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The owl captures prey using sound localization. In the classical model, the owl infers 

sound direction from the position in a brain map of auditory space with the largest 

activity. However, this model fails to describe the actual behavior. While owls accurately 

localize sources near the center of gaze, they systematically underestimate peripheral 

source directions. Here we demonstrate that this behavior is predicted by statistical 

inference, formulated as a Bayesian model that emphasizes central directions. We 

propose that there is a bias in the neural coding of auditory space, which, at the expense 

of inducing errors in the periphery, achieves high behavioral accuracy at the ethologically 

relevant range. We then show that the owl’s map of auditory space decoded by a 

population vector is consistent with the behavioral model. Thus, a probabilistic model 

describes both how the map of auditory space supports behavior and why this 

representation is optimal. 
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Behavioral experiments have shown that owls are very accurate at localizing sounds near 

the center of gaze but systematically underestimate the direction of sources in the 

periphery of the horizontal plane1,2 (Fig. 1a).  This underestimation is also observed in 

cats3, monkeys4, ferrets5, and humans6.  The localization of sources in the horizontal 

direction depends on the timing of the signals received at the two ears, termed interaural 

time difference7 (ITD). Processing of ITD at multiple stages of the owl’s auditory 

system8–10 ultimately leads to a representation of auditory space in the optic tectum (OT; 

homolog of mammalian superior colliculus) where stimulation induces head saccades11.  

The classical view of auditory-space coding in the owl is that sound source direction is 

represented in a place code12,13.  In this framework, the direction of a sound source is 

determined by the position in a topographic map of auditory space with the greatest 

activity level.   However, this model has not been directly compared to the owl's 

behavior.  Thus, although considerable progress has been made in determining how ITD 

is encoded13, it remains unclear how ITD is decoded to support the owl's localization 

behavior.  

The estimation of sound source direction from ITD is an inherently ambiguous problem 

because of the non-unique dependence of ITD on sound direction2.  Bayesian inference 

has been used to show how combining prior and sensory information can explain biased 

perception of ambiguous sensory signals14,15.  Here we consider the hypothesis that a 

Bayesian estimator, with a prior distribution that emphasizes directions near the center of 

gaze (Fig. 1b), can explain the owl's localization based on ITD. This provides an 
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opportunity to address an open question in neuroscience: the degree to which perception 

and behavior are consistent with statistical inference.  

 

RESULTS 

Bayesian model of behavior 

Under the Bayesian model, the owl's estimate of source direction depends on two factors:  

the statistical dependence of ITD on direction, and a bias for particular directions. The 

direction-dependence of ITD is known to be approximately sinusoidal from direct 

measurements of the sound signals reaching the owl's tympanic membranes2.  ITD is also 

subject to variability due to the type of sound signal, environmental conditions, and noise 

in the neural computation of ITD16–19.  Therefore, we modeled ITD as a sinusoidal 

function of source direction that is corrupted by Gaussian noise (Fig. 1d; amplitude = 260 

μs, angular frequency = 0.0143 rad/degree).  Note that the maximal ITDs are not at 

positive and negative ninety degrees because the facial ruff of the owl causes a phase 

shift relative to the owl's head2.  The conditional probability over ITD given a source 

direction defined by this model p(ITD |θ)  is called the likelihood function.  The owl's 

localization behavior shows a clear bias, corresponding to an underestimation of 

directions away from the center of gaze. We modeled this bias using a Gaussian-shaped 

probability density of sound-source directions that peaks at the center of gaze and decays 

for peripheral directions (Fig. 1b).  This bias constitutes the prior for Bayesian 

inference p(θ). While we include the prior in the model to capture the behavior, we note 

that the actual distribution of target directions measured in behavioral studies of the 
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interaction between barn owls and prey is consistent with a centrality prior20 (Fig. 2). The 

likelihood function and the prior are combined according to Bayes' rule to give the 

posterior density p(θ | ITD) , which is the probability density over sound-source direction 

given a value of ITD (Fig. 1b). The Bayesian estimate of source direction θ  given a 

value of ITD is taken to be the mean of θ  under the posterior p(θ | ITD) . This leads to a 

probabilistic model of the relationship between direction and ITD with two parameters: 

the width of the prior probability density and the variance of the noise corrupting the 

computed ITD.  

After determining the two parameters, the performance of the Bayesian estimator is 

consistent with the owl's localization behavior (Fig. 1e; root-mean-square error (RMSE) 

between the average behavior and the average Bayesian estimate was 1.66 deg). In 

addition, the precision of the Bayesian estimator is comparable to the behavioral 

precision measured for owls1,2 (s.d of direction estimates for the model 9.0 ± 0.5 deg and 

13.91 ± 5.26 deg for the owl2). Differences between the average Bayesian estimate and 

the behavior are primarily due to two features of the owl's behavior: the asymmetry in the 

maximal leftward and rightward headturns and the nonsmooth variation of the behavioral 

data with target direction that are not matched by the model. 

We tested the Bayesian model using data from two independent experiments: one that 

alters the relationship between ITD and sound direction, and another that changes noise 

in the measured ITD. The removal of the facial ruff, the heart-shaped array of dense 

feathers that collects and shapes incoming sound, alters the relationship between direction 

and ITD (Fig. 1f). This manipulation produces a corresponding change in the owl's 
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behavior where the owl no longer reaches a plateau of direction estimates for sources in 

the periphery2 (Fig. 1g). We simulated the ruff removal by increasing the frequency and 

decreasing the amplitude of the sinusoid that describes the measured mapping of 

direction to ITD (Fig. 1f and Supplementary Fig. 1; amplitude = 230 μs, angular 

frequency = 0.0175 rad/degree). The parameters were determined by fitting the sinusoid 

to the measured mapping of direction to ITD after ruff removal2.  Using unchanged 

parameters for the widths of the likelihood and the prior, the Bayesian model predicted 

the owl's behavior under ruff-removed conditions (Fig. 1g; RMSE between the average 

behavior and the average Bayesian estimate was 0.44 deg).   

We used a second, independent test of the Bayesian model, by examining direction 

estimates under varying interaural correlation, i.e. the degree of similarity of the sounds 

reaching the left and right ears.  Changes in interaural correlation represent a means to 

increase the variability in ITD.  In particular, as the interaural correlation decreases, the 

ITD determined by the peak in a cross-correlation of the left and right input signals21,22 is 

influenced more by the independent noise at the left and right ears than by the coherent 

source signal21.  Behaviorally, owls show a greater underestimation of sound source 

direction when interaural correlation decreases21.   

We used a cross-correlation model to determine how interaural correlation affects the 

variability of the measured ITD21,22.  For a fixed ITD of the input signals, we observed an 

exponential decrease in the variability of ITD as interaural correlation increases, where 

the standard deviation of ITD reaches a minimum for interaural correlation values greater 

than 0.5 (Fig. 3a).  We tested the Bayesian model using values of the standard deviation 

of the noise corrupting ITD that followed this exponential relationship, with a minimum 
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value of 41.2 μs set by fitting the parameters of the Bayesian model to the behavioral 

data, as described above. Using this type of noise, the model predicted direction estimates 

that became increasingly biased toward zero as interaural correlation decreased (Fig. 3b), 

consistent with the owl's behavior (Fig. 3c). The model predictions show a qualitative 

match with observations of the owl's sound-localizing behavior when interaural 

correlation is manipulated21. In particular, direction estimates of the model and the owl 

decrease toward zero for interaural correlation values less than 0.5 (Fig. 3b,c). Given the 

asymmetry in the owl's estimates for directions on the left and right sides (Fig. 3c), the 

model captures the central feature of the owl's behavior, which is an increased bias 

toward zero as interaural correlation decreases. 

Assessment of Bayesian model parameters 

The presence of a prior distribution that emphasizes central directions is necessary to 

explain the owl's localization behavior.  The sinusoidal direction-dependence of ITD 

produces a likelihood function that has multiple equivalent peaks for any given ITD (Fig. 

1b).  Therefore, estimates of a given source direction computed from the likelihood 

function alone would be expected to fall into multiple distinct regions, rather than into a 

single cluster as is seen in the owl's behavior1,2.   As a consequence, a maximum 

likelihood estimator fails to capture the bias in the owl’s localization behavior (Fig. 4a). 

The prior distribution must be incorporated into the estimation process to induce the owl 

to consistently localize directions near the more central of the two possible directions.  

The standard deviation of the prior in the model was 23.3 degrees.  This causes the 

estimator to favor directions near the center of gaze, but is wide enough to allow for 
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detection of sources in the periphery. Support for this shape of the prior is given by the 

observation that a Bayesian estimator using a wider or flat prior fails to capture the bias 

in the owl’s localization behavior (Fig. 4b,c).  

The likelihood function used in the Bayesian model is consistent with the natural 

variation of ITD.  The standard deviation of the noise corrupting ITD was 41.2 μs.  To 

assess the plausibility of this value, we used barn owl head-related transfer functions19 to 

determine the natural variability in ITD of the signals received at the ears.  For horizontal 

directions ranging over the frontal hemisphere, we measured the variability of ITD 

computed for a bank of natural sounds at different elevations23.  Across horizontal 

directions, the median standard deviation of ITD was 24.4 μs (19 directions, interquartile 

range 6.7 μs).  The standard deviation of ITD did not vary with the magnitude of the 

horizontal direction (r2 = 0.02, P = 0.68).  While lower than the standard deviation of the 

noise corrupting ITD in the model, this value does not take into account variability due to 

environmental conditions16 nor from the neural computation of ITD17,18. 

Neural decoding 

We then asked how the Bayesian estimate of source direction could be implemented in 

the neural circuitry of the owl's auditory system.  Neural decoding of directional variables 

has often been investigated using the population vector24,25.  The population vector is 

obtained by averaging the preferred direction vectors of neurons in the population, 

weighted by the firing rates of the neurons (Fig. 1c).  It can be shown that if (i) the neural 

tuning curves are proportional to the likelihood function, (ii) the preferred directions are 

distributed according to the prior, and (iii) the neural population is large enough, then the 
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population vector will be consistent with the Bayesian estimate26 (Supplementary 

Discussion).   

To test the consistency of a population vector decoder with a Bayesian estimator, we 

constructed a model network using 500 neurons with preferred directions drawn from the 

prior distribution and tuning curves that are proportional to the likelihood function.  

Example tuning curves from the model network are shown in Figure 6a. We computed 

the population vector estimate of direction under both the normal condition and the ruff-

removed condition2.  In each simulation, the firing rates of neurons were drawn 

independently from Poisson distributions with mean values given by the values of the 

tuning curves.   

The population vector estimate using the model network shown in Figure 6a matched 

both the owl's behavior and the Bayesian estimate in both conditions (Fig. 1e,g), with an 

error of less than 2 degrees. The RMSE between the average behavior and the average 

population vector estimate was 1.44 deg in the normal condition and 0.39 deg in the ruff 

removal condition. The RMSE between the average estimates of the Bayesian model and 

the population vector was 0.22 deg in the normal condition and 0.05 deg in the ruff 

removal condition.  

We examined the accuracy of the population vector in approximating a Bayesian estimate 

as a function of population size and correlation of firing-rate variability. In these 

simulations, firing rates of the neurons were drawn from a multivariate Gaussian 

distribution with mean given by the firing-rate values of the tuning curves and correlation 

matrix with entries that depend on the product of the tuning curve values between 
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neurons.  The Gaussian model with multiplicative noise produces neural responses where 

the variance increases with the mean firing rate, as in the Poisson case.  The Gaussian 

model was used for computational convenience. In the behaviorally relevant range, the 

RMSE in the approximation of the Bayesian estimate by the population vector decreased 

as 1/ N , where N is the number of neurons, for each value of the correlation coefficient 

(Fig. 5).  Given the large number of neurons in the output layers of the OT, the 

population vector decoder of OT responses should approximate the Bayesian estimate 

with an error of less than two degrees. The robustness of this approximation indicates that 

the structure of the neural noise will not determine the form of the population code that 

produces the optimal representation of auditory space. 

Predicting the neural representation 

We used the neural population model to predict the representation of auditory space in 

the owl's OT. The model consists of a population of neurons with preferred directions 

covering the frontal hemisphere, but with greatest density near the center of gaze (Fig. 

6a). Note that the population vector estimates shown in Figure 1 were computed from 

the same population. As a function of stimulus direction, the tuning curves were 

approximately Gaussian-shaped with widths that increase with eccentricity (Fig. 6a,b), in 

accordance with the Gaussian likelihood function that describes the statistical dependence 

of ITD on sound-source direction.   

The nonuniform population predicted by the model is consistent with the representation 

of auditory space in the owl's OT.  First, tuning curves of midbrain neurons can be 

described using Gaussian functions27.  Second, the widths of the tuning curves in the 
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model increase with eccentricity and fall directly in the bounds measured for space-

specific neurons in OT28 (Fig. 6b).  The increase in width with eccentricity is due to the 

sinusoidal function of direction that appears in the likelihood function.  This occurs 

because the sine function describing the mapping from direction to ITD changes faster 

for directions near the center of gaze than for directions near the side of the head.  

Therefore, for preferred directions near the center of gaze, a small range of source 

directions will produce ITDs that are near the preferred ITD of the neuron.  In contrast, 

for preferred directions near the side of the head, a larger range of directions will produce  

ITDs that are near the preferred ITD of the neuron, thus leading to wider tuning curves 

for neurons with peripheral preferrred directions.  Finally, the distribution of preferred 

directions in the model is consistent with the the experimental distribution; that is, with 

the auditory space map in the OT.  Assuming that cell density is homogeneous in OT, the 

physical distance between points corresponding to different preferred directions in OT’s 

auditory space map will be proportional to the number of cells that lie between those 

directions. Thus, the shape of the auditory-space map on each side should be described by 

a curve that is proportional to the cumulative distribution function of the unilateral 

density of preferred directions.  To determine the unilateral distribution, we fit the 

relationship between preferred direction and position in the OT space map measured in 

ref. 28 with a curve that is proportional to a cumulative Gaussian-distribution function 

(Fig. 6c; mean 6.8, s.d.  20.3 degrees).  The bilateral density of preferred direction was 

obtained by linearly combining two Gaussians with means given by the estimated 

unilateral value and its negative.  The density of preferred directions predicted by the 

Bayesian model is consistent with the measured density in OT, where locations 
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representing central directions cover a greater area than locations representing peripheral 

directions (Fig. 6d; measured density: mean 0, s.d. 20.3 deg; Bayesian model density: 

mean 0, s.d. 23.3 deg.).  Therefore, the shapes of the tuning curves in OT are consistent 

with the likelihood function and the shape of the auditory space map is consistent with 

the prior distribution.  

DISCUSSION 

We have described a principle that explains both the sound-localizing behavior and the 

neural representation of auditory space in the owl. This principle is the implementation of 

approximate Bayesian inference using a population vector. The idea that source direction 

is decoded from the auditory space map using a population vector revises the classical 

place-coding model of sound localization in barn owls12,13.  To decode source direction, 

the population vector utilizes the entire OT population and takes into account the 

overrepresentation of frontal space. Thus, the population-vector estimate is biased toward 

the center of gaze by the uneven distribution of preferred directions (Fig. 1c). This model 

provides an explanation for the owl's underestimation of source direction, which is a 

common perceptual bias in sound localization across species3–6.   

The model presented here provides a theoretical explanation for the representation of 

auditory space in the owl that is more complete than previous theories.  Previously, 

principles of optimal coding used to explain the neural representation of ITD have not 

addressed the issue of behavior29. Here, we used optimal Bayesian inference and 

naturalistic constraints to analyze the function of the localization pathway in the owl. 

Having localization behavior that is consistent with the Bayesian estimator ensures that 
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the owl will strike sources near the center of gaze more accurately, at the expense of 

underestimating the direction of sound sources in the periphery. Note that, even though 

the prior emphasizes central directions, sounds arising from behind the owl will lead to 

head turns toward the sound source and allow for localization after multiple head turns 

(Fig. 1). Given that owls strongly rely on capturing animals in the dark and the inherent 

uncertainty in sound localization cues, maximizing the ability to localize within the 

sound-localizing ‘fovea’ may be the key for survival.  

In our analysis of the owl’s behavior, we find that a prior that emphasizes central 

directions is necessary to explain the observed bias in sound localization. The shape of 

the prior in the model comes directly from fitting the model to the behavioral data.  The 

need for the prior is due to the ambiguous direction-dependence of ITD2. The presence of 

a bias in localization is not restricted to the case of the owl; the dependence of sound 

localization on a prior that emphasizes central directions is consistent with the biases seen 

in sound localization across species3–6. In fact, multiple studies of human lateralization of 

tones, narrowband sounds, and broadband sounds show that a centrality weighting 

function is necessary to predict human behavior30.  Whether, and how, a prior is used in 

the sound localization behavior of other species remain open questions. 

Behavioral experiments show that when the owl is engaged in capturing prey, the actual 

distribution of target directions is consistent with the centrality prior in the Bayesian 

model20 (Fig. 2).  This behavior alternates between chase and periods when the owl and 

prey are immobile.  The majority of the time when the owl and its prey are immobile, 

before a sound produced by the prey initiates chase, occurs with the owl facing its prey.  

The owl likely integrates information during the chase and utilizes multiple head turns to 



 13

accurately track prey, and thereby ends up facing the prey more often than not. This 

indicates that sounds from a target source that the owl is engaged in capturing may, in 

natural conditions, occur with greatest frequency from directions in front of the owl. 

Thus, considering sources of interest that the owl engages with31, sound directions can 

show a distribution consistent with the prior20. Certainly, the initial location of arbitrary 

sound sources should be uniformly distributed in space. Even so, maximizing the ability 

to localize within within the sound-localizing ‘fovea’ may represent an efficient strategy, 

across trials.  

The model presented here describes the owl’s localization behavior in the horizontal 

dimension using ITD as the sound localization cue.  A complete account of the owl’s 

sound localization behavior will require additional sound localization cues, integration of 

auditory and visual information, and temporal integration of sensory signals.  These 

computations can naturally be incorporated into a Bayesian framework. Although the 

general solution will require additional components, this model describes how the owl 

solves the ethologically relevant problem of determining the horizontal direction of a 

sound source13.  

Bayesian approaches to modeling perception and behavior have a powerful theoretical 

basis and may serve as a unifying principle across species and modalities.  A significant 

open question has been how probabilistic information, in particular a prior distribution, 

can be represented in a neural system32.  It has been suggested that a prior can be 

implemented in the distribution of neural tuning curves26,32,33.  In particular, maximizing 

the mutual information between a stimulus and a population response leads to a 

population code where the prior is encoded in the density of preferred stimuli and the 
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widths of the tuning curves33.  In addition, a population of Poisson neurons with divisive 

normalization can implement Bayesian inference if the tuning curves are proportional to 

the likelihood and the preferred stimuli are drawn from the prior density26. The analysis 

here uses a similar argument to show that a population vector can implement an 

approximate Bayesian inference.  Our analysis also predicts that the prior is encoded in 

the density of preferred stimuli and the shapes of the tuning curves are determined solely 

by the likelihood function. The population vector implementation of Bayesian inference 

does not require a particular distribution of neural noise.  The prediction of both the 

distribution of preferred stimuli and the shapes of the tuning curves were supported by 

experimental data (Fig. 6).  This analysis provides a reinterpretation of a neural decoder 

that is generally viewed as suboptimal for heterogeneous populations34,35.  We note that a 

Bayesian estimate from the posterior distribution conditioned on the neural responses 

does not match the owl's behavior unless the distribution of model preferred directions is 

wider than the measured distribution in OT and the model tuning curves are much sharper 

than the measured tuning curves (Supplementary Fig. 2). The conditions for optimality 

of the population vector, though not trivial, are likely to occur in other cases, as non-

uniform representations of stimulus parameters are common26,33,36. For example, the 

oblique effect in visual perception has been described as Bayesian inference with a prior 

emphasizing cardinal axes37 and distributions of preferred locations are non-uniform, 

with a higher density of cells on the horizontal and vertical axes26,33,38. This provides a 

solution to what has been an open issue in applying Bayesian models across multiple 

levels of analysis from behavior to neural implementation.  
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FIGURE LEGENDS 

Figure 1: Models of the owl's behavior. (a) Owl's behavior, modified from ref. 2. The 

solid gray line is the identity. (b) The Bayesian estimate is the direction of the vector 

found by averaging unit vectors in each direction weighted by the posterior density 

(medium gray).  The posterior is proportional to the product of the likelihood (light gray) 

and the prior (black).  All probablity densities were normalized by their peak for display.  

The source direction is 70 degrees, at one of the peaks of the likelihood. (c) The 

population vector (gray) is the average of the preferred direction vectors of the neurons, 

weighted by the firing rates (black). (d) Measured relationship between direction and 

interaural time difference (ITD) (black) under normal conditions2, along with the 

sinusoidal approximation (gray). (e) Owl's behavior2 (medium gray circle, dotted line), 

Bayesian estimator (black square, solid line), and population vector (light gray diamond, 

dashed line) under the normal condition. Error bars represent the standard deviation over 
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trials. (f) Measured relationship between direction and ITD (black) under ruff-removed 

conditions2, along with the sinusoidal approximation (gray). (g) Owl's behavior2, 

Bayesian estimator, and population vector under the ruff-removed condition.  

Figure 2: Measured prior distribution of target direction.  The relative frequency of 

different oppositions between an owl and two types of prey (vole on the left and spiny 

mouse on the right) during prey capture (modified from Fig. 3 in ref. 20).  Front is the 

prey positioned at 0 deg relative to the owl’s center of gaze, front-side corresponds to the 

regions centered at ± 45 deg, side corresponds to the regions centered at ± 90 deg, side-

back corresponds to the regions centered at ± 135 deg, and back corresponds to the region 

centered at 180 deg. 

Figure 3: Predicted behavior under varying levels of interaural correlation.  (a) 

Variability of ITD with interaural correlation.  ITD was estimated from the peak of the 

cross-correlation of the left and right input signals.  (b) Direction estimates from the 

Bayesian model using levels of the standard deviation of the noise corrupting ITD that 

follow the exponential relationship shown in (a) with a minimum value of 41.2 μs, 

estimated from the behavioral data ( s.d.= 219.34 exp(−11.31× IC) + 41.2, where IC is the 

interaural correlation).  Symbols correspond to four different source directions (± 55, ± 

75 degrees). Error bars represent the standard deviation over trials. (c) The predicted 

trend is similar to observations in behaving owls (modified from Fig. 1 in ref. 21). 

Figure 4: Performance of alternative estimators. (a) Owl’s behavior2 (bold black) and 

maximum likelihood (ML) estimate (gray). The thin black line is the identity. Error bars 

represent the standard deviation over trials. (b) Owl’s behavior2 (bold black) and 
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Bayesian estimate using the mean of the posterior distribution when using a Gaussian-

shaped prior that is wider than the optimal value (gray). (c) Owl’s behavior2 (bold black) 

and Bayesian estimate using the mean of the posterior distribution when using a flat prior 

(gray).  

Figure 5: Population vector approximation to Bayesian estimator. The root-mean-square 

(RMS) difference in direction estimates between the population vector and the Bayesian 

estimator for different correlation coefficients in the noise between neurons (black circles 

0.25, white circles 0.5, black squares 0.75).  

Figure 6: Predicted midbrain representation of auditory space. (a) Example tuning curves 

in the model optic tectum (OT) population. (b) Plot of model tuning curve half-widths 

(black circles) along with experimental data measured in the OT28 (solid lines, showing 

plus/minus 1 standard deviation, as reported in ref. 28). Gray and white circles 

correspond to the tuning curves highlighted in (a). The two outlier points correspond to 

receptive fields in the periphery that wrap around the owl's head, and which are indeed 

observed in the owl's OT data as well28. (c) Measured values of space map positions of 

OT neurons (modified from ref. 28)  together with the fit by a scaled cumulative 

Gaussian distribution function (solid line). (d) The model prior density of preferred 

direction (dashed gray) and the measured bilateral density (solid black) found by 

combining the unilateral densities derived from the cumulative Gaussian in (c).  

 

METHODS 

Behavior 
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Behavioral data were provided by ref. 2.  The mean and standard deviation of direction 

estimates are taken from the combined results for three owls.  

ITD model 

ITD was modeled as a sinusoidal function of source direction, corrupted by Gaussian 

noise.  The amplitude and frequency of the sinusoid Asin(ωθ)  were fit to the mapping 

between azimuth and the ITD in the signals received near the tympanic membranes 

measured by ref. 2.  The period corresponds to the interpeak distance and the amplitude is 

the average magnitude of the positive and negative extrema. The fit was performed for 

the mapping measured for an owl in the normal condition and for the owl after the facial 

ruff feathers were removed2. 

Bayesian estimate of direction 

The Bayesian estimate of stimulus direction θ  from ITD is given by the mean of θ  under 

the posterior distribution p(θ | ITD) . The mean direction is found by first computing the 

vector that points in the mean direction as 

BV = u(θ)p(θ | ITD)dθ ∝
−π

π

 u(θ) p(ITD |θ)p(θ)dθ
−π

π

 , where u(θ) is a unit vector pointing 

in direction θ  and the proportionality follows from Bayes' rule: 

p(θ | ITD) = p(ITD |θ)p(θ)

p(ITD)
. 

The direction estimate is computed from the mean vector using the inverse tangent 

function as 
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θ =

arctan(
BV (2)

BV (1)
);BV (1) > 0

arctan(
BV (2)

BV (1)
) + π;BV (2) ≥ 0,BV (1) < 0

arctan(
BV (2)

BV (1)
) − π;BV (2) ≤ 0,BV (1) < 0

 

 

 
  

 

 
 
 

. 

Alternative models of behavior: flat prior and maximum likelihood 

To test the performance of a Bayesian estimator with a flat prior, we used a prior 

distribution that was constant over the circle. 

The maximum likelihood estimate is the direction that maximizes the likelihood function 

p(ITD |θ) . 

Natural variability of ITD 

We measured the variability in the ITD of the signals received at the owl's ears due to 

signal type and elevation using head-related transfer functions19 (HRTF). The HRTF is 

the transfer function that describes the mapping from a sound signal at a direction in 

space to the sound signal measured near the tympanic membrane.   For each horizontal 

direction, we computed the ITD in the signals obtained by filtering a source signal with 

HRTFs at the horizontal direction and over the range of elevations covering the frontal 

hemisphere in five degree steps, measured in double polar coordinates. Source signals 

were taken from a set of 200 natural sound segments obtained by randomly selecting 20 

segments of 100 ms each from 10 natural sound signals23. ITD was computed from the 

peak in the cross-correlation of the left and right signals, with the range of possible ITDs 

limited to ±260 μs.   



 20

We used the cross-correlation model of ref. 21, where input signals are first filtered with 

a bank of gammatone bandpass filters, then cross-correlation is performed in each 

frequency channel, and finally the resulting cross-correlation outputs from each 

frequency channel are linearly combined using a frequency-dependent weighting that 

matches the owl's sensitivity to frequency.  

Variability of ITD and interaural correlation 

We used the cross-correlation model to determine how variability in ITD depends on 

interaural correlation. Interaural correlation was varied by adding independent noise to 

the left and the right ear input signals.  The noise and input signals were Gaussian signals 

with a flat spectrum up to 12 kHz21.  Here, we are calculating the variability in ITD solely 

due to interaural correlation; this dependence does not depend on sound direction in the 

model. Therefore, the ITD of the input signals was 0 μs. Interaural correlation was given 

by 1/(1+ k 2)  where k is the ratio of the root-mean-square amplitudes of the noise and 

target sound signals21. 

Optic tectum model 

The model consisted of a population of N direction-selective neurons.  The preferred 

directions were drawn independently from the Gaussian-shaped prior distribution on 

direction.  The prior density is given by p(θ) = 1

Z
exp(− 1

2σ 2
θ 2) , where the constant Z 

normalizes the density over the circle. 

The neural tuning curves, as a function of ITD, are proportional to the likelihood function 

and are given by 
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an (ITD) = amax exp(− 1

2ση
2

(ITD - μn )2) , where μn = Asin(ωθn )  and θn  is the preferred 

direction.  Responses to a given stimulus direction were simulated by first generating an 

ITD value according to ITD = Asin(ωθ) + η , where η is drawn from a zero-mean 

Gaussian distribution with variance ση
2 .  The tuning curves as a function of direction are 

found by inserting the sinusoidal mapping from direction to ITD into the above equation 

and are given by an (ITD(θ)) = amax exp(− 1

2ση
2

(Asin(ωθ) - μn )2) . Note that the width 

parameter ση
2  is the same for all neurons. The maximum firing rate was set to 10 spikes/s.  

During simulations, the neurons have independent Poisson distributed firing rates with 

mean values given by the neural tuning curves an (ITD(θ)).  

To determine the density of preferred directions in OT, we obtained measured pairs of 

preferred direction and auditory space map position from Figure 13A in ref. 28 using the 

Matlab function grabit.m (MATLAB Central, Mathworks).   

Population vector 

The population vector is computed as a linear combination of the preferred direction 

vectors of the neurons, weighted by the firing rates 

PV (ITD) = 1

N
rn (ITD)u(θn )

n=1

N

 , 

where u(θn ) is a unit vector pointing in the nth neuron's preferred direction and rn (ITD) is 

the firing rate of the nth neuron, drawn either from a Poisson or Gaussian distribution as 
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described above.  The direction estimate is found by computing the direction of the 

population vector using the inverse tangent, as described above for the Bayesian estimate.   

Modeling correlated variability 

To test the effect of correlated firing rate variability on the approximation of the Bayesian 

estimator by the population vector, simulations were performed where the neurons have 

independent Gaussian distributed firing rates with mean values given by the neural tuning 

curves an (ITD(θ)) and covariance matrix Σ with entries 

Σij (ITD(θ)) = (δij + ρ(1−δij )) ai(ITD(θ))a j (ITD(θ)) , where ρ  is the correlation 

coefficient between neurons and δij =1 if i = j  and δij = 0 if i ≠ j .  This form of the 

covariance matrix causes the variance to equal the mean, as in the Poisson model. 

For all simulations, direction estimates were obtained for the population vector and the 

Bayesian estimators over 150 trials. 
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