.

Indeed, using an independent coupling, the total variation distance between two evolutions at
time ¢t = m x n?, with arbitrary initial conditions, is bounded above by (1 —a?"/4)™ < e=ma" /4,
Thus, the mixing time of this chain is at most 8n?a~2". Using e.g. (2.8) we obtain the lemma.

To prove the above claim, we use the notation (7p,,%m)m >1 for the sequence of updating
marks, that is the m-th update occurs at time 7, and it concerns the ¢,,-th particle, where
lp, is @ number in {1,--- ,n}. Consider the event E that there exist integers 1 < ¢(1) <
#(2) < .-+ < @(n) such that 740,) < n2, Lys) = 4, and such that for every i = 1,---,n and
¢(i — 1) < j < #(i), one has £; # ly;_1) (where ¢(0) = 0 and £y = 0). In words, E is the
event that within time n? there has been a sequence of n updates at times To(1)s - - - Th(n)> SUCh
that the update at time 74(;) concerned the i-th particle and such that the i-th particle is not
touched again before time 74(;;1). Conditioned on the event E one has a probability of at least
a™ of hitting the configuration described in (4.48). Indeed, at time 741y we set {1 = 2 with
probability «, at time 742y we set {&o = 4 with probability a, and so on. Therefore, to prove
the lemma it remains to show that the event E has probability at least 1/2. This can be easily
seen as follows. Consider the event F' that a sequence of integers 1 < 9(1) < (2) < --- < ¥(n)
exists such that 7,,) < n?, and Ly =1, for every i = 1,--- ,n. Let (1) denote the first time

particle 1 is updated and define recursively 7 as the first time after 70~ when particle i is
updated. Clearly, F = {r(®) < n?}. Using E[r("] = n, by Markov’s inequality the probability
of F is at least 1 —n/n% > 1/2 for n > 2. On the other hand E = F, since one can define the
sequence ¢ from v by choosing ¢(n) = ¢(n), and for 1 <i<n—1,

dp(n—1i) =max{j <Y(n—i+1): {; =n—i}.
This ends the proof of Lemma 4.10. O

Proof of Proposition 4.9. The proof of Proposition 4.9 is based on a block-dynamics argument
that allows one to reduce to n < e1log L particles, in which case the result will follow from
Lemma 4.10. Fix an integer K < n. A block is a collection of particles with adjacent labels,
and our particles will be partitioned into A := [n/K| non-overlapping blocks, in such a way
that the first A — 1 blocks contain exactly K particles each, and the last block contains at
most K particles. For the sake of simplicity, since it does not change any of our estimates, we
will suppose that all blocks have exactly K particles, i.e. n = KA. With this notation, the
configuration of the i-th block can be described by the variables

(5K(271)+177€K1)7 lzl,,A (449)

As usual, the ; are interpreted as particle positions or crossing positions. To define the block-
dynamics, we consider independent Poisson(1) clocks on each block, when one of them rings we
put all crossings of the relative block simultaneously at equilibrium conditioned on the position
of all crossings belonging to the other blocks. That is, if B; denotes the i-th block (4.49), and
Varp, is the variance with respect to

Vn("Bja ]7&’5)7
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then the Dirichlet form of the block—dynamics is given by

Enlf, ) Z vn[Varg, (f (4.50)

for any function f of the particle positions. Call gapy, the associated spectral gap.

The gap of the original dynamics for a single block B; is given by gapgl(ﬁ), where ¢ =
§irk+1 — &(i—1)K 1s the length of the portion of the system occupied by the K particles in the i-th
block:

gapgl(ﬁ ) Varp, (f ZV” [Var,: (f)|Bj, j #1] ,

where v} is the equilibrium distribution of the r-th particle in the block B;, conditioned on
the positions of the remaining particles, cf. (4.45). Using this estimate in (4.50), taking the
vp-expectation and summing over ¢ one obtains

gapiq(L) > gapfy x min gapl (€) . (4.51)

Note that this is a special case of a well known estimate that controls the gap of the original
dynamics in terms of the gap of the block-dynamics (see e.g. [16]). From Lemma 4.10 we know
that gapgg(f) > ce /¢ uniformly in the length ¢. Therefore, Proposition 4.9 follows directly
from Lemma 4.11 below by taking K = ejlog L, K < n < ¢,log L, with ¢; sufficiently small
(depending on ¢) and A = n/K (the case n < €1 log L being contained in Lemma 4.10).

Lemma 4.11. For all A > 1, there exists ¢c(A) > 0 such that for all L and A < n < ¢,log L,

gaply > ¢(A) KA K =n/A. (4.52)
Before proving Lemma 4.11, we need to establish some preliminary facts. Consider v2" := v,
the equilibrium measure (4. 43) of the system of n particles over the segment {— L .., L}.

Passing to the increment variables ¢; = & — &-1, ¢ = 1,...,n + 1 one writes V,,QZL as the
conditional probability p. n+1)( | Z"+1 G =2L).

Lemma 4.12. For all n = o(LY/):

oL _71/3y 1
2G> 2L - L) = — (14 0(1)).

Proof of Lemma 4.12. Observe that

Dlizon-L1/3 P+(i)0§(n)(2? 16 =2L — i)

val(Gr > 2L - LY?) =

Recall that
p(§) ~ e g2, (4.53)
for some known constant c; > 0; see (2.23). In particular,

pi (i) = py(2L) (1 + O(L—2/3)> , dief{eL—LY3 ... 2L}, (4.54)

Also, since 2L > (n + 1)?, using [8, Theorem A], one has
n+1

A (Z@ =2L) = (n+1)(1+o(1)) p (2L) . (4.55)
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From (4.54) and (4.55),
(n+ Dw2L(¢ = 20 — LY3) = (1 + o(1) p+")(Zg 0,L7%)).

It remains to show that pJr (Z LG o€ [O,L1/3)) = 1+ o(1). However, this is an imme-

diate consequence of the assumption n = o(LY%) and well known estimates for heavy tailed
distributions of the form (4.53); see e.g. [8]. O

Proof of Lemma 4.11. As a corollary of Lemma 4.12, one has that for L large enough, uniformly
in2L>20>LY3 andinn = 0(61/6),
1
2(n+1)°
We shall use this observation together with a coupling argument. Start the dynamics at two
arbitrary initial configurations £, &’ of n particles, and call £(t), £'(¢) the corresponding states of
the dynamics at time . It will be shown that for a suitable coupling P:
P(£(1) = €'(1)) > c(A)(5(K +1)7*2 (4.57)

Once this estimate is available the conclusion follows easily. Indeed, (4.57) implies that at time
T the total variation distance between £(T") and &'(T), is bounded above by

(1 —c(A)(B(K + 1))_4A)LTJ < o—C(A)(B(K+1)) 744 |T] ’

and therefore the mixing time of the chain is bounded by 2¢(A)~'(5(K + 1))**. Using (2.8)
we obtain the same bound for the inverse spectral gap. After adjusting the constant ¢(A), this
proves Lemma 4.11.

V(¢ > 20 — DV3) > 0200 > 20 — 01/3) > (4.56)

L L4 LB L—L'3 L
i—g & | [0 0 0| [O o |, O |
¢ N ‘o : 0 D e @
=y W [0 o OJ oo g
¢(n) @ L o SO0
t—1, t® pool | oo 9
¢(r,) 00 O e e
i=t, ) PO O] B __oal,
(t;) @0 O] [0 e e

FiGUrE 3. Illustration of the coupling used in the proof of Lemma 4.11 in the
case A =2, n =06 and K = 3. At time ¢1, all particles in the second block are
placed to the right of L — LY/3. At time ¢5, all particles in the first block are
matched to the left of —L + LY/3. At time t3, all particles in the second block
are matched.
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To prove (4.57) we proceed as follows. We have A independent Poisson(1) clocks, one at each
block, and we note (¢, ¢ )m > 1 the sequence of update marks: for any m > 1, t,, is the time of
the m-th update and ¢,,, € {1,---, A} is the label of the block to be updated at time ¢,,. Consider
the event E that within time t = 1 a sequence of updates t1,...,tA—1,fA,tA+1,-..,t2Aa—1 has
occurred, such that ¢,, = A—m+1form=1,...Aand caoy; =i+ 1fori=1,...,A —1.
Clearly, F has a positive probability ¢(A) > 0. On the event E we define a coupling of the
two evolutions by using the same marks (t,,, ¢y, ), i.e. at time ¢,, we update block ¢, in both
configurations. We refer to Figure 3 for a representation of the case A = 2. At time ¢; we have
to update the particle positions in the block Ba. The corresponding equilibrium is of the form
V%, with 20 = L — g (a—1)- Then, the new particle positions will satisfy

Exa—n41 = L — L'Y3 | with probability at least (4.58)

1
2(0K+1)°
Indeed, either {xa_1) =2 L — L'/3 and the requirement is automatically satisfied because of
Ex(a-1)+1 = SK(a-1), O E(a—1) < L— L3, in which case 2¢ > L3 and the claim follows from
(4.56). Therefore, using an independent coupling, one has a probability at least (4(K + 1)%)~1
for the event

min{€xa—1)41(t1), Ea—1)11(t1)} = L — LY3,

Then, one updates the block Ba_1 at time t5, and so on until one updates the block Bs at time
ta—1. Iterating the argument given above, one has a probability of at least (4(K + 1)2)*AJrl for
the event

min{€xe1(ta-1), i yr(ta1)} > L — (A — LY. (4.59)

Next, at time ta, one updates the block Bj. Let us show that on the event (4.59) there is
a coupling P of the two equilibria on block B; (conditioned on the value of &x11(ta—1) and
i 41(ta—1) respectively) such that the event

My = {&(ta) = &(ta) < =L+ LY3, i=1,.. K},
has probability
P(M;) > (5(K +1)%)71. (4.60)

Clearly, it suffices to show that {x(ta) = &k (ta) < — L+ L'/3 with at least that probability
(all other particles &;(ta),...,{x—1(ta) are then automatically matched using the diagonal
coupling since Bj is the first block and &y = § = —L is fixed). Setting 2¢ = {x11(ta—1) + L
and 20/ = &j. (ta—1) + L, we need to couple the measures v ({x = i), v (€ =1i). Consider
first the problem of coupling vy (i) := v¥(éx = L4 i|&x < — L+ LY3) and wy(i) := v (€} =
L+il&, < — L+ L'Y3). We have

1 — 2| = O(L™2/3). (4.61)
Indeed, first note that, by (4.59), one has

oL > 20,20 > 2L — (A —1)L'/3. (4.62)
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With the notation pf(K) (1) :== pf(K)(zjK:l ¢; = 1) one has
L1/3

1 —vall = 5 Z w1 (i) — va(i

L1/3 ) K),. .
1 Z | ipe2e—i)  p{@)pier i)
1/3 1/3 :
Yoty AT (m)pr (20 —m) S L pFE (m)py (20— m)
Using (4.54) and (4.62) one has p+(2£ —i) = po(20—7)(1+O(L~%/3)) uniformly in 0 < i,5 < L'/3.
Therefore (4.61) follows from

L3 R(K) - )
Ion = wall = O(L7%) x 37— WerRl=D) o2,

=1 Dm 1P+ ( )p+(2¢ —m)
We turn to the proof of (4.60). We define the couphng of v¥(Ex = i), V3 (& = i) as follows
Flip two independent coins with head probability p = v (& < —L+LY3) and p/ = 1/26 (& <
L+ L1/3). If both coins end up being head, then sample the pair g, &} according to the
maximal coupling of vy, v5 defined by ||y — v»||. If the p coin is head and the p’ coin is tail then
sample independently &g according to v3(-|€x < — L+ LY?) and &y according to v3¢ (- | &}, >
—L+ LY 3). Similarly, if the p coin is tail and the p’ coin is head then sample independently
¢ according to v (- & < — L+ L'/3) and &k according to v3(- | € > —L + L'/3). Finally,
if both coins are tail then sample independently &g, &7 according to v2(-|&x > —L + LY/3),
v (| €l > —L 4 L'/3). Using this coupling, we obtain that

P(M1) = pp' (1= |l —w2fl) = (4(K + 1)*) 7 (1 +o(1))
where we have used the fact that min{p,p’} > 1/2(K + 1) by (4.56). This ends the proof of
Mfi?ﬁeating the same argument leading to (4.60) one shows that on the event M, the event
My = {€kri(tast) = €k piltan) < —L+2LY3 i=1,... K},
has probability at least (5(K + 1)2)~!. Thus, iterating, one concludes that
P(¢(1) = €'(1) = P(B) (4(K +1)*)" 2T (5(K +1)%) 72 > «(A)(5(K +1))*4
This ends the proof of (4.57). O

4.5. Proof of Theorem 1.2. Concerning the bound 7’ fgl < L5/2%¢ we note that it follows from
the same arguments used for the proof of Proposition 4.4. In fact, the situation is simpler here
due to the absence of constraints on the number of crossings. We omit the details.

Concerning the lower bound, we can actually prove that for some constant ¢ > 0, one has

TS, > ¢ L%? (log L) (4.63)
We use an argument similar to that in (4.39). Recall that
Var,,(f)
TS > 4.64
rel (f; f) ( )

for any f:S — R, where v is defined by (1.7) and
D(f.f)= D v[Var, ()],

€0y,
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vz denoting the conditional probability v(- |0y, y # x). Let ¢ denote the number of +’s, i.e.
()= 1o.=+1), o€S.

ze0yp,
Note that ¢ € {0,...,L}. Define the function f(o) = g(¢(c)/L), where g : [0,1] — [—1,1]
is given by g(s) = —1 for s < 1/4, g(s) = 1 for s > 3/4, and by the linear interpolation for
s € [1/4,3/4]. Since ¢ = 0 and { = L have both positive probability uniformly in L, one has
Var(f) > ¢ for some constant ¢ > 0. Let us estimate the Dirichlet form of f. We have

D(f,f) <eL™) v(o) Y pa(o)L(L/4<C<3L/A),
oceS €0y,

for some constant ¢, where we write p, (o) for the probability of a flip at « in 0. Recall that the
sum over z of the probabilities p, (o) between consecutive crossings give a contribution of order
1; this follows easily from Lemma 2.2. That yields > ., pa(0) < cx for a suitable constant c,
where y is the number of crossings (4.1). Therefore, adjusting the constant c:

D(f,f) <cLv(x; L/4<(<3L/4).
However,
v(x; L/A<S(<3L/4) <v(x; x>clogl)+c(logL)v(L/4<(<3L/4).

From Lemma 2.2 we deduce that v (x; x > ¢ log L) = O(L™P) for some large p, provided c is
large. On the other hand L/4 < ¢ < 3L/4 implies that there exists a crossing in some position
x€{—-L+L/8,...,L— L/8}. From the estimates of Lemma 2.2 this last event has probability
O(L~'/?), so that

v(L/4 < ¢ <3LJ/4) =O0(L7Y?). (4.65)

In conclusion, adjusting the constant ¢, one has D(f, f) < ¢L=5/2 log L. This ends the proof of

(4.63). O
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