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Abstract

In this paper, we use Conley index theory to develop necessary conditions for
stability of equilibrium and periodic solutions of nonlinear continuous-time sys-
tems. The Conley index is a topological generalization of Morse theory which
has been developed to analyze dynamical systems using topological methods.
In particular, the Conley index of an invariant set with respect to a dynamical
system is defined as the relative homology of an index pair for the invariant
set. The Conley index can then be used to examine the structure of the system
invariant set as well as the system dynamics within the invariant set, including
system stability properties. Efficient numerical algorithms using homology the-
ory have been developed in the literature to compute the Conley index and can
be used to deduce the stability properties of nonlinear dynamical systems.

Keywords: Asymptotic Lyapunov stability, Conley index.

1. Introduction

One of the most basic issues in system theory is stability of dynamical sys-
tems. The most complete contribution to stability analysis of nonlinear dynam-
ical systems was introduced in the late nineteenth century by A. M. Lyapunov
in his seminal work in 1892 entitled The General Problem of the Stability of Mo-
tion [1, 2]. Lyapunov’s results which include the direct and indirect methods,
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along with the Krasovskii-LaSalle invariance principle [3, 4], provide a powerful
framework for analyzing the stability of equilibrium and periodic solutions of
nonlinear dynamical systems. Lyapunov’s direct method for examining the sta-
bility of an equilibrium state of a dynamical system requires the construction of
a positive-definite function of the system states (Lyapunov function) for which
its time rate of change due to perturbations in a neighborhood of the system’s
equilibrium is always negative or zero. Stability of periodic solutions of a dy-
namical system can also be addressed by constructing a Lyapunov-like function
satisfying the Krasovskii-LaSalle invariance principle.

Alternatively, in the case where the trajectory of a dynamical system can be
relatively easily integrated, Poincaré’s theorem [5] provides a powerful tool in
analyzing the stability properties of periodic orbits and limit cycles. Specifically,
Poincaré’s theorem provides necessary and sufficient conditions for stability of
periodic orbits based on the stability properties of a fixed point of a discrete-
time dynamical system constructed from a Poincaré return map. However, in
many applications, especially for high-dimensional nonlinear systems, system
trajectories cannot be relatively easily integrated and the construction of a Lya-
punov function for establishing stability properties of a dynamical system can
be a daunting task.

In this paper, we use Conley index theory [6, 7, 8] to develop necessary condi-
tions for stability of equilibrium and periodic solutions of nonlinear continuous-
time systems. The Conley index is a topological generalization of Morse the-
ory which has been developed to analyze dynamical systems using topological
methods. In particular, the Conley index of an invariant set K with respect
to a dynamical system is defined as the relative homology of an index pair for
K. The Conley index can then be used to examine the structure of the system
invariant set as well as the system dynamics within the invariant set, includ-
ing system stability properties. Specifically, Conley index theory is based on
isolating neighborhoods of the system state space which enclose components of
chain-recurrent sets that can be used to detect connecting orbits between the
components of these sets. The method generates a simplicial complex which can
be used to provide an understanding of the behavior of sets of trajectories rather
than individual orbits of dynamical systems. Efficient numerical algorithms us-
ing homology theory have been developed to compute the Conley index [9] and
can be used to deduce the stability properties of nonlinear dynamical systems.

There are still several topological necessary conditions for asymptotic sta-
bility and stabilization for an equilibrium of differential equations. The oldest
one is the Brockett condition given in [10, Theorem 1] for smooth systems. This
condition is also true for continuous systems [11] and even for a class of discon-
tinuous ones [12]. Then, another condition named index condition is addressed
in [13, Theorem 52.1]. This condition uses the degree theory which is surveyed
in [14]. It is true for finite dimensional systems by using the Brouwer degree
and for infinite dimensional systems by using the Leray-Schauder degree (see
for instance [15] and [16, Theorem 2.2]). This condition has been extended
to discontinuous systems in [17]. Finally, the last necessary condition for sta-
bilization is the Coron condition given in [18]. It is based on homology (or
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homotopy) groups. For an introduction to algebraic topology, the reader may
refer to [19, 20]. Recently, the Coron condition has been extended for the sta-
bilization of a codimension one submanifold by using the Poincaré duality in
[21].

The relations between these conditions are as follow:

Asymptotic stabilization
(a)→ Index condition

(b)→ Brockett condition
(c)

↓
(d)

↗
Coron condition

With some additional assumptions, a converse of (a) is presented in [16, Theo-
rem 2.2]. A converse of (c) is given in [22, Proposition A.1] and [23, Theorem
11.8] for dynamical stabilization of analytic systems. Point (b) can be seen for
instance in the proof of the Brockett condition given by Sontag in [24, Theorem
22] or by Coron in [23, Theorem 11.4]. They use the fact that the degree is
a homotopy invariant as long as the homotopy satisfies a boundary condition
(see [24, Theorem 22] for more details). Moreover, in the following paper [25],
the author presents a version of the Brockett and index conditions dedicated
to global attractors. Homotopy theory has also been used for a topological ob-
struction to simultaneous stabilization in [26]. The index condition is dedicated
to equilibrium points and is based on the degree theory. It was first addressed
for asymptotic stability in [13] and can be easily used for stabilization.

The main goal of this paper is to use the more general Conley index theory in
order to give a new index condition for compact invariant sets, in particular for
equilibria and periodic orbit. A recent topological study of compact invariant
sets has been addressed in [27]. The paper is organized as follow. After some
preliminaries on Conley index in section 2, several Conley index conditions are
given in section 3 for asymptotic stability of an equilibrium point and stable
periodic orbits. Finally, a conclusion is addressed in Section 4.

2. Preliminaries on Conley index

In this paper, we consider nonlinear continuous-time dynamical systems of
the form:

ẋ(t) = f (x(t)) , x ∈ D, t ∈ R≥0, (1)

where D is an open subset of Rn and f a C1−vector field. In this paper, we
assume that all solutions to (1) are bounded over their maximal interval of
existence, and hence, by the Peano-Cauchy theorem [28, pp. 16, 17] can be
extended to infinity. System (1) generates a semiflow denoted by ϕ (t, x) for all
x ∈ D and t ∈ R≥0, that is a continuous map satisfying:

1. ϕ (0, x) = x;

2. ϕ (t, ϕ (s, x)) = ϕ (t+ s, x).

3



For each t ∈ R≥0, we let ϕt denote the map x 7→ ϕ(t, x).
K ⊂ Rn is invariant if f (K) = K. Let N ⊂ Rn, the maximal invariant

subset of N with respect to the flow ϕ is denoted by:

Inv (N ) = {x ∈ N : ϕ (R, x) ⊆ N}

N denotes the closure of N and Å the interior of N . For given sets A and B,
A ∼= B denotes that A is isomorphic to B. For x ∈ Rn, Bε(x) denotes the ball
of radius ε centered at x.

Let p be an equilibrium point of f , i.e. f(p) = 0, and let Df(p) denote the
Jacobian matrix of f at p. If the matrix Df(p) has no eigenvalues with zero
real parts then p is called an hyperbolic equilibrium point.

We recall the definitions of the index pair and Conley index given in [6, 8].

Definition 1. An isolating neighborhood is a compact set N such that Inv(N , s)
⊂ N̊ . K is an isolated invariant set if K = Inv(N ) for some isolating neighbor-
hood N .

Isolating neighborhoods are robust in the sense that if N is an isolating
neighborhood for a flow ϕ, then N is also an isolating neighborhood for all
nearby flows ψ. Isolating neighborhoods can be easily found for a typical flow
of a dynamical system. The Conley index [6] provides a method for obtaining
information about the dynamics of Inv(N ) from information on the isolating
neighborhood N . In particular, it can be shown that if N and N ′ are isolating
neighborhoods such that Inv(N ) = Inv(N ′), then the Conley index of N is the
same as the Conley index of N ′. Thus, one can consider the Conley index as
an index of isolated invariant sets.

Definition 2. Let K be an isolated invariant set. A pair of compact sets (N ,L),
where L ⊂ N , is called an index pair for K if:

1. K = Inv
(
N \ L

)
and N \ L is a neighborhood of K;

2. L is positively invariant in N ; that is given x ∈ L and ϕ ([0, t] , x) ⊂ N ,
then ϕ ([0, t] , x) ⊂ L;

3. L is an exit set for N ; that is given x ∈ N and t1 > 0 such that ϕ(t1, x) /∈
N , then there exists t0 ∈ [0, t1] such that ϕ ([0, t0] , x) ⊂ N and ϕ (t0, x) ∈
L.

Definition 3. Let (N ,L) be an index pair and let K = Inv(N\L). Then the
Conley index of K, denoted by CH∗(K), is the relative homology of N modulo
L, that is:

CH∗(K) , H∗(N ,L). (2)

The notion of relative homology is presented in [20, p. 115]. In Conley’s
original definition [6], the index was defined to be the homotopy type of the
particular topological space. Since working with homotopy types of spaces is
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very difficult (and virtually impossible to compute), the homological definition
given above is much more useful. In light of Definition 3, several important
properties of the Conley index can be summarized as follows. First, knowledge
of the invariant set K is not necessary in order to compute its Conley index.
In addition, if (N ,L) is an index pair for the flow ϕ, then N\L is an isolating
neighborhood for ϕ, and hence, for all flows sufficiently close to ϕ. Hence, if ψ
denotes a flow sufficiently close to ϕ, then the Conley index of K is isomorphic
to the Conley index of Kψ , Inv(N\L, ψ). Finally, given an isolated invariant
set K, its Conley index is independent of the index pair used to compute it.

Next, we give several key theorems concerning the Conley index. For the
proofs of these results, see [7].

Theorem 4. If K is an isolated invariant set, then there exists an index pair
for K, and hence, the Conley index of K exists.

Theorem 5. Let (N ,L) and (N ′,L′) be index pairs for an isolated invariant
set K. Then

H∗(N ,L) ∼= H∗(N ′,L′), (3)

and hence, the Conley index is well defined.

Note that in the case where N = Ø is an isolated invariant set (vacuously),
(Ø,Ø) is an index pair for Ø. In this case, CH∗(Ø) ∼= 0. Even though this
result is trivial, its converse leads to the following fundamental result known as
the Wazewski property [7]. The following result establishes the simplest possible
existence result which can be obtained using the Conley index.

Theorem 6 (Wazewski property). If N is an isolating neighborhood such
that CH∗(N ) 6∼= 0, then Inv(N ) 6= Ø.

Theorem 6 states that if the Conley index of an isolating neighborhood is
nontrivial, then the invariant set is not an empty set. It is important to note
that Theorem 6 gives no information on the structure of the invariant set S.

The reader can find more details about the Conley index theory in [8].

3. Conley index condition

3.1. The case of stable equilibria

Let us recall the definition of asymptotic stability which is a local property.

Definition 7. Suppose that p ∈ D is an equilibrium point of f , p is Lyapunov
stable if for all ε > 0, there exists δ = δ(ε) > 0 such that if x0 ∈ Bδ(p) then
ϕ(t, x0) ∈ Bε(p) for all t ≥ 0. p is asymptotically stable if it is Lyapunov stable
and there exists δ > 0 such that if x0 ∈ Bδ(p) then ‖ϕ(t, x0)− p‖ → 0 as t→∞.
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Theorem 8 ([8]). Let p be a hyperbolic fixed point with an unstable manifold
of dimension n. Then

CHi(p) ∼=
{

Z if i = n,
0 otherwise.

(4)

Theorem 8 can be used to develop stability results for continuous-time non-
linear dynamical systems. In particular, if we can compute the Conley index
of a hyperbolic equilibrium point, then we can determine its stability from its
Conley index. This is quite powerful for two reasons. First, the Conley index
provides a way for determining the stability properties of dynamical systems on
a manifold or a polyhedron, which is usually difficult to deduce by using stan-
dard methods. Second, the eigenvalues of high dimensional Jacobian matrices
are not easy to obtain numerically. However, the Conley index can be effi-
ciently computed using homology theory. Specifically, computational homology
has been developed in the literature [9] to give a robust algorithm for comput-
ing the Conley index. Hence, merging stability theory with Conley index theory
can provide an alternative approach for determining the stability properties of
nonlinear dynamical systems. The following result, first given in [29] and whose
proof is derived from the one of Theorem 8, provides a necessary condition for
asymptotic stability of an equilibrium point by using the Conley index.

Theorem 9 (Conley index condition for equilibria). Let us consider the
system (1). If p is asymptotically stable then

CHi(p) ∼=
{

Z if i = 0,
0 otherwise.

Proof. Suppose that p is an hyperbolic equilibrium point. If g = Df(p)
denotes the linearization of f at point p, then the Hartman-Grobman’s theorem
given in [30] implies that there exists a neighborhood U of p and a homeomor-
phism h : U → Rn such that

f |U = h−1 ◦ g ◦ h

that is, in a neighborhood U of p, f is topologically conjugate to its linearization.
Thus, the flow of the system (1) in U is topologically equivalent to the flow in
a neighborhood of the origin of

ẏ = Df(p) y. (5)

A linear change of variables transforms (5) into[
ż1
ż2

]
=

[
A 0
0 B

] [
z1
z2

]
(6)

where A is a m×m matrix for which the real parts of all its eigenvalues are less
than zero and B a k×k matrix for which the real parts of all its eigenvalues are
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greater than zero with m+k = n. As ([−1, 1]m× [−1, 1]k, [−1, 1]m×∂([−1, 1]k))
is an index pair for the origin of the system (6), it implies that for all i ∈ N,

CHi(0(6)) = Hi([−1, 1]m× [−1, 1]k, [−1, 1]m×∂([−1, 1]k)) =

{
Z if i = k
0 otherwise

.

By using the continuation homotopy property of the Conley index recalled in [8,
Theorem 3.10] and [31, Theorem 1.10], we have that CHi(0(6)) = CHi(0(5)) =
CHi(p). As p is asymptotically stable, the Lyapunov’s indirected method, given
for instance in [32, Theorem 4.7], implies that k = 0 and the result follows from
the previous calculus.

If there exists i ≥ 1 such that CHi(p) ∼= Z then p cannot be asymptotically
stable. The Conley index can be efficiently computed by using the computa-
tional Homology [9]. The condition of asymptotic stability given by Theorem 9
is only necessary. The following corollary can be used to compute the Conley
index of an hyperbolic equilibrium.

Corollary 10. Let {λj}1≤j≤n denote the eigenvalues of Df(p). If there exist

(m, k) ∈ N2 such that

1. m+ k = n,

2. for all 1 ≤ q ≤ m and 1 ≤ r ≤ k we have Re(λq) < 0 and Re(λr) > 0,

then for all i ∈ N,

CHi(p) ∼=
{

Z if i = k
0 otherwise

.

3.2. The case of stable periodic orbits

Next, we use the Conley index to develop necessary conditions for asymptotic
stability of periodic orbits. To begin, we introduce the notions of Lyapunov and
asymptotic stability of a periodic orbit of the nonlinear dynamical system (1).
For this definition dist(p,M) denotes the smallest distance from a point p to
any point in the setM, that is, dist(p,M) , infx∈M ‖p−x‖. Furthermore, the
following definition of periodic solutions and periodic orbits of (1) is needed.

Definition 11. A solution ϕ(t, x0) of (1) is periodic if there exists a finite time
T > 0 such that ϕ(t + T, x0) = ϕ(t, x0) for all t ≥ 0. The minimal T > 0 for
which the solution ϕ(t, x0) of (1) is periodic is called the period. A set O ⊂ D
is a periodic orbit of (1) if O = {x ∈ D : x = ϕ(t, x0), 0 ≤ t ≤ T} for some
periodic solution ϕ(t, x0) of (1).

Definition 12. A periodic orbit O of (1) is Lyapunov stable if, for all ε > 0,
there exists δ = δ(ε) > 0 such that if dist(x0,O) < δ, then dist(ϕ(t, x0),O) <
ε, t ≥ 0. A periodic orbit O of (1) is asymptotically stable if it is Lyapunov
stable and there exists δ > 0 such that if dist(x0,O) < δ, then dist(ϕ(t, x0),O)→
0 as t→∞.
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The next result gives a sufficient condition for determining the existence of
periodic orbits via the Conley index. Recall that Ξ ⊂ X is a Poincaré section
for ϕ in N if Ξ is a local section, Ξ ∩ N is closed, and for every x ∈ N ,
ϕ((0,∞), x) ∩ Ξ 6= Ø.

Theorem 13 ([33]). Assume that N is an isolating neighborhood for the semi-
flow ϕ defined on a metric space X which admits a Poincaré section Ξ. If Inv(N )
has the Conley index of a hyperbolic periodic orbit, then Inv(N ) contains a pe-
riodic orbit.

To proceed, we assume that for the point p ∈ D, the dynamical system (1)
has a periodic solution ϕ(t, p), t ≥ 0, with period T > 0 that generates the
periodic orbit

O := {x ∈ D : x = ϕ(t, p), 0 ≤ t ≤ T}.

Note that O is a compact invariant set. Furthermore, we assume that there
exists a continuously differentiable function X : D → R such that the (n −
1)−dimensional hyperplane defined by

H := {x ∈ D : X (x) = 0}

contains the point x = p and DX (p) 6= 0. In addition, we assume that
the hyperplane H is not tangent to the periodic orbit O at x = p, that is,
DX (p)f(p) 6= 0. Next, define the local section S ⊂ H such that p ∈ S,
DX (x) 6= 0, x ∈ S, and all trajectories of (1) starting in S are not tangent
to H, that is, X ′(x)f(x) 6= 0, x ∈ S. Note that a trajectory ϕ(t, p) will intersect
S at p in T seconds. Furthermore, let

U := {x ∈ S : ∃τ(x) > 0;ϕ(τ(x), x) ∈ S andϕ(t, x) /∈ S, 0 < t < τ(x)}. (7)

Finally, define the Poincaré return map P : U → S by

P (x) := ϕ(τ(x), x), x ∈ U . (8)

Next, define
D1 := {x ∈ D : ∃τ(x) > 0; ϕ(τ(x), x) ∈ S}.

The existence of D1 is guaranteed by continuous dependence of solutions of (1)
on initial data; moreover, for every x ∈ O there exists δ = δ(x) > 0 such that
Bδ(x) ⊂ D1, and hence, O is a subset of D̊1. Similarly, define

Oα := {x ∈ D1 : ϕ(τ(x), x) ∈ Sα},
Uα := {x ∈ Sα : ϕ(τ(x), x) ∈ Sα},

where Sα := Bα(p) ∩ S, α > 0, and O ⊂ O̊α ⊆ D1. The function τ : D1 → R≥0
defines the time required for the trajectory ϕ(t, x), x ∈ D1, to return to the
local section S. Note that τ(x) > 0, x ∈ U . The following lemma shows that
τ(·) is continuous on D1 \ H.
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Lemma 14. Consider the nonlinear dynamical system (1). Assume that the
point p ∈ D1 generates the periodic orbit O1 := {x ∈ D1 : x = ϕ(t, p), 0 ≤ t ≤
T}, where ϕ(t, p), t ≥ 0, is the periodic solution with period T ≡ τ(p). Then the
function τ : D1 → R+ is continuous on D1\H.

Proof. Let ε > 0 and x ∈ D1\H. Note that x∗ := ϕ(τ(x), x) ∈ S, and
hence, DX (x∗) 6= 0 and DX (x∗)f(x∗) 6= 0. Now, since ϕ(·, x) is continuous in
t, [0, t1] is a compact interval, and S is closed. It follows from the definition of
τ(·) that for any t1 ∈ (0, τ(x)),

σ(t1) := inf
0≤t≤t1

dist(ϕ(t, x),S) > 0. (9)

Next, for ε̂ > 0 sufficiently small, define x2 := ϕ(t2, x) and t2 := τ(x) + ε̂
2 .

Since DX (x∗) 6= 0 and DX (x∗)f(x∗) 6= 0, it follows that dist(x2,S) > 0. Now,
define t1 := τ(x) − ε̂

2 and x1 := ϕ(t1, x). Then it follows from the continuous
dependence of solutions to (1) in time and initial data that there exists δ > 0
such that for all y ∈ Bδ(x),

sup
0≤t≤t2

‖s(t, y)− s(t, x)‖ < min{dist(x2,S), σ(t1)}.

Hence, for all y ∈ Bδ(x), it follows that t1 < τ(y) < t2. Now, taking ε̂ < ε, it
follows that |τ(y)− τ(x)| < ε, establishing the continuity of τ(·) at x ∈ D1 \H.

Finally, define the discrete-time dynamical system given by

z(k + 1) = P (z(k)), z(0) ∈ U , k ∈ N. (10)

Clearly x = p is a fixed point of (10) since T = τ(p) and hence p = P (p).
Since Poincaré’s theorem provides necessary and sufficient conditions for sta-
bility of periodic orbits based on the stability properties of a fixed point of the
discrete-time dynamical system (10), stability notions of discrete-time systems
are required. Next, we give two key necessary results for developing Poincaré’s
theorem in terms of the Conley index theory.

Theorem 15 ([34]). Consider the nonlinear dynamical system (1) with the
Poincaré map defined by (8). Assume that the point p ∈ D generates the periodic
orbit O := {x ∈ D : x = ϕ(t, p), 0 ≤ t ≤ T}, where ϕ(t, p), t ≥ 0, is the periodic
solution with period T ≡ τ(p). Then the following statements hold:

i) p ∈ D is a Lyapunov stable fixed point of (10) if and only if the periodic
orbit O generated by p is Lyapunov stable.

ii) p ∈ D is an asymptotically stable fixed point of (10) if and only if the
periodic orbit O generated by p is asymptotically stable.

Theorem 15 is a restatement of the classical Poincaré theorem, presenting
necessary and sufficient conditions for Lyapunov and asymptotic stability of
a periodic orbit of the nonlinear dynamical system (1) based on the stability
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properties of a fixed point of the n-dimensional discrete-time dynamical system
(10) involving the Poincaré map (8).

Next, we present a classical corollary to Poincaré’s theorem that allows us
to analyze the stability of periodic orbits by replacing the nth-order nonlinear
dynamical system by an (n − 1)th-order discrete-time system. To present this

result assume, without loss of generality, that ∂X (x)
∂xn

6= 0, x ∈ Sα, where x =

[x1, . . . , xn]T and α > 0 is sufficiently small. Then it follows from the implicit
function theorem [32] that xn = g(x1, . . . , xn−1), where g(·) is a continuously dif-
ferentiable function at xr := [x1, . . . , xn−1]T such that [xTr , g(xr)]

T ∈ Sα. Note
that in this case P : Uα → Sα in (10) is given by P (x) := [P1(x), . . . , Pn(x)]T,
where

Pn(xr, g(xr)) = g(P1(xr, g(xr)), . . . , Pn−1(xr, g(xr))). (11)

Hence, we can reduce the n-dimensional discrete-time system (10) to the (n−1)-
dimensional discrete-time system given by

zr(k + 1) = Pr(zr(k)), k ∈ N, (12)

where zr ∈ Rn−1, [zTr (·), g(zr(·))]T ∈ Sα, and

Pr(xr) :=

 P1(xr, g(xr))
...

Pn−1(xr, g(xr))

 . (13)

Note that it follows from (11) and (13) that p := [pTr , g(pr)]
T ∈ Sα is a fixed

point of (10) if and only if pr is a fixed point of (12). To present the following
result define

Srα := {xr ∈ Rn−1 : [xTr , g(xr)]
T ∈ Sα},

Urα := {xr ∈ Srα : [xTr , g(xr)]
T ∈ Uα}.

Corollary 16 ([34]). Consider the nonlinear dynamical system (1) with the

Poincaré return map defined by (8). Assume that ∂X (x)
∂xn

6= 0, x ∈ Sα, and the
point p ∈ Sα generates the periodic orbit O := {x ∈ D : x = ϕ(t, p), 0 ≤ t ≤ T},
where ϕ(t, p), t ≥ 0, is the periodic solution with the period T = τ(p) such that
ϕ(τ(p), p) = p. Then for p = [pTr , g(pr)]

T ∈ Sα, pr is an asymptotically stable
fixed point of (12) if and only if the periodic orbit O is asymptotically stable.

The next theorem presents a necessary condition for asymptotic stability of
periodic orbits in terms of the Conley index.

Theorem 17 (Conley index condition for periodic orbits). Consider the
nonlinear dynamical system (1) with the Poincaré map defined by (8) and let

x0 = [xTr0, g(xr0)]T ∈ Sα be a hyperbolic fixed point. Assume that ∂X (x)
∂xn

6= 0, x ∈
Sα. If the periodic orbit O = {x ∈ D : x = ϕ(t, x0), 0 ≤ t ≤ T} generated by
x0 ∈ Sα is asymptotically stable, then

CHi(x0) ∼=
{

Z if i = 0,
0 otherwise,
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and

CHi(xr0) ∼=
{

Z if i = 0,
0 otherwise.

Proof. Using similar arguments as in the proof of Theorem 9, it follows
that if x0 is asymptotically stable for (10), then

CHi(x0) ∼=
{

Z if i = 0,
0 otherwise.

By Theorem 15, x0 is asymptotically stable for (10) if and only if O is asymptot-
ically stable. Now, the conclusion follows immediately by combining the above
results together.

The second conclusion can be proved in a similar way by noting Corollary 16.

3.3. Remarks about stable sets

The main goal of this section is to introduce some existing results about
asymptotically stable sets, linked with the Conley index theory.

Definition 18. Let K ⊂ M be an invariant set for System (1). The set K is
asymptotically stable if the following two conditions hold:

1. K is Lyapunov stable, that is, for every open neighborhood V ⊆M of K,
there exists an open neighborhood U ⊆ M of K such that ϕt(U) ⊆ V for
every t ≥ 0.

2. K is attractive, that is, there exists an open neighborhood W ⊆ M of K
such that, for every x ∈ W and every open neighborhood U ⊆ M of K,
there exists T ≥ 0 such that ϕ(t, x) ∈ U for all t > T .

The domain of attraction of an asymptotically stable set K ⊆ M is the
set A of points x such that, for every open neighborhood U of K, there exists
T > 0 such that ϕ(t, x) ∈ V for all t ≥ T . It is well known that the domain of
attraction A of a compact asymptotically stable set is open and invariant, that
is, ϕt(A) = A for all t ≥ 0.

Theorem 19 ([8]). Let K be a hyperbolic invariant set that is diffeomorphic to
a circle. Assume that K has an oriented unstable manifold of dimension n+ 1.
Then

CHi(K) ∼=
{

Z if i = n, n+ 1,
0 otherwise.

(14)

Definition 20 ([35]). A smooth function V : U → R defined on an open neigh-
borhood U ⊂ Rn of K is said to be a Lyapunov function if it satisfies

i) V (x) ≥ 0 for all x ∈ U and V (x) = 0 if and only if x ∈ K.

ii) d
dtV (x(t)) ≤ 0 on U\K for every x(0) ∈ U\K.
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iii) V tends to a constant (possibly infinite) value on the boundary ∂U .

Lemma 21. Assume K is compact and asymptotically stable. Then there exists
a Lyapunov function V (·) such that for all c > 0 small enough,

CHn−1(V −1(c)) ∼= Z. (15)

Proof. See Proposition 2.1 of [35].

4. Conclusion

The aim of this paper is to use the Conley index theory in order to provide
necessary conditions for asymptotic stability of compact sets. Precise necessary
conditions are given for equilibria and periodic orbits. The more general case
of stable sets is still a challenge for future work, in particular the case of closed
sets, not necessarily bounded.
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