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Abstract

The aim of this article is to recall the main theorems of Morse theory and to
infer some corollaries for the problem of Lyapunov stability on manifolds. It
makes a link between Morse theory and the general theory of the Lyapunov
stability for dynamical systems.
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1. Introduction

The main goal of this paper is to see the implications of Morse theory for the
problem of Lyapunov stability on manifolds. Indeed, stability and stabilization
for nonlinear systems evolving on manifolds are a new research field (see for
instance [1]). In differential topology, Morse theory developed by John Milnor
in the twentieth century gives a very direct way of analyzing the topology of a
manifold by studying differentiable functions on that manifold. It has also been
used and mentioned in some papers dedicated to Lyapunov stability in control
theory (see [1, 2, 3, 4]). Nevertheless, a paper that links Morse theory and
Lyapunov stability in control theory has never been addressed in the literature.

The paper is organized as follows. Some preliminaries are outlined in Sec-
tion 2. In Section 3, we analyze the Morse Lyapunov functions. In Section 4,
we consider the first Morse theorem known as the deformation lemma and its
application for dynamical systems with asymptotically stable sets. In Section
5, we recall the Brown-Stallings lemma which leads to a necessary condition
of asymptotic stability and the second Morse theorem dedicated to dynamical
systems with a single critical point. We show why this second Morse theorem
is not really accurate in control theory due to a more precise result proved by
Sontag in [3]. We provide the third Morse Theorem with the Reeb Theorem and
their applications for stability of dynamical systems with multi critical points
in Section 6. Finally, Morse inequalities lead to a necessary condition for the
existence of a Morse Lyapunov function.
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2. Notations and definitions

In the paper, M denotes a manifold of finite dimension n. Consider a con-
tinuous vector field f on M with the property that for every x ∈ M, there
exists a unique right maximally defined integral curve of f starting at x, and,
furthermore, every right maximally defined integral curve of f is defined on
[0,+∞). In this case, the integral curves of f are jointly continuous functions
of time and initial condition and thus define a continuous semi-flow

ϕ : [0,+∞)×M→M

satisfying

ϕ (0, x) = x

ϕ (t1, ϕ (t2, x)) = ϕ (t1 + t2, x)

for all t1, t2 ∈ [0,+∞) and x ∈ M (see for instance [5, Theorem 3.4]). The
manifold M, called the state space, and the semi flow ϕ, called the evolution
function, lead to the notion of dynamical system denoted in short by (M, ϕ)
(see for instance [5] and [6] for a general definition of topological dynamical
systems).

TpM denotes the tangent space to M at p.
In a general way, we study the stability of invariant sets.

Definition 1. Let I ⊂ M, I is an invariant set if for all x ∈ I and t ∈ R≥0,
ϕ (t, x) ∈ I. If I is a point, I is called an equilibrium point of the dynamical
system (M, ϕ).

Let us recall the notions of stability given in [6].

Definition 2. I ⊂M is stable if every open neighborhood U1 ⊂M of I, there
exist an open neighborhood U2 ⊂ Mof I such that ϕ (t,U2) ⊆ U1 for all t ≥ 0,
where

ϕ (t,U) = {ϕ (t, x) : x ∈ U} .
An invariant set I is asymptotically stable if:

• I is stable,

• I is attractive: i.e. for all x ∈ I there exist an open neighborhood N ⊂M
of I such that for all x ∈ N , ϕ (t, x)→ I as t+∞.

The domain of attraction is denoted by

A = {x ∈M : ϕ (t, x)→ I as t→ +∞} .

Besides, I is globally asymptotically stable if N =M.

The lie derivative of V :M→ R along f :M→M is defined by

LfV : Rn → R, LfV (x) = dVp (f (p)) .
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Definition 3. Suppose that K is an invariant set of the dynamical system
(M, ϕ). A continuous function V : A → R≥0 is a Lyapunov function if

1. V (x) > 0 for all x ∈ A \ K,

2. V (x) = 0 for all x ∈ K,

3. V is proper, that is, V −1(B) is compact for every compact subset B of
R≥0,

4. V is strictly decreasing along orbits of ϕ, that is, V (ϕ (t, x)) < V (x) for
all t > 0 and x ∈ A \ K.

If V is differentiable, Condition 4 is replaced by LfV (x) < 0 for all x ∈ A\K.

We recall some definitions of Morse theory given in [7].

Definition 4. Let V : M→ R be a smooth function. A critical point of V is
a point p ∈M at which the differential

dVp : TpM→ TV (p)R

has rank zero, i.e. if in any local coordinate system (x1, . . . , xn) around p one
has (

∂V

∂x1
(p) , . . . ,

∂V

∂xn
(p)

)
= 0.

For each critical point p of V , there exists a bilinear symmetric form Hp(V )
on TpM, called the Hessian of p (see [7, Chapter 2]).

Definition 5. A critical point p is a non-degenerate critical point if the Hes-
sian Hp(V ) is a non-degenerate bilinear form, i.e. if in any local coordinate

system (x1, . . . , xn) around p, the Hessian matrix
(

∂2V
∂xi∂xj

(p)
)
1≤i,j≤n

is non-

degenerate.
The dimension of the subspace of TpM on which Hp(V ) is negative definite

is called the Morse index of V at p and is denoted by ind (V, p).
A C2 function V : M→ R is a Morse function if all its critical points are

non-degenerate.

The level sets of a function V :M→ R are

Ma = V −1((−∞, a]),

Ma,b = V −1([a, b]).

Let us recall some topological definitions given in [8, 9].

Definition 6. A topological space is a n−cell if it is homeomorph to Rn.
A space X is contractible if it is homotopy equivalent to the one-point space.
A subspace A of X is called a deformation retract of X if there exists a

continuous function
h : [0, 1]×X → X
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such that for all x ∈ X, a ∈ A

h (0, x) = x,

h (1, x) ∈ A,
h (1, a) = a.

The k−th Betti number of M denoted by bk is the the rank of the k−th
homology group Hk(M). The Euler Characteristic of M is defined by

χ (M) =

k∑
i=1

(−1)
k
bk.

For a precise definition of the homology group and a survey about homology
theory, the reader may refer to [9, Chapter 2].

3. Morse Lyapunov functions

Let us prove a result dedicated to isolated critical points of a smooth Lya-
punov functions.

Lemma 7. Suppose that xe is an equilibrium point of the dynamical system
(M, ϕ). If V : M → R is a differentiable Lyapunov function for the system
then xe is the only critical point of V .

Proof. Suppose that V contains another critical point xc in the domain of
attraction. Due to the definition of a Lyapunov function, we have LfV (xc) = 0.
But it contradicts the fact that for a Lyapunov function with a single equilibrium
point x 6= xe, LfV (x) < 0 for all x 6= xe.

Let us recall the Morse Lemma given for instance in [7, Lemma 2.2].

Theorem 8 (Morse Lemma). Let p ∈ M be a non-degenerate critical point
of a smooth function V : M → R. There exists a local coordinate system
(x1, . . . , xn) in a neighborhood N ⊂ M of p with xi (p) = 0 for all 1 ≤ i ≤ n
and such that for x ∈ N ,

V (x) = V (p)− x21 − . . .− x2i + x2i+1 + . . .+ x2n

where i = ind (V, p).

We may now characterize the Morse Lyapunov functions.

Corollary 9. Let p ∈M be an equilibrium point of (M, ϕ) and V :M→ R≥0
a Morse Lyapunov function. There exists a local coordinate system (x1, . . . , xn)
around p such that V is locally the canonical quadratic Lyapunov function

V (x) = x21 + . . .+ x2n

with ind (V, p) = 0.
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Proof. As p ∈ M is an equilibrium point and due to Lemma 7, p ∈ M is
the only critical point of V . Moreover, V is supposed to be a Morse function
and thus by using Theorem 8, V (x) = V (p)− x21 − . . .− x2i + x2i+1 + . . .+ x2n.
As a Lyapunov function is positive definite, we have the result.

Remark 10. The Morse Lyapunov function plays the role of the canonical
quadratic Lyapunov function for systems defined on manifolds.

Let us give an example of Morse functions given in [10, Theorem 6.6].

Example 11. Let M be manifold in Euclidean space. For almost all p ∈ Rn,
the quadratic function Lp : M → R defined by Lp (x) = ‖x− p‖2 is a Morse
function.

4. Level sets of a Lyapunov function

The following theorem is known as the deformation lemma and is the first
Morse theorem. It can be founded in [7, Theorem 3.1].

Theorem 12 (Deformation Lemma). Let V :M→ R be a smooth function
and a,b ∈ V (M) such that a < b. Assume that Ma,b is compact and does not
contain critical point of V , then Ma is diffeomorphic to Mb. Moreover, Ma is
a deformation retract of Mb.

By using Theorem 12, we deduce a result dedicated to dynamical systems
with asymptotically stable sets.

Corollary 13. Let M be a smooth Riemannian manifold. If M contains a
closed invariant asymptotically stable set, then for all a,b ∈ V (M), Ma is
diffeomorphic to Mb and Ma is a deformation retract of Mb where V is a
smooth Lyapunov function.

Proof. If M is a smooth Riemannian manifold and K ⊂ M a closed
invariant asymptotically stable set, there exists a smooth Lyapunov function
V :M→ R≥0 for the dynamical system given in [11, Theorem 3.2] and [12]. As
V is proper,Ma,b is compact. Due to Lemma 7,Ma,b does not contain critical
point of V and the result follows from Theorem 12.

A similar result already exists when M = Rn (see [4, Theorem 1.2].

5. Systems with a single critical point

In this section, we recall some results dedicated to systems with a single
critical point. Let us recall the Brown-Stallings lemma which can be founded
in [10, Lemma 3].

Theorem 14 (Brown-Stallings Lemma). Let M be a paracompact mani-
fold such that every compact subset is contained in an open set diffeomorphic to
Euclidean space. Then M itself is diffeomorphic to Euclidean space.
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The Brown-Stallings lemma leads to the following necessary condition of
asymptotic stability which can be founded in [4, Theorem 2.2].

Corollary 15. Let M be a paracompact manifold. The domain of attraction
of an asymptotically stable equilibrium point is diffeomorphic to an Euclidean
space.

Remark 16. Corollary 15 has been mention in [3, Page 22]. If M⊂ Rn, then
the domain of attraction is diffeomorphic to Rn.

Let us recall the second Morse theorem given in [7, Theorem 3.2].

Theorem 17 (Morse Theorem). Let V : M → R be a Morse function, p
a critical point such that ind (V, p) = i and c = V (p). If there exists ε > 0
such that Mc−ε,c+ε is compact and does not contain other critical point p, then
Mc−ε∪ei is a deformation retract of Mc+ε where ei is an i−cell (in particular,
Mc+ε has the homotopy type of Mc−ε with an i−cell attached).

In the case of a single critical point, Theorem 17 implies that the level sets
of a Morse Lyapunov function are homotopic. But in the case of an asymptoti-
cally stable point of a dynamical system, and thus the existence of a Lyapunov
function only, there exists a more precise result which asserts that the domain of
attraction is contractible. This result has been given by Sontag in [3, Theorem
21].

Theorem 18 (Sontag Theorem). Let us consider the dynamical system (M, ϕ)
with an equilibrium point xe ∈ M. Suppose that xe is asymptotically stable.
Then the domain of attraction of xe, which is given by

A =

{
x ∈M : lim

t→+∞
ϕ (t, x) = xe

}
is contractible.

Theorem 18 remains true for all systems even if M is a general topological
space contrary to Corollary 15 and Theorem 17. It is proved by using the flow
as a deformation retract. However, this result cannot be extended to multi
equilibria contrary to Morse theory.

6. Systems with multi critical points

The following third Morse theorem given in [7, Theorem 3.5] is a generaliza-
tion of Theorem 17 to multi critical points. In this case, the manifold has the
shape of a CW-complex.

Theorem 19 (Morse Theorem). If V : M → R is a Morse function such
that Ma is compact for each a ∈ R then M has the homotopy type of a CW-
complex with one i−cell for each critical point of index i.
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For more details on CW-complex, the reader may refer to [9].

Corollary 20. Suppose that the dynamical system (M, ϕ) has several equilibria
(x1, . . . , xk). If there exists a Morse Lyapunov function V : M → R≥0 then
{x1, . . . , xk} is a retract of the domain of attraction.

Proof. Due to Lemma 7 and Theorem 19, M has the homotopy type of⋃
1≤i≤k {ei}. Moreover, as V is a Lyapunov function, we deduce with Corollary

9 that M has the homotopy type of {x1, . . . , xk}.
As an application of Theorem 19, there is the theorem of Reeb which can be

found in [10, Theorem 1’].

Theorem 21 (Reeb Theorem). Suppose that M is compact without bound-
ary, if V :M→ R is a smooth function with only two critical points, then M
is homeomorphic to the n−sphere Sn.

Remark 22. The reader may notice that the critical points are allowed to be
degenerate.

Let us apply the Theorem of Reeb to Lyapunov stability of a dynamical
system having two equilibria.

Corollary 23. Let M be a compact manifold without boundary and (x1, x2)
the only two equilibria of the dynamical systems (M, ϕ). If I = {x1, x2} is
asymptotically stable for the dynamical system (M, ϕ), thenM is homeomorphic
to the n−sphere Sn.

Proof. There exists a smooth Lyapunov function V : M → R≥0 for the
dynamical system given in [11, Theorem 3.2] and [12] with only two critical
points due to Proposition 7. The Theorem 21 of Reeb leads to the result.

Example 24. As an example, consider the global set stabilization of the space-
craft attitude [13]. In this case, there exists an unwinding phenomenon due to
the two equilibria and Theorem 18. But, Corollary 23 is more precise in the
case of two equilibria. The system of the spacecraft attitude with two equilibria
cannot be locally stabilized when the state space is not homeomorphic to Sn.

Theorem 25 (Morse Inequalities). Let mk be the number of critical points
of a Morse function V with index k, then we have

bk ≤ mk ∀k,
j∑
i=0

(−1)
j−i

bi ≤
j∑
i=0

(−1)
j−i

mi ∀j,

χ (M) =
∑
k

(−1)
k
bk =

∑
k

(−1)
k
mk.

Let us give a necessary condition for the existence of a Morse Lyapunov
function based on the Euler characteristic which is a topological invariant.
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Corollary 26. Let us consider the dynamical system (M, ϕ) with several equi-
libria (x1, . . . , xk). If there exists a Morse Lyapunov function V : M → R≥0
then χ (M) = k ≥ b0.

Proof. If there exists a Morse Lyapunov function V , due to Lemma 7 and
Corollary 9, (x1, . . . , xk) are the only critical points with indices 0. Then, by
using Theorem 25, it leads to χ (M) = m0 = k. The first inequality of Theorem
25 ensures that b0 ≤ m0 = k.

Remark 27. This result implies that if χ (M) 6= k then there is no Morse Lya-
punov function for the dynamical system. If M is a compact oriented differen-
tiable manifold, the Euler characteristic can be computed by using the Poincaré-
Hopf Theorem given for instance in [14, Theorem 7.6.5]
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