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Abstract

In this article, we consider a new regression model for counting processes un-
der a proportional hazards assumption. This model is motivated by the need of
understanding the evolution of the booking process of a railway company. The
main novelty of the approach consists in assuming that the baseline hazard function
is piecewise constant. Hence, the parameters of the model can be separated into
two different types: parameters that measure the influence of the covariates, and
parameters from a (multiple) change-point model for the baseline. Cox’s semipara-
metric regression can be seen as a limit case of our model. We develop an iterative
procedure to estimate the different parameters, and a test procedure that allows
to perform change-point detection in the baseline. Our technique is supported by
simulation studies and a real data analysis, which show that our model can be a
reasonable alternative to Cox’s regression model, particularly in the presence of tied
event times.
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1 Introduction

In Yield-Management, a critical issue is to infer on the stochastic behaviour of a counting
process (representing, for example, the number of reservations for a transportation com-
pany, or the number of reservations in an hotel) in order to be able to develop strategies
that optimize the profit. In this paper, we develop a statistical model that has been
firstly designed to apply to the study of the amount of reservations in a public transport
company. The key feature of our new approach stands in the fact that we try to identify
two different factors that influence the general dynamics of reservations. The first one is a
classical capacity constraint: when some types of seats become unavailable, the consumers
change their behaviour, by either preferring another category of seats, or by not buying
any ticket. The second one is a time evolution, caused by the proximity of the date of
departure. In the model that we consider, the number of reservations is considered as
a counting process that evolves through a multiplicative hazard model. Multiplicative
hazard regression models are a very common tool when one wants to model the influence
of some set of covariates, which, in the particular situation that we will latter consider,
will consist of informations on the availability of the different types of seats. In these
models, a baseline hazard function determines some general behaviour of the process,
while the influence of the covariates appears only through a multiplicative term. Back
to our example, the baseline hazard function will represent some general evolution of the
behaviour of the consumers, that is not caused by the lack of availability, but only by a
general time evolution.

If such a multiplicative hazard model holds, it becomes very easy to determine the
influence of a specific covariate, identifying its contribution to the increase of the hazard
rate. In the literature of multiplicative hazard models, one must distinguish between two
major types of approaches. The fully parametric approach consists of specifying the base-
line hazard function. See for example Martinussen and Sheike (2006) for a review of the
different techniques in this framework. On the other hand, the semiparametric approach
initially developed by Cox (1972) (see also Andersen and Gill 1982) does not require the
specification of the baseline hazard rate, whose estimation relies on nonparametric ap-
proaches. The most classical of these approaches is developed by Breslow (1972), which
introduces a nonparametric estimator of the cumulative baseline hazard rate, but other
approaches have been developed, as the one proposed by Dabrowska (1997) using ker-
nel smoothing, or the one based on regression splines in Sleeper and Harrington (1990).
One of the drawbacks of such techniques stands in the difficulty of interpretation of the
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resulting estimator of the baseline hazard function.
The approach that we develop in this paper is parametric, and is close to Cox’s re-

gression model in the sense that Cox’s regression model can be seen as a limit case. We
propose to model the baseline hazard function as a piecewise constant function, without
prior knowledge of the times at which the jumps occur. This methodology is inspired
by multiple change-point techniques (see e.g. Csörgo and Hórvath 1997; Basseville and
Nikiforov 1993; Lebarbier 2005), which are particularly adapted to our problem, since
they will allow to estimate some time of change of behaviour of the consumers. Moreover,
this framework allows us to develop test procedures that consists of detecting the presence
or absence of change-points. From a practical viewpoint, such type of test procedure will
allow to distinguish between changes of behaviours that are only caused by the covariates
(that is, the changes in the availability), and changes which represent a general evolu-
tion of the dynamics. Moreover, compared to Cox’s regression model, our approach can
be seen as a reasonable compromise between additional assumptions and computational
efficiency. Indeed, our estimation procedure is expected to outperform Cox’s partial likeli-
hood maximization in situations where the number of tied event times can be high, which
is shown through simulations.

The rest of this paper is organized as follows. In section 2, we introduce our hazard
regression model. Section 3 is devoted to the estimation of the parameters, which relies
on maximum likelihood estimation. We especially focus on the practical implementation,
developing a dynamic programming strategy for the estimation of the change-points, and
an iterative algorithm to perform the joint estimation of the change-points and of the
regression parameters. We also propose a test procedure to perform the change-point
detection, and discuss how to compute the critical values through a simulation approach.
In section 4, we investigate the practical behaviour of our technique. Through a simulation
study, we first compare the behaviour of our estimation procedure to the use of Cox’s
partial likelihood when we only focus on the influence of covariates, before investigating
on the change-point estimation. Next, we apply our technique to a real case provided by
the French national railway company SNCF.
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2 Proportional hazards model with change-point detec-

tion and parametric regression

In this section, we present the statistical model that will be used throughout this pa-
per, and the procedure that we propose to estimate its parameters. Section 2.1 details
notations and assumptions that will be used in the following. As announced in the intro-
duction, our model combines a proportional hazards regression model, with a change-point
approach in order to estimate the baseline intensity. A small discussion to compare our
model to Cox’s regression model is provided in section 4.2.

2.1 Model

We consider observations made of m independent counting processes, observed at discrete
dates t0 < · · · < tn, that is we observe

(
Nj(ti)

)0≤i≤n
1≤j≤m, where tn = τ is the total time of

observation. Since all processes may not be observed during the same amount of time,
we also observe indicators Yij , Yj(ti) taking the value 1 if Nj is at risk at time ti, and
Yj(ti) = 0 otherwise. In addition, one observes a time-dependent vector of covariates
(Xij)

0≤i≤n
0≤j≤m , (Xj(ti))

0≤i≤n
0≤j≤m.

Data are modelized through a proportional regression model, that is the hazard inten-
sity of the process

(
Nj(t)

)
0≤t≤τ is

λj(t) = Yj(t)λ0(t)e
βXj(t), (2.1)

where Yj(t) is the “at risk” process , λ0(t) is the baseline hazard function, β is a some
unknown regression parameter to estimate and Xj(t) is a time-dependent variable.

Such type of regression models have been widely used for the study of recurrent events
processes (see Ghosh and Lin 2003). An important version is the semiparametric Cox
regression model (Cox 1972; Andersen and Gill 1982). In Cox’s model, the baseline
hazard function λ0 is not specified. Compared to a fully parametric model, Cox’s approach
provides additional flexibility to the model. Nevertheless, one of the disadvantages stands
in the difficulty of interpreting the estimation of the nonparametric part. In our approach,
we therefore chose to rely on a fully parametric model, which is adapted to some specific
situations such as the one we consider in our application in section 4.3 below. We assume
that the function λ0 is piecewise constant, with jumps only at l unknown times

(
tks
)
1≤s≤l,
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that is

λ0(t) =
l∑

s=0

µs1{tks ≤ t < tks+1}, (2.2)

which can be seen as a multiple change-point model on the baseline hazard function. The
values µs of the intensity on [tks , tks+1) are also unknown in our framework. An interesting
feature of this model stands in the fact that the time of change can be interpreted as
structural changes in the hazard rate that are not caused by the covariates, but which
come from a change in the global dynamics. In the example we provide below in section
4.3, this change is interpreted by a structural and global increase (or decrease) in the
number of bookings pro period of time. In a Cox-regression model, the classical way to
estimate the nonparametric part consists of using the estimator of Breslow (1972). In
this case, the resulting estimator is a piecewise constant hazard function with n jumps
(at each time of observation), hence it can be seen as a limit case of model (2.2).

3 Estimation procedure

We now present our methodology to estimate the different parameters of the model con-
sidered in section 2. Our procedure consists of applying maximum likelihood inference
(see section 3.1). Since this approach leads to numerical optimization problems when
it comes to implementation, we provide an iterative algorithm, detailed in section 3.2,
to perform this maximization. The principle of this strategy consists of distinguishing
between the two different structures present in our model. This is done by separating the
estimation of the regression parameters from the estimation of the change-points. Section
3.3 proposes a numerical method involving dynamic programming in order to perform
change-point estimation. Finally, a test procedure for change-point detection is provided
in section 3.4.

3.1 Maximum likelihood estimation

From a statistical point of view, we have to estimate the following parameters θ =(
β, k1, . . . , kl, µ0, . . . , µl

)
. In this type of parametric problems, it is natural to rely on

a maximum likelihood approach. Following Martinussen and Scheike (2006), Aalen et al.
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(2008), the log-likelihood in our model can be expressed as,

Ll(θ) = −
l∑

s=0

µs

ks+1−1∑
i=ks

di

m∑
j=1

Yije
βXij +

l∑
s=0

log(µs)
∑

ks≤i≤ks+1−1
1≤j≤m

Zij + β
∑

1≤i≤n
1≤j≤m

XijZij,

where Zij , Nj(ti)−Nj(ti−1) is the variation of the processNj on [ti−1, ti), and (d1, . . . , dn) ,

(t1 − t0, . . . , tn − tn−1) denotes the length of the different time intervals (which may not
be equal in practice). The maximum likelihood estimator is then defined as

θ̂l = argmax
θ

Ll(θ).

Unfortunately, direct maximization of a functional of the type of the log-likelihood
leads to technical problems, due to the complexity of the numerical techniques that would
be involved if one wishes to achieve exact maximization of this functional. Therefore, we
provide in the following section an iterative procedure that allows to fill this gap.

3.2 Estimation algorithm

The algorithm detailed in this section is based on the separation of the parameter θ
into two parts: the regression parameter β and the change-point parameters (k, µ) with
k = (k1, . . . , kl) and µ = (µ0, . . . , µl). Similar approaches are classically developed in
semiparametric regression (see e.g. Xia et al. 2002). In our framework, the model is
fully parametric. Nevertheless, in our approach, regarding the estimation of the baseline,
we are close to a nonparametric problem, in the sense that the number of parameters to
estimate may be high if we increase the number l of change-points.

Therefore, to optimize Ll
(
β, (k, µ)

)
, we develop the following iterative algorithm, con-

taining two steps in each iteration:
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Algorithm 1 Find θ which maximizes Ll(θ)
β(0) ← β0

(k(0), µ(0))← argmax(k,µ)Ll
(
β(0), (k, µ)

)
θ(0) ←

(
β(0), (k(0), µ(0))

)
β(1) ← argmaxβLl

(
β, (k(0), µ(0))

)
(k(1), µ(1))← argmax(k,µ)Ll

(
β(1), (k, µ)

)
θ(1) ←

(
β(1), (k(1), µ(1))

)
p← 1
while |Ll

(
θ(p)
)
− Ll

(
θ(p−1)

)
| > ε do

p← p+ 1
Change-point step : (k(p), µ(p))← argmax(k,µ)Ll

(
β(p−1), (k, µ)

)
Regression step : β(p) ← argmaxβLl

(
β, (k(p), µ(p))

)
θ(p) ←

(
β(p), (k(p), µ(p))

)
end while

At the regression step, the problem

argmax
β

Ll
(
β, (k, µ)

)
,

can be solved by a quasi-Newton algorithm (available on the stat package of R software),
while, at the change-point step, the maximization problem

argmax
(k,µ)

Ll
(
β, (k, µ)

)
, (3.1)

requires high computational time to be solved. Indeed, the likelihood has to be maxi-
mized for all combinations of vector (k1, . . . , kl). Dynamic programming has been used
by Bellman (1961) and Jackson et al. (2005) to fix some similar kind of problems. The
algorithm developed in the next section is a direct extension of these approaches, but with
a different contrast to minimize, which is adapted to our particular framework.

3.3 Dynamic programming for change-point detection

Solving the problem (3.1) is equivalent to solving

argmax
k

Ll
(
β,
(
k, µ̂(k)

))
with µ̂(k) =

(
µ̂0(k0, k1), . . . , µ̂l(kl, kl+1)

)
and µ̂s(ks, ks+1) =

∑m
j=1

∑ks+1−1

i=ks
Zij∑ks+1−1

i=ks
di
∑m
j=1 Yije

βXij
. Indeed,

µ̂(k) is the maximum likelihood estimator of the vector of intensities µ if we assume that
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the changes occur at times tk1 , . . . , tkl for a fixed vector k = (k1, . . . , kl).

Therefore, solving (3.1) consists of solving an optimization problem of the following
type:

argmax
kl∈Cln−1

f(kl),

where Cln−1 is the set of
(
n−1
l

)
vector combinations kl = (1, k1, . . . , kl, n + 1) such that

(1 < k1 < k2 < · · · < kl < n+ 1), with

f(kl) =
l∑

s=0

g(ks, ks+1),

where g is defined as,

g(ks, ks+1) = log

( ∑m
j=1

∑ks+1−1
i=ks

Zij∑ks+1−1
i=ks

di
∑m

j=1 Yije
βXij

)
m∑
j=1

ks+1−1∑
i=ks

Zij.

To define our dynamic programming procedure, we also need to introduce,

V (b, i) , max
ki∈Ci(1,b)

f(ki),

V̂ (b, 1) , argmax
ki∈Ci(1,b)

f(ki),

where Ci(1, b) is the set of possible vectors ki = (1, k1, . . . , ki, b) such that 1 < k1 < · · · <
ki < b.

The following l + 1 steps algorithm provides the vector of right combination k̂l which
maximizes the objective function f . The main idea of the algorithm can be summarized
in the following way : assuming that we know, for each possible possible location of the
ith change-point, the optimal combination of i − 1 first change-points, we just have to
choose the ith change-point that maximizes the function f . We then apply iteratively this
procedure to get the optimal position of i = 1 change-point, then i = 2,. . . , until i = l

change-points.
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Algorithm 2 Find kl which maximizes f(kl)

Step 0 : ∀b ∈ {2, . . . , n+ 1}, solve V (b, 0) :
∀b, V (b, 0)← g(1, b)
Step 1 : ∀b ∈ {3, . . . , n+ 1}, solve V (b, 1) :
V (b, 1)← max2≤x<b

[
V (x, 0) + g(x, b)

]
V̂ (b, 1)← argmax2≤x<b

[
V (x, 0) + g(x, b)

]
...

...
...

...
Step i : ∀b ∈ {i+ 2, . . . , n+ 1}, solve V (b, i) :
V (b, i)← maxi+1≤x<b

[
V (x, i− 1) + g(x, b)

]
V̂ (b, i)← argmaxi+1≤x<b

[
V (x, i− 1) + g(x, b)

]
...

...
...

...
Step l :
V (n+ 1, l)← maxl+1≤x<n+1

[
V (x, l − 1) + g(x, n+ 1)

]
V̂ (n+ 1, l)← argmaxl+1≤x<n+1

[
V (x, l − 1) + g(x, n+ 1)

]
Final step : get the vector k̂l = (1, k̂1, . . . , k̂l, n+ 1) which maximizes f(kl)

k̂l ← V̂ (n + 1, l), k̂l−1 ← V̂ (k̂l, l − 1), . . . , k̂i ← V̂ (k̂i+1, i), . . . ,

k̂1 ← V̂ (k̂2, 1)

Then, we get the estimated intensity vector µ̂ = µ̂(k̂l) from k̂l. The pair (k̂l, µ̂) is the
exact solution of initial problem (3.1).

3.4 Change-point detection and testing

Since our model (2.2) is inspired by the field of change-point analysis, it is quite natural
to use the estimators we develop to perform change-point detection in the baseline hazard
rate. Change-point detection (see Csorgo and Horvath 1997; or Basseville and Nikiforov
1993) aims to identify abrupt changes in some parameter. In our framework, detecting
a change-point will conclude to an instability of the baseline which is not due to the
influence of the covariates.

In this section, we focus on the one-change point detection, that is we wish to test the
following null hypothesis,

H0 : ∃µ0 s.a. λ0(t) ≡ µ0,
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against the following alternative,

H1 : ∃(k, µ0, µ1) s.a. λ0(t) = µ01{t < tk}+ µ11{t ≥ tk}.

A natural way to proceed consists of using a likelihood ratio test. Let θ̂1 (resp. θ̂2)
denote the maximum likelihood estimators developed in the previous sections in the case
where one assumes that there is no change-point (resp. one change-point), that is under
H0 (resp. under H1). The likelihood ratio test procedure consists of rejecting H0 when
Tn = L2(θ̂2) − L1(θ̂1) is larger than some critical value sα that permits to achieve the
proper level α. Rather than rely on an asymptotic approximation of Tn, we suggest to use
a bootstrap procedure to compute this critical value.

The test procedure described below can be extended to test the presence of k-change-
points, against the model with (k− 1)−change-points. Then, it can be used as a forward
procedure to decide what number of change-points should be considered (see application
in section 4.4).

Simulation technique to compute the critical value

1. Estimation : first, we estimate θ̂1 from the data. If H0 is true, the probability law
defined by θ̂1 should be close to the true probability distribution.

2. Simulation : for b = 1, . . . , B simulate a multivariate process according to the law
defined by θ̂1 and (Xij, Yij)

0≤i≤n
1≤j≤m, where we used the matrix X and Y observed on

the data-set.

3. Computation of the critical value : for each of the simulated trajectory, com-
pute θ̂b1 (the estimator based on the b−th simulated trajectory, with the assumption
that there is no change-point), and θ̂b2 (the estimator based on the b−th simulated
trajectory, with the assumption that there is one change-point), and compute the
corresponding test statistic T bn. Take sα such as a proportion α of the (T bn)1≤b≤B is
larger than sα.

4 Application : simulations and SNCF study

In this section, we investigate the empirical behaviour of our procedure. In section 4.1,
we consider a fixed value of the regression parameter β and we observe how the change-
point modeling influences the quality of estimation of this parameter. Moreover, we
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investigate the quality of our final estimators of the intensities λj. In section 4.2, we
develop a comparison with Cox’s regression model, which suffers, in our framework, from
the presence of tied event times. Section 4.3 presents the application of our model to the
study of bookings in the French company SNCF.

4.1 Estimation

The simulation setting that we propose in order to enlighten the practical behaviour of
our procedure is inspired by the situation that is considered in the study developed in
section 4.3. We consider n = 20, m = 42, β = 2, and at-risk processes Yj ≡ 1. The lines
of the matrix X are made of vectors Xi. with components equal to zero up to some index
j0(i), and equal to 1 for the remaining components. The choice of such a structure for
the matrix X is motivated by our example in the case of the SNCF study, in which a
value 1 corresponds to a class of seats which is unavailable. For all our simulation study,
we considered the same matrix X, which has been randomly generated in order to match
the structure observed in the real data set, that is a proportion of 31.07% of 1 in the
coefficients. The interval between ti and ti+1 is assumed to be constant and equal to one.

For different values of λ0 (that is different values of (k, µ)), we simulate q = 1000

samples and estimate the parameters from our estimation procedure for each simulated
sample. We compare our estimator with the one obtained by maximizing Cox’s partial
likelihood. Since there is a significant number of tied event times in the simulated datasets,
one requires to use approximations of this partial likelihood. In our simulations, we
consider the case of Efron’s approximation (1977) and of Breslow’s approximation (1974).
The performance of each technique is measured through different error criterions. We
focus first on the quality of estimation for each separated parameter, and then look at
the global estimator of the intensities. For a parameter x ∈ R, and an estimate x(p) ∈ R
of this quantity, we consider the following criterions:

e1(x) =
1

q

q∑
p=1

|x̂(p) − x|,

e2(x) =
1

q

q∑
p=1

(x̂(p) − x)2,

e∞(x) = max
1≤p≤q

|x̂(p) − x|.
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Similarly, we define errors for an estimator λ̂ of the matrix λ = (λj(ti, θ))
1≤i≤n
1≤j≤m as

e1(λ̂) =
1

q

q∑
p=1

m∑
j=1

n∑
i=1

|λ̂j(ti, θ̂(p))− λj(ti, θ)|,

e2(λ̂) =
1

q

q∑
p=1

m∑
j=1

n∑
i=1

(λ̂j(ti, θ̂
(p))− λj(ti, θ))2,

e∞(λ̂) =
1

q

q∑
p=1

max
1≤i≤n
1≤j≤m

|λ̂j(ti, θ̂(p))− λj(ti, θ)|.

Compared to the separate study of the estimation of each parameter, evaluating some
distance between our estimated λ̂ and the true intensity matrix λ presents the interest to
have a global view on the performance of the estimation procedure in our model. More
precisely, we will compare the estimated intensity to the one that would be obtained in a
model with no change-point, to try to understand if the improvement obtained through
our approach is significant or not.

We consider different settings, first in the case where there is one change-point, and
the two change-points situation.

First case: one change-point.

In this case, we need three additional parameters to characterize the processes, that is the
intensity µ0 before the “jump”, the intensity µ = 1 after the jump, and the rank k of the
time of the change tk. In all our simulations, we take µ0 = 1. Clearly, the performance of
our approach will depend on our faculty to properly identify the jump, which depends on
the size of the jump |µ1 − µ0| and of the time at which the jump occurs. For this reason,
we consider intensity jumps of 20 %, 10 % and 5 % between µ0 and µ1. We consider, for
each case, the situation of a “late” (resp. “early”) change-point date, that is k = 17 (resp.
k = 7) over a total number n = 20 of dates, and an intermediate situation (k = 11).

Table 1 below presents the results for the different settings.
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In this study, it clearly appears that, when we increase the size of the jump, the
behaviour of our method in significantly improved for each parameter of the model and
for each criterion. Compared to Cox’s partial likelihood approximations, the estimation
of β obtained by our method leads to far better estimation results. Besides, estimates
of the intensities µ0 and µ1 are more accurate when the change-point occurs later (i.e.
when k increases). Concerning the global estimation of the hazard function λ, our change-
point model (λTRUE) leads to significant improvements compared to the approach with
no change-point (λ0), except for small sizes of jumps and early date of change-point. In
this latter case, we observe slightly poorer results. This mainly comes from the fact that
the error in estimating µ0, µ1 and k is higher. However, the estimation of β seems still
relevant even in this extreme case.

Second case: two change-points.

In the two change-points case, the process is characterized by θ = (β, k1, k2, µ0, µ1, µ2),
where (k1, k2) are the ranks of the times of change

(
tk1 , tk2

)
and (µ0, µ1, µ2) are the in-

tensities in the three periods defined by the change-points. As in the previous case, we
considered different values of these parameters in order to assess the quality of the es-
timations. We have first simulated datasets where the ranks of the two change-points
are quite close (separated by 3 ranks). The change-points are assumed to occur “late”
((k1, k2) = (14, 17)) or at an intermediate date ((k1, k2) = (8, 11)). We also consider the
case where the two change-points divide the time in three approximately equal periods
((k1, k2) = (7, 11)). The same jump of 10% is applied at the first change point and jumps
of size 0.05, 0.1 or 0.2 from the value 1.1 are used at the second change-point.

Table 2 below presents the results for the different settings.
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Comparing the estimations for (k1, k2) = (14, 17) and (k1, k2) = (8, 11), we observe,
as in previous case, that the estimates of µ0, µ1 are more accurate when the change-
points occur later. According to the ei(λTRUE) and ei(λ

0) criterions, as in the previous
case, the improvement of global estimation of λ is stronger when change-points occur
later ((k1, k2) = (14, 17)) and weaker or non-existent when changes are smaller and occur
earlier ((k1, k2) = (8, 11)).

However, in the case where the change-points are uniformly located ((k1, k2) = (7, 15))

our model with the change-points (λTRUE) provides the best improvement to the no-
change-point model (λ0).

4.2 Comparison with Cox’s proportional hazards model

The continuous one-jump counting process that we modelize by (2.1) is only observed at
n+1 dates

(
ti
)
0≤i≤n. The event times are thus grouped into intervals and it implies many

tied event times, especially in the case defined in the application of section 4.3. In this
context, as explained by Therneau and Grambsch (2000), two options are possible to apply
Cox maximum partial likelihood estimation. The first one is to consider the process as a
discrete time process. In addition to this incorrect assumption, the maximization of the
exact partial likelihod requires a much important computation time. The second one is to
keep the continuous time scale and maximize an approximation of the partial likelihood
either from Breslow’s or Efron’s method (Breslow 1974; Efron 1977). Computationally,
these two methods require also an increasing time when the number of ties becomes
high. Hertz-Picciotto and Rockhill (1997) compared the two approximations, showing
that Efron’s method is more accurate especially for a high number of ties.

Our model is neither based on the assumption of discrete time scale nor on an ap-
proximate likelihood. Moreover, the algorithm described in section 3.2 does not require a
high computational time.

Besides, the specification of the form of the baseline hazard allows a more accurate
estimation than in classical semi-parametric context and an easier interpretation of this
part of the model. The baseline function represents the intrinsic dynamics of the process
while the regression part stands for the influence of the variable on the dynamics. As-
sumption 2.2 means that we assume l + 1 homogeneous periods in the internal dynamics
of the process.

In our model, if we increase β, we mechanically increase the number of tied event
times. Therefore, we illustrate in Table 3 below how the quality of estimation of the
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regression parameter evolves when we increase β. The errors are normalized in order to
be able to compare each case. We consider a one change-point situation, with k = 11,

µ0 = 1 and µ1 = 1.2.

β -2 -1 1 2∣∣∣ e1(β)
β

∣∣∣ Cox (Breslow) 0.188381 0.3097856 0.7664887 0.8727165
Cox (Efron) 0.1061763 0.13179192 0.4283994 0.6483565

Developed model 0.0790222 0.11637283 0.058707430 0.02751048∣∣∣ e2(β)
β2

∣∣∣ Cox (Breslow) 0.04335568 0.1080335 0.5883579 0.7618253
Cox (Efron) 0.01741894 0.02716132 0.1875493 0.4212818

Developed model 0.00997855 0.02248492 0.005314939 0.001160346∣∣∣ e∞(β)
β

∣∣∣ Cox (Breslow) 0.4422733 0.5956260 0.8544077 0.910485
Cox (Efron) 0.4889666 0.62851338 0.6369225 0.7309385

Developed model 0.3361397 0.50231980 0.303411172 0.08143495

Table 3: Empirical behaviour of the estimators of β for different values of β in a one
change-point model, k = 11, µ0 = 1, µ1 = 1.2.

In this table, the error criterions are normalized with respect to β. The approximations
of Efron (1977) and Breslow (1974) seem to lead to relative errors that increase with β,
which is not the case using our procedure. Moreover, the computation time increases
considerably for Cox’s approximations when β increases, while the computation is not
impacted in our approach.

4.3 Real data set: reservations to train (SNCF)

The model presented in this paper has been applied in the practical case of reservations
data in the French railway company Sncf. Booking process is observed, for a determined
tariff class, on n+1 = 21 dates

(
ti
)
0≤i≤n. Nj(t) denotes the cumulated number of bookings

in the train j (for j = 1, . . . ,m = 42) between 0 and time t. In our particular dataset,
we have Yj(t) ≡ 1, although the techniques applies for more general situations. The aim
of the study is to identify the impact of “rival” tariff classes on the booking process. We
considered the case of a single rival class, corresponding to a less expensive tariff. To
measure the impact of this class, we consider the process X(t), taking value 0 if the rival
class is still open at time t, and taking value 1 otherwise. In the situation we considered,
rival classes do not re-open after being closed, although this situation could be considered
through our model.
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Estimation

We fix a model by determinating the number l of change-points in the baseline hazard
function and then estimate the parameter θ =

(
β, (k, µ)

)
. The regression parameter β

represents the influence of “rival” tariff class or train while the change-point parameters
(k, µ) explain the structural increase (or decrease) of the reservations in the considered
tariff class or train.

We considered different models with a fixed number l of change-points. The table 4
below presents the results for l = 1, . . . , 8. We explain later how we selected the model
that seemed to us the most appropriate.

We observe that, the more change-points are estimated, the less important is the
influence of the “rival” class. If we assume 3 change-points (i.e. 4 homogeneous reservation
periods), the risk of reservation is multiplied by e0.660 = 1.93 as soon as the “rival” class
is closed to reservation.
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Model selection

In the following figure, we plotted the values of the maximized log-likelihood, with respect
to the number of change-points l that are considered in the model. Since the models are
nested, this log-likelihood increases with l. After a fast increase between 1 and 5, the
increase slows down, and the curve becomes almost linear. A possible model choice would
consist of taking l = 5 or 6, since after that, the improvement of the log-likelihood does
not seem particularly important. Alternatively to this graphical method, one can rely
on techniques such as “slope heuristic”, see e.g. Baudry, Maugis and Michel (2012). The
technique consists of determining the slope p of the linear part of the log-likelihood curve
(here, the part of the curve between l = 5 and l = 16), and use this slope to determine a
penalized criterion. The penalized criterion which is recommended is obtained as follows,

l̂ = argmax
l

max
θ
Ll(θ)− 2pl.

In our application, we estimate the following value p = 10.662 of the slope. In the following
table, the penalized criterion maxθ Ll(θ)− 2pl is shown for different values of l.
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Figure 1: Log-likelihood, penalized likelihood and estimation of linear regression coeffi-
cients (slope: 10.66172, intercept: 8096.505).
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l Log-likelihood Ll Ll − 2pl

0 2806.6728312 2806.6728312
1 6716.8506334 6695.527
2 7477.5020833 7434.855
3 7687.344 7623.374
4 7876.631 7791.337
5 8102.203 7995.586
6 8140.190 8012.249
7 8174.818 8025.554
8 8208.273 8037.685
9 8219.261 8027.35
10 8228.928 8015.694
11 8235.892 8001.334
12 8237.372 7981.491
13 8238.118 7960.913
14 8238.532 7940.004
15 8238.85936440 7919.008
16 8238.99457638 7897.82

Table 5: Log-likelihood and penalized log-likelihood for l = 0, . . . , 16.

It appears that, according to this criterion, the selected model would be l̂ = 8.However,
since the penalized criterion does not increase strongly between l = 6 and l = 8, it may
suggest that the models with 6 or 7 change-points are still reasonable candidates, if one
wishes to promote models with fewer parameters.

4.4 Testing procedure results

Simulations and one-change-point detection

In order to assess the validity of the test procedures that we used on the real data-set,
we can try to determine through simulation the power of our test procedure. In table
4.4 below, we present the results of this evaluation in the most simple case, that is when
we consider the simplest situation mentioned in section 3.4, where the null hypothesis
corresponds to the no change-point situation, which is tested against an alternative corre-
sponding to the one-change point situation. To simulate the law under the null hypothesis,
we considered the value of β obtained on the sample, and we took µ0 = 1. For each test-
ing case (each compartment of the following table), we simulate 1000 samples either from
hypothesis H0 (µ0 = 1 ; column 1) or from hypothesis H1 (µ0 = 1 and various jumps to
µ1 ; see columns 3-5). In the latter case, we test different positions for the change-point:
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late (k = 17), middle (k = 11) or early (k = 5). For every sample, we simulate B = 100

observations (T jn)1≤j≤B of the test statistic and compare Tn to the obtained threshold
sα (α = 5%). We report in the table the proportion of rejection of H0 over the 1000
simulated samples.

No change point One change-point
k = 21 k = 17 k = 11 k = 5

5.2%
µ1 = 1.1 53% 56.1% 67%
µ1 = 1.2 98% 98.4% 99.9%
µ1 = 1.3 100% 100% 100%

Table 6: Tests results under hypothesis H0 and H1.

We observe that, under the null hypothesis (which corresponds to the case k = 21),
the simulation approach almost achieves the expected level which was 5%. The earlier
change-point occurs, easier is the detection. Indeed, the results show an increase of the
power of the test when the alternative is k = 11. Nevertheless, the size of the change,
that is the difference between µ0 and µ1, has a more significant impact. In the case where
µ1 = 1.2, change-point is almost systematically detected no matter the time of occurence.

Forward procedure and multiple-change-point detection

The testing procedure described in section 3.4 is implemented in order to perform the
change-point detection in our real data set case. Successive tests for model with l change-
points against model with l + 1 change-points are performed to select the right number
of change-points.
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l Test statistic Threshold sα Rejection of H0

0 3910.17780 3.79950 Yes

1 760.65144 4.01493 Yes

2 209.84210 4.35410 Yes

3 189.2871 4.36418 Yes

4 225.5715 3.99669 Yes

5 37.98701 4.184904 Yes

6 34.62845 4.128622 Yes

7 33.45466 4.014498 Yes

8 10.98819 4.050255 Yes

9 9.666715 3.830744 Yes

10 6.964444 3.595357 Yes

11 1.479882 3.321706 No

12 0.7458188 2.506621 No

13 0.4144982 1.873998 No

14 0.3268795 1.269713 No

15 0.1352120 0.9744056 No

16 0.3290045 0.6506319 No

Table 7: Tests results for hypothesis Hl : “There are l change-points” against Hl+1 : “There
are l + 1 change-points” (l = 0, . . . , 16) at the level α = 5%.

Compared to the model selection defined in section 4.3 above, the forward procedure
leads to l = 10 change-points at the level of α = 5%.

5 Conclusion

In this paper, we proposed a statistical model that is adapted to the study of a count-
ing process which is influenced by some covariates and structural changes in the baseline
hazard function. Estimation is performed through an iterative algorithm that combines
dynamic programming for the change-point part, and a regular maximum likelihood esti-
mation phase in a multiplicative hazard regression model. Numerical investigation show
that our procedures seems to behave correctly, even for small sample sizes. In the par-
ticular case of the SNCF data that we studied, they allowed us to detect some change in
the dynamics of the reservation which is not completely caused by the fluctuations of the
availability for the different categories of seats. They provide a simple modelization of the
characteristics of the reservation process, which then can be used in a simulation phase,
in order to simulate the impact of different commercial strategies, making this approach
quite valuable for Yield-Management.
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The proportional hazards model presented in this paper has been developed to describe
reservation process but can also be used in recurrent event data analysis as well as survival
data analysis as an alternative for parametric and Cox proportional hazards model.
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