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Introduction, model and results

Random polymers are commonly used in statistical mechanics to model a variety of interesting physical phenomena. A rich class of models with a non-trivial behavior is obtained by considering a simple random walk path interacting with a defect line in the thermodynamic limit when the length of the path tends to infinity. The equilibrium of these so-called polymer pinning models has been studied in depth in the mathematical literature, and the associated localization/delocalization phase transition is, nowadays, a well understood phenomenon, even in the presence of non-homogeneous interactions; see [START_REF] Giacomin | Random polymer models[END_REF] for a recent survey.

Markovian stochastic dynamics of random pinned polymers, on the other hand, have received much less attention from a mathematical point of view. Besides its importance in bio-physical applications (see e.g. [START_REF] Ambjörnsson | Master equation approach to DNA breathing in heteropolymer DNA[END_REF][START_REF] Bar | Loop Dynamics in DNA Denaturation[END_REF] and references therein), the stochastic evolution of polymer models poses new challenging probabilistic problems from many points of view and the connection between the equilibrium and dynamical properties of the model is still largely unexplored. In particular, we feel that the problem of how the polymer relaxes to the stationary distribution (time scales, overcoming of energy barriers, metastability, patterns leading to equilibrium) still lacks a satisfactory solution even in the simplest homogeneous models; see [START_REF] Caputo | On the approach to equilibrium for a polymer with adsorption and repulsion[END_REF] for some initial results in this direction.

In this paper we consider the dynamics of a homogeneous polymer model interacting with a repulsive defect line with two main motivations in mind:

(i) the repulsive regime is characterized by a relaxation to equilibrium occurring on a time scale certainly much larger [START_REF] Caputo | On the approach to equilibrium for a polymer with adsorption and repulsion[END_REF] than the usual diffusive one which is typical e.g. of the neutral case 1 [START_REF] Wilson | Mixing times of Lozenge tiling and card shuffling Markov chains[END_REF]. The new scale is clearly the result of a subtle competition in the polymer evolution between diffusive behavior and jumps against energy barriers. (ii) The whole relaxation mechanism should show certain typical features of metastable evolution but in a very atypical context 2 in which the relevant relaxation time scales are only polynomial in the size L of the system (i.e. the energy barriers are only logarithmic in L), with little separation between the mixing time inside one phase and the global mixing time. A signature of this fact can be found in the anomalous growth with L of the global mixing time, a growth which is much more rapid than the naive guess based on the usual rule T mix ≈ exp(∆E), with ∆E the so-called activation energy. In order to appreciate the novelty of such a situation it is useful to compare it to another well known case, namely the Glauber dynamics for the low temperature Ising model in a square box with free boundary [START_REF] Marcelli | Some new results on the two-dimensional kinetic Ising model in the phase coexistence region[END_REF], for which a very precise analysis of the metastable behavior was possible exactly because of a sharp separation, at an exponential level, between the two time scales.

1.1. Dynamics of the polymer pinning model. Let Ω = Ω 2L denote the set of all lattice paths (polymers) starting at 0 and ending at 0 after 2L steps, L ∈ N:

Ω = {η ∈ Z 2L+1 : η -L = η L = 0 , η x+1 = η x ± 1 , x = -L, . . . , L -1} .
The stochastic dynamics is defined by the natural spin-flip continuous time Markov chain with state space Ω. Namely, sites x = -L + 1, . . . , L -1 are equipped with independent rate 1 Poisson clocks. When site x rings, the height η x of the polymer at x is updated according to the rules: if η x-1 = η x+1 ± 2 then do nothing; if η x-1 = η x+1 = h, and |h| ̸ = 1, then set η x = h ± 1 with equal probabilities; if η x-1 = η x+1 = +1, then set η x = 0 with probability λ λ+1 and η x = 2 with probability 1 λ+1 ; similarly, if η x-1 = η x+1 = -1, then set η x = 0 with probability λ λ+1 and η x = -2 with probability 1 λ+1 . Here λ > 0 is a parameter describing the strength of the attraction (λ > 1) or repulsion (λ < 1) between the polymer and the line η ≡ 0. The infinitesimal generator of the Markov chain is given by

Lf (η) = L-1 ∑ x=-L+1 r x,+ (η) [ f (η x,+ ) -f (η) ] + L-1 ∑ x=-L+1 r x,-(η) [ f (η x,-) -f (η) ] , (1.1) 
where: f is a function Ω → R; η x,± denotes the configuration which coincides with η at every site y ̸ = x and equals η x ± 2 at site x; the rates r x,± are zero unless η x,± ∈ Ω, while if η x,± ∈ Ω and η x-1 = η x+1 = h they satisfy r x,± = 1 2 for h ̸ = ±1, and r x,∓ = λ λ+1 = 1 -r x,± , for h = ±1. The process defined above is the heat bath dynamics for the homogeneous polymer pinning model, with equilibrium measure π = π λ 2L on Ω defined by

π λ 2L (η) = λ N (η) Z λ 2L , ( 1.2) 
where N (η) = #{x ∈ {-L + 1, . . . , L -1} : η x = 0} denotes the number of zeros in the path η ∈ Ω and Z λ 2L = ∑ η ′ ∈Ω λ N (η ′ ) . For every λ > 0 and L ∈ N, π = π λ 2L is the unique reversible invariant measure for the Markov chain. In the neutral case (absence of an interaction between the polymer and the line) our process is nothing but the usual (finite) symmetric simple exclusion model.
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Over the years there have been many different formulations of "metastability"; see [START_REF] Olivieri | Large deviations and metastability[END_REF][START_REF] Scoppola | Renormalization group for Markov chains and application to metastability[END_REF][START_REF] Bovier | Metastability, Methods of contemporary mathematical statistical physics[END_REF]. We also refer to the recent contributions [START_REF] Beltrán | Metastability of reversible condensed zero-range processes on a finite set[END_REF][START_REF] Beltrán | Tunneling and Metastability of continuous time Markov chains[END_REF] where, as in our case, energy barriers are only logarithmic in the characteristic size of the system. We feel however that our situation does not fit completely in any of the mentioned contexts.

1.2. Relaxation to equilibrium. The equilibrium properties of the polymer pinning model have been studied in detail, cf. e.g. [START_REF] Isozaki | Weakly pinned random walk on the wall: pathwise description of the phase transition[END_REF] or [START_REF] Giacomin | Random polymer models[END_REF]Section 2] for an extensive review. In particular, it is well known that, under the measure π λ 2L , for λ > 1 the path is strongly localized with a nonvanishing density of zeros, while for λ < 1 the path is delocalized with √ L height fluctuations and with the number of zeros stochastically dominated by a geometric random variable with λdependent parameter. The dynamical counterpart of this localization/delocalization transition has not been fully understood yet. Some progress in this direction has been reported in [START_REF] Caputo | On the approach to equilibrium for a polymer with adsorption and repulsion[END_REF], where various bounds on the spectral gap and mixing time of the Markov chain were obtained, together with estimates on the decay of time correlations.

We recall that the spectral gap is the smallest nonzero eigenvalue of -L, and one is often interested in the relaxation time T rel = 1/gap which governs decay to equilibrium in L 2 (π), while the mixing time T mix (δ), for δ ∈ (0, 1), is the smallest time t such that max η ∥P t (η, •) -π∥ δ , (1.3) where P t (η, •) denotes the distribution of the Markov chain at time t with initial state η ∈ Ω, and ∥µ -ν∥ is the usual total variation distance between two probability measures. When δ = 1 2e we often write simply T mix instead of T mix (δ). With these conventions one has T rel T mix always, and the inequality is strict in general.

A dynamical phase transition occurs when we move from the localized regime λ > 1 to the delocalized regime λ < 1. It was shown in [START_REF] Caputo | On the approach to equilibrium for a polymer with adsorption and repulsion[END_REF], see Theorem 3.4 and Theorem 3.5 there, that for λ 1 one has T rel = O(L 2 ) and T mix = O(L 2 log L), while for λ < 1 one has

T rel L 5 2 -ε , (1.4) 
for all ε > 0, provided L is large enough. We refer to [START_REF] Caputo | On the approach to equilibrium for a polymer with adsorption and repulsion[END_REF] for results and conjectures concerning the localized regime λ > 1. Here, we consider the delocalized regime, i.e. in the repulsive case λ < 1. The first question we address concerns an upper bound on the relaxation time T rel and the mixing time T mix . It is worth noting that even a crude polynomial bound is non-trivial. We refer to [START_REF] Martin | Sampling adsorbing staircase walks using a new Markov chain decomposition method[END_REF][START_REF] Caputo | On the approach to equilibrium for a polymer with adsorption and repulsion[END_REF] for polynomial bounds for the model with a horizontal wall at level zero, i.e. when lattice paths are constrained to be non-negative. On the other hand, without the wall constraint, the equilibrium measure π is known to be concentrated, as L → ∞, on configurations in which the density of monomers in the upper (lower) half plane is approximately one (zero). However, a mathematical working definition of the plus or minus phase for the polymer is not so obvious and we have been forced to introduce a mesoscopic parameter ℓ (i.e. L ≫ ℓ ≫ 1) and define Ω ± by

Ω + = {η ∈ Ω : η x > 0 , -L + ℓ < x < L -ℓ} , Ω -= -Ω + , ( 1.5) 
where for any set A of polymer configurations -A := {η ∈ Ω : -η ∈ A}.

The presence of the two phases associated to Ω ± dramatically changes the relaxation scenario, with a bottleneck at the set Ω \ (Ω + ∪ Ω -). As explained in [7, Section 6], one may suspect that T rel ∼ L 5 2 is the correct asymptotic behavior in the delocalized regime. Let us briefly recall the heuristic reasoning behind this prediction.

The time to reach equilibrium can be roughly thought of as the time needed to switch from, say, Ω -to Ω + . A point x such that η x = 0 and η x-1 ̸ = η x+1 is called a crossing of the polymer. Note that any zero (and therefore any crossing) x must belong to the set E L of points in the segment {-L, . . . , L} which have the same parity as L. Since there are typically very few zeros at equilibrium, one may consider the extreme case where at most one crossing ξ is allowed at all

L L L -L -L -L ξ ξ ξ Figure 1.
From left to right a snapshot sequence of the motion of a single crossing ξ which allows the system to switch from a mostly negative to a mostly positive configuration. times. In this case, the time evolution of ξ should be essentially described by a suitable birth and death process or random walk on E L ; see Figure 1.

From equilibrium considerations, one knows that this random walk should have reversible invariant measure ρ roughly proportional to

ρ(x) ∝ L 3/2 (L + x) -3/2 (L -x) -3/2 , x ∈ E L , ( 1.6) 
and that its relaxation time can be bounded from above and below by constant multiples of L 5/2 ; see Lemma 2.2 and Lemma 4.6 below for more details. Notice that, although the measure ρ gives uniformly (in L) positive mass to the two attractors x ± = ±L, the drift which pushes the random walk away from the saddle x = 0 is proportional to the inverse of the distance from the attractors. This heuristics is turned into the rigorous bound (1.4) by using a suitable test function in the variational principle that characterizes the spectral gap; see [START_REF] Caputo | On the approach to equilibrium for a polymer with adsorption and repulsion[END_REF]Section 6]. However, it seems very hard to give a rigorous upper bound on T rel of the same order of magnitude. We obtain a bound that can be off by at most two powers of L. The main tool for the proof of Theorem 1.1 is the analysis of an effective dynamics for the crossings of the polymer. To describe this, we introduce the variable σ ∈ {-1, +1} O L , where O L = {-L, . . . , L} \ E L denotes the sites with the same parity of L + 1. If η is a configuration of the polymer, then η x ̸ = 0 at any x ∈ O L , and we define σ(η) by σ x = sign(η x ). The projection of π on

S = {-1, +1} O L is then ν(σ) = ∑ η : η∼σ π(η) , (1.7) 
where the sum is over all configurations η compatible with the signs σ. The field ν has non-trivial long range correlations. Consider the heat bath dynamics for the variables σ: sites x ∈ O L are equipped with independent rate 1 Poisson clocks; when site x rings we replace σ x by σ ′ x where the new sign σ ′

x is distributed according to the conditional probability ν(• | σ y , y ̸ = x), i.e. the probability (1.7) conditioned on the value of σ y , y ̸ = x. Denote by T S rel the corresponding relaxation time. For this process, the exponent 5/2 can be shown to be optimal.

Theorem 1.2. For any

λ < 1, lim L→∞ log T S rel log L = 5 2 .
The proof of Theorem 1.1 and Theorem 1.2 combines several different tools which play a prominent role in the analysis of convergence to equilibrium of Markov chains: decomposition methods, spectral gap analysis, comparison inequalities, and coupling estimates. An outline of the main steps of the proof is given at the beginning of Section 4. 1.3. Metastability. Recall the definition (1.5) of the two sets Ω ± , and define the associated phases as the restricted equilibrium measures π ± := π(• | Ω ± ), so that (cf. Section 2)

π - 1 2 (π + + π -) = o(1) . (1.8)
The notation o(1) refers to asymptotics as L → ∞. In the thermodynamic limit, we expect relaxation to equilibrium within each phase to occur on time scales T ± rel such that T rel ≫ T ± rel , while on a time scale proportional to T rel one should see the system jump from one phase to the other according to i.i.d. exponentially distributed times. A strong indication of this metastable behavior comes from the following theorem. Below, we use η(t) to denote the state at time t of the Markov chain with generator (1.1). 1), and that uniformly in η ∈ S + and uniformly in t > 0:

Theorem 1.3. There exists a set

S + ⊂ Ω + such that π(S + ) = 1/2 + o(
P η ( τ -> t ) = e -t/(2T rel ) + o(1)
,

where τ -= inf{t 0 : η(t) ∈ S -} , S -= -S + .
Here P η stands for the law of the process with initial state η ∈ Ω. By symmetry, Theorem 1.3 also implies that uniformly in η ∈ S -= -S + and uniformly in t > 0,

P η ( τ + > t ) = e -t/(2T rel ) + o(1) ,
where τ + = inf{t 0 : η(t) ∈ S + }.

Remark 1.4. From the proof of Theorem 1.3 it will be clear that the set S + is increasing w.r.t. the natural partial order among polymer configurations defined in Section 2.5, so that in particular the maximal configuration (in the sequel denoted by ∧) is in S + .

If we define the renormalized process

ω s = 1 ( η(sT rel ) ∈ Ω + ) -1 ( η(sT rel ) ∈ Ω -) ,
we expect that, starting from any configuration in Ω ± , {ω s , s 0} converges to the simple two-state Markov chain with switching rate (from ±1 to ∓1) equal to 1/2, whose spectral gap equals 1. Such a strong uniform result seems very hard to obtain for our model. The difficulty is that, in contrast with familiar metastability results [START_REF] Olivieri | Large deviations and metastability[END_REF], here there is no clear-cut separation of time scales: while (1.4) and Proposition 2.6 below imply T rel ≫ T + rel , the ratio T rel /T + rel is only polynomially large in L. However, we do have a detailed description of the renormalized process when the initial condition is the maximal configuration. Namely, define the maximal element of Ω as η max = ∧, i.e. ∧ x = x + L for x 0 and ∧ x = L -x for x 0, and let T ∧ mix (ε) denote the first time t such that ∥P t (∧, •) -π∥ ε. Theorem 1.5. For any δ > 0, uniformly in t L 2+δ

P t (∧, •) - [ 1 + e -t/T rel 2 π + + 1 -e -t/T rel 2 π - ] = o(1), (1.9)
and uniformly in t 0

ν π + t - [ 1 + e -t/T rel 2 π + + 1 -e -t/T rel 2 π - ] = o(1) (1.10)
where ν π + t denotes the law at time t of the process started from the initial distribution π + . Moreover, for any ε ∈ (0, 1/2) one has

T ∧ mix (ε) = T rel log ( 1 2ε 
)

(1 + o(1)).
(1.11)

Remark 1.6. Theorem 1.5 shows in particular that, when the dynamics is started from either π + or ∧, there is no cut-off phenomenon [START_REF] Levin | Markov Chains and Mixing Times[END_REF], i.e. the variation distance from equilibrium does not fall abruptly to zero, but rather does so smoothly (on the timescale T rel ). That is another signature of the metastable behavior of our system and it is in contrast with what one expects for the neutral or attractive case λ 1.

One of the key features of metastability is that, once the system decides to jump from e.g. S + to S -, then it does so very quickly on the time scale of the mixing time. We verify that this is indeed the case for most starting configurations inside S + ∪ S -.

Let T denote the random time spent outside S + ∪ S -up to the hitting time of S -:

T := ∫ τ - 0 1 {η(s)∈(S + ∪S -) c } ds. (1.12)
From Theorems 1.3 and 1.5 one easily deduces that, for most initial conditions in S + , τ -≫ T :

Corollary 1.7. There exists a subset S+ of the set S + of Theorem 1.3 satisfying π( S+ ) = 1/2 + o( 1) such that, uniformly on η ∈ S+ , T = o(τ -) in probability, i.e. there exists a sequence δ L tending to zero as L → ∞ such that for every η ∈ S+ ,

P η [ T δ L τ -] δ L . (1.13)
Along the same lines of the proof of the Corollary, one can establish the weak convergence of the renormalized process ω s to the two-state Markov chain, provided that the initial configuration is inside a suitable subset of S+ ∪ Swith almost full measure. We decided to omit details for shortness.

1.4. Organization of the paper. The rest of the paper consists of three sections. Section 2 starts with standard material and then proceeds with the introduction of some essential tools to be used in the proof of the main results, including general results for monotone systems that can be of independent interest. This section contains also some new results concerning the relaxation within one phase and the properties of the principal eigenfunction of the generator. The metastability results are discussed in Section 3. Here, we start with the proof of Theorem 1.5. In later subsections we develop the construction needed for the proof of Theorem 1.3. Finally, Section 4 proves Theorem 1.1 and Theorem 1.2. This section is broken into several subsections corresponding to the various steps of the proof. A high level description of the arguments involved is given at the beginning of the section.

Notational conventions. Whenever we write o(L p ) or O(L p ) for some p ∈ R it is understood that this refers to the thermodynamic limit L → ∞. Also, we use the notation f (L) = Ω(L p ) when there exists a constant c > 0 such that f (L) c L p for all sufficiently large L. For positive functions f, g, we use the notation f (L) ≫ g(L) whenever lim inf L→∞ f (L)/g(L) = +∞, and f (L) ∼ g(L) when lim L→∞ f (L)/g(L) = 1. Also, we write f ≍ g if there exists some constant c > 0 such that c -1 g f c g.

Some tools

We begin with some generalities about reversible Markov chains. Then, we recall the definition of the polymer dynamics and derive some consequences of monotonicity. Next, we give some estimates on convergence to equilibrium in the "plus" phase. Finally, we characterize in detail an eigenfunction of L with eigenvalue -gap.

2.1. Preliminaries. We will consider reversible continuous time Markov chains with finite state space X, defined by the infinitesimal generator L acting on functions f : X → R,

[Lf ](x) = ∑ y∈X c(x, y)[f (y) -f (x)] , ( 2.1) 
where c(•, •) is a bounded non-negative function on X × X satisfying π(x)c(x, y) = π(y)c(y, x), for a probability measure π on X. In the applications below, the rates c(x, y) will always be such that the Markov chain is irreducible and the reversible invariant measure π is positive on X. We refer e.g. to [START_REF] Aldous | Reversible Markov Chains and Random Walks on Graphs[END_REF][START_REF] Levin | Markov Chains and Mixing Times[END_REF] 

T mix (ε) = inf { t > 0 , max x∈X ∥ν x t -π∥ ε } , ( 2.2) 
where

∥µ -ν∥ = 1 2 ∑ x |µ(x) -ν(x)|
is the total variation distance. We shall use the convention that T mix stands for T mix ( 1 2e ). It is well known that with this notation one has

∥ν x t -π∥ e -⌊t/T mix ⌋ , ( 2.3) 
for all t 0, where ⌊a⌋ denotes the integer part of a 0. The spectral gap and the relaxation time of the process are defined by gap = min

f :X →R E(f, f ) Var π (f ) , T rel = 1 gap , ( 2.4) 
where for f :

X → R, E(f, f ) = ∑ x∈X π(x)f (x)[-Lf ](x) = 1 2 ∑ x,y∈X π(x)c(x, y)[f (y) -f (x)] 2 (2.5)
is the quadratic form of the generator, a.k.a. the Dirichlet form, while Var π (f ) stands for the variance π(f 2 ) -π(f ) 2 . Thus, gap is the lowest non-zero eigenvalue of -L. The following bound relating total variation distance and relaxation time is an immediate consequence of reversibility and Schwarz' inequality: [START_REF] Jerrum | Elementary bounds on Poincaré and Log-Sobolev constants for decomposable Markov chains[END_REF]. Consider the continuous time reversible Markov chain defined by (2.1). Suppose the space X is partitioned in the disjoint union of subspaces X 1 , . . . , X m , for some m ∈ N and define the generators

∥ν µ t -π∥ 1 2 e -t/
[L i f ](x) = ∑ y∈X c i (x, y)[f (y) -f (x)] , c i (x, y) = c(x, y)1(y ∈ X i ) , x ∈ X i .
Then L i is the generator of the Markov chain restricted to X i , its reversible invariant measure being given by π i = π(• | X i ). Let λ min denote the minimum of the spectral gaps of the Markov chains generated by L i , i = 1, . . . , m. Next, let L denote the infinitesimal generator defined by

[Lφ](i) = m ∑ j=1 c(i, j)[φ(j) -φ(i)] ,
for φ ∈ R m , where c(i, j) = Here we recall some standard facts about killed processes, their generators and quasi-stationary distributions for reversible Markov chains; we refer to [START_REF] Aldous | Reversible Markov Chains and Random Walks on Graphs[END_REF] for an introduction. Given a reversible Markov chain with generator L as above and a subset Γ ⊂ X, we consider the process killed upon entering Γ, with sub-probability law defined by

∑ x∈X i , y∈X j π(x | X i ) c(x, y) .
ν x,Γ t (B) = P x (v t ∈ B ; τ Γ > t) , x ∈ Γ c , ( 2 
.10) where B ⊂ X, v t denotes the state of the Markov chain with generator L at time t, P x denotes the law of the process started at x, and τ Γ denotes the hitting time of the set Γ. The associated semi-group P Γ t is given by

[P Γ t f ](x) = [e tL Γ f ](x) = ∑ y∈Γ c ν x,Γ t (y)f (y) , x ∈ Γ c , (2.11)
where the killed generator L Γ satisfies, for every x ∈ Γ c :

[L Γ f ](x) = [L(f 1 Γ c )](x) = [Lf ](x) - ∑ y∈Γ c(x, y)f (y) .
(2.12)

We assume that P Γ t is irreducible. Then L Γ is a negative definite, self-adjoint operator in L 2 (π), and its top eigenvalue -γ Γ is characterized by

γ Γ = min f :X →R, f 1 Γ =0 ⟨ -L Γ f, f ⟩ π π(f 2 ) = min f :X →R, f 1 Γ =0 E(f, f ) π(f 2 ) , ( 2.13) 
where we use ⟨•, •⟩ π for the scalar product in L 2 (π), and E(f, f ) is defined by (2.5).

Let g Γ denote the (unique, positive on Γ c ) eigenfunction of L Γ associated to -γ Γ . Extending g Γ to all x ∈ X by setting g Γ (x) = 0 for x ∈ Γ, one defines the quasi-stationary distribution ν Γ , i.e. the probability on X given by

ν Γ (y) = π(y)g Γ (y) π(g Γ ) , y ∈ X . (2.14)
An equivalent characterization of ν Γ is as the limit

ν Γ (B) = lim t→∞ P x (v t ∈ B | τ Γ > t) , (2.15) 
where B ⊂ X, and the chosen initial point x ∈ Γ c is arbitrary. The fundamental property of the quasi-stationary distribution is that, starting from ν Γ , the hitting time τ Γ is exponentially distributed with parameter γ Γ :

P ν Γ (τ Γ > t) = e -γ Γ t ,
(2.16) where P ν Γ stands for the law of the process when the initial state is distributed according to ν Γ . Another way of expressing quasi-stationarity is ν Γ P Γ t = e -γ Γ t ν Γ , for all t 0. A general property of γ Γ (cf. Lemma 3.1 below) is that γ Γ π(Γ) gap.

Polymer model.

Let Ω = Ω 2L stand for the space of all lattice paths defined in the introduction. A partial order in Ω is given by η η ′ ⇐⇒ η x η ′

x , x = -L, . . . , L .

(2.17)

Given ζ, ξ ∈ Ω such that ζ ξ we define the restricted space Ω ζ,ξ of all paths η ∈ Ω such that ζ η ξ. The dynamics is defined by the continuous time Markov chain with state space Ω ζ,ξ , with infinitesimal generator L ζ,ξ given by (1.1) where the rates r x,± (η) are replaced by

r ζ,ξ x,± (η) = r x,± (η)1(η x,± ∈ Ω ζ,ξ ) (2.18)
This process is the heat bath dynamics associated to the probability measure π λ,ζ,ξ

2L

on Ω ζ,ξ defined as in (1.2) with the normalization now given by

Z λ,ζ,ξ 2L = ∑ η ′ ∈Ω ζ,ξ λ N (η ′ ) . (2.19) Equivalently, π λ,ζ,ξ 2L = π λ 2L (• | Ω ζ,ξ
). This is referred to as the polymer model with top/bottom constraints (ζ is the bottom, ξ is the top). For simplicity, when no confusion arises, we often omit the superscripts λ, ζ, ξ and the subscript L from our notation in what follows. We write v η t for the state of the Markov chain at time t when the initial configuration is some η, and let ν η t denote its distribution. When the initial condition η is distributed according to a probability measure µ on Ω we write ν µ t as in Section 2.1. Note that the generator L ζ,ξ can be written in the form (2.1) by setting c(η, η

′ ) = r ζ,ξ x,± (η)1(η ′ = η x,± ), and π = π λ,ζ,ξ

2L

is reversible. While this holds for every value λ > 0 of the parameter describing the strength of the interaction, we will only consider the case λ < 1 below, which corresponds to a strictly delocalized regime for the polymer.

The minimal path ∨ and maximal path ∧ for the order (2.17) are defined by ∨ x = -x -L for x 0, ∨ x = -L + x for x 0, and ∧ = -∨. Clearly, if ζ = ∨ and ξ = ∧, then Ω ζ,ξ = Ω. This case is referred to as the polymer model with no top/bottom constraint.

The following well known estimates will be often used in our proofs. We refer e.g. to [9, Section 2] for the proof of Lemma 2.2 below, as well as for other known properties of the delocalized equilibrium measure. Let Z 2L = Z λ 2L denote the partition function (2.19) with no top/bottom boundaries and write Z + 2L = Z +,λ 2L for the partition function (2.19) with ξ = ∧ and ζ given by the minimal non-negative element of Ω, i.e. ζ x = 0 if x ∈ E L (x has the same parity as L) and

ζ x = 1 if x ∈ O L (x has opposite parity w.r.t. L); Z +
2L is the partition function of the polymer with a horizontal wall at height zero. Recall that N = N (η) stands for the number of zeros in the path η lying strictly between -L and L. Considering reflections of the path between consecutive zeros one obtains

2Z +,λ 2L = Z λ/2
2L .

(2.20)

Lemma 2.2. Consider the polymer with no top/bottom constraint with λ ∈ (0, 1). There exist constants

c i = c i (λ) > 0, i = 1, 2 such that 2 -2L Z λ 2L ∼ c 1 L -3/2 , (2.21) and π(N (η) > k) c 2 e -k/c 2 , ∀ k ∈ N . (2.22)
An immediate implication of (2.20) and (2.21) is that

2 -2L Z +,λ 2L ∼ c + L -3/2 , ( 2.23) 
for some constant c + > 0 as soon as λ < 2. Moreover, (2.21) and (2.23) imply the bounds π (η y 0 ∀y ∈ {-L, . . . , x} , and

η x = 0) ≍ π (η x = 0) ≍ L 3/2 (L + x) -3/2 (L -x) -3/2 , (2.24)
for every x ∈ E L .

2.5.

Monotonicity. An important property satisfied by the Markov chains introduced above is the monotonicity with respect to the partial order (2.17). A convenient way of stating the monotonicity property is that there exists a coupling P of the trajectories of the Markov chains corresponding to distinct initial conditions such that if η η ′ then P almost surely v η t v η ′ t for all t 0. More generally, one can define a coupling P of trajectories corresponding to distinct top/bottom constraints and distinct initial conditions such that if

ζ ζ ′ , ξ ξ ′ , and η η ′ , then P almost surely v η;ζ,ξ t v η ′ ;ζ ′ ,ξ ′ t for all t 0. Recall that a function f : Ω → R is said to be increasing if f (η) f (η ′ ) whenever η η ′ . An event A is increasing if the indicator function 1 A is increasing.
The monotonicity property of the dynamics implies the so-called FKG property of the equilibrium measures π = π λ,ζ,ξ 2L : for every pair of increasing functions f, g : Ω → R, one has π(f g) π(f )π(g). We refer to [7, Section 2] for a more detailed discussion of the monotone coupling and the consequences of monotonicity. Lemma 2.3. Let µ be a probability on Ω and write f (η) = µ(η)/π(η), and f t (η) = ν µ t (η)/π(η), t > 0. If f is increasing then, for every t > 0, f t is increasing. As a consequence, there exists an increasing event A such that

∥ν µ t -π∥ = ν µ t (A) -π(A) . (2.25) Proof. Write ν µ t (η) = ∑ η 0 ∈Ω µ(η 0 )P t (η 0 , η)
, where P t (•, •) stands for the kernel of the Markov chain. Reversibility then gives

f t (η) = ∑ η 0 ∈Ω f (η 0 )π(η 0 )P t (η 0 , η)/π(η) = ∑ η 0 ∈Ω f (η 0 )P t (η, η 0 ) .
(2.26)

Next, let P denote the monotone coupling introduced above and let E denote expectation w.r.t. P. Then, (2.26) coincides with

E[f (v η t )], and if η η ′ , f t (η ′ ) -f t (η) = E[f (v η ′ t ) -f (v η t )] = E[f (v η ′ t ) -f (v η t ) ; v η ′ t v η t ]
. Thus, f t is increasing whenever f is. Finally, it is well known that the total variation distance can be written in the form (2.25) where A = {η :

ν µ t (A) π(A)}. Since A = {f t 1}, A is increasing whenever f is.
Lemma 2.4 compares arbitrary initial conditions to the extremal initial conditions. Lemma 2.5 states a useful sub-multiplicativity property satisfied by extremal evolutions. For lightness of notation, we state these results only in the case of no top/bottom boundaries, i.e. ζ = ∨, ξ = ∧, but the same applies for general ζ, ξ with exactly the same proof.

Lemma 2.4. For any t > 0 and any η, η ′ ∈ Ω:

∥ν η t -ν η ′ t ∥ 4L 2 ∥ν ∧ t -ν ∨ t ∥ . As a consequence, gap = -lim t→∞ 1 t log ∥ν ∧ t -ν ∨ t ∥ .
Proof. Let P denote the monotone coupling as above. Then,

∥ν η t -ν η ′ t ∥ P(v η t ̸ = v η ′ t ) P(v ∧ t ̸ = v ∨ t ) L-1 ∑ x=-L+1 L-1 ∑ h=-L [P((v ∧ t ) x > h) -P((v ∨ t ) x > h)] 4L 2 ∥ν ∧ t -ν ∨ t ∥ .
The second point follows from the first one and the classical characterization (2.7) of the spectral gap.

Lemma 2.5. For any s, t 0,

∥ν ∧ t+s -ν ∨ t+s ∥ ∥ν ∧ t -ν ∨ t ∥ ∥ν ∧ s -ν ∨ s ∥ . Proof. With the same argument of Lemma 2.3, for some increasing event A ∥ν ∧ t+s -ν ∨ t+s ∥ = ν ∧ t+s (A) -ν ∨ t+s (A) . Let ρ be a coupling beween ν ∧ t and ν ∨ t at fixed time t 0. Then ν ∧ t+s (A) -ν ∨ t+s (A) = ∫ (ν η s (A) -ν σ s (A))dρ(η, σ) = ∫ (ν η s (A) -ν σ s (A))1(σ ̸ = η)dρ(η, σ) (ν ∧ s (A) -ν ∨ s (A))ρ(σ ̸ = η) ∥ν ∧ s -ν ∨ s || ρ(σ ̸ = η) .
To conclude, we take ρ as the maximal coupling, i.e. such that ρ(σ

̸ = η) = ∥ν ∧ t -ν ∨ t ∥.

Relaxation in one phase.

Here we obtain results concerning the polymer dynamics in the phase π + = π(•|Ω + ) with Ω + defined after (1.5); cf. Proposition 2.6 below. Then, we show that the polymer started at the maximal configuration ∧ relaxes first to the restricted equilibrium π + in a time O(L 2+δ ) for arbitrarily small δ > 0, while it takes much longer to reach the full equilibrium π; cf. Lemma 2.7 and Lemma 2.8 below.

Recall the definition (1.5) of the subspace Ω + ⊂ Ω, where L ≫ ℓ, and ℓ diverges as L → ∞; see (2.29) below. The corresponding restricted equilibrium is given by π + = π(•|Ω + ). Note that this is a particular instance of the polymer equilibrium π λ,ζ,ξ 2L with top/bottom boundaries: the top is ξ = ∧ while the bottom ζ = ζ(Ω + ) is the lowest element of Ω + . Similarly, one defines Ω -= -Ω + , i.e. use (1.5) with η x > 0 replaced by η x < 0, and the equilibrium π -is defined accordingly.

Since λ < 1, the equilibrium bounds (2.24) imply that

π(Ω + ) = π(Ω -) = 1 2 + O(ℓ -1/2 ) ; (2.27) see e.g. [7, Section 2]. In particular, if ℓ diverges as L → ∞, then π - 1 2 (π + + π -) = o(1) . (2.28)
What follows depends only marginally on the precise dependence of ℓ on L, provided that L ≫ ℓ ≫ 1. For the sake of simplicity we shall fix its value as

ℓ(L) = ⌊(log L) 1 4 ⌋ . (2.29)
This choice turns out to be convenient in the proof of Proposition 2.6 below, but we point out that any choice of the form ℓ(L) = O(L ε ) for small ε > 0 would be sufficient to obtain the same conclusion with a little more work. We start by establishing a mixing time upper bound for the dynamics constrained to stay in Ω + , i.e. the process evolving with bottom boundary given by ζ = ζ(Ω + ). To avoid confusion we shall write µ η t (instead of ν η t ) for the law at time t of this Markov chain with state space Ω + and initial condition η. We write L + for its generator and gap + for the associated spectral gap.

Proposition 2.6. For every ε > 0, there exists L 0 = L 0 (ε) such that for all L L 0 , for all t 0 and all initial conditions η ∈ Ω + :

∥µ η t -π + ∥ 4L 2 exp ( -t/L 2+ε ) . ( 2 

.30)

In particular, gap + L -2-ε .

Proof. The last statement follows from (2.30) and (2.7). To prove (2.30) we establish that for every ε > 0, there is a constant

L 0 = L 0 (ε) > 0 such that, taking T = L 2+ε , we have ∥µ ∧ T -µ ζ T ∥ 1 -L -ε , (2.31) for all L L 0 (ε), where ζ stands for the minimal element ζ = ζ(Ω + ) of Ω + . Once (2.31
) is available, we obtain (2.30) (with a new value of ε) from Lemma 2.4, since Lemma 2.5 (which is also valid for the restricted dynamic) and (2.31) imply

∥µ ∧ t -µ ζ t ∥ ( ∥µ ∧ T -µ ζ T ∥ ) ⌊t/T ⌋ exp ( -⌊t/T ⌋L -ε ) ) 2 exp ( -t/L 2+2ε ) ,
for any L large enough.

To prove (2.31), we divide the sites x ∈ {-L, . . . , L} in three overlapping regions:

I 1 = {-L, . . . , -L + ℓ 2 } , I 2 = {-L + ℓ, .
. . , L -ℓ} , and 

I 3 = {L -ℓ 2 , . . . , L} , where ℓ = ℓ(L) is given by (2.29). Let T 2 = L 2+ε 1 , T 1 = L ε 1 with some ε 1 > 0 such that T = L 2+ε T ′ := 2T 2 + T 1 .
∥µ ∧ T ′ -µ ζ T ′ ∥ = µ ∧ T ′ (A) -µ ζ T ′ (A) , where A ⊂ Ω + is an increasing event. Therefore, ∥µ ∧ T ′ -µ ζ T ′ ∥ µ ∧,c T ′ (A) -µ ζ,c T ′ (A) ∥µ ∧,c T ′ -µ ζ,c
T ′ ∥ , and the lemma follows once we show that

∥µ ∧,c T ′ -µ ζ,c T ′ ∥ 1 -L -ε . (2.32)
To prove (2.32) we shall couple the two configurations η ∧,c

T ′ , η ζ,c T ′ with law µ ∧,c T ′ , µ ζ,c
T ′ respectively. From the analysis of the polymer with the wall [7, Section 4], it is not hard to infer that uniformly in the boundary values at -L + ℓ -1 and L -ℓ + 1 the system evolving in the region I 2 has a mixing time O(L 2 log L). Therefore, after a time T 2 = L 2+ε 1 , up to O(L -p ) corrections for a large constant p > 0, for any event E, µ ∧,c T 2 (E) coincides with the equilibrium probability of E in I 2 with boundary conditions ∧ at -L + ℓ -1 and L -ℓ + 1. The same applies to µ ζ,c T 2 (E) provided the equilibrium is taken with boundary conditions ζ at -L+ℓ-1 and L-ℓ+1. Choose the event E that the configuration is minimal (in Ω + ) at both -L + ℓ 2 -1 and

L -ℓ 2 + 1 (i.e. η -L+ℓ 2 -1 = η L-ℓ 2 +1 = 0 if L -ℓ 2 is odd, and η -L+ℓ 2 -1 = η L-ℓ 2 +1 = 1 if L -ℓ 2 is
even). From known equilibrium estimates [9, Section 2], it is not difficult to show that at equilibrium, with either of the two boundary conditions considered above, the probability of E is bounded below by c 1 ℓ -6 for some constant c 1 > 0 depending only on λ. Therefore, using an independent coupling in the time-lag [0, T 2 ], we have that the event E occurs for both η ∧,c T 2 , η ζ,c T 2 with probability at least c ℓ -12 .

Next, conditioned on the event E we see that from time T 2 up to time T 2 + T 1 the two processes evolve (in the regions I 1 and I 3 only) with the same boundary conditions (equal to the minimal configuration at both -L + ℓ 2 and L -ℓ 2 ). Since T 1 = L ε and the mixing time of the system in the regions I 1 and I 3 (which evolve independently) is certainly at most e O(ℓ 2 ) , with probability 1 + O(L -p ) (conditionally on event E) we have that the two configurations coincide in both regions I 1 , I 2 at time T 2 + T 1 . Therefore if we let the system run only in I 2 now for an additional time T 2 we have a probability close to 1 to have the two configurations coinciding everywhere. It follows that, conditionally on the event E, there is a probability of, say, at least 1/2 of no discrepancy between η ∧,c T ′ and η ζ,c T ′ . Therefore, letting P denote the coupling described above,

∥µ ∧,c T ′ -µ ζ,c T ′ ∥ P(η ∧,c T ′ ̸ = η ζ,c T ′ ) P(η ∧,c T ′ ̸ = η ζ,c T ′ | E)P(E) + 1 -P(E) 1 - 1 2 P(E) .
Since P(E) c/ℓ 12 2/L ε , for L L 0 (ε), this implies (2.32).

We now go back to the model with no top/bottom boundaries, that is the law ν η t corresponds to the evolution with ξ = ∧, ζ = ∨. The next result is crucially based on estimates obtained in [START_REF] Caputo | On the approach to equilibrium for a polymer with adsorption and repulsion[END_REF]Section 6] for the delocalized regime λ < 1.

Lemma 2.7. Uniformly in t L 5/2 (log L) -9 ,

ν ∧ t (Ω + ) = 1 + o(1) . Proof. Define the event A = { ∑ L x=-L η x < L 3/2 (log L) -3 }. Proposition 6.2 in [7] proves that ν ∧ t (A) = o(1) uniformly in t L 5/2 (log L) -9 . Since Ω -⊂ A we have ν ∧ t (Ω -) = o(1) , t L 5/2 (log L) -9 .
(2.33)

Next, let us check that

ν ∧ t (Ω + | (Ω -) c ) π(Ω + | (Ω -) c ) , t 0 . (2.34)
To this end, observe that since (Ω -) c is increasing, using Lemma 2.3 the function 1) , where the last bound follows from (2.27).

f (σ) = 1 (Ω -) c (σ) ν ∧ t (σ | (Ω -) c ) π(σ | (Ω -) c ) = 1 (Ω -) c (σ) ν ∧ t (σ) π(σ) π((Ω -) c ) ν ∧ t ((Ω -) c ) , is increasing. Since Ω + ⊂ (Ω -) c is
ν ∧ t (Ω + ) (1 + o(1))ν ∧ t (Ω + | (Ω -) c ) (1 + o(1))π(Ω + | (Ω -) c ) = 1 + o(
Lemma 2.8. For any ε > 0, uniformly in t ∈ [L 2+ε , L 5/2 (log L) -9 ] :

∥ν ∧ t -π + ∥ = o(1) , where π + is defined by π + = π(• | Ω + ).
Proof. Using Lemma 2.7 it is enough to prove

∥ν ∧ t (• | Ω + ) -π + ∥ = o(1) , uniformly in t ∈ [L 2+ε , L 5/2 (log L) -9 ]. Consider the function f : Ω → R given by f (σ) = 1 Ω + (σ) ν ∧ t (σ | Ω + ) π + (σ) = 1 Ω + (σ) ν ∧ t (σ) π(σ) π(Ω + ) ν ∧ t (Ω + )
.

Since Ω + is increasing, Lemma 2.3 shows that f is increasing. Therefore, the event

A = {σ ∈ Ω + : ν ∧ t (σ | Ω + ) > π + (σ)} is increasing. Using monotonicity we have ν ∧ t (A | Ω + ) = ν ∧ t (A)/ν ∧ t (Ω + ) µ ∧ t (A)/ν ∧ t (Ω + )
, where µ ∧ t denotes the evolution constrained to stay in Ω + ; see Proposition 2.6. Therefore,

∥ν ∧ t (• | Ω + ) -π + ∥ = ν ∧ t (A | Ω + ) -π + (A) µ ∧ t (A) ν ∧ t (Ω + ) -π + (A) .
The conclusion now follows from Lemma 2.7 and Proposition 2.6.

The full power of Lemma 2.8 will be seen in the next sections. One of its consequences is the fact that the mixing time T mix can be bounded in terms of the relaxation time via 

T mix L 2+ε + c T rel log L , ( 2 
Ω → R is called antisymmetric if g(-η) = -g(η) for all η ∈ Ω.
The following result gives a precise characterization of one eigenfunction corresponding to -gap.

Proposition 2.9. There exists an increasing antisymmetric eigenfunction g of L, such that

∥g∥ L 2 (π) = 1. It satisfies Lg = -gap g. (2.36)
Moreover, when L tends to infinity 1) 1).

g(∧) = ∥g∥ L∞ = 1 + o(
and ∥g -(1 Ω + -1 Ω -) ∥ L 1 (π) = o(
(2.37)

Proof. By decomposing 1 ∧ -1 ∨ on a basis of eigenfunctions of L one sees that

g := lim t→∞ P t (1 ∧ -1 ∨ ) ∥P t (1 ∧ -1 ∨ )∥ L 2 (π)
is an eigenfunction with unit L 2 norm. It is increasing and antisymmetric as P t (1 ∧ -1 ∨ ) is antisymmetric and increasing for all t (P t preserves monotonicity and symmetries). To prove (2.36), it suffices to show that the projection of 1 ∧ -1 ∨ on the eigenspace of L associated to -gap is non-zero. To do so, first observe that by reversibility,

1 π(∧) ∥P t (1 ∧ -1 ∨ )∥ L 1 (π) = 2 ∥ν ∧ t -ν ∨ t ∥.
Then, by the second point of Lemma 2.4

lim t→∞ 1 t log ∥P t (1 ∧ -1 ∨ )∥ L 2 (π) = lim t→∞ 1 t log ∥P t (1 ∧ -1 ∨ )∥ L 1 (π) = lim t→∞ 1 t log ∥ν ∧ t -ν ∨ t ∥ = -gap ,
(where we used equivalence of the norms in finite dimensional spaces).

We now estimate the L ∞ norm of g. Let ε > 0 be small and fixed, and let t 0 be such that L 2+ε < t 0 < L 5/2-ε . The function g is an eigenfunction for P t 0 = exp(t 0 L), with eigenvalue e -t 0 gap . Therefore

e -t 0 gap g(∧) = E [ g(v ∧ t 0 ) ] π + (g) + 2g(∧)∥ν ∧ t 0 -π + ∥
, where the last inequality follows from the fact that for any two measures µ, ν and any function

f , |µ(f ) -ν(f )| 2∥f ∥ L∞ ∥µ -ν∥ .
Hence, by Lemma 2.8 and the fact that gap -1 ≫ t 0 (cf. (1.4)):

g(∧) π + (g) e -t 0 gap -2∥ν ∧ t 0 -π + ∥ = π + (g)(1 + o(1)). (2.38)
Moreover, by symmetry and Jensen's inequality

1 = π(g 2 ) 2 ∑ η∈Ω + π(η)g(η) 2 = 2π(Ω + )π + (g 2 ) 2π(Ω + )π + (g) 2 , so that π + (g) (2π(Ω + )) -1/2 = 1 + o(1).
Therefore g(∧) 1 + o(1) (and it is trivial to notice that ∥g∥ L∞ ∥g∥ L 2 (π) = 1).

We turn to the proof of (2.37). First notice that by (2.38) one has π + (g) (1+o(1))g(∧) 1+ o(1) so that π + (g) = 1 + o( 1).

(2.39)

Next, we prove that the variation of g within Ω + is small: 1).

Var π + (g) = o(
(2.40) 2 and the claim follows from (2.38). Next,

Indeed, Var π + (g) = π + (g 2 ) -π + (g) 2 g(∧) 2 -π + (g)
∥g -1 Ω + + 1 Ω-∥ L 1 (π) ∥1 Ω + (g -1)∥ L 1 (π) + ∥1 Ω -(g + 1)∥ L 1 (π) + ∥g1 Ω\(Ω + ∪Ω -) ∥ L 1 (π) .
The first two terms of the right-hand side are equal by symmetry. Adding and subtracting π + (g), and using Schwarz' inequality,

∥1 Ω + (g -1)∥ L 1 (π) π(Ω + ) [ |π + (g) -1| + √ Var π + (g) ] = o(1) ,
where the conclusion follows from (2.39) and (2.40). The third term ∥g1

Ω\(Ω + ∪Ω -) ∥ L 1 (π) is smaller than ∥g∥ L∞ π(Ω \ (Ω + ∪ Ω -)) = o(1).

Metastability

In this section we first prove Theorem 1.5, which is mainly a consequence of the technical lemmas of the previous section and then move to the proof of Theorem 1.3 and its corollary.

3.1. Proof of Theorem 1.5. We use the notation T = L 2+δ . Equation (1.11) is an easy consequence of (1.9) and (2.28). Indeed, assuming (1.9), for t T , one has

∥P t (∧, •) -π∥ = [ 1 + e -t/T rel 2 π + + 1 -e -t/T rel 2 π - ] -π + o(1) = 1 2 e -t/T rel + o(1). (3.1)
To prove (1.9), one writes

ν ∧ t - [ 1 + e -t/T rel 2 π + + 1 -e -t/T rel 2 π - ] ν ∧ T P t-T -π + P t-T + π + P t-T - [ 1 + e -t/T rel 2 π + + 1 -e -t/T rel 2 π - ] . (3.2)
This is just triangular inequality, combined with the observation that ν ∧ T P t-T = ν ∧ t . The first term on the right hand side is smaller than ∥ν ∧ T -π + ∥ (as P t-T contracts the norm) which is itself small, by Lemma 2.8 and the definition of T . It remains to estimate the second term i.e. to prove (1.10).

To do this, we use the fact that the density of π + w.r.t. π is very close to g + 1, where g is the eigenfunction described in Proposition 2.9, so that the density of π + P t must be close to P t (g + 1). Using reversibility, one can express the densities as follows: dπ + Pt dπ = P t dπ + dπ . Then we rewrite the second term in (3.2) as an L 1 norm (omitting a harmless factor 1/2)

P t-T dπ + dπ - 1 2π(Ω + ) (1 Ω + + 1 Ω -) - 1 2π(Ω + ) e -t/T rel (1 Ω + -1 Ω -) L 1 (π) P t-T dπ + dπ - 1 2π(Ω + ) (1 Ω + + 1 Ω -) - 1 2π(Ω + ) e -t/T rel g L 1 (π) + 1 2π(Ω + ) ∥e -t/T rel (1 Ω + -1 Ω --g) ∥ L 1 (π) .
The last term above is small by Proposition 2.9. From (2.27) we know that 2π(Ω + ) = 1 + o(1).

One can then estimate the first term

P t-T dπ + dπ - 1 2π(Ω + ) (1 Ω + + 1 Ω -) - 1 2π(Ω + ) e -t/T rel g L 1 (π) ∥ (1 Ω + + 1 Ω -) -1∥ L 1 (π) + P t ( dπ + dπ -1 -g ) L 1 (π)
+ o( 1) , (3.3) where we used the triangular inequality, the fact that P t 1 = 1, and

P t-T g = e -(t-T )/T rel g = (e -t/T rel + o(1))g ,
which follows from T = o(T rel ). On the right hand-side of (3.3), the first term is small by (2.28) and the second is bounded by

∥ dπ + dπ -1 -g∥ L 1 (π)
, which is small by Proposition 2.9.

3.2.

Proof of Theorem 1.3. Theorem 1.5 gives some intuition on why the result should be true, and it will be used to determine the time of the jump from one state to the other. However, one needs another key ingredient to get the result, namely the description of the quasi-stationary distribution. The reason for this is that starting from the quasi-stationary distribution, a killed process dies exactly at exponential rate; see Section 2.3. Therefore, most of our effort will focus on stochastic comparison with the quasi-stationary distribution. Let us first give a brief roadmap to help the reader through the proof of Theorem 1.3.

Step 1. The sets S ± of Theorem 1.3 for which we have the desired exponential hitting time description are constructed by successively refining a first attempt. One first defines S 0,± as the sets of polymer configurations where the eigenfunction g in Proposition 2.9 is positive (negative) and one verifies that their equilibrium probability is 1 2 + o(1). Then one examines the Dirichlet problem associated to the process killed in S 0,-(S 0,+ ) and one proves that the corresponding eigenvalue γ 0 is of the same order as the spectral gap apart from a crucial unspecified multiplicative factor in [1/2, 1]. Similarly one verifies that the corresponding quasi-stationary measure is very close to the equilibrium measure π conditioned to be in S 0,+ (S 0,-). In this way we get the exponentiality of the hitting time of e.g. S 0,-starting from π + with a rate which is, modulo a multiplicative factor in [1/2, 1], the spectral gap (see Lemma 3.3).

Step 2. Next one appropriately defines new sets S 1,± ⊂ S 0,± in order to guarantee that this time the corresponding Dirichlet eigenvalue γ 1 is equal to ( 1 2 + o(1))gap, and that the hitting time of S 1,∓ starting from equilibrium conditioned to S 1,± is exponential (with the correct rate). Again one of the key points is to show that π + is close to the quasi-stationary distribution associated the process killed on entering S 1,-, and that the equilibrium probability of S 1,± is still 1 2 + o(1).

Step 3. Finally, one defines the sets S 2,± ⊂ S 1,± in such a way that: a) the hitting time of S 2,∓ starting from any configuration in S 2,± (and not just from the conditional equilibrium) is also exponential with the correct rate 1 2 gap; b) the equilibrium probability of S 2,± is still 1 2 +o(1).

It is now time to begin the implementation of the above strategy. Let

S 0,+ := {η ∈ Ω, g(η) > 0} , (3.4)
where g is the eigenfunction defined by Proposition 2.9 and set S 0,-= -S 0,+ . From Proposition 2.9,

∥1 S 0,+ -1 Ω + ∥ L 1 (π) = o(1). (3.5)
In particular, π(S 0,± ) = 1/2 + o(1). Let S -⊂ S 0,-be a decreasing event. We consider the quasi-stationary distribution ν + := ν S -of the process killed when it hits S -. Let P * t = P S - t , resp. L * = L S -, denote the semi-group, resp. the generator, associated to this process (see Section 2.3), -γ S -= -γ be the largest eigenvalue of L * and τ -= τ S -be the hitting time of S -. From (2.16):

P ν + (τ -> t) = e -γt .
(3.6) Our first step is to prove that if S -has non-negligible measure, then γ is of the same order of the gap. More precisely: Lemma 3.1. For any S -⊂ S 0,-, one has π(S -) γ T rel 1.

Proof. The bound π(S -)

γ T rel is rather standard, but we include its proof for the sake of completeness. Let f 0 = g S -denote the minimizer in the variational principle defining γ = γ S -; see (2.13). Then

Var π (f 0 ) = ⟨f 0 , f 0 ⟩ π - ⟨ f 0 , 1 (S -) c ⟩ 2 π ⟨f 0 , f 0 ⟩ π π(S -) ,
where we used the Cauchy-Schwarz inequality for

⟨ f 0 , 1 (S -) c ⟩ 2 π . Therefore γ = E(f 0 , f 0 ) π(f 2 0 ) π(S -) E(f 0 , f 0 ) Var π (f 0 ) π(S -) gap .
As for the bound γ T rel 1, γ S -being a non-decreasing function of S -(for the inclusion), it is sufficient to prove the result for the maximal case S -= S 0,-. Let g be the eigenfunction defined in Proposition 2.9. From (2.12), for all η ∈ (S 0,-) c

-(L * g | (S 0,-) c )(η) = -(Lg)(η) + ∑ η ′ ∈S 0,- c(η, η ′ )g(η ′ ) -(Lg)(η) = gap g(η) ,
where we use the fact that g(η ′ ) < 0 for η ′ ∈ S 0,-. Plugging this into (2.13), and using g | (S 0,-) c 0, one gets

γ ⟨ -L * g | (S 0,-) c , g | (S 0,-) c ⟩ π π ( g 2 | (S 0,-) c ) gap .
Next, we prove that the quasi-stationary distribution ν + for the process killed on S -is very close to π + if S -has probability close to 1/2. Lemma 3.2. Uniformly for all decreasing events S -⊂ S 0,-,

∥ν + -π + ∥ (2 -4π(S -)) + o(1) .
Proof. We use triangular inequality to get

∥ν + -π + ∥ ∥ν + -π(• |(S -) c )∥ + ∥π + -π(• |(S -) c )∥. (3.7)
We start with the first term. First, from (2.15) one has the characterization

ν + = lim t→∞ δ ∧ P * t δ ∧ P * t (Ω)
.

Since the operator P * t preserves monotonicity (S -is decreasing), arguing as in [START_REF] Peres | Mixing for Markov chains and spin systems[END_REF]Lemma 16.6], the density

d[δ∧P * t ] dπ
is seen to be an increasing function for every fixed t 0. Hence, passing to the limit t → ∞, dν + /dπ is an increasing function. Therefore,

A := { η ∈ (S -) c , such that ν + (η)π((S -) c ) π(η) > 1
} is an increasing event. From standard properties of the total variation distance

∥ν + -π(•|(S -) c ∥ = ν + (A) -π(A |(S -) c ).
We shall prove that ν + (A) is smaller than π + (A) + o( 1) by the use of monotonicity and a chain of comparisons. Recall the notation T = L 2+δ (δ ∈ (0, 1/4)). We first compare ν + to ν + P T : remark that ν + P T = ν + P * T + ν + (P T -P * T ) where the two terms of the decomposition are positive measures. From quasi-stationarity one has ν + P * T = e -γT ν + and therefore the total mass of the second term above is 1 -e -γT . Hence

∥ν + P T -ν + ∥ = 1 2 d[ν + (P T -P * T )] dπ - dν + dπ (1 -e -γT ) L 1 (π)
1 -e -γ T = o(1).

(

The last equality comes from Lemma 3.1 and the fact that T rel ≫ T . Next, δ ∧ P T stochastically dominates ν + P T so that [ν + P T ](A) [δ ∧ P T ](A). Hence, from Lemma 2.8 and (3.8):

ν + (A) ν + P T (A) + o(1) δ ∧ P T (A) + o(1) π + (A) + ∥δ ∧ P T -π + ∥ + o(1) = π + (A) + o(1).
Therefore, going back to (3.7)

∥ν + -π + ∥ ν + (A) -π(A |(S -) c ) + ∥π + -π(• |(S -) c )∥ (3.9) π + (A) -π(A |(S -) c ) + ∥π + -π(• |(S -) c )∥ + o(1) 2∥π + -π(• |(S -) c )∥ + o(1) .
To estimate the right-hand side of (3.9), notice that

∥π + -π(• |(S -) c )∥ ∥π + -π(• |(S 0,-) c )∥ + ∥π(• |(S 0,-) c ) -π(• |(S -) c )∥ , (3.10)
and the first term is o(1) by Proposition 2.9. Moreover, since S -⊂ S 0,-

∥π(• |(S 0,-) c ) -π(• |(S -) c )∥ = π((S -) c ) -π((S 0,-) c ) π((S -) c ) = 1/2 -π(S -) + o(1) 1 -π(S -) 1 -2π(S -) + o(1) . (3.11)
Combining (3.9), (3.10) and (3.11), the desired result follows.

Now one uses the fact that ν + and π + are close in total variation distance to estimate the jumping time to S -starting from either ∧ or from π + . For the rest of this section, one defines, in analogy with τ -, the hitting times τ i,-(resp. τ i,+ ), (i = 0, 1, 2) of the sets S i,-(resp. S i,+ ) to be defined. Lemma 3.3. Uniformly for all t 0 and all decreasing S -⊂ S 0,-, setting γ = γ S -: 1). In particular, for S -= S 0,-, setting γ 0 = γ S 0,-:

(i) |P ∧ [τ -> t] -e -γt | (2 -4π(S -)) + o(1) (ii) |P π + [τ -> t] -e -γt | (2 -4π(S -)) + o(
(iii) P ∧ [ τ 0,-> t ] = e -γ 0 t + o(1) (iv) P π + [ τ 0,-> t ] = e -γ 0 t + o(1).
Proof. Item (ii) follows from (3.6) and Lemma 3.2. Indeed,

|P π + [ τ -> t ] -P ν + [ τ -> t ] | ∥π + -ν + ∥ .
For item (i) (lower bound), we use the fact that S -is a decreasing event to get that

P ∧ [ τ -> t ] P ν + [ τ -> t ] = e -γt .
For the upper bound it is sufficient to prove the result for t T = L 2+δ , since γ -1 ≫ T (a consequence of Lemma 3.1 and (1.4)). One defines

τ -= inf{t T, η(t) ∈ S -}.
Then, by the Markov property and quasi-stationarity

P ∧ [ τ -> t ] P ∧ [ τ -> t ] = P δ∧P T [ τ -> t -T ] ∥δ ∧ P T -ν + ∥ + e -γ(t-T ) ∥δ ∧ P T -π + ∥ + ∥π + -ν + ∥ + e -γt + o(1) , ( 3.12) 
where we use e -γ(t-T ) = e -γt + o(1), which follows from γ -1 ≫ T . The result then follows from Lemma 2.8 and Lemma 3.2. Items (iii) and (iv) are consequences of (i) and (ii) and the fact that π(S 0,-) = 1/2 + o(1).

From the previously stated results, one may conclude that there exists δ L , a decreasing sequence tending to zero when L tends to infinity, such that for every t > 0:

P ∧ [ τ 0,-> t ] e -γ 0 t + δ L , P π + [ τ 0,-> t ] e -γ 0 t -δ L , π(Ω + ) 1/2 -δ L π + (S 0,+ ) 1 -δ L . (3.13)
Given such a δ L , one defines S 1,+ to be

S 1,+ := S 0,+ ∩ {η ∈ Ω + : P η [ τ 0,-> t ] e -tγ 0 -3(δ L ) 1/4 , ∀t > 0 },
and S 1,-= -S 1,+ .

Lemma 3.4. The set S 1,+ satisfies π(S 1,+ ) = 1 2 + o(1) , and

P η [ τ 0,-> t ] = e -tγ 0 + o(1)
, uniformly in t 0 , and η ∈ S 1,+ .

(3.14)

Proof. The lower bound in the second point follows from the definition of S 1,± . For the upper bound, it is just a consequence of the fact that

P ξ [ τ 0,-> t ] P ∧ [ τ 0,-> t ] e -γ 0 t + δ L , ( 3.15) 
for any ξ ∈ Ω, by monotonicity, where the last bound is the first line in (3.13).

We turn to a proof of the first point. For t 0, one defines

S 1,+,t := {η ∈ Ω + : P η [ τ 0,-> t ] e -tγ 0 -2δ 1/4
L }. From the second line in (3.13), and using (3.15) for all ξ ∈ S 1,+,t :

e -γ 0 t -δ L P π + [ τ 0,-> t ] π + (S 1,+,t )(e -γ 0 t + δ L ) + (1 -π + (S 1,+,t ))(e -γ 0 t -2δ 1/4 L ) . (3.16)
This gives -2δ L 2δ

1/4 L π + (S 1,+,t )) -2δ 1/4 L , i.e. π + (S 1,+,t ) 1 -δ 3/4
L .

(3.17)

Next, define S i := S 1,+,iδ 1/4

L γ -1 0 , i ∈ N. We claim that for all L sufficiently large:

S 1,+ ⊃ ⌊δ -1/2 L ⌋ ∩ i=1 S i ∩ S 0,+ . (3.18) Indeed, let η ∈ ∩ ⌊δ -1/2 L ⌋ i=1 S i . If t δ -1/4 L γ -1 0 /2, then clearly η ∈ S ⌈tγ 0 δ -1/4 L ⌉ if L is large enough. In particular, P η [τ 0,-> t] P η [τ 0,-> ⌈tγ 0 δ -1/4 L ⌉δ 1/4 L γ -1 0 ] e -γ 0 t-δ 1/4 L -2δ 1/4 L e -γ 0 t -3δ 1/4 L . (3.19)
If on the other hand t δ

-1/4 L γ -1 0 /2, then e -tγ 0 -3δ 1/4 L 0 P η [τ 0,-> t],
provided δ L is small enough, i.e. L is large enough. This proves (3.18). Moreover one has, from (3.17) and the fourth line of (3.13),

π + ( ∩ ⌊δ -1/2 L ⌋ i=1 S i ∩ S 0,+ ) 1 -δ 1/4 L -δ L .
From the third line of (3.13), one gets that π

( ∩ ⌊δ -1/2 L ⌋ i=1 S i ∩ S 0,+ ) (1 -δ 1/4 L -δ L )(1/2 -δ L ) .
This last estimate together with (3.18) implies the first statement of the lemma.

The previous results allow us to compute the value of γ 1 = γ S 1,-.

Lemma 3.5. Let -γ 1 be the largest eigenvalue of L S 1,-, the generator of the process killed when it hits S 1,-. We have

γ 1 T rel = 1/2 + o(1).
It is important to recall that, in contrast to γ 1 , the eigenvalue γ 0 of the process killed in L S 0,- was estimated only up to a factor 2 (cf. Lemma 3.1).

Proof. The inequality γ 1 T rel 1/2 + o(1) comes from Lemma 3.4 and Lemma 3.1. Recall the definitions

τ 1,-= inf { t 0, η(t) ∈ S 1,-} , τ 0,+ = inf { t 0, η(t) ∈ S 0,+ } .
According to Theorem 1.5, (3.5), Lemma 3.1, Lemma 3.3(i) and Lemma 3.4, one can find a new sequence δ L going to zero such that ν ∧ t ((S 0,+ ) c ) (1 -e -t/T rel )/2 + δ L for every t > 0 , P ξ [ τ 0,+ > t ] e -γ 0 t -δ L for every t 0 and ξ ∈ S 1,-,

P ∧ [ τ 1,-> t ] e -γ 1 t + δ L for every t 0 .
Next, define τ 0,+ = inf { t τ 1,-: η(t) ∈ S 0,+ } to be the first time the process enters S 0,+ after entering for the first time S 1,-. One has

1 -e -t/T rel 2 + δ L ν ∧ t ((S 0,+ ) c ) P ∧ [ τ 1,-< t, τ 0,+ > t ] E ∧ [ 1{τ 1,-< t}P η(τ 1,-) [ τ 0,+ > t ] ] P ∧ [ τ 1,-< t ] min η∈S 1,- P η [ τ 0,+ > t ] (1 -e -γ 1 t -δ L )(e -tγ 0 -δ L ). (3.20)
We use this inequality for t = γ -1 1 δ

1/3

L and get (using the fact that x -x 2 1 -exp(-x) x for x small enough)

δ 1/3 L /(2γ 1 T rel ) (δ 1/3 L -δ 2/3 L -δ L )(1 -δ 1/3 L γ 0 /γ 1 -δ L ) -δ L .
As 1 γ 0 /γ 1 3 (for L large enough, cf. Lemma 3.1), all of this gives us

γ 1 T rel 1 2[(1 -δ 1/3 L -δ 2/3 L )(1 -3δ 1/3 -δ L ) -δ 2/3 L ] ,
which ends the proof.

Once again assume that δ L is a sequence going to zero, this time such that one has for every t > 0

P ∧ [ τ 1,-> t ] e -γ 1 t + δ L , P π + [ τ 1,-> t ] e -γ 1 t -δ L , π(S 1,+ ) 1/2 -δ L .
(3.21)

Note that the sets S 1,± are not yet good candidates for the sets S ± of Theorem 1.3, the reason being that (3.21) and Lemma 3.5 say that the hitting time of S 1,-is exponential with the correct rate, but only if one starts from either the maximal configuration or from π + , while we want this to hold uniformly in the initial condition in S + . We need therefore a final step in order to fix this problem. We set

S 2,+ := { η ∈ S 1,+ : P η [ τ 1,-> t ] e -γ 1 t -3δ 1/4 L ∀t 0 } ,
and define S 2,-= -S 2,+ . The same computations of Lemma 3.4 prove Lemma 3.6. π(S 2,+ ) = 1/2 + o(1).

Now we are ready to finish the proof of Theorem 1.3, with S + := S 2,+ . Let -γ 2 be the largest eigenvalue of the generator L S 2,-of the process killed when it reaches S 2,-. From Lemma 3.1, one has π(S 2,+ ) gap γ 2 γ 1 . Therefore, Lemma 3.6 yields

γ 2 = (1/2 + o(1)) gap . (3.22)
Let τ 2,-be the hitting time of S 2,-. For any η ∈ S 2,+ (this is actually true for any η in Ω), we get from monotonicity, Lemma 3.3(i), Lemma 3.6 and (3.22)

P η (τ 2,-> t) P ∧ (τ 2,-> t) e -γ 2 t + o(1) + (2 -4π(S 2,-)) e -t 2T rel + o(1),
where o( 1) is uniform in t. On the other side, the definition of S 2,+ and the obvious bound τ 2,-τ 1,-give that for any η ∈ S 2,+ P η (τ 2,-> t) P η (τ 1,-> t) e -γ 1 t + o(1) e

-t 2T rel + o(1),
where the last inequality comes from Lemma 3.5. This ends the proof of Theorem 1.3.

Proof of Corollary 1.7.

We use the same notation as in the previous proof. We set Γ := (S 2,+ ∪ S 2,-) c , and denote the local time spent by the Markov chain (η s ) s 0 in Γ by

H t = H t (Γ) := ∫ t 0 1 η(s)∈Γ ds. (3.23) Notice that, if π2,+ := π(• | S 2,+ ), then ∥π 2,+ -π + ∥ = o(1)
. Equation (1.10) implies that there exists a sequence δ L going to zero such that

P π2,+ (η s ∈ Γ) δ L , ∀s 0.
Integrating between zero and δ

-1/2 L T rel one gets E π2,+ [ H δ -1/2 L T rel ] δ 1/2 L T rel .
We set

S 3,+ := { η ∈ S 2,+ : E η [ H δ -1/2 L T rel ] δ 1/4 L T rel } .
By Markov's inequality we see that π2,+ (S 3,+ ) 1 -δ 1/4 L which immediately implies that π(S 3,+ ) = 1/2+o(1) since π(S 2,+ ) = 1/2+o(1). Using Markov's inequality again we obtain

P η [ H δ -1/2 L T rel δ 1/8 L T rel ] δ 1/8 L , ∀η ∈ S 3,+ .
Moreover, by Theorem 1.3, there exists a sequence δ ′ L going to zero such that

P η [ τ 2,-∈ [0, δ 1/16 L T rel ] ∪ [δ -1/2 L T rel , ∞) ] δ ′ L , ∀η ∈ S 2,+ .
On the event {τ 2,-∈ [δ

1/16 L T rel , δ -1/2 L T rel ]}, one has H τ 2,- H δ -1/2 L T rel
and hence, for every

η ∈ S 3,+ , P η [ H τ 2,-δ 1/16 L τ 2,- ] P η [ H δ -1/2 L T rel δ 1/8 L T rel ] + δ ′ L δ 1/8 L + δ ′ L .

Mixing time upper bound

In this section we prove Theorem 1.1. Our approach will also yield a proof of Theorem 1.2. The main ideas of the proof can be sketched as follows.

Step 1. Lemma 2.8 shows that after a burn-in time O(L 2+ε ) the distribution ν ∧ t has a smooth density w.r.t. the equilibrium π. The first step consists in using this fact together with (2.6) and Lemma 2.4 to reduce the mixing time upper bound to a lower bound on the spectral gap of the chain.

Step 2. To bound the spectral gap we decompose the polymer configurations using the variables σ x = sign(η x ) introduced in (1.7). From the decomposition estimates in Proposition 2.1, we shall roughly obtain that the spectral gap of the chain is bounded below by gap * × gap + , where gap * denotes the spectral gap of the heat bath dynamics for the variables σ, while gap + stands for the spectral gap of the polymer with a wall (i.e. the polymer constrained to be non-negative). From [START_REF] Caputo | On the approach to equilibrium for a polymer with adsorption and repulsion[END_REF], we know that gap + = Ω(L -2 ).

Step 3. To prove a lower bound on gap * we shall perform a second decomposition, this time by fixing the number of crossings (i.e. the number of sign switches) in the configuration σ. Another application of the bound from Proposition 2.1 will then show that gap * is roughly bounded below by a product of two spectral gaps, say gap (2) * denotes the spectral gap of a birth and death chain associated to the number of crossings. We establish a lower bound gap

(2) * = Ω(1). Moreover, we show that when n = 1, one has gap * ,1 = Ω(L -5/2 ). To prove a similar bound for every n we introduce a new dynamics involving a fixed number n of crossings: with rate 1, independently, each crossing equilibrates its position between the two neighboring crossings positions. If gap n eq denotes the spectral gap of this process, a comparison argument shows that gap * ,n gap * ,1 × gap n eq . Step 4. The final step consists in obtaining the lower bound gap n eq = Ω(L -ε ). The first observation is that if n ε log L this estimate can be obtained by means of a direct coupling argument. The proof of the estimate for larger values of n is based on a block dynamics argument which allows us to reduce the problem to the case of n ε log L crossings. The analysis of the block dynamics uses a further coupling argument. It is worth observing that the coupling arguments used here make crucial use of the heavy tailed nature of the distribution of excursions at equilibrium; see Lemma 2.2.

Before starting the actual proof, let us pause for a few remarks. The lower bound on gap * described in Step 3 and Step 4 above is sharp (up to O(L ε ) corrections). As detailed in Section 4.5 below, Step 3 and Step 4 will essentially prove Theorem 1.2. On the other hand, the final bound T mix = O(L 5/2+2+ε ) for Theorem 1.1 is likely to be off by a factor O(L 2 ). As explained in Step 1 above, this comes from the use of a decomposition estimate that involves the product gap * × gap + rather than the minimum min{gap * , gap + }, as it would be the case if one could efficiently decouple the mode associated to the variables σ from the rest.

The following four subsections will develop the four steps described above in the given order. However, we warn the reader that, because of various technical obstacles, the above plan will not be followed very strictly and several detours will be needed.

4.1.

Reduction to spectral gap. We start with the implementation of Step 1. For later purposes it is necessary to consider a variant of the original dynamics which avoids (very unlikely) configurations with too many crossings or too many zeros between consecutive crossings.

Call χ the number of crossings in a configuration η:

χ(η) = L-2 ∑ x=-L+2 1(η x = 0 , η x-1 ̸ = η x+1 ) . (4.1)
Note that only sites x ∈ E L \ ({-L} ∪ {L}) appear in the summation. Define

γ x = 1(η x = 0 , η x-1 ̸ = η x+1 ), so that χ = ∑ L-2 x=-L+2 γ x ,

and write

ξ 0 = -L , ξ χ+1 = L , (4.2)
and if 1 j χ, let ξ j denote the position in {-L + 2, . . . , L -2} of the j-th "1" in the sequence {γ -L+2 , . . . , γ L-2 }. Thus, ξ 1 , . . . , ξ χ denote the positions of the internal crossings. Finally, denote by N (ξ i , ξ i+1 ) the number of zeros in the path η strictly between ξ i and ξ i+1 . See Figure 2. Clearly η ∈ (Ω o ) c implies that there are at least c o log L zeros in the path η. Since λ < 1, the bound of Lemma 2.2 shows that the number of zeros is exponentially integrable at equilibrium. Therefore, for any p > 0, taking c o = c o (p) large enough, we have

+ + + - - - - + + + - - + + + - -L L ξ 2 ξ 1 ξ 3 ξ 4
π(Ω o ) = 1 + O(L -p ) . (4.4)
The reason for introducing the restricted set Ω o will be apparent in the sequel. For the moment, we point out that the restriction χ c o log L is essential for our estimates in Section 4.4, while both restrictions χ c o log L and N (ξ i , ξ i+1 ) c o log L will be needed in the estimate of the parameter γ appearing in the decomposition of the spectral gap; see the proof of Proposition 4.2 and Proposition 4.4 below.

Next, consider the polymer process restricted to the set Ω o , i.e. the continuous time Markov chain with state space Ω o , and generator (1.1), where the rates r x,± (η) are replaced by

r o x,± (η) = r x,± (η) 1(η x,± ∈ Ω o ) . (4.5)
Let also π o denote its reversible invariant measure, which is easily seen to coincide with π(• | Ω o ). Let T o rel denote the relaxation time of the process defined above.

Lemma 4.1. Assume that T o rel = O(L p ) for some p > 0. There exists c > 0, such that for any ε > 0 and for all L L 0 (ε):

T mix L 2+ε + c T o rel log L . (4.6)
Proof. Let t = L 2+ε/2 + s, with s = c 1 T o rel for some c 1 to be fixed below. We prove that

∥ν ∧ t -ν ∨ t ∥ 1/2 . (4.7)
From Lemma 2.4 and Lemma 2.5, (4.7) implies that T mix c 2 (L 2+ε/2 + s) log L, for some other constant c 2 , which implies the lemma. To prove (4.7), we first introduce some notation. We write ν η,o u for the distribution at time u of the state of the Markov chain restricted to Ω o , when the initial configuration is some η

∈ Ω o . If η / ∈ Ω o we define ν η,o u = δ η for all u. Next, we write ν µ,o u = ∑ η µ(η)ν η,o
u for a probability measure µ on Ω. Using symmetry we can write

∥ν ∧ t -ν ∨ t ∥ 2∥ν ∧ t -ν π + s ∥ + 2∥ν π + s -ν π + ,o s ∥ + ∥ν π + ,o s -ν π -,o s ∥ . ( 4.8) 
We start with the observation that

∥ν ∧ t -ν π + s ∥ = ∥ν ν ∧ t-s s -ν π + s ∥ ∥ν ∧ t-s -π + ∥ = o(1) ,
where the first bound is obtained by writing ν

ν ∧ t-s s -ν π + s = ∫ (ν η s -ν η ′ s )ρ(η, η ′ ) with ρ the maximal coupling of ν ∧
t-s and π + , and the last bound follows from Lemma 2.8. We turn to the last term in (4.8). Let π

+,o = π + (• | Ω o ) and observe that ∥π + -π +,o ∥ = o(1) .
This last bound follows easily from (4.4) and (2.27). Moreover, the bound (2.6) applied to the process restricted to Ω o yields

∥ν π +,o ,o u -π o ∥ c e -u/T o rel ,
for some c > 0 and for all u > 0. Therefore, the third term in (4.8) can be made smaller than, say, 1/4 by taking c 1 large enough in the definition of the time s. It remains to prove that the second term in (4.8) is o [START_REF] Aldous | Reversible Markov Chains and Random Walks on Graphs[END_REF]. Since the initial condition is sampled from the same distribution π + we can couple the two processes (ν π + u ) u 0 and (ν π + ,o u ) u 0 in such a way that they coincide until the first time when the unrestricted process exits from the set Ω o . (Note that this time can be zero.) Thus,

∥ν π + s -ν π + ,o s ∥ ∑ η 0 ∈Ω π + (η 0 )P(∃ u s : v η 0 u / ∈ Ω o ) .
From (2.27) we know that π + (η 0 ) (2 + o(1))π(η 0 ), so that the time-invariance with a union bound implies

∥ν π + s -ν π + ,o s ∥ 2sL(1 -π(Ω o ))(2 + o(1)) ,
where we use the fact that the average number of updates up to time s is bounded by 2sL. Since, by assumption, s = O(L p ) for some p, we can use (4.4) to conclude that

∥ν π + s -ν π + ,o s ∥ = o(1).
The following three subsections will focus on the upper bound T o rel = O(L 5/2+2+ε ). Once this bound is established, Theorem 1.1 will follow immediately from Lemma 4.1.

Decomposing along crossings configurations.

Recall the definition of the variables σ ∈ {-1, +1} O L given by σ y = sign(η y ), where O L is the set of sites in {-L, . . . , L} with the same parity as L + 1. Note that the field σ specifies uniquely the field ξ defined after (4.2), while ξ specifies σ up to a global sign switch; see Figure 2. The space Ω o can be decomposed into disjoint subspaces

Ω o = ∪ σ Ω o σ , (4.9) 
where

Ω o σ denotes the set of η ∈ Ω o such that sign(η x ) = σ x for all x ∈ O L . Let S o denote the set of all σ ∈ {-1, +1} O L such that Ω o σ ̸ = ∅, i.e. the set of σ ∈ {-1, +1} O L such that χ(σ) c o log L,
where χ(•), defined in (4.1), is seen as a function of σ = sign(η). Consider the continuous time Markov chain on S o with infinitesimal generator

Gφ(σ) = ∑ x∈O L θ x (σ) [φ(σ x ) -φ(σ)] (4.10)
where φ : S o → R, σ x is the configuration σ flipped at x, i.e. it is defined as σ everywhere except at x where it equals -σ x , and the rates θ x (σ) are given by

θ x (σ) = ∑ η∈Ω o σ π(η | Ω o σ ) [ r o x,+ (η) 1(σ(η x,+ ) = σ x ) + r o x,-(η) 1(σ(η x,-) = σ x ) ] . ( 4.11) 
The rates r o x,± are given in (4.5). Note that the measure

ν o (σ) = ∑ η∈Ω o σ π(η | Ω o ) , ( 4.12) 
is the reversible distribution, i.e.

ν o (σ)θ x (σ) = ν o (σ x )θ x (σ x ) holds for all x ∈ O L and σ ∈ S o .
In words, the process with generator G is described as follows. Attach independent rate 1 Poisson clocks to all sites x ∈ O L . Let σ be the current configuration. When site x rings, choose a configuration η sampled from the distribution π(• | Ω o σ ) and set η ′ = η x,+ with probability r o

x,+ (η), η ′ = η x,-with probability r o x,-(η), and η ′ = η with probability 1 -r o x,+ (η) -r o x,-(η). Finally, update σ to σ ′ given by σ ′ x = sign(η ′ x ). Let gap So denote the spectral gap of this Markov chain.

Proposition 4.2.

There exists c > 0 such that for all L:

T o rel c L 2 (log L) 3 (gap So ) -1 .
Proof. We apply Proposition 2.1 with the decomposition (4.9). To each σ we can associate the continuous time Markov chain with state space Ω o σ , defined by the generator (1.1) with the rates r x,+ (η) replaced by

r σ x,± (η) = r o x,± (η) 1(η x,± ∈ Ω o σ ) , ( 4.13) 
where the rates r o x,± (η) are defined in (4.5), with reversible equilibrium measure π o (• | Ω o σ ). Call gap σ the spectral gap of this Markov chain. For a given σ, this corresponds to independent continuous time Markov chains for each interval {ξ i , . . . , ξ i+1 }, where the crossing positions ξ i have been defined in (4.2). On a given interval {ξ i , . . . , ξ i+1 }, we have a polymer dynamics with a horizontal wall constraint (polymer above or below the wall depending on the sign of the field σ inside that interval). Moreover, within each interval the polymer is constrained to have less than c o log L zeros. Let gap σ,i denote the spectral gap of this process on the interval {ξ i , . . . , ξ i+1 }. From the independence recalled above, one has gap σ = min i=0,...,χ gap σ,i , (

where χ is the number of interior crossings defined in (4.1). It follows from Lemma 4.3 below and (2.8) that (gap σ ) -1 = O(L 2 log L), uniformly in σ ∈ S o . Next, observe that the generator G in (4.10) coincides with the generator L from Proposition 2.1 for the present choice of the decomposition. We can then use the bound of Proposition 2.1 with λ = gap So , and λ min = min σ∈So gap σ :

T o rel c (gap So ) -1 max{1, L 2 log L(gap So + γ)} , ( 4.15) 
where c > 0 is a constant, and

γ = max σ∈So max η∈Ω o σ L-1 ∑ x=-L+1 [ r o x,+ (η) 1(σ(η x,+ ) = σ x ) + r o x,-(η) 1(σ(η x,-) = σ x ) ] . ( 4.16) 
It is immediate to check that gap So is smaller than a constant, so that (4.15). It remains to give an upper bound γ = O((log L) 2 ). From the definition (4.16), we see that γ is bounded above by the maximum over η ∈ Ω o of the number of sites x ∈ O L such that η x-1 = η x+1 = 0. By definition of the set Ω o , the latter quantity is bounded by (c o log L) 2 in our setting. This ends the proof.

T o rel c L 2 log L (1 + γ) (gap So ) -1 , by
We turn to the lower bound on the gaps defined in (4.14), that was needed in the proof of Proposition 4.2. In Lemma 4.3, we prove upper bounds for mixings times and (2.8) allows us to get the corresponding lower bounds for the spectral gap. Consider the polymer dynamics under the constraints N (η) M (where N (η) is the total number of zeros and M is a positive constant) and η 0, i.e. let Γ +,M denote the set andη x 0 for all x } , and write ρ η t for the law at time t of the polymer dynamics restricted to Γ +,M . This is the continuous time Markov chain with generator (1.1) with rates replaced by r x,± (η)1(η x,± ∈ Γ +,M ) and with reversible measure π(• | Γ +,M ).

Γ +,M = { η ∈ Ω : N (η) M ,

Lemma 4.3.

There exists a constant c > 0 such that for any η ∈ Γ +,M and for any M c log L:

∥ρ η T -π(• | Γ +,M )∥ = o(1) , T = c L 2 log L . Proof. Let µ η
t denote the evolution without the constraint N (η) M , i.e. the Markov chain with generator (1.1) with rates given by r x,± (η)1(η x,± 0) and with reversible measure π w = π(• | η 0). The mixing time of this "wall" constrained model has been analyzed in [7, Theorem 3.1], where it is shown that, for some constant c > 0, for all initial η 0:

∥µ η t -π w ∥ c L 2 exp ( - t c L 2 ) . ( 4.17) 
As in (4.4), standard equilibrium estimates imply that for any p > 0 one can choose c > 0 such that for all M c log L:

π w (N > M ) = ∥π w -π(• | Γ +,M )∥ = O(L -p ) . ( 4.18) 
Next, observe that by monotonicity µ η t is stochastically dominated by ρ η t . Let τ η denote the hitting time of the set N (•) > M for the process with law (µ η t ) t 0 , and introduce the event G t := {η 0 : P(τ η t) L -1 } .

Note that, for fixed t, G t is an increasing event, and therefore µ η s (G t ) ρ η s (G t ), for any s, t 0.

Let us fix now t = c 1 L 2 log L. For any p > 0, using the time-invariance and a union bound with the fact that the expected number of updates up to time t is bounded by 2tL, one has

∑ η π w (η)P ( τ η t ) 2tL π w (N > M ) = O(L 4-p ) ,
where we use (4.18). Markov's inequality then implies that

π w (G c t ) = O(L 5-p
) . From (4.17) we then deduce that if c 1 is sufficiently large (in the definition of t):

ρ η t (G c t ) µ η t (G c t ) = O(L 5-p ) . ( 4.19) 
On the other hand, writing

ρ η 2t (A) -π w (A) = ∑ η ′ ρ η t (η ′ )(ρ η ′ t (A) -π w (A))
for any set A one has

∥ρ η 2t -π w ∥ ∑ η ′ ∈Gt ρ η t (η ′ )∥ρ η ′ t -π w ∥ + ρ η t (G c t ) .
To estimate the first term above, note that the processes with laws (µ η t ) t 0 , (ρ η t ) t 0 can be coupled in such a way that they coincide until time τ η . Therefore, by definition of G t , for any

η ′ ∈ G t : ∥ρ η ′ t -π w ∥ P(τ η ′ t) + ∥µ η ′ t -π w ∥ = O(L -1
) , (4.20) where we have used again (4.17) to bound the last term above. In conclusion, using where λ min = gap S + denotes the gap of the process restricted to S + (by symmetry, this equals the gap of the process restricted to S -), while λ is the gap of the symmetric two state Markov chain with transition rate

∥ρ η 2t -π(• | Γ +,M )∥ ∥π w -π(• | Γ +,M )∥ + ∥ρ η 2t -π w ∥ ,
c(+, -) = c(-, +) = ∑ σ∈S + ν o (σ | S + )θ -L+1 (σ) , γ = max σ∈S + θ -L+1 (σ) ,
where ν o is given in (4.12), and θ -L+1 (σ) is the probability of a flip at x = -L + 1 in σ; see (4.11). The probability measure ν o is defined in (4.12). Clearly, γ 1. Since at equilibrium the polymer has a uniformly positive probability of taking the value η -L+2 = 0, cf. (2.24), it follows easily that c(+, -) c(λ) > 0 for some L-independent constant c(λ). Thus, λ is of order 1, and for some c = c(λ) > 0 one obtains gap So c gap S + . (4.24)

Next, consider the number of crossings χ defined in (4.1). Since χ is a function of the signs σ only, we can write χ(σ) for the number of crossings in a given σ ∈ S o . Thus, the space S + is partitioned as

S + = ∪ m n=0 S +,n , (4.25) 
where m = ⌊c o log L⌋, and S +,n = {σ ∈ S + : χ(σ) = n}. We apply Proposition 2.1, this time with the decomposition (4.25). Thus, gap S + can be bounded below as in (4.23) where λ min = min 0 n m gap +,n now stands for the minimum of gaps of the processes restricted to S +,n , while λ stands for the gap of the random walk on {0, . . . , m} with transition rates (4.28)

c(n, n ± 1) = ∑ σ∈S +,n ∑ x∈O L ν o (σ | S +,n )θ x (σ)1(σ x ∈ S +,n±1 ) , (4.26) c(n, n ± 2) = ∑ σ∈S +,n ∑ x∈O L ν o (σ | S +,n )θ x (σ)1(σ x ∈ S +,n±2
µ(n) := ν o (χ = n | S + ) = π(χ = n | Ω o ) , n = 0, . . . , m .
Observe that uniformly in σ ∈ S +,n , one has 1). This ends the proof of λ c for some constant c.

∑ x∈O L θ x (σ) [ 1(σ x ∈ S +,n±1 ) + 1(σ x ∈ S +,n±2 ) ] = O(n) . ( 4 
To prove a lower bound on λ, we can neglect the additional rates (4.27). Then, we are left with a birth and death chain on the set {0, . . . , m} (m being the maximal number of crossings allowed) with jump rates c(n, n ± 1) and reversible measure µ(n) as above. It is well known (see e.g. [START_REF] Lawler | Bounds on the L 2 spectrum for Markov chains and Markov processes: a generalization of Cheeger's inequality[END_REF]) that the spectral gap of this chain can be estimated via Cheeger's inequality λ c Φ 2 , where c is a universal constant and Φ is defined by

Φ = min{Φ(ℓ, ℓ ′ ) , 0 ℓ < ℓ ′ m : µ([ℓ, ℓ ′ ]) 1/2} Φ(ℓ, ℓ ′ ) := µ(ℓ)c(ℓ, ℓ -1) + µ(ℓ ′ )c(ℓ ′ , ℓ ′ + 1) µ([ℓ, ℓ ′ ]) , where µ([ℓ, ℓ ′ ]) = ∑ ℓ ′ n=ℓ µ(n).
Thus, one has to prove a lower bound on Φ. Below, we prove that the birth rate c(n, n + 1) in (4.26) is bounded away from zero uniformly: for a universal constant a > 0 one has c(n, n + 1) a , 0 n m -1. (4.30)

By reversibility, it is easily checked that the same holds for the death rate c(n, n -1), for 1 n m. To prove a lower bound on Φ, consider two cases: either 1) Φ = Φ(ℓ, ℓ ′ ) with ℓ > 0 or 2) Φ = Φ(ℓ, ℓ ′ ) with ℓ = 0. In the first case, one has that Φ aµ(ℓ)/µ([ℓ, ℓ ′ ]) is uniformly positive, since µ decays exponentially. In the second case, one has Φ aµ(ℓ ′ )/µ([0, ℓ ′ ]), which is uniformly positive because the requirement µ([0, ℓ ′ ]) 1/2 and the decay of µ force ℓ ′ to be uniformly bounded.

It remains to prove (4.30). We have Note that these paths start at 0 and end at j, so that j must be even for this set to be non-empty. Define the probability law ρ +,o on the set of even positive integers by

c(n, n + 1) c ν o (ξ n = L -4 | S +,n ) , ( 4 
ρ +,o (j) = 2 -j Z +,o j z +,o , where Z +,o j = ∑ η∈Ω +,o j λ N (η) ,
where z +,o is the normalization. From Lemma 2.2, (2.23) one has that 2 -j Z +,o j = O(j -3/2 ) for large j, so that the probability ρ +,o is well defined. Then, it is not hard to check that the measure ν n,o introduced above is given by over n + 1 positive increments x i+1 -x i (with x 0 = -L, x n+1 = L), conditioned to have ∑ n i=0 (x i+1 -x i ) = 2L. Going back to (4.31), with the notation in (4.32) we have

ν n,o (x 1 , . . . , x n ) = ρ +,o (x 1 + L)ρ +,o (x 2 -x 1 ) • • • ρ +,o (x n -x n-1 )ρ +,o (L -x n ) Z o n,L (4.32) where ν n,o (x 1 , . . . , x n ) = ν n,o (ξ 1 = x 1 , . . . , ξ n = x n ), if -L < x 1 < • • • < x n < L
ν o (ξ n = L -4 | S +,n ) = ρ +,o (4)ρ ⊗(n) +,o ( ∑ n i=1 (ξ i -ξ i-1 ) = 2L -4) ρ ⊗(n+1) +,o ( ∑ n+1 i=1 (ξ i -ξ i-1 ) = 2L)
.

Since √ L ≫ m n, and ρ +,o (4) > 0, with the same arguments of Lemma 4.12 below one easily sees that ν o (ξ n = L -4 | S +,n ) > 0 uniformly. (We omit the details here to avoid repetitions). This ends the proof of (4.30) for n 1. A bound on c(0, 1) can be obtained similarly.

We return to the application of Proposition 2.1 with decomposition (4.25). The constant γ is now given by

γ = max n max σ∈S +,n ∑ x∈O L θ x (σ) [ 1(σ x ∈ S +,n±1 ) + 1(σ x ∈ S +,n±2 ) ] .
Recall (4.29). Since n m = O(log L) we obtain that γ = O(log L). In conclusion, using (4.24) and Lemma 4.5, we arrive at gap So c (log L) -1 min

1 n m gap +,n . (4.33)
Thanks to (4.33), the proof of Proposition 4.4 has been reduced to the proof of a lower bound gap +,n = Ω(L -5/2-ε ), uniformly in n c o log L. Note that the case n = 0 does not appear in (4.33). Indeed, in that case the corresponding equilibrium is concentrated on the single "all plus" element S 0,+ . We start with the simplest case, i.e. n = 1, which can be analyzed by rather standard arguments. Proof. When n = 1, the process restricted to S +,1 consists of a nearest neighbor random walk on E L \ ({-L} ∪ {L}), the sites in {-L + 2, . . . , L -2} with the same parity as L. Letting σ(x) denote the element of S +,1 with unique crossing at x, the corresponding jump rates are given by

c(x, x ± 2) = ∑ y∈O L θ y (σ(x))1(σ(x) y = σ(x ± 2)) . (4.35)
These rates are of order 1 (except at x = -L + 2 where c(-L + 2, -L) = 0 and at x = L -2 where c(L-2, L) = 0) since there is a uniformly positive probability for the polymer conditioned to have signs σ(x) of having a 0 at x ± 2. Moreover, the reversible invariant probability measure ρ(x) for this chain is given by

ρ(x) = π o (η x-1 , η x , η x+1 = (1, 0, -1) | sign(η) ∈ S +,1 ) . ( 4 

.36)

Recalling (4.4) and Lemma 2.2, the event sign(η) ∈ S +,1 has uniformly positive probability at equilibrium, and ρ(x) ≍ ρ 0 (x), where ρ 0 is the probability

ρ 0 (x) = (L + x) -3/2 (L -x) -3/2 z L , x ∈ E L \ ({-L} ∪ {L}) , ( 4.37) 
where z L is the normalizing constant. Since the rates (4.35) are of order 1, a standard comparison argument shows that it is sufficient to prove the bound gap +,1 0 c L -5/2 for the gap of the chain with reversible measure ρ 0 given by (4.37) with rates defined by c 0 (x, x + 2) = 1 and c 0 (x, x -2) = ρ 0 (x -2)/ρ 0 (x). The latter process has the Dirichlet form

E 0 (f, f ) = L-4 ∑ x=-L+2 ρ 0 (x)[f (x + 2) -f (x)] 2 . (4.38) On the other hand, writing f (y) -f (x) = ∑ y-2 j=x [f (j + 2) -f (j)],
x < y, and using Schwarz' inequality, the variance Var ρ 0 (f ) can be bounded above as follows:

Var ρ 0 (f ) = 1 2 ∑ x,y ρ 0 (x)ρ 0 (y)[f (y) -f (x)] 2 2L L-4 ∑ j=-L+2 ρ 0 (j)[f (j + 2) -f (j)] 2 ∑ x j ∑ y>j ρ 0 (x)ρ 0 (y) ρ 0 (j) . 
From (4.37) one has

max j ∑ x j ∑ y>j ρ 0 (x)ρ 0 (y) ρ 0 (j) = O(L 3 2 ) .
It follows that gap +,1 0 c L -5/2 , which implies (4.34).

Remark 4.7. The bound of Lemma 4.6 is optimal in the sense that gap +,1 c -1 L -5/2 . (4.39)

This can be seen by taking a test function φ(x) in the variational principle for gap +,1 , of the form φ(x) = g(x/L), where g : [START_REF] Miclo | An example of application of discrete Hardy's inequalities[END_REF].

[-1, 1] → R is given by g(s) = -1 if s < -1/2, g(s) = 1 if s > 1/2,
We turn to the proof of a lower bound on gap +,n for n > 1. Recall the definition (4.32) of the measure ν n,o . We introduce a further dynamics. We view the ξ i as particle positions. Each particle i = 1, . . . , n has an independent Poisson clock with parameter 1. When particle i rings, we freeze all positions ξ k , k ̸ = i, and update ξ i with the new position ξ ′ i sampled from the conditional distribution ν

i n := ν n,o (• | ξ k , k ̸ = i)
, where ν n,o is given in (4.32). The Dirichlet form of this process is given by

E n,o eq (f, f ) = n ∑ i=1 ν n,o [ Var ν i n (f ) ] , (4.40) 
where Var 

ν i n (f ) = ν i n (f 2 ) -ν i n (f )
ν i n (f ) 1 c (ξ i+1 -ξ i-1 ) 5/2 E i (f, f ) 1 c 1 L 5/2 E i (f, f ) ,
where c 1 = c/2 5/2 , and E i (f, f ) denotes the Dirichlet form of the random walk corresponding to the rates (4.35), with the segment {ξ i-1 , . . . , ξ i+1 } in place of {-L, . . . , L}. Taking the ν n,oexpectation, and summing over i = 1, . . . , n one obtains the estimate

E n,o eq (f, f ) 1 c 1 L 5/2 n ∑ i=1 ν n,o [ E i (f, f ) ] .
The desired conclusion follows from the observation that

∑ n i=1 ν n,o [ E i (f, f ) ] = E +,n (f, f )
, where E +,n (f, f ) is the Dirichlet form of the process restricted to S +,n with spectral gap given by gap +,n .

Lower bound on gap n,o

eq . To complete the proof we need the lower bound gap n,o eq = Ω(L -ε ). We first remove the restriction N (η) c o log L in the definition of the measure ν n,o . Namely, introduce the probability measure

ν n (x 1 , . . . , x n ) = ρ + (x 1 + L)ρ + (x 2 -x 1 ) • • • ρ + (x n -x n-1 )ρ + (L -x n ) Z n,L , (4.43) 
defined by the kernel

ρ + (j) = 2 -j Z + j z + , Z + j = ∑ η∈Ω + j λ N (η) , ( 4.44) 
where Ω + j = {η 0 : η 0 = η j = 0 , η x+1 = η x ± 1 , x = 0, . . . , j -1} . Note that (4.43) coincides with (4.32) except for the removal of the constraint N (η) c o log L in the definition of the kernel ρ + . As in (4.4) one can check that ρ + is equal to ρ +,o up to O(L -p ) corrections for some large p > 0 and therefore ν

n (x 1 , . . . , x n ) = ν n,o (x 1 , . . . , x n )(1 + O(L -p )),
uniformly. Proceeding as in (4.40) and (4.41) we define

E n eq (f, f ) = n ∑ i=1 ν n [ Var ν i n (f ) ] , (4.45) 
and gap n eq , the spectral gap associated to the measure ν n and the Dirichlet form (4.45). From the previous observations we see that Var νn (f ) c Var νn,o (f ) and E n,o eq (f, f ) c E n eq (f, f ), for some constant c > 0, for every function f . Therefore gap n eq c 2 gap n,o eq . For later purposes it is important to keep track of the dependence on L in our notation, and therefore we write gap n eq (L) below. The desired bound gap n,o eq = Ω(L -ε ) follows from the comparison mentioned above and Proposition 4.9. For any ε > 0, there exists L 0 (ε) > 0 such that for L L 0 and n c o log L gap n eq (L) L -ε . (4.46)

As a preliminary step towards the proof of Proposition 4.9, we establish the following lemma.

Lemma 4.10. There exists c > 0 such that for any n, uniformly in L n:

gap n eq (L) c e -n/c . The crucial point of the above estimate is that it does not depend on the size of the system L, but only on the number of particles n. Note that Lemma 4.10 gives the required lower bound (4.46) if we take n ε 1 log L with ε 1 suitably small. The case of larger n will be considered afterwards.

Proof of Lemma 4.10. Every particle has an independent Poisson(1) clock. When particle i rings we update its position according to the equilibrium measure conditioned on the neighboring positions ξ i-1 and ξ i+1 , that is the probability for the i-th particle to be in position ξ

′ i = ξ i-1 +k, k = 2, 4, . . . , ξ i+1 -ξ i-1 -2, is given by ρ + (k)ρ + (ξ i+1 -ξ i-1 -k) Z , where Z = ξ i+1 -ξ i-1 -2 ∑ k=2 ρ + (k)ρ + (ξ i+1 -ξ i-1 -k) . ( 4 

.47)

An important property of (4.47) is that the probability α of the event ξ

′ i = ξ i-1 + 2 (or ξ ′ i = ξ i+1 -2) is positive, uniformly in the length ξ i+1 -ξ i-1 .
The idea is to use this property to prove that with probability at least 1 2 α n , uniformly in the initial configuration, the process hits the minimal configuration

ξ 1 = -L + 2, ξ 2 = -L + 4, . . . , ξ n = -L + 2n , ( 4.48) 
before time n 2 . Once this result is available, one concludes with a simple coupling argument. Indeed, using an independent coupling, the total variation distance between two evolutions at time t = m×n 2 , with arbitrary initial conditions, is bounded above by (1-α 2n /4) m e -mα 2n /4 . Thus, the mixing time of this chain is at most 8n 2 α -2n . Using e.g. (2.8) we obtain the lemma. To prove the above claim, we use the notation (τ m , ℓ m ) m 1 for the sequence of updating marks, that is the m-th update occurs at time τ m and it concerns the ℓ m -th particle, where ℓ m is a number in {1, • • • , n}. Consider the event E that there exist integers 1 ϕ(1) < ϕ(2) < • • • < ϕ(n) such that τ ϕ(n) n 2 , ℓ ϕ(i) = i, and such that for every i = 1, • • • , n and ϕ(i -1) < j ϕ(i), one has ℓ j ̸ = ℓ ϕ(i-1) (where ϕ(0) = 0 and ℓ 0 = 0). In words, E is the event that within time n 2 there has been a sequence of n updates at times τ ϕ(1) , . . . , τ ϕ(n) , such that the update at time τ ϕ(i) concerned the i-th particle and such that the i-th particle is not touched again before time τ ϕ(i+1) . Conditioned on the event E one has a probability of at least α n of hitting the configuration described in (4.48). Indeed, at time τ ϕ(1) we set ξ 1 = 2 with probability α, at time τ ϕ(2) we set ξ 2 = 4 with probability α, and so on. Therefore, to prove the lemma it remains to show that the event E has probability at least 1/2. This can be easily seen as follows. Consider the event F that a sequence of integers 1 ψ(1) < ψ(2) < • • • < ψ(n) exists such that τ ψ(n) n 2 , and ℓ ψ(i) = i, for every i = 1, • • • , n. Let τ (1) denote the first time particle 1 is updated and define recursively τ (i) as the first time after τ (i-1) when particle i is updated. Clearly, F = {τ (n) n 2 }. Using E[τ (n) ] = n, by Markov's inequality the probability of F is at least 1 -n/n 2 1/2 for n 2. On the other hand E = F , since one can define the sequence ϕ from ψ by choosing ϕ(n) = ψ(n), and for 1 i n -1, ϕ(n -i) = max{j < ψ(n -i + 1) : ℓ j = n -i}.

This ends the proof of Lemma 4.10.

Proof of Proposition 4.9. The proof of Proposition 4.9 is based on a block-dynamics argument that allows one to reduce to n ε 1 log L particles, in which case the result will follow from Lemma 4.10. Fix an integer K n. A block is a collection of particles with adjacent labels, and our particles will be partitioned into ∆ := ⌈n/K⌉ non-overlapping blocks, in such a way that the first ∆ -1 blocks contain exactly K particles each, and the last block contains at most K particles. For the sake of simplicity, since it does not change any of our estimates, we will suppose that all blocks have exactly K particles, i.e. n = K∆. With this notation, the configuration of the i-th block can be described by the variables (ξ K(i-1)+1 , . . . , ξ Ki ) , i = 1, . . . , ∆ . (4.49)

As usual, the ξ i are interpreted as particle positions or crossing positions. To define the blockdynamics, we consider independent Poisson(1) clocks on each block, when one of them rings we put all crossings of the relative block simultaneously at equilibrium conditioned on the position of all crossings belonging to the other blocks. That is, if B i denotes the i-th block (4.49), and Var B i is the variance with respect to

ν n (• | B j , j ̸ = i) ,
then the Dirichlet form of the block-dynamics is given by

E n bl (f, f ) = ∆ ∑ i=1 ν n [Var B i (f )] , (4.50)
for any function f of the particle positions. Call gap n bl the associated spectral gap. The gap of the original dynamics for a single block B i is given by gap K eq (ℓ), where ℓ = ξ iK+1 -ξ (i-1)K is the length of the portion of the system occupied by the K particles in the i-th block:

gap K eq (ℓ) Var B i (f ) k ∑ r=1 ν n [ Var ν r n (f ) | B j , j ̸ = i ] ,
where ν r n is the equilibrium distribution of the r-th particle in the block B i , conditioned on the positions of the remaining particles, cf. (4.45). Using this estimate in (4.50), taking the ν n -expectation and summing over i one obtains gap n eq (L) gap n bl × min ℓ gap K eq (ℓ) . (4.51)

Note that this is a special case of a well known estimate that controls the gap of the original dynamics in terms of the gap of the block-dynamics (see e.g. [START_REF] Martinelli | Lectures on Glauber dynamics for discrete spin models[END_REF]). From Lemma 4.10 we know that gap K eq (ℓ) c e -K/c uniformly in the length ℓ. Therefore, Proposition 4.9 follows directly from Lemma 4.11 below by taking K = ε 1 log L, K n c o log L, with ε 1 sufficiently small (depending on ε) and ∆ = n/K (the case n ε 1 log L being contained in Lemma 4.10). ) .

Lemma 4.12. For all n = o(L 1/6 ):

ν 2L n (ζ 1 2L -L 1/3 ) = 1 n + 1 (1 + o(1)) .
Proof of Lemma 4.12. Observe that

ν 2L n (ζ 1 2L -L 1/3 ) = ∑ i 2L-L 1/3 ρ + (i)ρ ⊗(n) + ( ∑ n i=1 ζ i = 2L -i) ρ ⊗(n+1) + ( ∑ n+1 i=1 ζ i = 2L)
.

Recall that ρ + (j) ∼ c + j -3/2 , (4.53)

for some known constant c + > 0; see (2.23). In particular, ρ + (i) = ρ + (2L) ) .

( 1 + O ( L -2/3 ) ) , i ∈ {2L -L 1/3
It remains to show that ρ

⊗(n) + ( ∑ n i=1 ζ i ∈ [0, L 1/3 ) ) = 1 + o(1)
. However, this is an immediate consequence of the assumption n = o(L 1/6 ) and well known estimates for heavy tailed distributions of the form (4.53); see e.g. [START_REF] Doney | One-sided local large deviation and renewal theorems in the case of infinite mean[END_REF].

Proof of Lemma 4.11. As a corollary of Lemma 4.12, one has that for L large enough, uniformly in 2L 2ℓ L 1/3 and in n = o(ℓ 1/6 ), Once this estimate is available the conclusion follows easily. Indeed, (4.57) implies that at time T the total variation distance between ξ(T ) and ξ ′ (T ), is bounded above by (1 -c(∆)(5(K + 1)) -4∆ ) ⌊T ⌋ e -c(∆)(5(K+1)) -4∆ ⌊T ⌋ , and therefore the mixing time of the chain is bounded by 2c(∆) -1 (5(K + 1)) 4∆ . Using (2.8) we obtain the same bound for the inverse spectral gap. After adjusting the constant c(∆), this proves Lemma 4.11.

ν 2ℓ n (ζ 1 > 2ℓ -L 1/3 ) ν 2ℓ n (ζ 1 > 2ℓ -ℓ 1/
ξ ξ(t 1 ) ξ(t 2 ) 

ξ(t 3 ) t = 0 t = t 1 t = t 2 t = t 3 -L + L 1/3 L -L 1/3 L -L ξ ′ (t 1 ) ξ ′ ξ ′ (t 2 ) ξ ′ (t 3 )
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Theorem 1 . 1 .

 11 For any λ < 1

( 1 )

 1 * and gap (2) * . Here gap (1) * = min n gap * ,n , where gap * ,n is the spectral gap of the dynamics on the variables σ constrained to have n crossings, while gap

Figure 2 .

 2 Figure 2. A configuration η of the polymer with χ(η) = 4 internal crossings in positions ξ 1 , ξ 2 , ξ 3 , ξ 4 . Note that in this case N (ξ 0 , ξ 1 ) = N (ξ 2 , ξ 3 ) = N (ξ 3 , ξ 4 ) = 0, and N (ξ 1 , ξ 2 ) = N (ξ 4 , ξ 5 ) = 1. Below, the corresponding configuration of signs σ = sign(η).

4 . 4 . 4 . 3 .

 4443 together with (4.18),(4.19), and (4.20), we arrive at∥ρ η 2t -π(• | Γ +,M )∥ = O(L -1) which implies the desired estimate.Thanks to Lemma 4.1 and Proposition 4.2, Theorem 1.1 will follow from the estimate Proposition For any ε > 0 and for all L L 0 (ε):gap So L -5 2 -ε . (4.21)The following two subsections are devoted to the proof of Proposition 4.4. Decomposing according to the number of crossings. We first decompose S o according to whether the first excursion has positive or negative sign, i.e.S o = S + ∪ S -, S ± = {σ ∈ S o : σ -L+1 = ±1} . (4.22) An application of Proposition 2.1 with the decomposition (4.22) yields gap So min{ λ/3, λλ min /( λ + 3γ)} , (4.23)

Lemma 4 . 5 .

 45 The gap λ of the chain defined by (4.26),(4.27) satisfies c λ c -1 for some c = c(λ) > 0 uniformly in L 2. Proof. By Lemma 2.2, π(χ = n) is exponentially decaying in n,and the same applies to µ(n) = π(χ = n | Ω o ), up to O(L -p ) corrections; see (4.4). To prove an upper bound on λ one can take the test function χ counting the number of crossings in the variational principle defining λ. The variance of χ w.r.t. µ(•) is a positive constant. On the other hand the Dirichlet form can be bounded from above by 4 m-1 ∑ n=0 µ(n)[c(n, n + 1) + c(n, n + 2)] .

  .31) for some constant c = c(λ) > 0, where ξ n denotes the rightmost internal crossing. We introduce some extra notation to characterize more explicitly the measures ν n,o := ν o (• | S +,n ). Let Ω +,o j denote the set of polymers Ω +,o j = {η 0 : η 0 = η j = 0 , η x+1 = η x ± 1 , x = 0, . . . , j -1 , and N (η) c o log L} .

Lemma 4 . 6 .

 46 There exists a constant c = c(λ) > 0, such that gap +,1 c L -5/2 .(4.34)

Lemma 4 . 11 .⊗

 411 For all ∆ 1, there exists c(∆) > 0 such that for all L and ∆ n c o log L,gap n bl c(∆) K -4∆ , K = n/∆ . (4.52)Before proving Lemma 4.11, we need to establish some preliminary facts. Consider ν 2L n := ν n , the equilibrium measure (4.43) of the system of n particles over the segment {-L, . . . , L}. Passing to the increment variables ζ i := ξ i -ξ i-1 , i = 1, . . . , n + 1 one writes ν 2L n as the conditional probability ρ

(

  n+1 ∑ i=1 ζ i = 2L ) = (n + 1)(1 + o(1)) ρ + (2L) . (4.55)From (4.54) and (4.55),(n + 1)ν 2L n (ζ 1 2L -L 1/3 ) = (1 + o(1)) ρ ⊗(n) + ( n ∑ i=1 ζ i ∈ [0, L 1/3 )

Figure 3 .

 3 Figure 3. Illustration of the coupling used in the proof of Lemma 4.11 in the case ∆ = 2, n = 6 and K = 3. At time t 1 , all particles in the second block are placed to the right of L -L 1/3 . At time t 2 , all particles in the first block are matched to the left of -L + L 1/3 . At time t 3 , all particles in the second block are matched.

ν

  x denoting the conditional probability ν(• | σ y , y ̸ = x). Let ζ denote the number of +'s, i.e. ζ(σ) = ∑ x∈O L 1(σ x = +1) , σ ∈ S . Note that ζ ∈ {0, . . . , L}. Define the function f (σ) = g(ζ(σ)/L), where g : [0, 1] → [-1, 1] is given by g(s) = -1 for s < 1/4, g(s) = 1 for s > 3/4, and by the linear interpolation for s ∈ [1/4, 3/4]. Since ζ = 0 and ζ = L have both positive probability uniformly in L, one has Var(f ) c for some constant c > 0. Let us estimate the Dirichlet form of f . We haveD(f, f ) c L -2 x (σ)1(L/4 ζ 3L/4) ,for some constant c, where we write p x (σ) for the probability of a flip at x in σ. Recall that the sum over x of the probabilities p x (σ) between consecutive crossings give a contribution of order 1; this follows easily from Lemma 2.2. That yields ∑ x∈O L p x (σ) c χ for a suitable constant c, where χ is the number of crossings (4.1). Therefore, adjusting the constant c:D(f, f ) c L -2 ν (χ; L/4 ζ 3L/4) . However, ν (χ; L/4 ζ 3L/4) ν (χ ; χ > c log L) + c (log L) ν (L/4 ζ 3L/4) .From Lemma 2.2 we deduce that ν (χ ; χ > c log L) = O(L -p ) for some large p, provided c is large. On the other hand L/4 ζ 3L/4 implies that there exists a crossing in some position x ∈ {-L + L/8, . . . , L -L/8}. From the estimates of Lemma 2.2 this last event has probabilityO(L -1/2 ), so that ν (L/4 ζ 3L/4) = O(L -1/2 ) . (4.65)In conclusion, adjusting the constant c, one has D(f, f ) c L -5/2 log L. This ends the proof of (4.63).

  for more details on reversible Markov chains.

	Let ν x t = P(v x t ∈ •) denote the law of the state v x t of the Markov chain at time t with initial condition x ∈ X. We shall investigate the rate of convergence of ν x t to π. If the initial condition x is distributed according to a probability µ on X, we write ν µ t = ∑ x∈X µ(x)ν x t for the distribution
	at time t. As usual, one can associate a semi-group {P t , t way that [P t f ](x) = [e tL f ](x) = ∑ y∈X ν x t (y)f (y). We also use the notation P t (x, y) = ν x 0} to the generator L in such a t (y), and ν µ t = µP t .
	The mixing time of the Markov chain is defined by

general decomposition bound on the spectral gap. We

  shall need a continuous time version of a general decomposition bound obtained by Jerrum et al.

	where f (σ) = µ(σ)/π(σ) and µ is a probability on X. Another standard relation between total
	variation and relaxation time is the identity				
	gap = -lim t→∞	1 t	log max x,y	∥ν x t -ν y t ∥.	(2.7)
	Combining (2.3), (2.7) and (2.6), one can obtain the following well known relations: T rel T mix ( 1 -log π * ) T rel , where π * = min x∈X π(x) .	(2.8)
	2.2. A				
			T rel	√	Var π (f ) ,	(2.6)

Killed process and quasi-stationary distribution.

  

	This defines a continuous time Markov chain on {1, . . . , m} with reversible invariant measure π(i) = π(X i ). Let λ denote the gap of this chain. A straightforward adaptation of [11, Theorem
	1] yields the following estimate.							
	Proposition 2.1. Define γ = max i max x∈X i	∑ y∈X\X i c(x, y) . Then, with the notation of (2.4),
	gap min	{	λ 3	,	λ λ min λ + 3γ	}	.	(2.9)
	2.3.							

  We shall prove (2.31) with T replaced by T ′ (this implies the claim since by Lemma 2.4 the left hand side of (2.31) is monotone as a function of T ). Call µ η 0 ,c T ′ the law of the "censored" process obtained as follows. Start from η 0 at time 0 and, for time t ∈ [0, T 2 ] reject all the updates involving x / ∈ I 2 . For time t ∈ (T 2 , T 2 + T 1 ] reject all updates involving x / ∈ I 1 ∪ I 3 , and for time t ∈ (T 2 + T 1 , 2T 2 + T 1 = T ′ ] reject all the updates involving x / ∈ I 2 . From the Peres-Winkler censoring inequality [19, Theorem 16.5] one has that µ ∧,c T ′ stochastically dominates µ ∧ T ′ . Similarly, µ ζ,c T ′ is stochastically dominated by µ ζ T ′ . On the other hand, as in Lemma 2.3, one has

  .35) for some constant c > 0. Indeed, (2.35) follows quite easily from Lemma 2.4, Lemma 2.8 and (2.6); see Lemma 4.1 below for a more subtle application of the same reasoning. Note that, since T rel ≫ L 5/2-ε , the bound (2.35) improves considerably the standard estimate (2.8) by replacing the factor -log π

* = O(L) with a factor O(log L). 2.7. Characterization of the principal eigenfunction. What follows refers to the model with no top/bottom boundaries. Recall that ∧, (resp. ∨) denotes the maximal (resp. minimal) configuration in Ω. A function g :

  Note that the transition n → n + 1 is necessarily obtained by creating a new crossing at the rightmost position ξ n = L -2, while the transition n → n + 2 can be obtained by creating two adjacent crossings between two existing consecutive crossings. These are the only transitions that are induced by the single flips σ → σ x . By construction, the reversible invariant measure of the chain defined by the rates (4.26), (4.27) is given by

	) .	(4.27)

  is any allowed configuration of the crossing positions ξ 1 , . . . , ξ n , and Z o n,L is the normalizing constant. In particular, ν n,o is a product measure ρ

	⊗(n+1)
	+,o

  and is linear between -1/2 and 1/2. With this choice one has that the variance of φ w.r.t. ρ defined by (4.36) is of order 1, while the Dirichlet form -given by (4.38) with ρ instead of ρ 0 -is bounded above by the probability of x ∈ [-L/2, L/2] times L -2 , i.e. L -5/2 . This implies (4.39). We point out that the results in (4.34) and (4.39) could have been obtained by appealing to a known criterium for birth and death chains; see

  ranges over all functions of the crossing positions ξ 1 , . . . , ξ n . The next estimate allows one to reduce the proof of Proposition 4.4 to the proof of a lower bound gap n,o eq = Ω(L -ε ), uniformly in n c o log L.Proof. For n = 1 this coincides with the result of Lemma 4.6, since in this case ν 1,o [Var ν 1 1 (f )] coincides with Var ν 1,o (f ). The general case follows from the observation that Lemma 4.6 can be applied with the segment {ξ i-1 , . . . , ξ i+1 } replacing the usual {-L, . . . , L}, to obtain Var

				Let
	gap n,o eq denote the associated spectral gap:			
	gap n,o eq = inf f	E n,o eq (f, f ) Var νn,o (f )	,	(4.41)
	where the infimum Lemma 4.8. There exists a constant c = c(λ) > 0, such that for all n 1.	
	gap +,n c L -5/2 gap n,o eq .	(4.42)

2 

is the variance conditioned on the values of ξ k , k ̸ = i.

  , • • • , 2L} .

	(4.54)
	Also, since 2L ≫ (n + 1) 2 , using [8, Theorem A], one has
	⊗(n+1) ρ +

  We shall use this observation together with a coupling argument. Start the dynamics at two arbitrary initial configurations ξ, ξ ′ of n particles, and call ξ(t), ξ ′ (t) the corresponding states of the dynamics at time t. It will be shown that for a suitable coupling P:

	3 )	1 2(n + 1)	.	(4.56)

P(ξ(1) = ξ ′ (1)) c(∆)(5(K + 1)) -4∆ .

(4.57)
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To prove (4.57) we proceed as follows. We have ∆ independent Poisson(1) clocks, one at each block, and we note (t m , c m ) m 1 the sequence of update marks: for any m 1, t m is the time of the m-th update and c m ∈ {1, • • • , ∆} is the label of the block to be updated at time t m . Consider the event E that within time t = 1 a sequence of updates t 1 , . . . , t ∆-1 , t ∆ , t ∆+1 , . . . , t 2∆-1 has occurred, such that c m = ∆ -m + 1 for m = 1, . . . ∆, and c ∆+i = i + 1 for i = 1, . . . , ∆ -1.

Clearly, E has a positive probability c(∆) > 0. On the event E we define a coupling of the two evolutions by using the same marks (t m , c m ), i.e. at time t m we update block c m in both configurations. We refer to Figure 3 for a representation of the case ∆ = 2. At time t 1 we have to update the particle positions in the block B ∆ . The corresponding equilibrium is of the form ν 2ℓ K , with 2ℓ = L -ξ K(∆-1) . Then, the new particle positions will satisfy L -L 1/3 and the requirement is automatically satisfied because of ξ K(∆-1)+1 ξ K(∆-1) , or ξ K(∆-1) < L -L 1/3 , in which case 2ℓ L 1/3 and the claim follows from (4.56). Therefore, using an independent coupling, one has a probability at least (4(K + 1) 2 ) -1 for the event

Then, one updates the block B ∆-1 at time t 2 , and so on until one updates the block B 2 at time t ∆-1 . Iterating the argument given above, one has a probability of at least (4(K + 1) 2 ) -∆+1 for the event

Next, at time t ∆ , one updates the block B 1 . Let us show that on the event (4.59) there is a coupling P of the two equilibria on block B 1 (conditioned on the value of ξ K+1 (t ∆-1 ) and ξ ′ K+1 (t ∆-1 ) respectively) such that the event

has probability

with at least that probability (all other particles ξ 1 (t ∆ ), . . . , ξ K-1 (t ∆ ) are then automatically matched using the diagonal coupling since B 1 is the first block and With the notation ρ

.

Using (4.54) and (4.62) one has ρ + (2ℓ

)) uniformly in 0 i, j L 1/3 . Therefore (4.61) follows from

) .

We turn to the proof of (4.60). We define the coupling of ν 2ℓ

). If both coins end up being head, then sample the pair ξ K , ξ ′ K according to the maximal coupling of ν 1 , ν 2 defined by ∥ν 1 -ν 2 ∥. If the p coin is head and the p ′ coin is tail then sample independently ξ K according to

). Similarly, if the p coin is tail and the p ′ coin is head then sample independently

). Using this coupling, we obtain that

where we have used the fact that min{p, p ′ } 1/2(K + 1) by (4.56). This ends the proof of (4.60).

Repeating the same argument leading to (4.60) one shows that on the event M 1 , the event

has probability at least (5(K + 1) 2 ) -1 . Thus, iterating, one concludes that

This ends the proof of (4.57).

Proof of Theorem 1.2.

Concerning the bound T S rel L 5/2+ε , we note that it follows from the same arguments used for the proof of Proposition 4.4. In fact, the situation is simpler here due to the absence of constraints on the number of crossings. We omit the details.

Concerning the lower bound, we can actually prove that for some constant c > 0, one has