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POLYMER DYNAMICS IN THE DEPINNED PHASE: METASTABILITY
WITH LOGARITHMIC BARRIERS

PIETRO CAPUTO, HUBERT LACOIN, FABIO MARTINELLI, FRANÇOIS SIMENHAUS,
AND FABIO LUCIO TONINELLI

Abstract. We consider the stochastic evolution of a (1 + 1)-dimensional polymer in the de-
pinned regime. At equilibrium the system exhibits a double well structure: the polymer lies
(essentially) either above or below the repulsive line. As a consequence, one expects a metastable
behavior with rare jumps between the two phases combined with a fast thermalization inside
each phase. However, the energy barrier between these two phases is only logarithmic in the
system size L and therefore the two relevant time scales are only polynomial in L with no
clear-cut separation between them. The whole evolution is governed by a subtle competition
between the diffusive behavior inside one phase and the jumps across the energy barriers. Our

main results are: (i) a proof that the mixing time of the system lies between L
5
2 and L

5
2+2; (ii)

the identification of two regions associated with the positive and negative phase of the polymer
together with the proof of the asymptotic exponentiality of the tunneling time between them
with rate equal to a half of the spectral gap.
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1. Introduction, model and results

Random polymers are commonly used in statistical mechanics to model a variety of inter-
esting physical phenomena. A rich class of models with a non-trivial behavior is obtained by
considering a simple random walk path interacting with a defect line in the thermodynamic
limit when the length of the path tends to infinity. The equilibrium of these so-called polymer
pinning models has been studied in depth in the mathematical literature, and the associated
localization/delocalization phase transition is, nowadays, a well understood phenomenon, even
in the presence of non-homogeneous interactions; see [9] for a recent survey.

Markovian stochastic dynamics of random pinned polymers, on the other hand, have received
much less attention from a mathematical point of view. Besides its importance in bio-physical
applications (see e.g. [5, 6] and references therein), the stochastic evolution of polymer models
poses new challenging probabilistic problems from many points of view and the connection
between the equilibrium and dynamical properties of the model is still largely unexplored. In
particular, we feel that the problem of how the polymer relaxes to the stationary distribution
(time scales, overcoming of energy barriers, metastability, patterns leading to equilibrium) still
lacks a satisfactory solution even in the simplest homogeneous models; see [7] for some initial
results in this direction.

In this paper we consider the dynamics of a homogeneous polymer model interacting with a
repulsive defect line with two main motivations in mind:

This work was supported by the European Research Council through the “Advanced Grant” PTRELSS 228032.
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(i) the repulsive regime is characterized by a relaxation to equilibrium occurring on a time scale
certainly much larger [7] than the usual diffusive one which is typical e.g. of the neutral
case1 [21]. The new scale is clearly the result of a subtle competition in the polymer
evolution between diffusive behavior and jumps against energy barriers.

(ii) The whole relaxation mechanism should show certain typical features of metastable evo-
lution but in a very atypical context2 in which the relevant relaxation time scales are only
polynomial in the size L of the system (i.e. the energy barriers are only logarithmic in
L), with little separation between the mixing time inside one phase and the global mixing
time. A signature of this fact can be found in the anomalous growth with L of the global
mixing time, a growth which is much more rapid than the naive guess based on the usual
rule Tmix ≈ exp(∆E), with ∆E the so-called activation energy. In order to appreciate the
novelty of such a situation it is useful to compare it to another well known case, namely the
Glauber dynamics for the low temperature Ising model in a square box with free bound-
ary [14], for which a very precise analysis of the metastable behavior was possible exactly
because of a sharp separation, at an exponential level, between the two time scales.

1.1. Dynamics of the polymer pinning model. Let Ω = Ω2L denote the set of all lattice
paths (polymers) starting at 0 and ending at 0 after 2L steps, L ∈ N:

Ω = {η ∈ Z2L+1 : η−L = ηL = 0 , ηx+1 = ηx ± 1 , x = −L, . . . , L− 1} .
The stochastic dynamics is defined by the natural spin-flip continuous time Markov chain with
state space Ω. Namely, sites x = −L + 1, . . . , L − 1 are equipped with independent rate 1
Poisson clocks. When site x rings, the height ηx of the polymer at x is updated according to
the rules: if ηx−1 = ηx+1 ± 2 then do nothing; if ηx−1 = ηx+1 = h, and |h| ̸= 1, then set
ηx = h ± 1 with equal probabilities; if ηx−1 = ηx+1 = +1, then set ηx = 0 with probability
λ
λ+1 and ηx = 2 with probability 1

λ+1 ; similarly, if ηx−1 = ηx+1 = −1, then set ηx = 0 with
probability λ

λ+1 and ηx = −2 with probability 1
λ+1 . Here λ > 0 is a parameter describing the

strength of the attraction (λ > 1) or repulsion (λ < 1) between the polymer and the line η ≡ 0.
The infinitesimal generator of the Markov chain is given by

Lf(η) =
L−1∑

x=−L+1

rx,+(η)
[
f(ηx,+) − f(η)

]
+

L−1∑
x=−L+1

rx,−(η)
[
f(ηx,−) − f(η)

]
, (1.1)

where: f is a function Ω 7→ R; ηx,± denotes the configuration which coincides with η at every
site y ̸= x and equals ηx ± 2 at site x; the rates rx,± are zero unless ηx,± ∈ Ω, while if ηx,± ∈ Ω
and ηx−1 = ηx+1 = h they satisfy rx,± = 1

2 for h ̸= ±1, and rx,∓ = λ
λ+1 = 1 − rx,±, for h = ±1.

The process defined above is the heat bath dynamics for the homogeneous polymer pinning
model, with equilibrium measure π = πλ2L on Ω defined by

πλ2L(η) =
λN(η)

Zλ2L
, (1.2)

where N(η) = #{x ∈ {−L + 1, . . . , L − 1} : ηx = 0} denotes the number of zeros in the path
η ∈ Ω and Zλ2L =

∑
η′∈Ω λ

N(η′). For every λ > 0 and L ∈ N, π = πλ2L is the unique reversible
invariant measure for the Markov chain.

1In the neutral case (absence of an interaction between the polymer and the line) our process is nothing but
the usual (finite) symmetric simple exclusion model.

2Over the years there have been many different formulations of “metastability”; see [18, 20, 4]. We also refer
to the recent contributions [2, 3] where, as in our case, energy barriers are only logarithmic in the characteristic
size of the system. We feel however that our situation does not fit completely in any of the mentioned contexts.
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1.2. Relaxation to equilibrium. The equilibrium properties of the polymer pinning model
have been studied in detail, cf. e.g. [10] or [9, Section 2] for an extensive review. In particular, it
is well known that, under the measure πλ2L, for λ > 1 the path is strongly localized with a non-
vanishing density of zeros, while for λ < 1 the path is delocalized with

√
L height fluctuations

and with the number of zeros stochastically dominated by a geometric random variable with λ-
dependent parameter. The dynamical counterpart of this localization/delocalization transition
has not been fully understood yet. Some progress in this direction has been reported in [7],
where various bounds on the spectral gap and mixing time of the Markov chain were obtained,
together with estimates on the decay of time correlations.

We recall that the spectral gap is the smallest nonzero eigenvalue of −L, and one is often
interested in the relaxation time Trel = 1/gap which governs decay to equilibrium in L2(π), while
the mixing time Tmix(δ), for δ ∈ (0, 1), is the smallest time t such that

max
η

∥Pt(η, ·) − π∥ 6 δ , (1.3)

where Pt(η, ·) denotes the distribution of the Markov chain at time t with initial state η ∈ Ω, and
∥µ−ν∥ is the usual total variation distance between two probability measures. When δ = 1

2e we
often write simply Tmix instead of Tmix(δ). With these conventions one has Trel 6 Tmix always,
and the inequality is strict in general.

A dynamical phase transition occurs when we move from the localized regime λ > 1 to the
delocalized regime λ < 1. It was shown in [7], see Theorem 3.4 and Theorem 3.5 there, that for
λ > 1 one has Trel = O(L2) and Tmix = O(L2 logL), while for λ < 1 one has

Trel > L
5
2
−ε , (1.4)

for all ε > 0, provided L is large enough.
We refer to [7] for results and conjectures concerning the localized regime λ > 1. Here, we

consider the delocalized regime, i.e. in the repulsive case λ < 1. The first question we address
concerns an upper bound on the relaxation time Trel and the mixing time Tmix. It is worth
noting that even a crude polynomial bound is non-trivial. We refer to [15, 7] for polynomial
bounds for the model with a horizontal wall at level zero, i.e. when lattice paths are constrained
to be non-negative. On the other hand, without the wall constraint, the equilibrium measure π
is known to be concentrated, as L → ∞, on configurations in which the density of monomers
in the upper (lower) half plane is approximately one (zero). However, a mathematical working
definition of the plus or minus phase for the polymer is not so obvious and we have been forced
to introduce a mesoscopic parameter ℓ (i.e. L≫ ℓ≫ 1) and define Ω± by

Ω+ = {η ∈ Ω : ηx > 0 , −L+ ℓ < x < L− ℓ} , Ω− = −Ω+ , (1.5)

where for any set A of polymer configurations −A := {η ∈ Ω : −η ∈ A}.
The presence of the two phases associated to Ω± dramatically changes the relaxation scenario,

with a bottleneck at the set Ω \ (Ω+ ∪Ω−). As explained in [7, Section 6], one may suspect that
Trel ∼ L

5
2 is the correct asymptotic behavior in the delocalized regime. Let us briefly recall the

heuristic reasoning behind this prediction.
The time to reach equilibrium can be roughly thought of as the time needed to switch from,

say, Ω− to Ω+. A point x such that ηx = 0 and ηx−1 ̸= ηx+1 is called a crossing of the polymer.
Note that any zero (and therefore any crossing) x must belong to the set EL of points in the
segment {−L, . . . , L} which have the same parity as L. Since there are typically very few zeros
at equilibrium, one may consider the extreme case where at most one crossing ξ is allowed at all
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LLL −L−L−L ξ ξξ

Figure 1. From left to right a snapshot sequence of the motion of a single
crossing ξ which allows the system to switch from a mostly negative to a mostly
positive configuration.

times. In this case, the time evolution of ξ should be essentially described by a suitable birth
and death process or random walk on EL; see Figure 1.

From equilibrium considerations, one knows that this random walk should have reversible
invariant measure ρ roughly proportional to

ρ(x) ∝ L3/2(L+ x)−3/2(L− x)−3/2 , x ∈ EL , (1.6)

and that its relaxation time can be bounded from above and below by constant multiples of
L5/2; see Lemma 2.2 and Lemma 4.6 below for more details. Notice that, although the measure
ρ gives uniformly (in L) positive mass to the two attractors x± = ±L, the drift which pushes
the random walk away from the saddle x = 0 is proportional to the inverse of the distance from
the attractors.

This heuristics is turned into the rigorous bound (1.4) by using a suitable test function in the
variational principle that characterizes the spectral gap; see [7, Section 6]. However, it seems
very hard to give a rigorous upper bound on Trel of the same order of magnitude. We obtain a
bound that can be off by at most two powers of L.

Theorem 1.1. For any λ < 1,

lim sup
L→∞

log Tmix

logL
6 5

2
+ 2 .

The main tool for the proof of Theorem 1.1 is the analysis of an effective dynamics for the
crossings of the polymer. To describe this, we introduce the variable σ ∈ {−1,+1}OL , where
OL = {−L, . . . , L}\EL denotes the sites with the same parity of L+1. If η is a configuration of
the polymer, then ηx ̸= 0 at any x ∈ OL, and we define σ(η) by σx = sign(ηx). The projection
of π on S = {−1,+1}OL is then

ν(σ) =
∑

η : η∼σ
π(η) , (1.7)

where the sum is over all configurations η compatible with the signs σ. The field ν has non-trivial
long range correlations. Consider the heat bath dynamics for the variables σ: sites x ∈ OL are
equipped with independent rate 1 Poisson clocks; when site x rings we replace σx by σ′x where
the new sign σ′x is distributed according to the conditional probability ν(· |σy , y ̸= x), i.e.
the probability (1.7) conditioned on the value of σy , y ̸= x. Denote by TS

rel the corresponding
relaxation time. For this process, the exponent 5/2 can be shown to be optimal.

Theorem 1.2. For any λ < 1,

lim
L→∞

log TS
rel

logL
=

5
2
.

The proof of Theorem 1.1 and Theorem 1.2 combines several different tools which play a
prominent role in the analysis of convergence to equilibrium of Markov chains: decomposition
methods, spectral gap analysis, comparison inequalities, and coupling estimates. An outline of
the main steps of the proof is given at the beginning of Section 4.
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1.3. Metastability. Recall the definition (1.5) of the two sets Ω±, and define the associated
phases as the restricted equilibrium measures π± := π(· |Ω±), so that (cf. Section 2)∥∥∥π − 1

2
(π+ + π−)

∥∥∥ = o(1) . (1.8)

The notation o(1) refers to asymptotics as L → ∞. In the thermodynamic limit, we expect
relaxation to equilibrium within each phase to occur on time scales T±

rel such that Trel ≫ T±
rel,

while on a time scale proportional to Trel one should see the system jump from one phase to the
other according to i.i.d. exponentially distributed times. A strong indication of this metastable
behavior comes from the following theorem. Below, we use η(t) to denote the state at time t of
the Markov chain with generator (1.1).

Theorem 1.3. There exists a set S+ ⊂ Ω+ such that π(S+) = 1/2 + o(1), and that uniformly
in η ∈ S+ and uniformly in t > 0:

Pη
(
τ− > t

)
= e−t/(2Trel) + o(1) ,

where
τ− = inf{t > 0 : η(t) ∈ S−} , S− = −S+ .

Here Pη stands for the law of the process with initial state η ∈ Ω. By symmetry, Theorem
1.3 also implies that uniformly in η ∈ S− = −S+ and uniformly in t > 0,

Pη
(
τ+ > t

)
= e−t/(2Trel) + o(1) ,

where τ+ = inf{t > 0 : η(t) ∈ S+}.

Remark 1.4. From the proof of Theorem 1.3 it will be clear that the set S+ is increasing
w.r.t. the natural partial order among polymer configurations defined in Section 2.5, so that in
particular the maximal configuration (in the sequel denoted by ∧) is in S+.

If we define the renormalized process

ωs = 1
(
η(sTrel) ∈ Ω+

)
− 1

(
η(sTrel) ∈ Ω−)

,

we expect that, starting from any configuration in Ω±, {ωs, s > 0} converges to the simple
two-state Markov chain with switching rate (from ±1 to ∓1) equal to 1/2, whose spectral gap
equals 1. Such a strong uniform result seems very hard to obtain for our model. The difficulty
is that, in contrast with familiar metastability results [18], here there is no clear-cut separation
of time scales: while (1.4) and Proposition 2.6 below imply Trel ≫ T+

rel, the ratio Trel/T
+
rel is only

polynomially large in L. However, we do have a detailed description of the renormalized process
when the initial condition is the maximal configuration. Namely, define the maximal element of
Ω as ηmax = ∧, i.e. ∧x = x+ L for x 6 0 and ∧x = L− x for x > 0, and let T∧

mix(ε) denote the
first time t such that ∥Pt(∧, ·) − π∥ 6 ε.

Theorem 1.5. For any δ > 0, uniformly in t > L2+δ∥∥∥Pt(∧, ·) − [ 1 + e−t/Trel

2
π+ +

1 − e−t/Trel

2
π−

]∥∥∥ = o(1), (1.9)

and uniformly in t > 0∥∥∥νπ+

t −
[ 1 + e−t/Trel

2
π+ +

1 − e−t/Trel

2
π−

]∥∥∥ = o(1) (1.10)
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where νπ
+

t denotes the law at time t of the process started from the initial distribution π+.
Moreover, for any ε ∈ (0, 1/2) one has

T∧
mix(ε) = Trel log

(
1
2ε

)
(1 + o(1)). (1.11)

Remark 1.6. Theorem 1.5 shows in particular that, when the dynamics is started from either
π+ or ∧, there is no cut-off phenomenon [13], i.e. the variation distance from equilibrium does
not fall abruptly to zero, but rather does so smoothly (on the timescale Trel). That is another
signature of the metastable behavior of our system and it is in contrast with what one expects
for the neutral or attractive case λ > 1.

One of the key features of metastability is that, once the system decides to jump from e.g.
S+ to S−, then it does so very quickly on the time scale of the mixing time. We verify that this
is indeed the case for most starting configurations inside S+ ∪ S−.

Let T denote the random time spent outside S+ ∪ S− up to the hitting time of S−:

T :=
∫ τ−

0
1{η(s)∈(S+∪S−)c} ds. (1.12)

From Theorems 1.3 and 1.5 one easily deduces that, for most initial conditions in S+, τ− ≫ T :

Corollary 1.7. There exists a subset S̃+ of the set S+ of Theorem 1.3 satisfying π(S̃+) =
1/2+ o(1) such that, uniformly on η ∈ S̃+, T = o(τ−) in probability, i.e. there exists a sequence
δL tending to zero as L→ ∞ such that for every η ∈ S̃+,

Pη
[
T > δLτ

−]
6 δL. (1.13)

Along the same lines of the proof of the Corollary, one can establish the weak convergence of
the renormalized process ωs to the two-state Markov chain, provided that the initial configuration
is inside a suitable subset of S̃+ ∪ S̃− with almost full measure. We decided to omit details for
shortness.

1.4. Organization of the paper. The rest of the paper consists of three sections. Section 2
starts with standard material and then proceeds with the introduction of some essential tools
to be used in the proof of the main results, including general results for monotone systems
that can be of independent interest. This section contains also some new results concerning the
relaxation within one phase and the properties of the principal eigenfunction of the generator.
The metastability results are discussed in Section 3. Here, we start with the proof of Theorem 1.5.
In later subsections we develop the construction needed for the proof of Theorem 1.3. Finally,
Section 4 proves Theorem 1.1 and Theorem 1.2. This section is broken into several subsections
corresponding to the various steps of the proof. A high level description of the arguments
involved is given at the beginning of the section.

Notational conventions. Whenever we write o(Lp) or O(Lp) for some p ∈ R it is understood
that this refers to the thermodynamic limit L → ∞. Also, we use the notation f(L) = Ω(Lp)
when there exists a constant c > 0 such that f(L) > cLp for all sufficiently large L. For positive
functions f, g, we use the notation f(L) ≫ g(L) whenever lim infL→∞ f(L)/g(L) = +∞, and
f(L) ∼ g(L) when limL→∞ f(L)/g(L) = 1. Also, we write f ≍ g if there exists some constant
c > 0 such that c−1g 6 f 6 c g.
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2. Some tools

We begin with some generalities about reversible Markov chains. Then, we recall the definition
of the polymer dynamics and derive some consequences of monotonicity. Next, we give some
estimates on convergence to equilibrium in the “plus” phase. Finally, we characterize in detail
an eigenfunction of L with eigenvalue −gap.

2.1. Preliminaries. We will consider reversible continuous time Markov chains with finite state
space X, defined by the infinitesimal generator L acting on functions f : X 7→ R,

[Lf ](x) =
∑
y∈X

c(x, y)[f(y) − f(x)] , (2.1)

where c(·, ·) is a bounded non-negative function on X ×X satisfying π(x)c(x, y) = π(y)c(y, x),
for a probability measure π on X. In the applications below, the rates c(x, y) will always be
such that the Markov chain is irreducible and the reversible invariant measure π is positive on
X. We refer e.g. to [1, 13] for more details on reversible Markov chains.

Let νxt = P(vxt ∈ ·) denote the law of the state vxt of the Markov chain at time t with initial
condition x ∈ X. We shall investigate the rate of convergence of νxt to π. If the initial condition x
is distributed according to a probability µ on X, we write νµt =

∑
x∈X µ(x)νxt for the distribution

at time t. As usual, one can associate a semi-group {Pt, t > 0} to the generator L in such a
way that [Ptf ](x) = [etLf ](x) =

∑
y∈X ν

x
t (y)f(y). We also use the notation Pt(x, y) = νxt (y),

and νµt = µPt.
The mixing time of the Markov chain is defined by

Tmix(ε) = inf
{
t > 0 , max

x∈X
∥νxt − π∥ 6 ε

}
, (2.2)

where

∥µ− ν∥ =
1
2

∑
x

|µ(x) − ν(x)|

is the total variation distance. We shall use the convention that Tmix stands for Tmix( 1
2e). It is

well known that with this notation one has

∥νxt − π∥ 6 e−⌊t/Tmix⌋ , (2.3)

for all t > 0, where ⌊a⌋ denotes the integer part of a > 0. The spectral gap and the relaxation
time of the process are defined by

gap = min
f :X 7→R

E(f, f)
Varπ(f)

, Trel =
1

gap
, (2.4)

where for f : X 7→ R,

E(f, f) =
∑
x∈X

π(x)f(x)[−Lf ](x) =
1
2

∑
x,y∈X

π(x)c(x, y)[f(y) − f(x)]2 (2.5)

is the quadratic form of the generator, a.k.a. the Dirichlet form, while Varπ(f) stands for the
variance π(f2)−π(f)2. Thus, gap is the lowest non-zero eigenvalue of −L. The following bound
relating total variation distance and relaxation time is an immediate consequence of reversibility
and Schwarz’ inequality:

∥νµt − π∥ 6 1
2
e−t/Trel

√
Varπ(f) , (2.6)
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where f(σ) = µ(σ)/π(σ) and µ is a probability on X. Another standard relation between total
variation and relaxation time is the identity

gap = − lim
t→∞

1
t

log max
x,y

∥νxt − νyt ∥. (2.7)

Combining (2.3), (2.7) and (2.6), one can obtain the following well known relations:

Trel 6 Tmix 6
(
1 − log π∗

)
Trel , where π∗ = min

x∈X
π(x) . (2.8)

2.2. A general decomposition bound on the spectral gap. We shall need a continuous
time version of a general decomposition bound obtained by Jerrum et al. [11]. Consider the
continuous time reversible Markov chain defined by (2.1). Suppose the space X is partitioned
in the disjoint union of subspaces X1, . . . , Xm, for some m ∈ N and define the generators

[Lif ](x) =
∑
y∈X

ci(x, y)[f(y) − f(x)] , ci(x, y) = c(x, y)1(y ∈ Xi) , x ∈ Xi .

Then Li is the generator of the Markov chain restricted to Xi, its reversible invariant measure
being given by πi = π(· |Xi). Let λmin denote the minimum of the spectral gaps of the Markov
chains generated by Li, i = 1, . . . ,m. Next, let L denote the infinitesimal generator defined by

[Lφ](i) =
m∑
j=1

c̄(i, j)[φ(j) − φ(i)] ,

for φ ∈ Rm, where
c̄(i, j) =

∑
x∈Xi , y∈Xj

π(x |Xi) c(x, y) .

This defines a continuous time Markov chain on {1, . . . ,m} with reversible invariant measure
π̄(i) = π(Xi). Let λ̄ denote the gap of this chain. A straightforward adaptation of [11, Theorem
1] yields the following estimate.

Proposition 2.1. Define γ = maxi maxx∈Xi

∑
y∈X\Xi

c(x, y) . Then, with the notation of (2.4),

gap > min
{ λ̄

3
,
λ̄ λmin

λ̄+ 3γ

}
. (2.9)

2.3. Killed process and quasi-stationary distribution. Here we recall some standard facts
about killed processes, their generators and quasi-stationary distributions for reversible Markov
chains; we refer to [1] for an introduction. Given a reversible Markov chain with generator L as
above and a subset Γ ⊂ X, we consider the process killed upon entering Γ, with sub-probability
law defined by

νx,Γt (B) = Px(vt ∈ B ; τΓ > t) , x ∈ Γc , (2.10)
where B ⊂ X, vt denotes the state of the Markov chain with generator L at time t, Px denotes
the law of the process started at x, and τΓ denotes the hitting time of the set Γ. The associated
semi-group PΓ

t is given by

[PΓ
t f ](x) = [etL

Γ
f ](x) =

∑
y∈Γc

νx,Γt (y)f(y) , x ∈ Γc , (2.11)

where the killed generator LΓ satisfies, for every x ∈ Γc:

[LΓf ](x) = [L(f1Γc)](x) = [Lf ](x) −
∑
y∈Γ

c(x, y)f(y) . (2.12)
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We assume that PΓ
t is irreducible. Then LΓ is a negative definite, self-adjoint operator in L2(π),

and its top eigenvalue −γΓ is characterized by

γΓ = min
f :X 7→R,
f1Γ=0

⟨
−LΓf, f

⟩
π

π(f2)
= min

f :X 7→R,
f1Γ=0

E(f, f)
π(f2)

, (2.13)

where we use ⟨·, ·⟩π for the scalar product in L2(π), and E(f, f) is defined by (2.5).
Let gΓ denote the (unique, positive on Γc) eigenfunction of LΓ associated to −γΓ. Extending

gΓ to all x ∈ X by setting gΓ(x) = 0 for x ∈ Γ, one defines the quasi-stationary distribution νΓ,
i.e. the probability on X given by

νΓ(y) =
π(y)gΓ(y)
π(gΓ)

, y ∈ X . (2.14)

An equivalent characterization of νΓ is as the limit

νΓ(B) = lim
t→∞

Px(vt ∈ B | τΓ > t) , (2.15)

where B ⊂ X, and the chosen initial point x ∈ Γc is arbitrary. The fundamental property of
the quasi-stationary distribution is that, starting from νΓ, the hitting time τΓ is exponentially
distributed with parameter γΓ:

PνΓ(τΓ > t) = e−γΓ t , (2.16)
where PνΓ stands for the law of the process when the initial state is distributed according to
νΓ. Another way of expressing quasi-stationarity is νΓPΓ

t = e−γΓ tνΓ, for all t > 0. A general
property of γΓ (cf. Lemma 3.1 below) is that γΓ > π(Γ) gap.

2.4. Polymer model. Let Ω = Ω2L stand for the space of all lattice paths defined in the
introduction. A partial order in Ω is given by

η 6 η′ ⇐⇒ ηx 6 η′x , x = −L, . . . , L . (2.17)

Given ζ, ξ ∈ Ω such that ζ 6 ξ we define the restricted space Ωζ,ξ of all paths η ∈ Ω such that
ζ 6 η 6 ξ. The dynamics is defined by the continuous time Markov chain with state space Ωζ,ξ,
with infinitesimal generator Lζ,ξ given by (1.1) where the rates rx,±(η) are replaced by

rζ,ξx,±(η) = rx,±(η)1(ηx,± ∈ Ωζ,ξ) (2.18)

This process is the heat bath dynamics associated to the probability measure πλ,ζ,ξ2L on Ωζ,ξ

defined as in (1.2) with the normalization now given by

Zλ,ζ,ξ2L =
∑

η′∈Ωζ,ξ

λN(η′) . (2.19)

Equivalently, πλ,ζ,ξ2L = πλ2L(· |Ωζ,ξ). This is referred to as the polymer model with top/bottom
constraints (ζ is the bottom, ξ is the top). For simplicity, when no confusion arises, we often
omit the superscripts λ, ζ, ξ and the subscript L from our notation in what follows. We write
vηt for the state of the Markov chain at time t when the initial configuration is some η, and let
νηt denote its distribution. When the initial condition η is distributed according to a probability
measure µ on Ω we write νµt as in Section 2.1.

Note that the generator Lζ,ξ can be written in the form (2.1) by setting c(η, η′) = rζ,ξx,±(η)1(η′ =
ηx,±), and π = πλ,ζ,ξ2L is reversible. While this holds for every value λ > 0 of the parameter
describing the strength of the interaction, we will only consider the case λ < 1 below, which
corresponds to a strictly delocalized regime for the polymer.
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The minimal path ∨ and maximal path ∧ for the order (2.17) are defined by ∨x = −x − L
for x 6 0, ∨x = −L + x for x > 0, and ∧ = −∨. Clearly, if ζ = ∨ and ξ = ∧, then Ωζ,ξ = Ω.
This case is referred to as the polymer model with no top/bottom constraint.

The following well known estimates will be often used in our proofs. We refer e.g. to [9, Section
2] for the proof of Lemma 2.2 below, as well as for other known properties of the delocalized
equilibrium measure. Let Z2L = Zλ2L denote the partition function (2.19) with no top/bottom
boundaries and write Z+

2L = Z+,λ
2L for the partition function (2.19) with ξ = ∧ and ζ given by

the minimal non-negative element of Ω, i.e. ζx = 0 if x ∈ EL (x has the same parity as L) and
ζx = 1 if x ∈ OL (x has opposite parity w.r.t. L); Z+

2L is the partition function of the polymer
with a horizontal wall at height zero. Recall that N = N(η) stands for the number of zeros
in the path η lying strictly between −L and L. Considering reflections of the path between
consecutive zeros one obtains

2Z+,λ
2L = Z

λ/2
2L . (2.20)

Lemma 2.2. Consider the polymer with no top/bottom constraint with λ ∈ (0, 1). There exist
constants ci = ci(λ) > 0, i = 1, 2 such that

2−2LZλ2L ∼ c1 L
−3/2 , (2.21)

and
π(N(η) > k) 6 c2 e

−k/c2 , ∀ k ∈ N . (2.22)

An immediate implication of (2.20) and (2.21) is that

2−2LZ+,λ
2L ∼ c+ L

−3/2 , (2.23)

for some constant c+ > 0 as soon as λ < 2. Moreover, (2.21) and (2.23) imply the bounds

π (ηy > 0 ∀y ∈ {−L, . . . , x} , and ηx = 0) ≍ π (ηx = 0)

≍ L3/2(L+ x)−3/2(L− x)−3/2 , (2.24)

for every x ∈ EL.

2.5. Monotonicity. An important property satisfied by the Markov chains introduced above
is the monotonicity with respect to the partial order (2.17). A convenient way of stating the
monotonicity property is that there exists a coupling P of the trajectories of the Markov chains
corresponding to distinct initial conditions such that if η 6 η′ then P almost surely vηt 6 vη

′

t for
all t > 0. More generally, one can define a coupling P of trajectories corresponding to distinct
top/bottom constraints and distinct initial conditions such that if ζ 6 ζ ′, ξ 6 ξ′, and η 6 η′,
then P almost surely vη;ζ,ξt 6 vη

′;ζ′,ξ′

t for all t > 0. Recall that a function f : Ω 7→ R is said to be
increasing if f(η) 6 f(η′) whenever η 6 η′. An event A is increasing if the indicator function 1A
is increasing. The monotonicity property of the dynamics implies the so-called FKG property
of the equilibrium measures π = πλ,ζ,ξ2L : for every pair of increasing functions f, g : Ω 7→ R, one
has π(fg) > π(f)π(g). We refer to [7, Section 2] for a more detailed discussion of the monotone
coupling and the consequences of monotonicity.

Lemma 2.3. Let µ be a probability on Ω and write f(η) = µ(η)/π(η), and ft(η) = νµt (η)/π(η),
t > 0. If f is increasing then, for every t > 0, ft is increasing. As a consequence, there exists
an increasing event A such that

∥νµt − π∥ = νµt (A) − π(A) . (2.25)
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Proof. Write νµt (η) =
∑

η0∈Ω µ(η0)Pt(η0, η), where Pt(·, ·) stands for the kernel of the Markov
chain. Reversibility then gives

ft(η) =
∑
η0∈Ω

f(η0)π(η0)Pt(η0, η)/π(η) =
∑
η0∈Ω

f(η0)Pt(η, η0) . (2.26)

Next, let P denote the monotone coupling introduced above and let E denote expectation w.r.t.
P. Then, (2.26) coincides with E[f(vηt )], and if η 6 η′,

ft(η′) − ft(η) = E[f(vη
′

t ) − f(vηt )] = E[f(vη
′

t ) − f(vηt ) ; vη
′

t > vηt ] .

Thus, ft is increasing whenever f is. Finally, it is well known that the total variation distance
can be written in the form (2.25) where A = {η : νµt (A) > π(A)}. Since A = {ft > 1}, A is
increasing whenever f is. �

Lemma 2.4 compares arbitrary initial conditions to the extremal initial conditions. Lemma 2.5
states a useful sub-multiplicativity property satisfied by extremal evolutions. For lightness of
notation, we state these results only in the case of no top/bottom boundaries, i.e. ζ = ∨, ξ = ∧,
but the same applies for general ζ, ξ with exactly the same proof.

Lemma 2.4. For any t > 0 and any η, η′ ∈ Ω:

∥νηt − νη
′

t ∥ 6 4L2 ∥ν∧t − ν∨t ∥ .
As a consequence,

gap = − lim
t→∞

1
t

log ∥ν∧t − ν∨t ∥ .

Proof. Let P denote the monotone coupling as above. Then,

∥νηt − νη
′

t ∥ 6 P(vηt ̸= vη
′

t ) 6 P(v∧t ̸= v∨t )

6
L−1∑

x=−L+1

L−1∑
h=−L

[P((v∧t )x > h) − P((v∨t )x > h)]

6 4L2 ∥ν∧t − ν∨t ∥ .
The second point follows from the first one and the classical characterization (2.7) of the spectral
gap. �
Lemma 2.5. For any s, t > 0,

∥ν∧t+s − ν∨t+s∥ 6 ∥ν∧t − ν∨t ∥ ∥ν∧s − ν∨s ∥ .

Proof. With the same argument of Lemma 2.3, for some increasing event A

∥ν∧t+s − ν∨t+s∥ = ν∧t+s(A) − ν∨t+s(A) .

Let ρ be a coupling beween ν∧t and ν∨t at fixed time t > 0. Then

ν∧t+s(A) − ν∨t+s(A) =
∫

(νηs (A) − νσs (A))dρ(η, σ)

=
∫

(νηs (A) − νσs (A))1(σ ̸= η)dρ(η, σ)

6 (ν∧s (A) − ν∨s (A))ρ(σ ̸= η)

6 ∥ν∧s − ν∨s || ρ(σ ̸= η) .

To conclude, we take ρ as the maximal coupling, i.e. such that ρ(σ ̸= η) = ∥ν∧t − ν∨t ∥. �
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2.6. Relaxation in one phase. Here we obtain results concerning the polymer dynamics in the
phase π+ = π(·|Ω+) with Ω+ defined after (1.5); cf. Proposition 2.6 below. Then, we show that
the polymer started at the maximal configuration ∧ relaxes first to the restricted equilibrium
π+ in a time O(L2+δ) for arbitrarily small δ > 0, while it takes much longer to reach the full
equilibrium π; cf. Lemma 2.7 and Lemma 2.8 below.

Recall the definition (1.5) of the subspace Ω+ ⊂ Ω, where L ≫ ℓ, and ℓ diverges as L → ∞;
see (2.29) below. The corresponding restricted equilibrium is given by π+ = π(·|Ω+). Note that
this is a particular instance of the polymer equilibrium πλ,ζ,ξ2L with top/bottom boundaries: the
top is ξ = ∧ while the bottom ζ = ζ(Ω+) is the lowest element of Ω+. Similarly, one defines
Ω− = −Ω+, i.e. use (1.5) with ηx > 0 replaced by ηx < 0, and the equilibrium π− is defined
accordingly.

Since λ < 1, the equilibrium bounds (2.24) imply that

π(Ω+) = π(Ω−) =
1
2

+O(ℓ−1/2) ; (2.27)

see e.g. [7, Section 2]. In particular, if ℓ diverges as L→ ∞, then∥∥π − 1
2
(π+ + π−)

∥∥ = o(1) . (2.28)

What follows depends only marginally on the precise dependence of ℓ on L, provided that
L≫ ℓ≫ 1. For the sake of simplicity we shall fix its value as

ℓ(L) = ⌊(logL)
1
4 ⌋ . (2.29)

This choice turns out to be convenient in the proof of Proposition 2.6 below, but we point out
that any choice of the form ℓ(L) = O(Lε) for small ε > 0 would be sufficient to obtain the same
conclusion with a little more work.

We start by establishing a mixing time upper bound for the dynamics constrained to stay in
Ω+, i.e. the process evolving with bottom boundary given by ζ = ζ(Ω+). To avoid confusion we
shall write µηt (instead of νηt ) for the law at time t of this Markov chain with state space Ω+ and
initial condition η. We write L+ for its generator and gap+ for the associated spectral gap.

Proposition 2.6. For every ε > 0, there exists L0 = L0(ε) such that for all L > L0, for all
t > 0 and all initial conditions η ∈ Ω+ :

∥µηt − π+∥ 6 4L2 exp
(
− t/L2+ε

)
. (2.30)

In particular, gap+ > L−2−ε .

Proof. The last statement follows from (2.30) and (2.7). To prove (2.30) we establish that for
every ε > 0, there is a constant L0 = L0(ε) > 0 such that, taking T = L2+ε, we have

∥µ∧T − µζT ∥ 6 1 − L−ε , (2.31)

for all L > L0(ε), where ζ stands for the minimal element ζ = ζ(Ω+) of Ω+. Once (2.31) is
available, we obtain (2.30) (with a new value of ε) from Lemma 2.4, since Lemma 2.5 (which is
also valid for the restricted dynamic) and (2.31) imply

∥µ∧t − µζt ∥ 6
(
∥µ∧T − µζT ∥

)⌊t/T ⌋

6 exp
(
−⌊t/T ⌋L−ε)

)
6 2 exp

(
− t/L2+2ε

)
,

for any L large enough.
To prove (2.31), we divide the sites x ∈ {−L, . . . , L} in three overlapping regions:

I1 = {−L, . . . ,−L+ ℓ2} , I2 = {−L+ ℓ, . . . , L− ℓ} , and I3 = {L− ℓ2, . . . , L} ,
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where ℓ = ℓ(L) is given by (2.29). Let T2 = L2+ε1 , T1 = Lε1 with some ε1 > 0 such that
T = L2+ε > T ′ := 2T2 + T1. We shall prove (2.31) with T replaced by T ′ (this implies the
claim since by Lemma 2.4 the left hand side of (2.31) is monotone as a function of T ). Call
µη0,cT ′ the law of the “censored” process obtained as follows. Start from η0 at time 0 and, for
time t ∈ [0, T2] reject all the updates involving x /∈ I2. For time t ∈ (T2, T2 + T1] reject all
updates involving x /∈ I1 ∪ I3, and for time t ∈ (T2 + T1, 2T2 + T1 = T ′] reject all the updates
involving x /∈ I2. From the Peres-Winkler censoring inequality [19, Theorem 16.5] one has that
µ∧,cT ′ stochastically dominates µ∧T ′ . Similarly, µζ,cT ′ is stochastically dominated by µζT ′ . On the
other hand, as in Lemma 2.3, one has

∥µ∧T ′ − µζT ′∥ = µ∧T ′(A) − µζT ′(A) ,

where A ⊂ Ω+ is an increasing event. Therefore,

∥µ∧T ′ − µζT ′∥ 6 µ∧,cT ′ (A) − µζ,cT ′ (A) 6 ∥µ∧,cT ′ − µζ,cT ′ ∥ ,
and the lemma follows once we show that

∥µ∧,cT ′ − µζ,cT ′ ∥ 6 1 − L−ε . (2.32)

To prove (2.32) we shall couple the two configurations η∧,cT ′ , ηζ,cT ′ with law µ∧,cT ′ , µζ,cT ′ respectively.
From the analysis of the polymer with the wall [7, Section 4], it is not hard to infer that uniformly
in the boundary values at −L + ℓ − 1 and L − ℓ + 1 the system evolving in the region I2 has
a mixing time O(L2 logL). Therefore, after a time T2 = L2+ε1 , up to O(L−p) corrections for a
large constant p > 0, for any event E, µ∧,cT2

(E) coincides with the equilibrium probability of E
in I2 with boundary conditions ∧ at −L + ℓ − 1 and L − ℓ + 1. The same applies to µζ,cT2

(E)
provided the equilibrium is taken with boundary conditions ζ at −L+ℓ−1 and L−ℓ+1. Choose
the event E that the configuration is minimal (in Ω+) at both −L+ ℓ2 − 1 and L− ℓ2 + 1 (i.e.
η−L+ℓ2−1 = ηL−ℓ2+1 = 0 if L− ℓ2 is odd, and η−L+ℓ2−1 = ηL−ℓ2+1 = 1 if L− ℓ2 is even). From
known equilibrium estimates [9, Section 2], it is not difficult to show that at equilibrium, with
either of the two boundary conditions considered above, the probability of E is bounded below by
c1 ℓ

−6 for some constant c1 > 0 depending only on λ. Therefore, using an independent coupling
in the time-lag [0, T2], we have that the event E occurs for both η∧,cT2

, ηζ,cT2
with probability at

least c ℓ−12.
Next, conditioned on the event E we see that from time T2 up to time T2 + T1 the two

processes evolve (in the regions I1 and I3 only) with the same boundary conditions (equal to the
minimal configuration at both −L+ ℓ2 and L− ℓ2). Since T1 = Lε and the mixing time of the
system in the regions I1 and I3 (which evolve independently) is certainly at most eO(ℓ2), with
probability 1 +O(L−p) (conditionally on event E) we have that the two configurations coincide
in both regions I1, I2 at time T2 + T1. Therefore if we let the system run only in I2 now for an
additional time T2 we have a probability close to 1 to have the two configurations coinciding
everywhere. It follows that, conditionally on the event E, there is a probability of, say, at least
1/2 of no discrepancy between η∧,cT ′ and ηζ,cT ′ . Therefore, letting P denote the coupling described
above,

∥µ∧,cT ′ − µζ,cT ′ ∥ 6 P(η∧,cT ′ ̸= ηζ,cT ′ )

6 P(η∧,cT ′ ̸= ηζ,cT ′ |E)P(E) + 1 − P(E)

6 1 − 1
2

P(E) .

Since P(E) > c/ℓ12 > 2/Lε, for L > L0(ε), this implies (2.32). �
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We now go back to the model with no top/bottom boundaries, that is the law νηt corresponds
to the evolution with ξ = ∧, ζ = ∨. The next result is crucially based on estimates obtained in
[7, Section 6] for the delocalized regime λ < 1.

Lemma 2.7. Uniformly in t 6 L5/2(logL)−9,

ν∧t (Ω+) = 1 + o(1) .

Proof. Define the event A = {
∑L

x=−L ηx < L3/2(logL)−3 }. Proposition 6.2 in [7] proves that
ν∧t (A) = o(1) uniformly in t 6 L5/2(logL)−9. Since Ω− ⊂ A we have

ν∧t (Ω−) = o(1) , t 6 L5/2(logL)−9 . (2.33)

Next, let us check that

ν∧t (Ω+ | (Ω−)c) > π(Ω+ | (Ω−)c) , t > 0 . (2.34)

To this end, observe that since (Ω−)c is increasing, using Lemma 2.3 the function

f(σ) = 1(Ω−)c(σ)
ν∧t (σ | (Ω−)c)
π(σ | (Ω−)c)

= 1(Ω−)c(σ)
ν∧t (σ)
π(σ)

π((Ω−)c)
ν∧t ((Ω−)c)

,

is increasing. Since Ω+ ⊂ (Ω−)c is increasing, with the FKG property for π, this implies (2.34).
From (2.33) and (2.34) we obtain

ν∧t (Ω+) > (1 + o(1))ν∧t (Ω+ | (Ω−)c) > (1 + o(1))π(Ω+ | (Ω−)c) = 1 + o(1) ,

where the last bound follows from (2.27). �

Lemma 2.8. For any ε > 0, uniformly in t ∈ [L2+ε, L5/2(logL)−9] :

∥ν∧t − π+∥ = o(1) ,

where π+ is defined by π+ = π(· |Ω+).

Proof. Using Lemma 2.7 it is enough to prove

∥ν∧t (· |Ω+) − π+∥ = o(1) ,

uniformly in t ∈ [L2+ε, L5/2(logL)−9]. Consider the function f : Ω 7→ R given by

f(σ) = 1Ω+(σ)
ν∧t (σ |Ω+)
π+(σ)

= 1Ω+(σ)
ν∧t (σ)
π(σ)

π(Ω+)
ν∧t (Ω+)

.

Since Ω+ is increasing, Lemma 2.3 shows that f is increasing. Therefore, the event

A = {σ ∈ Ω+ : ν∧t (σ |Ω+) > π+(σ)}
is increasing. Using monotonicity we have

ν∧t (A |Ω+) = ν∧t (A)/ν∧t (Ω+) 6 µ∧t (A)/ν∧t (Ω+) ,

where µ∧t denotes the evolution constrained to stay in Ω+; see Proposition 2.6. Therefore,

∥ν∧t (· |Ω+) − π+∥ = ν∧t (A |Ω+) − π+(A) 6 µ∧t (A)
ν∧t (Ω+)

− π+(A) .

The conclusion now follows from Lemma 2.7 and Proposition 2.6. �

The full power of Lemma 2.8 will be seen in the next sections. One of its consequences is the
fact that the mixing time Tmix can be bounded in terms of the relaxation time via

Tmix 6 L2+ε + c Trel logL , (2.35)
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for some constant c > 0. Indeed, (2.35) follows quite easily from Lemma 2.4, Lemma 2.8 and
(2.6); see Lemma 4.1 below for a more subtle application of the same reasoning. Note that, since
Trel ≫ L5/2−ε, the bound (2.35) improves considerably the standard estimate (2.8) by replacing
the factor − log π∗ = O(L) with a factor O(logL).

2.7. Characterization of the principal eigenfunction. What follows refers to the model
with no top/bottom boundaries. Recall that ∧, (resp. ∨) denotes the maximal (resp. minimal)
configuration in Ω. A function g : Ω 7→ R is called antisymmetric if g(−η) = −g(η) for all η ∈ Ω.
The following result gives a precise characterization of one eigenfunction corresponding to −gap.

Proposition 2.9. There exists an increasing antisymmetric eigenfunction g of L, such that
∥g∥L2(π) = 1. It satisfies

Lg = −gap g. (2.36)

Moreover, when L tends to infinity

g(∧) = ∥g∥L∞ = 1 + o(1)

and
∥g − (1Ω+ − 1Ω−) ∥L1(π) = o(1). (2.37)

Proof. By decomposing 1∧ − 1∨ on a basis of eigenfunctions of L one sees that

g := lim
t→∞

Pt(1∧ − 1∨)
∥Pt(1∧ − 1∨)∥L2(π)

is an eigenfunction with unit L2 norm. It is increasing and antisymmetric as Pt(1∧ − 1∨) is
antisymmetric and increasing for all t (Pt preserves monotonicity and symmetries). To prove
(2.36), it suffices to show that the projection of 1∧ − 1∨ on the eigenspace of L associated to
−gap is non-zero. To do so, first observe that by reversibility,

1
π(∧)

∥Pt(1∧ − 1∨)∥L1(π) = 2 ∥ν∧t − ν∨t ∥.

Then, by the second point of Lemma 2.4

lim
t→∞

1
t

log ∥Pt(1∧ − 1∨)∥L2(π) = lim
t→∞

1
t

log ∥Pt(1∧ − 1∨)∥L1(π)

= lim
t→∞

1
t

log ∥ν∧t − ν∨t ∥ = −gap ,

(where we used equivalence of the norms in finite dimensional spaces).

We now estimate the L∞ norm of g. Let ε > 0 be small and fixed, and let t0 be such that
L2+ε < t0 < L5/2−ε. The function g is an eigenfunction for Pt0 = exp(t0L), with eigenvalue
e−t0gap. Therefore

e−t0gapg(∧) = E
[
g(v∧t0)

]
6 π+(g) + 2g(∧)∥ν∧t0 − π+∥,

where the last inequality follows from the fact that for any two measures µ, ν and any function
f ,

|µ(f) − ν(f)| 6 2∥f∥L∞∥µ− ν∥ .
Hence, by Lemma 2.8 and the fact that gap−1 ≫ t0 (cf. (1.4)):

g(∧) 6 π+(g)
e−t0gap − 2∥ν∧t0 − π+∥

= π+(g)(1 + o(1)). (2.38)
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Moreover, by symmetry and Jensen’s inequality

1 = π(g2) > 2
∑
η∈Ω+

π(η)g(η)2 = 2π(Ω+)π+(g2) > 2π(Ω+)π+(g)2 ,

so that
π+(g) 6 (2π(Ω+))−1/2 = 1 + o(1).

Therefore g(∧) 6 1 + o(1) (and it is trivial to notice that ∥g∥L∞ > ∥g∥L2(π) = 1).

We turn to the proof of (2.37). First notice that by (2.38) one has π+(g) > (1+o(1))g(∧) > 1+
o(1) so that

π+(g) = 1 + o(1). (2.39)

Next, we prove that the variation of g within Ω+ is small:

Varπ+(g) = o(1). (2.40)

Indeed, Varπ+(g) = π+(g2)− π+(g)2 6 g(∧)2 − π+(g)2 and the claim follows from (2.38). Next,

∥g − 1Ω+ + 1Ω−∥L1(π) 6 ∥1Ω+(g − 1)∥L1(π) + ∥1Ω−(g + 1)∥L1(π) + ∥g1Ω\(Ω+∪Ω−)∥L1(π) .

The first two terms of the right-hand side are equal by symmetry. Adding and subtracting
π+(g), and using Schwarz’ inequality,

∥1Ω+(g − 1)∥L1(π) 6 π(Ω+)
[
|π+(g) − 1| +

√
Varπ+(g)

]
= o(1) ,

where the conclusion follows from (2.39) and (2.40). The third term ∥g1Ω\(Ω+∪Ω−)∥L1(π) is
smaller than ∥g∥L∞π(Ω \ (Ω+ ∪ Ω−)) = o(1). �

3. Metastability

In this section we first prove Theorem 1.5, which is mainly a consequence of the technical
lemmas of the previous section and then move to the proof of Theorem 1.3 and its corollary.

3.1. Proof of Theorem 1.5. We use the notation T = L2+δ. Equation (1.11) is an easy
consequence of (1.9) and (2.28). Indeed, assuming (1.9), for t > T , one has

∥Pt(∧, ·) − π∥ =
∥∥∥[1 + e−t/Trel

2
π+ +

1 − e−t/Trel

2
π−

]
− π

∥∥∥ + o(1) =
1
2
e−t/Trel + o(1). (3.1)

To prove (1.9), one writes∥∥∥ν∧t −
[1 + e−t/Trel

2
π+ +

1 − e−t/Trel

2
π−

]∥∥∥
6

∥∥ν∧TPt−T − π+Pt−T
∥∥ +

∥∥∥π+Pt−T −
[1 + e−t/Trel

2
π+ +

1 − e−t/Trel

2
π−

]∥∥∥ . (3.2)

This is just triangular inequality, combined with the observation that ν∧TPt−T = ν∧t . The first
term on the right hand side is smaller than ∥ν∧T − π+∥ (as Pt−T contracts the norm) which is
itself small, by Lemma 2.8 and the definition of T . It remains to estimate the second term i.e.
to prove (1.10).

To do this, we use the fact that the density of π+ w.r.t. π is very close to g + 1, where g
is the eigenfunction described in Proposition 2.9, so that the density of π+Pt must be close to
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Pt(g+ 1). Using reversibility, one can express the densities as follows: dπ+Pt
dπ = Pt

dπ+

dπ . Then we
rewrite the second term in (3.2) as an L1 norm (omitting a harmless factor 1/2)∥∥∥Pt−T dπ+

dπ
− 1

2π(Ω+)
(1Ω+ + 1Ω−) − 1

2π(Ω+)
e−t/Trel (1Ω+ − 1Ω−)

∥∥∥
L1(π)

6
∥∥∥Pt−T dπ+

dπ
− 1

2π(Ω+)
(1Ω+ + 1Ω−) − 1

2π(Ω+)
e−t/Trelg

∥∥∥
L1(π)

+
1

2π(Ω+)
∥e−t/Trel (1Ω+ − 1Ω− − g) ∥L1(π).

The last term above is small by Proposition 2.9. From (2.27) we know that 2π(Ω+) = 1 + o(1).
One can then estimate the first term∥∥∥Pt−T dπ+

dπ
− 1

2π(Ω+)
(1Ω+ + 1Ω−) − 1

2π(Ω+)
e−t/Trelg

∥∥∥
L1(π)

6 ∥ (1Ω+ + 1Ω−) − 1∥L1(π) +
∥∥∥Pt(dπ+

dπ
− 1 − g

)∥∥∥
L1(π)

+ o(1) , (3.3)

where we used the triangular inequality, the fact that Pt1 = 1, and

Pt−T g = e−(t−T )/Trelg = (e−t/Trel + o(1))g ,

which follows from T = o(Trel). On the right hand-side of (3.3), the first term is small by (2.28)
and the second is bounded by ∥dπ+

dπ − 1 − g∥L1(π), which is small by Proposition 2.9. �

3.2. Proof of Theorem 1.3. Theorem 1.5 gives some intuition on why the result should be
true, and it will be used to determine the time of the jump from one state to the other. However,
one needs another key ingredient to get the result, namely the description of the quasi-stationary
distribution. The reason for this is that starting from the quasi-stationary distribution, a killed
process dies exactly at exponential rate; see Section 2.3. Therefore, most of our effort will fo-
cus on stochastic comparison with the quasi-stationary distribution. Let us first give a brief
roadmap to help the reader through the proof of Theorem 1.3.

Step 1. The sets S± of Theorem 1.3 for which we have the desired exponential hitting time
description are constructed by successively refining a first attempt. One first defines S0,± as the
sets of polymer configurations where the eigenfunction g in Proposition 2.9 is positive (negative)
and one verifies that their equilibrium probability is 1

2 + o(1). Then one examines the Dirichlet
problem associated to the process killed in S0,− (S0,+) and one proves that the corresponding
eigenvalue γ0 is of the same order as the spectral gap apart from a crucial unspecified multiplica-
tive factor in [1/2, 1]. Similarly one verifies that the corresponding quasi-stationary measure is
very close to the equilibrium measure π conditioned to be in S0,+ (S0,−). In this way we get the
exponentiality of the hitting time of e.g. S0,− starting from π+ with a rate which is, modulo a
multiplicative factor in [1/2, 1], the spectral gap (see Lemma 3.3).

Step 2. Next one appropriately defines new sets S1,± ⊂ S0,± in order to guarantee that this time
the corresponding Dirichlet eigenvalue γ1 is equal to (1

2 + o(1))gap, and that the hitting time of
S1,∓ starting from equilibrium conditioned to S1,± is exponential (with the correct rate). Again
one of the key points is to show that π+ is close to the quasi-stationary distribution associated
the process killed on entering S1,−, and that the equilibrium probability of S1,± is still 1

2 + o(1).
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Step 3. Finally, one defines the sets S2,± ⊂ S1,± in such a way that: a) the hitting time of
S2,∓ starting from any configuration in S2,± (and not just from the conditional equilibrium) is
also exponential with the correct rate 1

2gap; b) the equilibrium probability of S2,± is still 1
2 +o(1).

It is now time to begin the implementation of the above strategy. Let

S0,+ := {η ∈ Ω, g(η) > 0} , (3.4)

where g is the eigenfunction defined by Proposition 2.9 and set S0,− = −S0,+. From Proposi-
tion 2.9,

∥1S0,+ − 1Ω+∥L1(π) = o(1). (3.5)

In particular, π(S0,±) = 1/2 + o(1). Let S− ⊂ S0,− be a decreasing event. We consider the
quasi-stationary distribution ν+ := νS− of the process killed when it hits S−. Let P ∗

t = PS
−

t ,
resp. L∗ = LS−

, denote the semi-group, resp. the generator, associated to this process (see
Section 2.3), −γS− = −γ be the largest eigenvalue of L∗ and τ− = τS− be the hitting time of
S−. From (2.16):

Pν
+
(τ− > t) = e−γt. (3.6)

Our first step is to prove that if S− has non-negligible measure, then γ is of the same order of
the gap. More precisely:

Lemma 3.1. For any S− ⊂ S0,−, one has π(S−) 6 γ Trel 6 1.

Proof. The bound π(S−) 6 γ Trel is rather standard, but we include its proof for the sake of
completeness. Let f0 = gS− denote the minimizer in the variational principle defining γ = γS− ;
see (2.13). Then

Varπ(f0) = ⟨f0, f0⟩π −
⟨
f0,1(S−)c

⟩2

π
> ⟨f0, f0⟩π π(S−) ,

where we used the Cauchy-Schwarz inequality for
⟨
f0,1(S−)c

⟩2

π
. Therefore

γ =
E(f0, f0)
π(f2

0 )
> π(S−)

E(f0, f0)
Varπ(f0)

> π(S−) gap .

As for the bound γ Trel 6 1, γS− being a non-decreasing function of S− (for the inclusion),
it is sufficient to prove the result for the maximal case S− = S0,−. Let g be the eigenfunction
defined in Proposition 2.9. From (2.12), for all η ∈ (S0,−)c

−(L∗g|(S0,−)c
)(η) = −(Lg)(η) +

∑
η′∈S0,−

c(η, η′)g(η′) 6 − (Lg)(η) = gap g(η) ,

where we use the fact that g(η′) < 0 for η′ ∈ S0,−. Plugging this into (2.13), and using
g|(S0,−)c

> 0, one gets

γ 6

⟨
−L∗g|(S0,−)c

, g|(S0,−)c

⟩
π

π
(
g2
|(S0,−)c

) 6 gap .

�
Next, we prove that the quasi-stationary distribution ν+ for the process killed on S− is very

close to π+ if S− has probability close to 1/2.

Lemma 3.2. Uniformly for all decreasing events S− ⊂ S0,−,

∥ν+ − π+∥ 6 (2 − 4π(S−)) + o(1) .
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Proof. We use triangular inequality to get

∥ν+ − π+∥ 6 ∥ν+ − π(· |(S−)c)∥ + ∥π+ − π(· |(S−)c)∥. (3.7)

We start with the first term. First, from (2.15) one has the characterization

ν+ = lim
t→∞

δ∧P
∗
t

δ∧P ∗
t (Ω)

.

Since the operator P ∗
t preserves monotonicity (S− is decreasing), arguing as in [19, Lemma 16.6],

the density d[δ∧P ∗
t ]

dπ is seen to be an increasing function for every fixed t > 0. Hence, passing to
the limit t→ ∞, dν+/dπ is an increasing function. Therefore,

A :=
{
η ∈ (S−)c, such that

ν+(η)π((S−)c)
π(η)

> 1
}

is an increasing event. From standard properties of the total variation distance

∥ν+ − π(·|(S−)c∥ = ν+(A) − π(A |(S−)c).

We shall prove that ν+(A) is smaller than π+(A) + o(1) by the use of monotonicity and a chain
of comparisons. Recall the notation T = L2+δ (δ ∈ (0, 1/4)). We first compare ν+ to ν+PT :
remark that

ν+PT = ν+P ∗
T + ν+(PT − P ∗

T )
where the two terms of the decomposition are positive measures. From quasi-stationarity one
has ν+P ∗

T = e−γT ν+ and therefore the total mass of the second term above is 1 − e−γT . Hence

∥ν+PT − ν+∥ =
1
2

∥∥∥d[ν+(PT − P ∗
T )]

dπ
− dν+

dπ
(1 − e−γT )

∥∥∥
L1(π)

6 1 − e−γ T = o(1). (3.8)

The last equality comes from Lemma 3.1 and the fact that Trel ≫ T . Next, δ∧PT stochastically
dominates ν+PT so that [ν+PT ](A) 6 [δ∧PT ](A). Hence, from Lemma 2.8 and (3.8):

ν+(A) 6 ν+PT (A) + o(1) 6 δ∧PT (A) + o(1)

6 π+(A) + ∥δ∧PT − π+∥ + o(1) = π+(A) + o(1).

Therefore, going back to (3.7)

∥ν+ − π+∥ 6 ν+(A) − π(A |(S−)c) + ∥π+ − π(· |(S−)c)∥ (3.9)

6 π+(A) − π(A |(S−)c) + ∥π+ − π(· |(S−)c)∥ + o(1) 6 2∥π+ − π(· |(S−)c)∥ + o(1) .

To estimate the right-hand side of (3.9), notice that

∥π+ − π(· |(S−)c)∥ 6 ∥π+ − π(· |(S0,−)c)∥ + ∥π(· |(S0,−)c) − π(· |(S−)c)∥ , (3.10)

and the first term is o(1) by Proposition 2.9. Moreover, since S− ⊂ S0,−

∥π(· |(S0,−)c) − π(· |(S−)c)∥ =
π((S−)c) − π((S0,−)c)

π((S−)c)

=
1/2 − π(S−) + o(1)

1 − π(S−)
6 1 − 2π(S−) + o(1) . (3.11)

Combining (3.9), (3.10) and (3.11), the desired result follows. �
Now one uses the fact that ν+ and π+ are close in total variation distance to estimate the

jumping time to S− starting from either ∧ or from π+. For the rest of this section, one defines,
in analogy with τ−, the hitting times τ i,− (resp. τ i,+), (i = 0, 1, 2) of the sets Si,− (resp. Si,+)
to be defined.
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Lemma 3.3. Uniformly for all t > 0 and all decreasing S− ⊂ S0,−, setting γ = γS−:
(i) |P∧ [τ− > t] − e−γt| 6 (2 − 4π(S−)) + o(1)
(ii) |Pπ+

[τ− > t] − e−γt| 6 (2 − 4π(S−)) + o(1).
In particular, for S− = S0,−, setting γ0 = γS0,−:

(iii) P∧ [
τ0,− > t

]
= e−γ0t + o(1)

(iv) Pπ+ [
τ0,− > t

]
= e−γ0t + o(1).

Proof. Item (ii) follows from (3.6) and Lemma 3.2. Indeed,

|Pπ+ [
τ− > t

]
− Pν

+ [
τ− > t

]
| 6 ∥π+ − ν+∥ .

For item (i) (lower bound), we use the fact that S− is a decreasing event to get that

P∧ [
τ− > t

]
> Pν

+ [
τ− > t

]
= e−γt.

For the upper bound it is sufficient to prove the result for t > T = L2+δ, since γ−1 ≫ T (a
consequence of Lemma 3.1 and (1.4)). One defines

τ̄− = inf{t > T, η(t) ∈ S−}.
Then, by the Markov property and quasi-stationarity

P∧ [
τ− > t

]
6 P∧ [

τ̄− > t
]

= Pδ∧PT
[
τ− > t− T

]
6 ∥δ∧PT − ν+∥ + e−γ(t−T )

6 ∥δ∧PT − π+∥ + ∥π+ − ν+∥ + e−γt + o(1) , (3.12)

where we use e−γ(t−T ) = e−γt+ o(1), which follows from γ−1 ≫ T . The result then follows from
Lemma 2.8 and Lemma 3.2. Items (iii) and (iv) are consequences of (i) and (ii) and the fact
that π(S0,−) = 1/2 + o(1). �

From the previously stated results, one may conclude that there exists δL, a decreasing se-
quence tending to zero when L tends to infinity, such that for every t > 0:

P∧ [
τ0,− > t

]
6 e−γ0t + δL,

Pπ
+ [
τ0,− > t

]
> e−γ0t − δL,

π(Ω+) > 1/2 − δL

π+(S0,+) > 1 − δL.

(3.13)

Given such a δL, one defines S1,+ to be

S1,+ := S0,+ ∩ {η ∈ Ω+ : Pη
[
τ0,− > t

]
> e−tγ0 − 3(δL)1/4 , ∀t > 0 },

and S1,− = −S1,+.

Lemma 3.4. The set S1,+ satisfies

π(S1,+) =
1
2

+ o(1) , and

Pη
[
τ0,− > t

]
= e−tγ0 + o(1) , uniformly in t > 0 , and η ∈ S1,+.

(3.14)

Proof. The lower bound in the second point follows from the definition of S1,±. For the upper
bound, it is just a consequence of the fact that

Pξ
[
τ0,− > t

]
6 P∧ [

τ0,− > t
]

6 e−γ0t + δL , (3.15)

for any ξ ∈ Ω, by monotonicity, where the last bound is the first line in (3.13).
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We turn to a proof of the first point. For t > 0, one defines

S1,+,t := {η ∈ Ω+ : Pη
[
τ0,− > t

]
> e−tγ0 − 2δ1/4L }.

From the second line in (3.13), and using (3.15) for all ξ ∈ S1,+,t:

e−γ0t− δL 6 Pπ
+ [
τ0,− > t

]
6 π+(S1,+,t)(e−γ0t+ δL)+(1−π+(S1,+,t))(e−γ0t−2δ1/4L ) . (3.16)

This gives −2δL 6 2δ1/4L π+(S1,+,t)) − 2δ1/4L , i.e.

π+(S1,+,t) > 1 − δ
3/4
L . (3.17)

Next, define Si := S1,+,iδ
1/4
L γ−1

0 , i ∈ N. We claim that for all L sufficiently large:

S1,+ ⊃
⌊δ−1/2

L ⌋∩
i=1

Si ∩ S0,+ . (3.18)

Indeed, let η ∈
∩⌊δ−1/2

L ⌋
i=1 Si. If t 6 δ

−1/4
L γ−1

0 /2, then clearly η ∈ S⌈tγ0δ−1/4
L ⌉ if L is large enough.

In particular,

Pη[τ0,− > t] > Pη[τ0,− > ⌈tγ0δ
−1/4
L ⌉δ1/4L γ−1

0 ] > e−γ0t−δ
1/4
L − 2δ1/4L > e−γ0t − 3δ1/4L . (3.19)

If on the other hand t > δ
−1/4
L γ−1

0 /2, then

e−tγ0 − 3δ1/4L 6 0 6 Pη[τ0,− > t],

provided δL is small enough, i.e. L is large enough. This proves (3.18). Moreover one has, from
(3.17) and the fourth line of (3.13),

π+
(
∩⌊δ−1/2

L ⌋
i=1 Si ∩ S0,+

)
> 1 − δ

1/4
L − δL.

From the third line of (3.13), one gets that

π
(
∩⌊δ−1/2

L ⌋
i=1 Si ∩ S0,+

)
> (1 − δ

1/4
L − δL)(1/2 − δL) .

This last estimate together with (3.18) implies the first statement of the lemma. �

The previous results allow us to compute the value of γ1 = γS1,− .

Lemma 3.5. Let −γ1 be the largest eigenvalue of LS1,−
, the generator of the process killed when

it hits S1,−. We have
γ1 Trel = 1/2 + o(1).

It is important to recall that, in contrast to γ1, the eigenvalue γ0 of the process killed in LS0,−

was estimated only up to a factor 2 (cf. Lemma 3.1).

Proof. The inequality γ1Trel > 1/2 + o(1) comes from Lemma 3.4 and Lemma 3.1. Recall the
definitions

τ1,− = inf
{
t > 0, η(t) ∈ S1,−}

,

τ0,+ = inf
{
t > 0, η(t) ∈ S0,+

}
.
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According to Theorem 1.5, (3.5), Lemma 3.1, Lemma 3.3(i) and Lemma 3.4, one can find a new
sequence δL going to zero such that

ν∧t ((S0,+)c) 6 (1 − e−t/Trel)/2 + δL for every t > 0 ,

Pξ
[
τ0,+ > t

]
> e−γ0t − δL for every t > 0 and ξ ∈ S1,− ,

P∧ [
τ1,− > t

]
6 e−γ1t + δL for every t > 0 .

Next, define
τ̄0,+ = inf

{
t > τ1,− : η(t) ∈ S0,+

}
to be the first time the process enters S0,+ after entering for the first time S1,−. One has

1 − e−t/Trel

2
+ δL > ν∧t ((S0,+)c) > P∧ [

τ1,− < t, τ̄0,+ > t
]

> E∧
[
1{τ1,− < t}Pη(τ1,−)

[
τ0,+ > t

]]
> P∧ [

τ1,− < t
]

min
η∈S1,−

Pη
[
τ0,+ > t

]
> (1 − e−γ1t − δL)(e−tγ0 − δL). (3.20)

We use this inequality for t = γ−1
1 δ

1/3
L and get (using the fact that x − x2 6 1 − exp(−x) 6 x

for x small enough)

δ
1/3
L /(2γ1Trel) > (δ1/3L − δ

2/3
L − δL)(1 − δ

1/3
L γ0/γ1 − δL) − δL.

As 1 6 γ0/γ1 6 3 (for L large enough, cf. Lemma 3.1), all of this gives us

γ1Trel 6 1

2[(1 − δ
1/3
L − δ

2/3
L )(1 − 3δ1/3 − δL) − δ

2/3
L ]

,

which ends the proof. �
Once again assume that δL is a sequence going to zero, this time such that one has for every

t > 0
P∧ [

τ1,− > t
]

6 e−γ1t + δL,

Pπ
+ [
τ1,− > t

]
> e−γ1t − δL,

π(S1,+) > 1/2 − δL.

(3.21)

Note that the sets S1,± are not yet good candidates for the sets S± of Theorem 1.3, the reason
being that (3.21) and Lemma 3.5 say that the hitting time of S1,− is exponential with the correct
rate, but only if one starts from either the maximal configuration or from π+, while we want
this to hold uniformly in the initial condition in S+. We need therefore a final step in order to
fix this problem. We set

S2,+ :=
{
η ∈ S1,+ : Pη

[
τ1,− > t

]
> e−γ1t − 3δ1/4L ∀t > 0

}
,

and define S2,− = −S2,+. The same computations of Lemma 3.4 prove

Lemma 3.6. π(S2,+) = 1/2 + o(1).

Now we are ready to finish the proof of Theorem 1.3, with S+ := S2,+. Let −γ2 be the largest
eigenvalue of the generator LS2,−

of the process killed when it reaches S2,−. From Lemma 3.1,
one has π(S2,+) gap 6 γ2 6 γ1. Therefore, Lemma 3.6 yields

γ2 = (1/2 + o(1)) gap . (3.22)
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Let τ2,− be the hitting time of S2,−. For any η ∈ S2,+ (this is actually true for any η in Ω), we
get from monotonicity, Lemma 3.3(i), Lemma 3.6 and (3.22)

Pη(τ2,− > t) 6 P∧(τ2,− > t) 6 e−γ2t + o(1) + (2 − 4π(S2,−)) 6 e
− t

2Trel + o(1),

where o(1) is uniform in t. On the other side, the definition of S2,+ and the obvious bound
τ2,− > τ1,− give that for any η ∈ S2,+

Pη(τ2,− > t) > Pη(τ1,− > t) > e−γ1t + o(1) > e
− t

2Trel + o(1),

where the last inequality comes from Lemma 3.5. This ends the proof of Theorem 1.3. �

3.3. Proof of Corollary 1.7. We use the same notation as in the previous proof. We set
Γ := (S2,+ ∪ S2,−)c, and denote the local time spent by the Markov chain (ηs)s > 0 in Γ by

Ht = Ht(Γ) :=
∫ t

0
1η(s)∈Γds. (3.23)

Notice that, if π̃2,+ := π(· | S2,+), then ∥π̃2,+ − π+∥ = o(1). Equation (1.10) implies that there
exists a sequence δL going to zero such that

Pπ̃
2,+

(ηs ∈ Γ) 6 δL, ∀s > 0.

Integrating between zero and δ−1/2
L Trel one gets

Eπ̃
2,+

[
H
δ
−1/2
L Trel

]
6 δ

1/2
L Trel .

We set

S3,+ :=
{
η ∈ S2,+ : Eη

[
H
δ
−1/2
L Trel

]
6 δ

1/4
L Trel

}
.

By Markov’s inequality we see that

π̃2,+(S3,+) > 1 − δ
1/4
L

which immediately implies that π(S3,+) = 1/2+o(1) since π(S2,+) = 1/2+o(1). Using Markov’s
inequality again we obtain

Pη
[
H
δ
−1/2
L Trel

> δ
1/8
L Trel

]
6 δ

1/8
L , ∀η ∈ S3,+ .

Moreover, by Theorem 1.3, there exists a sequence δ′L going to zero such that

Pη
[
τ2,− ∈ [0, δ1/16

L Trel] ∪ [δ−1/2
L Trel,∞)

]
6 δ′L, ∀η ∈ S2,+.

On the event {τ2,− ∈ [δ1/16
L Trel, δ

−1/2
L Trel]}, one has Hτ2,− 6 H

δ
−1/2
L Trel

and hence, for every

η ∈ S3,+,

Pη
[
Hτ2,− > δ

1/16
L τ2,−

]
6 Pη

[
H
δ
−1/2
L Trel

> δ
1/8
L Trel

]
+ δ′L 6 δ

1/8
L + δ′L .

�
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4. Mixing time upper bound

In this section we prove Theorem 1.1. Our approach will also yield a proof of Theorem 1.2.
The main ideas of the proof can be sketched as follows.

Step 1. Lemma 2.8 shows that after a burn-in time O(L2+ε) the distribution ν∧t has a smooth
density w.r.t. the equilibrium π. The first step consists in using this fact together with (2.6)
and Lemma 2.4 to reduce the mixing time upper bound to a lower bound on the spectral gap
of the chain.

Step 2. To bound the spectral gap we decompose the polymer configurations using the variables
σx = sign(ηx) introduced in (1.7). From the decomposition estimates in Proposition 2.1, we
shall roughly obtain that the spectral gap of the chain is bounded below by gap∗ × gap+, where
gap∗ denotes the spectral gap of the heat bath dynamics for the variables σ, while gap+ stands
for the spectral gap of the polymer with a wall (i.e. the polymer constrained to be non-negative).
From [7], we know that gap+ = Ω(L−2).

Step 3. To prove a lower bound on gap∗ we shall perform a second decomposition, this time by
fixing the number of crossings (i.e. the number of sign switches) in the configuration σ. Another
application of the bound from Proposition 2.1 will then show that gap∗ is roughly bounded
below by a product of two spectral gaps, say gap(1)

∗ and gap(2)
∗ . Here gap(1)

∗ = minn gap∗,n,
where gap∗,n is the spectral gap of the dynamics on the variables σ constrained to have n

crossings, while gap(2)
∗ denotes the spectral gap of a birth and death chain associated to the

number of crossings. We establish a lower bound gap(2)
∗ = Ω(1). Moreover, we show that when

n = 1, one has gap∗,1 = Ω(L−5/2). To prove a similar bound for every n we introduce a new
dynamics involving a fixed number n of crossings: with rate 1, independently, each crossing
equilibrates its position between the two neighboring crossings positions. If gapneq denotes the
spectral gap of this process, a comparison argument shows that gap∗,n > gap∗,1 × gapneq.

Step 4. The final step consists in obtaining the lower bound gapneq = Ω(L−ε). The first ob-
servation is that if n 6 ε logL this estimate can be obtained by means of a direct coupling
argument. The proof of the estimate for larger values of n is based on a block dynamics argu-
ment which allows us to reduce the problem to the case of n 6 ε logL crossings. The analysis of
the block dynamics uses a further coupling argument. It is worth observing that the coupling
arguments used here make crucial use of the heavy tailed nature of the distribution of excursions
at equilibrium; see Lemma 2.2.

Before starting the actual proof, let us pause for a few remarks. The lower bound on gap∗
described in Step 3 and Step 4 above is sharp (up toO(Lε) corrections). As detailed in Section 4.5
below, Step 3 and Step 4 will essentially prove Theorem 1.2. On the other hand, the final bound
Tmix = O(L5/2+2+ε) for Theorem 1.1 is likely to be off by a factor O(L2). As explained in
Step 1 above, this comes from the use of a decomposition estimate that involves the product
gap∗ × gap+ rather than the minimum min{gap∗, gap+}, as it would be the case if one could
efficiently decouple the mode associated to the variables σ from the rest.

The following four subsections will develop the four steps described above in the given order.
However, we warn the reader that, because of various technical obstacles, the above plan will
not be followed very strictly and several detours will be needed.

4.1. Reduction to spectral gap. We start with the implementation of Step 1. For later
purposes it is necessary to consider a variant of the original dynamics which avoids (very unlikely)
configurations with too many crossings or too many zeros between consecutive crossings.
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Call χ the number of crossings in a configuration η:

χ(η) =
L−2∑

x=−L+2

1(ηx = 0 , ηx−1 ̸= ηx+1) . (4.1)

Note that only sites x ∈ EL \ ({−L} ∪ {L}) appear in the summation. Define γx = 1(ηx =
0 , ηx−1 ̸= ηx+1), so that χ =

∑L−2
x=−L+2 γx, and write

ξ0 = −L , ξχ+1 = L , (4.2)

and if 1 6 j 6 χ, let ξj denote the position in {−L + 2, . . . , L − 2} of the j-th “1” in the
sequence {γ−L+2, . . . , γL−2}. Thus, ξ1, . . . , ξχ denote the positions of the internal crossings.
Finally, denote by N(ξi, ξi+1) the number of zeros in the path η strictly between ξi and ξi+1.
See Figure 2.

+ + + − − − − + + +− − + + +−

−L L
ξ2ξ1 ξ3 ξ4

Figure 2. A configuration η of the polymer with χ(η) = 4 internal crossings in
positions ξ1, ξ2, ξ3, ξ4. Note that in this case N(ξ0, ξ1) = N(ξ2, ξ3) = N(ξ3, ξ4) =
0, and N(ξ1, ξ2) = N(ξ4, ξ5) = 1. Below, the corresponding configuration of signs
σ = sign(η).

Fix a constant co > 0 and define the event

Ωo =
{
η ∈ Ω : χ(η) 6 co logL , and max

i=0,...,χ
N(ξi, ξi+1) 6 co logL

}
. (4.3)

Clearly η ∈ (Ωo)c implies that there are at least co logL zeros in the path η. Since λ < 1, the
bound of Lemma 2.2 shows that the number of zeros is exponentially integrable at equilibrium.
Therefore, for any p > 0, taking co = co(p) large enough, we have

π(Ωo) = 1 +O(L−p) . (4.4)

The reason for introducing the restricted set Ωo will be apparent in the sequel. For the moment,
we point out that the restriction χ 6 co logL is essential for our estimates in Section 4.4, while
both restrictions χ 6 co logL and N(ξi, ξi+1) 6 co logL will be needed in the estimate of the
parameter γ appearing in the decomposition of the spectral gap; see the proof of Proposition 4.2
and Proposition 4.4 below.

Next, consider the polymer process restricted to the set Ωo, i.e. the continuous time Markov
chain with state space Ωo, and generator (1.1), where the rates rx,±(η) are replaced by

rox,±(η) = rx,±(η)1(ηx,± ∈ Ωo) . (4.5)

Let also πo denote its reversible invariant measure, which is easily seen to coincide with π(· |Ωo).
Let T orel denote the relaxation time of the process defined above.
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Lemma 4.1. Assume that T orel = O(Lp) for some p > 0. There exists c > 0, such that for any
ε > 0 and for all L > L0(ε):

Tmix 6 L2+ε + c T orel logL . (4.6)

Proof. Let t = L2+ε/2 + s, with s = c1T
o
rel for some c1 to be fixed below. We prove that

∥ν∧t − ν∨t ∥ 6 1/2 . (4.7)

From Lemma 2.4 and Lemma 2.5, (4.7) implies that Tmix 6 c2(L2+ε/2 + s) logL, for some other
constant c2, which implies the lemma. To prove (4.7), we first introduce some notation. We
write νη,ou for the distribution at time u of the state of the Markov chain restricted to Ωo, when
the initial configuration is some η ∈ Ωo. If η /∈ Ωo we define νη,ou = δη for all u. Next, we write
νµ,ou =

∑
η µ(η)νη,ou for a probability measure µ on Ω. Using symmetry we can write

∥ν∧t − ν∨t ∥ 6 2∥ν∧t − νπ
+

s ∥ + 2∥νπ+

s − νπ
+,o

s ∥ + ∥νπ+,o
s − νπ

−,o
s ∥ . (4.8)

We start with the observation that

∥ν∧t − νπ
+

s ∥ = ∥νν
∧
t−s
s − νπ

+

s ∥ 6 ∥ν∧t−s − π+∥ = o(1) ,

where the first bound is obtained by writing ν
ν∧t−s
s −νπ+

s =
∫

(νηs −νη
′
s )ρ(η, η′) with ρ the maximal

coupling of ν∧t−s and π+, and the last bound follows from Lemma 2.8.
We turn to the last term in (4.8). Let π+,o = π+(· |Ωo) and observe that

∥π+ − π+,o∥ = o(1) .

This last bound follows easily from (4.4) and (2.27). Moreover, the bound (2.6) applied to the
process restricted to Ωo yields

∥νπ+,o,o
u − πo∥ 6 c e−u/T

o
rel ,

for some c > 0 and for all u > 0. Therefore, the third term in (4.8) can be made smaller than,
say, 1/4 by taking c1 large enough in the definition of the time s. It remains to prove that the
second term in (4.8) is o(1). Since the initial condition is sampled from the same distribution
π+ we can couple the two processes (νπ

+

u )u > 0 and (νπ
+,o

u )u > 0 in such a way that they coincide
until the first time when the unrestricted process exits from the set Ωo. (Note that this time
can be zero.) Thus,

∥νπ+

s − νπ
+,o

s ∥ 6
∑
η0∈Ω

π+(η0)P(∃u 6 s : vη0u /∈ Ωo) .

From (2.27) we know that π+(η0) 6 (2 + o(1))π(η0), so that the time-invariance with a union
bound implies

∥νπ+

s − νπ
+,o

s ∥ 6 2sL(1 − π(Ωo))(2 + o(1)) ,

where we use the fact that the average number of updates up to time s is bounded by 2sL. Since,
by assumption, s = O(Lp) for some p, we can use (4.4) to conclude that ∥νπ+

s −νπ
+,o

s ∥ = o(1). �

The following three subsections will focus on the upper bound T orel = O(L5/2+2+ε). Once this
bound is established, Theorem 1.1 will follow immediately from Lemma 4.1.
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4.2. Decomposing along crossings configurations. Recall the definition of the variables
σ ∈ {−1,+1}OL given by σy = sign(ηy), where OL is the set of sites in {−L, . . . , L} with the
same parity as L + 1. Note that the field σ specifies uniquely the field ξ defined after (4.2),
while ξ specifies σ up to a global sign switch; see Figure 2. The space Ωo can be decomposed
into disjoint subspaces

Ωo = ∪σΩo
σ , (4.9)

where Ωo
σ denotes the set of η ∈ Ωo such that sign(ηx) = σx for all x ∈ OL. Let So denote the set

of all σ ∈ {−1,+1}OL such that Ωo
σ ̸= ∅, i.e. the set of σ ∈ {−1,+1}OL such that χ(σ) 6 co logL,

where χ(·), defined in (4.1), is seen as a function of σ = sign(η). Consider the continuous time
Markov chain on So with infinitesimal generator

Gφ(σ) =
∑
x∈OL

θx(σ) [φ(σx) − φ(σ)] (4.10)

where φ : So 7→ R, σx is the configuration σ flipped at x, i.e. it is defined as σ everywhere except
at x where it equals −σx, and the rates θx(σ) are given by

θx(σ) =
∑
η∈Ωo

σ

π(η |Ωo
σ)

[
rox,+(η)1(σ(ηx,+) = σx) + rox,−(η)1(σ(ηx,−) = σx)

]
. (4.11)

The rates rox,± are given in (4.5). Note that the measure

νo(σ) =
∑
η∈Ωo

σ

π(η |Ωo) , (4.12)

is the reversible distribution, i.e. νo(σ)θx(σ) = νo(σx)θx(σx) holds for all x ∈ OL and σ ∈ So.
In words, the process with generator G is described as follows. Attach independent rate 1

Poisson clocks to all sites x ∈ OL. Let σ be the current configuration. When site x rings, choose
a configuration η sampled from the distribution π(· |Ωo

σ) and set η′ = ηx,+ with probability
rox,+(η), η′ = ηx,− with probability rox,−(η), and η′ = η with probability 1 − rox,+(η) − rox,−(η).
Finally, update σ to σ′ given by σ′x = sign(η′x). Let gapSo denote the spectral gap of this Markov
chain.

Proposition 4.2. There exists c > 0 such that for all L:

T orel 6 cL2(logL)3 (gapSo)−1 .

Proof. We apply Proposition 2.1 with the decomposition (4.9). To each σ we can associate the
continuous time Markov chain with state space Ωo

σ, defined by the generator (1.1) with the rates
rx,+(η) replaced by

rσx,±(η) = rox,±(η)1(ηx,± ∈ Ωo
σ) , (4.13)

where the rates rox,±(η) are defined in (4.5), with reversible equilibrium measure πo(· |Ωo
σ). Call

gapσ the spectral gap of this Markov chain. For a given σ, this corresponds to independent
continuous time Markov chains for each interval {ξi, . . . , ξi+1}, where the crossing positions ξi
have been defined in (4.2). On a given interval {ξi, . . . , ξi+1}, we have a polymer dynamics
with a horizontal wall constraint (polymer above or below the wall depending on the sign of
the field σ inside that interval). Moreover, within each interval the polymer is constrained to
have less than co logL zeros. Let gapσ,i denote the spectral gap of this process on the interval
{ξi, . . . , ξi+1}. From the independence recalled above, one has

gapσ = min
i=0,...,χ

gapσ,i , (4.14)
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where χ is the number of interior crossings defined in (4.1). It follows from Lemma 4.3 below
and (2.8) that (gapσ)−1 = O(L2 logL), uniformly in σ ∈ So.

Next, observe that the generator G in (4.10) coincides with the generator L from Proposi-
tion 2.1 for the present choice of the decomposition. We can then use the bound of Proposition 2.1
with λ̄ = gapSo , and λmin = minσ∈So gapσ:

T orel 6 c (gapSo)−1 max{1, L2 logL(gapSo + γ)} , (4.15)

where c > 0 is a constant, and

γ = max
σ∈So

max
η∈Ωo

σ

L−1∑
x=−L+1

[
rox,+(η)1(σ(ηx,+) = σx) + rox,−(η)1(σ(ηx,−) = σx)

]
. (4.16)

It is immediate to check that gapSo is smaller than a constant, so that T orel 6 cL2 logL (1 +
γ) (gapSo)−1, by (4.15). It remains to give an upper bound γ = O((logL)2). From the definition
(4.16), we see that γ is bounded above by the maximum over η ∈ Ωo of the number of sites
x ∈ OL such that ηx−1 = ηx+1 = 0. By definition of the set Ωo, the latter quantity is bounded
by (co logL)2 in our setting. This ends the proof. �

We turn to the lower bound on the gaps defined in (4.14), that was needed in the proof of
Proposition 4.2. In Lemma 4.3, we prove upper bounds for mixings times and (2.8) allows us
to get the corresponding lower bounds for the spectral gap. Consider the polymer dynamics
under the constraints N(η) 6 M (where N(η) is the total number of zeros and M is a positive
constant) and η > 0, i.e. let Γ+,M denote the set

Γ+,M =
{
η ∈ Ω : N(η) 6 M , and ηx > 0 for all x

}
,

and write ρηt for the law at time t of the polymer dynamics restricted to Γ+,M . This is the
continuous time Markov chain with generator (1.1) with rates replaced by rx,±(η)1(ηx,± ∈ Γ+,M )
and with reversible measure π(· |Γ+,M ).

Lemma 4.3. There exists a constant c > 0 such that for any η ∈ Γ+,M and for any M > c logL:

∥ρηT − π(· |Γ+,M )∥ = o(1) , T = cL2 logL .

Proof. Let µηt denote the evolution without the constraint N(η) 6 M , i.e. the Markov chain
with generator (1.1) with rates given by rx,±(η)1(ηx,± > 0) and with reversible measure πw =
π(· | η > 0). The mixing time of this “wall” constrained model has been analyzed in [7, Theo-
rem 3.1], where it is shown that, for some constant c > 0, for all initial η > 0:

∥µηt − πw∥ 6 cL2 exp
(
− t

c L2

)
. (4.17)

As in (4.4), standard equilibrium estimates imply that for any p > 0 one can choose c > 0 such
that for all M > c logL:

πw(N > M) = ∥πw − π(· |Γ+,M )∥ = O(L−p) . (4.18)

Next, observe that by monotonicity µηt is stochastically dominated by ρηt . Let τη denote the
hitting time of the set N(·) > M for the process with law (µηt )t > 0, and introduce the event

Gt := {η > 0 : P(τη 6 t) 6 L−1} .

Note that, for fixed t, Gt is an increasing event, and therefore µηs(Gt) 6 ρηs(Gt), for any s, t > 0.
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Let us fix now t = c1 L
2 logL. For any p > 0, using the time-invariance and a union bound

with the fact that the expected number of updates up to time t is bounded by 2tL, one has∑
η

πw(η)P
(
τη 6 t

)
6 2tL πw(N > M) = O(L4−p) ,

where we use (4.18). Markov’s inequality then implies that

πw(Gct) = O(L5−p) .

From (4.17) we then deduce that if c1 is sufficiently large (in the definition of t):

ρηt (G
c
t) 6 µηt (G

c
t) = O(L5−p) . (4.19)

On the other hand, writing ρη2t(A)− πw(A) =
∑

η′ ρ
η
t (η

′)(ρη
′

t (A)− πw(A)) for any set A one has

∥ρη2t − πw∥ 6
∑
η′∈Gt

ρηt (η
′)∥ρη

′

t − πw∥ + ρηt (G
c
t) .

To estimate the first term above, note that the processes with laws (µηt )t > 0, (ρ
η
t )t > 0 can be

coupled in such a way that they coincide until time τη. Therefore, by definition of Gt, for any
η′ ∈ Gt:

∥ρη
′

t − πw∥ 6 P(τη
′ 6 t) + ∥µη

′

t − πw∥ = O(L−1) , (4.20)
where we have used again (4.17) to bound the last term above. In conclusion, using

∥ρη2t − π(· |Γ+,M )∥ 6 ∥πw − π(· |Γ+,M )∥ + ∥ρη2t − πw∥ ,
together with (4.18), (4.19), and (4.20), we arrive at ∥ρη2t−π(· |Γ+,M )∥ = O(L−1) which implies
the desired estimate. �

Thanks to Lemma 4.1 and Proposition 4.2, Theorem 1.1 will follow from the estimate

Proposition 4.4. For any ε > 0 and for all L > L0(ε):

gapSo > L− 5
2
−ε . (4.21)

The following two subsections are devoted to the proof of Proposition 4.4.

4.3. Decomposing according to the number of crossings. We first decompose So accord-
ing to whether the first excursion has positive or negative sign, i.e.

So = S+ ∪ S− , S± = {σ ∈ So : σ−L+1 = ±1} . (4.22)

An application of Proposition 2.1 with the decomposition (4.22) yields

gapSo > min{λ̄/3, λ̄λmin/(λ̄+ 3γ)} , (4.23)

where λmin = gapS+
denotes the gap of the process restricted to S+ (by symmetry, this equals

the gap of the process restricted to S−), while λ̄ is the gap of the symmetric two state Markov
chain with transition rate

c(+,−) = c(−,+) =
∑
σ∈S+

νo(σ | S+)θ−L+1(σ) , γ = max
σ∈S+

θ−L+1(σ) ,

where νo is given in (4.12), and θ−L+1(σ) is the probability of a flip at x = −L + 1 in σ; see
(4.11). The probability measure νo is defined in (4.12). Clearly, γ 6 1. Since at equilibrium the
polymer has a uniformly positive probability of taking the value η−L+2 = 0, cf. (2.24), it follows
easily that c(+,−) > c(λ) > 0 for some L-independent constant c(λ). Thus, λ̄ is of order 1, and
for some c = c(λ) > 0 one obtains

gapSo > c gapS+
. (4.24)
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Next, consider the number of crossings χ defined in (4.1). Since χ is a function of the signs σ
only, we can write χ(σ) for the number of crossings in a given σ ∈ So. Thus, the space S+ is
partitioned as

S+ = ∪mn=0S+,n , (4.25)
where m = ⌊co logL⌋, and S+,n = {σ ∈ S+ : χ(σ) = n}. We apply Proposition 2.1, this
time with the decomposition (4.25). Thus, gapS+

can be bounded below as in (4.23) where
λmin = min0 6 n 6m gap+,n now stands for the minimum of gaps of the processes restricted to
S+,n, while λ̄ stands for the gap of the random walk on {0, . . . ,m} with transition rates

c(n, n± 1) =
∑

σ∈S+,n

∑
x∈OL

νo(σ | S+,n)θx(σ)1(σx ∈ S+,n±1) , (4.26)

c(n, n± 2) =
∑

σ∈S+,n

∑
x∈OL

νo(σ | S+,n)θx(σ)1(σx ∈ S+,n±2) . (4.27)

Note that the transition n → n + 1 is necessarily obtained by creating a new crossing at the
rightmost position ξn = L− 2, while the transition n → n+ 2 can be obtained by creating two
adjacent crossings between two existing consecutive crossings. These are the only transitions
that are induced by the single flips σ → σx. By construction, the reversible invariant measure
of the chain defined by the rates (4.26), (4.27) is given by

µ(n) := νo(χ = n | S+) = π(χ = n |Ωo) , n = 0, . . . ,m .

Lemma 4.5. The gap λ̄ of the chain defined by (4.26), (4.27) satisfies c > λ̄ > c−1 for some
c = c(λ) > 0 uniformly in L > 2.

Proof. By Lemma 2.2, π(χ = n) is exponentially decaying in n, and the same applies to µ(n) =
π(χ = n |Ωo), up to O(L−p) corrections; see (4.4). To prove an upper bound on λ̄ one can take
the test function χ counting the number of crossings in the variational principle defining λ̄. The
variance of χ w.r.t. µ(·) is a positive constant. On the other hand the Dirichlet form can be
bounded from above by

4
m−1∑
n=0

µ(n)[c(n, n+ 1) + c(n, n+ 2)] . (4.28)

Observe that uniformly in σ ∈ S+,n, one has∑
x∈OL

θx(σ)
[
1(σx ∈ S+,n±1) + 1(σx ∈ S+,n±2)

]
= O(n) . (4.29)

Indeed, each excursion can only contribute O(1) to this sum since at equilibrium, in the delocal-
ized phase, the expected number of zeros between consecutive crossings is finite (depending on
λ < 1); see Lemma 2.2. Now, (4.29) implies that (4.28) is bounded above by c

∑
n µ(n)n = O(1).

This ends the proof of λ̄ 6 c for some constant c.
To prove a lower bound on λ̄, we can neglect the additional rates (4.27). Then, we are left

with a birth and death chain on the set {0, . . . ,m} (m being the maximal number of crossings
allowed) with jump rates c(n, n± 1) and reversible measure µ(n) as above. It is well known (see
e.g. [12]) that the spectral gap of this chain can be estimated via Cheeger’s inequality λ̄ > cΦ2,
where c is a universal constant and Φ is defined by

Φ = min{Φ(ℓ, ℓ′) , 0 6 ℓ < ℓ′ 6 m : µ([ℓ, ℓ′]) 6 1/2}

Φ(ℓ, ℓ′) :=
µ(ℓ)c(ℓ, ℓ− 1) + µ(ℓ′)c(ℓ′, ℓ′ + 1)

µ([ℓ, ℓ′])
,
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where µ([ℓ, ℓ′]) =
∑ℓ′

n=ℓ µ(n). Thus, one has to prove a lower bound on Φ. Below, we prove that
the birth rate c(n, n+1) in (4.26) is bounded away from zero uniformly: for a universal constant
a > 0 one has

c(n, n+ 1) > a , 0 6 n 6 m− 1. (4.30)

By reversibility, it is easily checked that the same holds for the death rate c(n, n − 1), for
1 6 n 6 m. To prove a lower bound on Φ, consider two cases: either 1) Φ = Φ(ℓ, ℓ′) with ℓ > 0
or 2) Φ = Φ(ℓ, ℓ′) with ℓ = 0. In the first case, one has that Φ > aµ(ℓ)/µ([ℓ, ℓ′]) is uniformly
positive, since µ decays exponentially. In the second case, one has Φ > aµ(ℓ′)/µ([0, ℓ′]), which
is uniformly positive because the requirement µ([0, ℓ′]) 6 1/2 and the decay of µ force ℓ′ to be
uniformly bounded.

It remains to prove (4.30). We have

c(n, n+ 1) > c νo(ξn = L− 4 | S+,n) , (4.31)

for some constant c = c(λ) > 0, where ξn denotes the rightmost internal crossing. We introduce
some extra notation to characterize more explicitly the measures νn,o := νo(· | S+,n). Let Ω+,o

j

denote the set of polymers

Ω+,o
j = {η > 0 : η0 = ηj = 0 , ηx+1 = ηx ± 1 , x = 0, . . . , j − 1 , and N(η) 6 co logL} .

Note that these paths start at 0 and end at j, so that j must be even for this set to be non-empty.
Define the probability law ρ+,o on the set of even positive integers by

ρ+,o(j) =
2−jZ+,o

j

z+,o
, where Z+,o

j =
∑

η∈Ω+,o
j

λN(η) ,

where z+,o is the normalization. From Lemma 2.2, (2.23) one has that 2−jZ+,o
j = O(j−3/2)

for large j, so that the probability ρ+,o is well defined. Then, it is not hard to check that the
measure νn,o introduced above is given by

νn,o(x1, . . . , xn) =
ρ+,o(x1 + L)ρ+,o(x2 − x1) · · · ρ+,o(xn − xn−1)ρ+,o(L− xn)

Zon,L
(4.32)

where νn,o(x1, . . . , xn) = νn,o(ξ1 = x1, . . . , ξn = xn), if −L < x1 < · · · < xn < L is any
allowed configuration of the crossing positions ξ1, . . . , ξn, and Zon,L is the normalizing constant.

In particular, νn,o is a product measure ρ⊗(n+1)
+,o over n + 1 positive increments xi+1 − xi (with

x0 = −L, xn+1 = L), conditioned to have
∑n

i=0(xi+1 − xi) = 2L.
Going back to (4.31), with the notation in (4.32) we have

νo(ξn = L− 4 | S+,n) =
ρ+,o(4)ρ⊗(n)

+,o (
∑n

i=1(ξi − ξi−1) = 2L− 4)

ρ
⊗(n+1)
+,o (

∑n+1
i=1 (ξi − ξi−1) = 2L)

.

Since
√
L≫ m > n, and ρ+,o(4) > 0, with the same arguments of Lemma 4.12 below one easily

sees that νo(ξn = L − 4 | S+,n) > 0 uniformly. (We omit the details here to avoid repetitions).
This ends the proof of (4.30) for n > 1. A bound on c(0, 1) can be obtained similarly. �

We return to the application of Proposition 2.1 with decomposition (4.25). The constant γ is
now given by

γ = max
n

max
σ∈S+,n

∑
x∈OL

θx(σ)
[
1(σx ∈ S+,n±1) + 1(σx ∈ S+,n±2)

]
.
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Recall (4.29). Since n 6 m = O(logL) we obtain that γ = O(logL). In conclusion, using (4.24)
and Lemma 4.5, we arrive at

gapSo > c (logL)−1 min
1 6 n 6m

gap+,n . (4.33)

Thanks to (4.33), the proof of Proposition 4.4 has been reduced to the proof of a lower bound
gap+,n = Ω(L−5/2−ε), uniformly in n 6 co logL. Note that the case n = 0 does not appear
in (4.33). Indeed, in that case the corresponding equilibrium is concentrated on the single “all
plus” element S0,+. We start with the simplest case, i.e. n = 1, which can be analyzed by rather
standard arguments.

Lemma 4.6. There exists a constant c = c(λ) > 0, such that

gap+,1 > cL−5/2 . (4.34)

Proof. When n = 1, the process restricted to S+,1 consists of a nearest neighbor random walk
on EL \ ({−L} ∪ {L}), the sites in {−L+ 2, . . . , L− 2} with the same parity as L. Letting σ(x)
denote the element of S+,1 with unique crossing at x, the corresponding jump rates are given
by

c(x, x± 2) =
∑
y∈OL

θy(σ(x))1(σ(x)y = σ(x± 2)) . (4.35)

These rates are of order 1 (except at x = −L + 2 where c(−L + 2,−L) = 0 and at x = L − 2
where c(L−2, L) = 0) since there is a uniformly positive probability for the polymer conditioned
to have signs σ(x) of having a 0 at x±2. Moreover, the reversible invariant probability measure
ρ(x) for this chain is given by

ρ(x) = πo(ηx−1, ηx, ηx+1 = (1, 0,−1) | sign(η) ∈ S+,1) . (4.36)

Recalling (4.4) and Lemma 2.2, the event sign(η) ∈ S+,1 has uniformly positive probability at
equilibrium, and ρ(x) ≍ ρ0(x), where ρ0 is the probability

ρ0(x) =
(L+ x)−3/2(L− x)−3/2

zL
, x ∈ EL \ ({−L} ∪ {L}) , (4.37)

where zL is the normalizing constant. Since the rates (4.35) are of order 1, a standard comparison
argument shows that it is sufficient to prove the bound gap+,1

0 > cL−5/2 for the gap of the
chain with reversible measure ρ0 given by (4.37) with rates defined by c0(x, x + 2) = 1 and
c0(x, x− 2) = ρ0(x− 2)/ρ0(x). The latter process has the Dirichlet form

E0(f, f) =
L−4∑

x=−L+2

ρ0(x)[f(x+ 2) − f(x)]2 . (4.38)

On the other hand, writing f(y) − f(x) =
∑y−2

j=x[f(j + 2) − f(j)], x < y, and using Schwarz’
inequality, the variance Varρ0(f) can be bounded above as follows:

Varρ0(f) =
1
2

∑
x,y

ρ0(x)ρ0(y)[f(y) − f(x)]2

6 2L
L−4∑

j=−L+2

ρ0(j)[f(j + 2) − f(j)]2
∑
x 6 j

∑
y>j

ρ0(x)ρ0(y)
ρ0(j)

.
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From (4.37) one has

max
j

∑
x 6 j

∑
y>j

ρ0(x)ρ0(y)
ρ0(j)

= O(L
3
2 ) .

It follows that gap+,1
0 > cL−5/2, which implies (4.34). �

Remark 4.7. The bound of Lemma 4.6 is optimal in the sense that

gap+,1 6 c−1 L−5/2 . (4.39)

This can be seen by taking a test function φ(x) in the variational principle for gap+,1, of the
form φ(x) = g(x/L), where g : [−1, 1] 7→ R is given by g(s) = −1 if s < −1/2, g(s) = 1 if
s > 1/2, and is linear between −1/2 and 1/2. With this choice one has that the variance of φ
w.r.t. ρ defined by (4.36) is of order 1, while the Dirichlet form - given by (4.38) with ρ instead
of ρ0 - is bounded above by the probability of x ∈ [−L/2, L/2] times L−2, i.e. L−5/2. This
implies (4.39). We point out that the results in (4.34) and (4.39) could have been obtained by
appealing to a known criterium for birth and death chains; see [17].

We turn to the proof of a lower bound on gap+,n for n > 1. Recall the definition (4.32)
of the measure νn,o. We introduce a further dynamics. We view the ξi as particle positions.
Each particle i = 1, . . . , n has an independent Poisson clock with parameter 1. When particle
i rings, we freeze all positions ξk, k ̸= i, and update ξi with the new position ξ′i sampled from
the conditional distribution νin := νn,o(· | ξk, k ̸= i), where νn,o is given in (4.32). The Dirichlet
form of this process is given by

En,oeq (f, f) =
n∑
i=1

νn,o
[
Varνi

n
(f)

]
, (4.40)

where Varνi
n
(f) = νin(f

2) − νin(f)2 is the variance conditioned on the values of ξk, k ̸= i. Let
gapn,oeq denote the associated spectral gap:

gapn,oeq = inf
f

En,oeq (f, f)
Varνn,o(f)

, (4.41)

where the infimum ranges over all functions of the crossing positions ξ1, . . . , ξn. The next
estimate allows one to reduce the proof of Proposition 4.4 to the proof of a lower bound gapn,oeq =
Ω(L−ε), uniformly in n 6 co logL.

Lemma 4.8. There exists a constant c = c(λ) > 0, such that for all n > 1.

gap+,n > cL−5/2gapn,oeq . (4.42)

Proof. For n = 1 this coincides with the result of Lemma 4.6, since in this case ν1,o[Varν1
1
(f)]

coincides with Varν1,o(f). The general case follows from the observation that Lemma 4.6 can be
applied with the segment {ξi−1, . . . , ξi+1} replacing the usual {−L, . . . , L}, to obtain

Varνi
n
(f) 6 1

c
(ξi+1 − ξi−1)5/2E i(f, f) 6 1

c1
L5/2E i(f, f) ,

where c1 = c/25/2, and E i(f, f) denotes the Dirichlet form of the random walk corresponding
to the rates (4.35), with the segment {ξi−1, . . . , ξi+1} in place of {−L, . . . , L}. Taking the νn,o-
expectation, and summing over i = 1, . . . , n one obtains the estimate

En,oeq (f, f) 6 1
c1
L5/2

n∑
i=1

νn,o
[
E i(f, f)

]
.
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The desired conclusion follows from the observation that
∑n

i=1 νn,o
[
E i(f, f)

]
= E+,n(f, f), where

E+,n(f, f) is the Dirichlet form of the process restricted to S+,n with spectral gap given by
gap+,n. �

4.4. Lower bound on gapn,oeq . To complete the proof we need the lower bound gapn,oeq = Ω(L−ε).
We first remove the restriction N(η) 6 co logL in the definition of the measure νn,o. Namely,
introduce the probability measure

νn(x1, . . . , xn) =
ρ+(x1 + L)ρ+(x2 − x1) · · · ρ+(xn − xn−1)ρ+(L− xn)

Zn,L
, (4.43)

defined by the kernel

ρ+(j) =
2−jZ+

j

z+
, Z+

j =
∑
η∈Ω+

j

λN(η) , (4.44)

where
Ω+
j = {η > 0 : η0 = ηj = 0 , ηx+1 = ηx ± 1 , x = 0, . . . , j − 1} .

Note that (4.43) coincides with (4.32) except for the removal of the constraint N(η) 6 co logL in
the definition of the kernel ρ+. As in (4.4) one can check that ρ+ is equal to ρ+,o up to O(L−p)
corrections for some large p > 0 and therefore νn(x1, . . . , xn) = νn,o(x1, . . . , xn)(1 + O(L−p)),
uniformly. Proceeding as in (4.40) and (4.41) we define

Eneq(f, f) =
n∑
i=1

νn
[
Varνi

n
(f)

]
, (4.45)

and gapneq, the spectral gap associated to the measure νn and the Dirichlet form (4.45). From
the previous observations we see that Varνn(f) 6 c Varνn,o(f) and En,oeq (f, f) 6 c Eneq(f, f), for
some constant c > 0, for every function f . Therefore gapneq 6 c2 gapn,oeq . For later purposes it is
important to keep track of the dependence on L in our notation, and therefore we write gapneq(L)
below. The desired bound gapn,oeq = Ω(L−ε) follows from the comparison mentioned above and

Proposition 4.9. For any ε > 0, there exists L0(ε) > 0 such that for L > L0 and n 6 co logL

gapneq(L) > L−ε . (4.46)

As a preliminary step towards the proof of Proposition 4.9, we establish the following lemma.

Lemma 4.10. There exists c > 0 such that for any n, uniformly in L > n:

gapneq(L) > c e−n/c .

The crucial point of the above estimate is that it does not depend on the size of the system
L, but only on the number of particles n. Note that Lemma 4.10 gives the required lower bound
(4.46) if we take n 6 ε1 logL with ε1 suitably small. The case of larger n will be considered
afterwards.

Proof of Lemma 4.10. Every particle has an independent Poisson(1) clock. When particle i
rings we update its position according to the equilibrium measure conditioned on the neighboring
positions ξi−1 and ξi+1, that is the probability for the i-th particle to be in position ξ′i = ξi−1+k,
k = 2, 4, . . . , ξi+1 − ξi−1 − 2, is given by

ρ+(k)ρ+(ξi+1 − ξi−1 − k)
Z

, where Z =
ξi+1−ξi−1−2∑

k=2

ρ+(k)ρ+(ξi+1 − ξi−1 − k) . (4.47)



DYNAMICS OF A POLYMER WITH REPULSION 35

An important property of (4.47) is that the probability α of the event ξ′i = ξi−1 + 2 (or ξ′i =
ξi+1 − 2) is positive, uniformly in the length ξi+1 − ξi−1. The idea is to use this property to
prove that with probability at least 1

2α
n, uniformly in the initial configuration, the process hits

the minimal configuration

ξ1 = −L+ 2, ξ2 = −L+ 4, . . . , ξn = −L+ 2n , (4.48)

before time n2. Once this result is available, one concludes with a simple coupling argument.
Indeed, using an independent coupling, the total variation distance between two evolutions at
time t = m×n2, with arbitrary initial conditions, is bounded above by (1−α2n/4)m 6 e−mα

2n/4.
Thus, the mixing time of this chain is at most 8n2α−2n. Using e.g. (2.8) we obtain the lemma.

To prove the above claim, we use the notation (τm, ℓm)m > 1 for the sequence of updating
marks, that is the m-th update occurs at time τm and it concerns the ℓm-th particle, where
ℓm is a number in {1, · · · , n}. Consider the event E that there exist integers 1 6 ϕ(1) <
ϕ(2) < · · · < ϕ(n) such that τϕ(n) 6 n2, ℓϕ(i) = i, and such that for every i = 1, · · · , n and
ϕ(i − 1) < j 6 ϕ(i), one has ℓj ̸= ℓϕ(i−1) (where ϕ(0) = 0 and ℓ0 = 0). In words, E is the
event that within time n2 there has been a sequence of n updates at times τϕ(1), . . . , τϕ(n), such
that the update at time τϕ(i) concerned the i-th particle and such that the i-th particle is not
touched again before time τϕ(i+1). Conditioned on the event E one has a probability of at least
αn of hitting the configuration described in (4.48). Indeed, at time τϕ(1) we set ξ1 = 2 with
probability α, at time τϕ(2) we set ξ2 = 4 with probability α, and so on. Therefore, to prove
the lemma it remains to show that the event E has probability at least 1/2. This can be easily
seen as follows. Consider the event F that a sequence of integers 1 6 ψ(1) < ψ(2) < · · · < ψ(n)
exists such that τψ(n) 6 n2, and ℓψ(i) = i, for every i = 1, · · · , n. Let τ (1) denote the first time
particle 1 is updated and define recursively τ (i) as the first time after τ (i−1) when particle i is
updated. Clearly, F = {τ (n) 6 n2}. Using E[τ (n)] = n, by Markov’s inequality the probability
of F is at least 1 − n/n2 > 1/2 for n > 2. On the other hand E = F , since one can define the
sequence ϕ from ψ by choosing ϕ(n) = ψ(n), and for 1 6 i 6 n− 1,

ϕ(n− i) = max{j < ψ(n− i+ 1) : ℓj = n− i}.

This ends the proof of Lemma 4.10. �

Proof of Proposition 4.9. The proof of Proposition 4.9 is based on a block-dynamics argument
that allows one to reduce to n 6 ε1 logL particles, in which case the result will follow from
Lemma 4.10. Fix an integer K 6 n. A block is a collection of particles with adjacent labels,
and our particles will be partitioned into ∆ := ⌈n/K⌉ non-overlapping blocks, in such a way
that the first ∆ − 1 blocks contain exactly K particles each, and the last block contains at
most K particles. For the sake of simplicity, since it does not change any of our estimates, we
will suppose that all blocks have exactly K particles, i.e. n = K∆. With this notation, the
configuration of the i-th block can be described by the variables

(ξK(i−1)+1, . . . , ξKi) , i = 1, . . . ,∆ . (4.49)

As usual, the ξi are interpreted as particle positions or crossing positions. To define the block-
dynamics, we consider independent Poisson(1) clocks on each block, when one of them rings we
put all crossings of the relative block simultaneously at equilibrium conditioned on the position
of all crossings belonging to the other blocks. That is, if Bi denotes the i-th block (4.49), and
VarBi is the variance with respect to

νn(· |Bj , j ̸= i) ,
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then the Dirichlet form of the block-dynamics is given by

Enbl(f, f) =
∆∑
i=1

νn[VarBi(f)] , (4.50)

for any function f of the particle positions. Call gapnbl the associated spectral gap.
The gap of the original dynamics for a single block Bi is given by gapKeq(ℓ), where ℓ =

ξiK+1− ξ(i−1)K is the length of the portion of the system occupied by the K particles in the i-th
block:

gapKeq(ℓ) VarBi(f) 6
k∑
r=1

νn
[
Varνr

n
(f) |Bj , j ̸= i

]
,

where νrn is the equilibrium distribution of the r-th particle in the block Bi, conditioned on
the positions of the remaining particles, cf. (4.45). Using this estimate in (4.50), taking the
νn-expectation and summing over i one obtains

gapneq(L) > gapnbl × min
ℓ

gapKeq(ℓ) . (4.51)

Note that this is a special case of a well known estimate that controls the gap of the original
dynamics in terms of the gap of the block-dynamics (see e.g. [16]). From Lemma 4.10 we know
that gapKeq(ℓ) > c e−K/c uniformly in the length ℓ. Therefore, Proposition 4.9 follows directly
from Lemma 4.11 below by taking K = ε1 logL, K 6 n 6 co logL, with ε1 sufficiently small
(depending on ε) and ∆ = n/K (the case n 6 ε1 logL being contained in Lemma 4.10).

Lemma 4.11. For all ∆ > 1, there exists c(∆) > 0 such that for all L and ∆ 6 n 6 co logL,

gapnbl > c(∆)K−4∆ , K = n/∆ . (4.52)

Before proving Lemma 4.11, we need to establish some preliminary facts. Consider ν2L
n := νn,

the equilibrium measure (4.43) of the system of n particles over the segment {−L, . . . , L}.
Passing to the increment variables ζi := ξi − ξi−1, i = 1, . . . , n + 1 one writes ν2L

n as the
conditional probability ρ⊗(n+1)

+

(
· |

∑n+1
i=1 ζi = 2L

)
.

Lemma 4.12. For all n = o(L1/6):

ν2L
n (ζ1 > 2L− L1/3) =

1
n+ 1

(1 + o(1)) .

Proof of Lemma 4.12. Observe that

ν2L
n (ζ1 > 2L− L1/3) =

∑
i > 2L−L1/3 ρ+(i)ρ⊗(n)

+ (
∑n

i=1 ζi = 2L− i)

ρ
⊗(n+1)
+ (

∑n+1
i=1 ζi = 2L)

.

Recall that
ρ+(j) ∼ c+j

−3/2, (4.53)

for some known constant c+ > 0; see (2.23). In particular,

ρ+(i) = ρ+(2L)
(
1 +O

(
L−2/3

))
, i ∈ {2L− L1/3, · · · , 2L} . (4.54)

Also, since 2L≫ (n+ 1)2, using [8, Theorem A], one has

ρ
⊗(n+1)
+

( n+1∑
i=1

ζi = 2L
)

= (n+ 1)(1 + o(1)) ρ+(2L) . (4.55)
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From (4.54) and (4.55),

(n+ 1)ν2L
n (ζ1 > 2L− L1/3) = (1 + o(1)) ρ⊗(n)

+

( n∑
i=1

ζi ∈ [0, L1/3)
)
.

It remains to show that ρ⊗(n)
+

( ∑n
i=1 ζi ∈ [0, L1/3)

)
= 1 + o(1). However, this is an imme-

diate consequence of the assumption n = o(L1/6) and well known estimates for heavy tailed
distributions of the form (4.53); see e.g. [8]. �

Proof of Lemma 4.11. As a corollary of Lemma 4.12, one has that for L large enough, uniformly
in 2L > 2ℓ > L1/3 and in n = o(ℓ1/6),

ν2ℓ
n (ζ1 > 2ℓ− L1/3) > ν2ℓ

n (ζ1 > 2ℓ− ℓ1/3) > 1
2(n+ 1)

. (4.56)

We shall use this observation together with a coupling argument. Start the dynamics at two
arbitrary initial configurations ξ, ξ′ of n particles, and call ξ(t), ξ′(t) the corresponding states of
the dynamics at time t. It will be shown that for a suitable coupling P:

P(ξ(1) = ξ′(1)) > c(∆)(5(K + 1))−4∆ . (4.57)

Once this estimate is available the conclusion follows easily. Indeed, (4.57) implies that at time
T the total variation distance between ξ(T ) and ξ′(T ), is bounded above by

(1 − c(∆)(5(K + 1))−4∆)⌊T ⌋ 6 e−c(∆)(5(K+1))−4∆⌊T ⌋ ,

and therefore the mixing time of the chain is bounded by 2c(∆)−1(5(K + 1))4∆. Using (2.8)
we obtain the same bound for the inverse spectral gap. After adjusting the constant c(∆), this
proves Lemma 4.11.

ξ

ξ(t1)

ξ(t2)

ξ(t3)

t = 0

t = t1

t = t2

t = t3

−L + L1/3 L − L1/3 L−L

ξ′(t1)

ξ′

ξ′(t2)

ξ′(t3)

Figure 3. Illustration of the coupling used in the proof of Lemma 4.11 in the
case ∆ = 2, n = 6 and K = 3. At time t1, all particles in the second block are
placed to the right of L − L1/3. At time t2, all particles in the first block are
matched to the left of −L + L1/3. At time t3, all particles in the second block
are matched.
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To prove (4.57) we proceed as follows. We have ∆ independent Poisson(1) clocks, one at each
block, and we note (tm, cm)m > 1 the sequence of update marks: for any m > 1, tm is the time of
them-th update and cm ∈ {1, · · · ,∆} is the label of the block to be updated at time tm. Consider
the event E that within time t = 1 a sequence of updates t1, . . . , t∆−1, t∆, t∆+1, . . . , t2∆−1 has
occurred, such that cm = ∆ −m + 1 for m = 1, . . .∆, and c∆+i = i + 1 for i = 1, . . . ,∆ − 1.
Clearly, E has a positive probability c(∆) > 0. On the event E we define a coupling of the
two evolutions by using the same marks (tm, cm), i.e. at time tm we update block cm in both
configurations. We refer to Figure 3 for a representation of the case ∆ = 2. At time t1 we have
to update the particle positions in the block B∆. The corresponding equilibrium is of the form
ν2ℓ
K , with 2ℓ = L− ξK(∆−1). Then, the new particle positions will satisfy

ξK(∆−1)+1 > L− L1/3 , with probability at least
1

2(K + 1)
. (4.58)

Indeed, either ξK(∆−1) > L − L1/3 and the requirement is automatically satisfied because of
ξK(∆−1)+1 > ξK(∆−1), or ξK(∆−1) < L−L1/3, in which case 2ℓ > L1/3 and the claim follows from
(4.56). Therefore, using an independent coupling, one has a probability at least (4(K + 1)2)−1

for the event

min{ξK(∆−1)+1(t1), ξ
′
K(∆−1)+1(t1)} > L− L1/3 .

Then, one updates the block B∆−1 at time t2, and so on until one updates the block B2 at time
t∆−1. Iterating the argument given above, one has a probability of at least (4(K + 1)2)−∆+1 for
the event

min{ξK+1(t∆−1), ξ′K+1(t∆−1)} > L− (∆ − 1)L1/3 . (4.59)

Next, at time t∆, one updates the block B1. Let us show that on the event (4.59) there is
a coupling P of the two equilibria on block B1 (conditioned on the value of ξK+1(t∆−1) and
ξ′K+1(t∆−1) respectively) such that the event

M1 := {ξi(t∆) = ξ′i(t∆) 6 − L+ L1/3 , i = 1, . . . ,K} ,

has probability

P(M1) > (5(K + 1)2)−1 . (4.60)

Clearly, it suffices to show that ξK(t∆) = ξ′K(t∆) 6 − L + L1/3 with at least that probability
(all other particles ξ1(t∆), . . . , ξK−1(t∆) are then automatically matched using the diagonal
coupling since B1 is the first block and ξ0 = ξ′0 = −L is fixed). Setting 2ℓ = ξK+1(t∆−1) + L

and 2ℓ′ = ξ′K+1(t∆−1) + L, we need to couple the measures ν2ℓ
K (ξK = i), ν2ℓ′

K (ξ′K = i). Consider
first the problem of coupling ν1(i) := ν2ℓ

K (ξK = L+ i | ξK 6 − L+ L1/3) and ν2(i) := ν2ℓ′
K (ξ′K =

L+ i | ξ′K 6 − L+ L1/3). We have

∥ν1 − ν2∥ = O(L−2/3) . (4.61)

Indeed, first note that, by (4.59), one has

2L > 2ℓ , 2ℓ′ > 2L− (∆ − 1)L1/3 . (4.62)



DYNAMICS OF A POLYMER WITH REPULSION 39

With the notation ρ⊗(K)
+ (i) := ρ

⊗(K)
+ (

∑K
j=1 ζj = i) one has

∥ν1 − ν2∥ =
1
2

L1/3∑
i=1

|ν1(i) − ν2(i)|

=
1
2

L1/3∑
i=1

∣∣∣ ρ
⊗(K)
+ (i)ρ+(2ℓ− i)∑L1/3

m=1 ρ
⊗K
+ (m)ρ+(2ℓ−m)

−
ρ
⊗(K)
+ (i)ρ+(2ℓ′ − i)∑L1/3

m=1 ρ
⊗K
+ (m)ρ+(2ℓ′ −m)

∣∣∣ .
Using (4.54) and (4.62) one has ρ+(2ℓ′−i) = ρ+(2ℓ−j)(1+O(L−2/3)) uniformly in 0 6 i, j 6 L1/3.
Therefore (4.61) follows from

∥ν1 − ν2∥ = O(L−2/3) ×
L1/3∑
i=1

ρ
⊗(K)
+ (i)ρ+(2ℓ− i)∑L1/3

m=1 ρ
⊗K
+ (m)ρ+(2ℓ−m)

= O(L−2/3) .

We turn to the proof of (4.60). We define the coupling of ν2ℓ
K (ξK = i), ν2ℓ′

K (ξ′K = i) as follows.
Flip two independent coins with head probability p = ν2ℓ

K (ξK 6 −L+L1/3) and p′ = ν2ℓ′
K (ξ′K 6 −

L + L1/3). If both coins end up being head, then sample the pair ξK , ξ′K according to the
maximal coupling of ν1, ν2 defined by ∥ν1 − ν2∥. If the p coin is head and the p′ coin is tail then
sample independently ξK according to ν2ℓ

K (· | ξK 6 −L+L1/3) and ξ′K according to ν2ℓ′
K (· | ξ′K >

−L + L1/3). Similarly, if the p coin is tail and the p′ coin is head then sample independently
ξ′K according to ν2ℓ′

K (· | ξ′K 6 − L+ L1/3) and ξK according to ν2ℓ
K (· | ξK > −L+ L1/3). Finally,

if both coins are tail then sample independently ξK , ξ
′
K according to ν2ℓ

K (· | ξK > −L + L1/3),
ν2ℓ′
K (· | ξ′K > −L+ L1/3). Using this coupling, we obtain that

P(M1) > p p′ (1 − ∥ν1 − ν2∥) > (4(K + 1)2)−1(1 + o(1)) ,

where we have used the fact that min{p, p′} > 1/2(K + 1) by (4.56). This ends the proof of
(4.60).

Repeating the same argument leading to (4.60) one shows that on the event M1, the event

M2 := {ξK+i(t∆+1) = ξ′K+i(t∆+1) 6 − L+ 2L1/3 , i = 1, . . . ,K} ,

has probability at least (5(K + 1)2)−1. Thus, iterating, one concludes that

P(ξ(1) = ξ′(1)) > P(E) (4(K + 1)2)−∆+1 (5(K + 1)2)−∆ > c(∆)(5(K + 1))−4∆ .

This ends the proof of (4.57). �

4.5. Proof of Theorem 1.2. Concerning the bound TS
rel 6 L5/2+ε, we note that it follows from

the same arguments used for the proof of Proposition 4.4. In fact, the situation is simpler here
due to the absence of constraints on the number of crossings. We omit the details.

Concerning the lower bound, we can actually prove that for some constant c > 0, one has

TS
rel > cL5/2 (logL)−1 . (4.63)

We use an argument similar to that in (4.39). Recall that

TS
rel > Varν(f)

D(f, f)
(4.64)

for any f : S 7→ R, where ν is defined by (1.7) and

D(f, f) =
∑
x∈OL

ν [Varνx(f)] ,
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νx denoting the conditional probability ν(· |σy , y ̸= x). Let ζ denote the number of +’s, i.e.

ζ(σ) =
∑
x∈OL

1(σx = +1) , σ ∈ S .

Note that ζ ∈ {0, . . . , L}. Define the function f(σ) = g(ζ(σ)/L), where g : [0, 1] 7→ [−1, 1]
is given by g(s) = −1 for s < 1/4, g(s) = 1 for s > 3/4, and by the linear interpolation for
s ∈ [1/4, 3/4]. Since ζ = 0 and ζ = L have both positive probability uniformly in L, one has
Var(f) > c for some constant c > 0. Let us estimate the Dirichlet form of f . We have

D(f, f) 6 cL−2
∑
σ∈S

ν(σ)
∑
x∈OL

px(σ)1(L/4 6 ζ 6 3L/4) ,

for some constant c, where we write px(σ) for the probability of a flip at x in σ. Recall that the
sum over x of the probabilities px(σ) between consecutive crossings give a contribution of order
1; this follows easily from Lemma 2.2. That yields

∑
x∈OL

px(σ) 6 c χ for a suitable constant c,
where χ is the number of crossings (4.1). Therefore, adjusting the constant c:

D(f, f) 6 cL−2 ν (χ; L/4 6 ζ 6 3L/4) .

However,

ν (χ; L/4 6 ζ 6 3L/4) 6 ν (χ ; χ > c logL) + c (logL) ν (L/4 6 ζ 6 3L/4) .

From Lemma 2.2 we deduce that ν (χ ; χ > c logL) = O(L−p) for some large p, provided c is
large. On the other hand L/4 6 ζ 6 3L/4 implies that there exists a crossing in some position
x ∈ {−L+L/8, . . . , L−L/8}. From the estimates of Lemma 2.2 this last event has probability
O(L−1/2), so that

ν (L/4 6 ζ 6 3L/4) = O(L−1/2) . (4.65)
In conclusion, adjusting the constant c, one has D(f, f) 6 cL−5/2 logL. This ends the proof of
(4.63). �
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