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CALOGERO-MOSER VERSUS KAZHDAN-LUSZTIG CELLS

CÉDRIC BONNAFÉ AND RAPHAËL ROUQUIER

1. Introduction

In [KaLu], Kazhdan and Lusztig developed a combinatorial theory associated with Coxeter
groups. They defined in particular partitions of the group in left and two-sided cells. For Weyl
groups, these have a representation theoretic interpretation in terms of primitive ideals, and
they play a key role in Lusztig’s description of unipotent characters for finite groups of Lie
type [Lu3]. Lusztig generalized this theory to Hecke algebras of Coxeter groups with unequal
parameters [Lu2, Lu4].

We propose a definition of left cells and two-sided cells for complex reflection groups, based
on ramification theory for Calogero-Moser spaces. These spaces have been defined via rational
Cherednik algebras by Etingof and Ginzburg [EtGi]. We conjecture that these coincide with
Kazhdan-Lusztig cells, for real reflection groups. Counterparts of families of irreducible char-
acters have been studied by Gordon and Martino [GoMa], and we provide here a version of left
cell representations. The Calogero-Moser cells are studied in detail in [BoRou].

2. Calogero-Moser spaces and cells

2.1. Rational Cherednik algebras at t = 0. Let us recall some constructions and results
from [EtGi]. Let V be a finite-dimensional complex vector space and W a finite subgroup of
GL(V ). Let S be the set of reflections of W , i.e., elements g such that ker(g−1) is a hyperplane.
We assume that W is a reflection group, i.e., it is generated by S.

We denote by S/ ∼ the quotient of S by the conjugacy action of W and we let {cs}s∈S/∼ be

a set of indeterminates. We put A = C[CS/∼] = C[{cs}s∈S/∼]. Given s ∈ S, let vs ∈ V (resp.
αs ∈ V ∗) be an eigenvector for s associated to the non-trivial eigenvalue.

The 0-rational Cherednik algebra H is the quotient of A⊗ T (V ⊕ V ∗)⋊W by the relations

[x, x′] = [ξ, ξ′] = 0

[ξ, x] =
∑

s∈S

cs
〈x, αs〉 · 〈vs, ξ〉

〈vs, αs〉
s for x, x′ ∈ V ∗ and ξ, ξ′ ∈ V.

We put Q = Z(H) and P = A⊗ S(V ∗)W ⊗ S(V )W ⊂ Q. The ring Q is normal. It is a free
P -module of rank |W |.
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2.2. Galois closure. Let K = Frac(P ) and L = Frac(Q). Let M be a Galois closure of the
extension L/K and R the integral closure of Q in M . Let G = Gal(M/K) and H = Gal(M/L).

Let P = SpecP = A
S/∼
C

× V/W × V ∗/W , Q = SpecQ the Calogero-Moser space, and R =
SpecR.

We denote by π : R → Q the quotient by H , and by Υ : Q → P and φ : P → A
S/∼
C

the
canonical maps. We put p = Υπ : R → P the quotient by G.

2.3. Ramification. Let r ∈ R be a prime ideal ofR. We denote byD(r) ⊂ G its decomposition
group and by I(r) ⊂ D(r) its inertia group.

We have a decomposition into irreducible components

R×P Q =
⋃

g∈G/H

Og, where Og = {(x, π(g−1(x)))|x ∈ R}

inducing a decomposition into irreducible components

V (r)×P Q =
∐

g∈I(r)\G/H

Og(r), where Og(r) = {(x, π(g−1g′(x)))|x ∈ V (r), g′ ∈ I(r)}.

2.4. Undeformed case. Let p0 = φ−1(0) =
∑

s∈S/∼ P cs. We have P/p0 = C[V ⊕ V ∗]W×W ,

Q/p0Q = C[V ⊕ V ∗]∆W , where ∆(W ) = {(w,w)|w ∈ W} ⊂ W ×W . A Galois closure of the
extension of C(p0Q) = C(V ⊕ V ∗)∆W over C(p0) = C(V ⊕ V ∗)W×W is C(V ⊕ V ∗)∆Z(W ).

Let r0 ∈ R above p0. Since p0Q is prime, we have G = D(r0)H = HD(r0) and I(r0) = 1. Fix

an isomorphism ι : C(r0)
∼→ C(V ⊕ V ∗)∆Z(W ) extending the canonical isomorphism of C(p0Q)

with C(V ⊕ V ∗)∆W .

The application ι induces an isomorphism D(r0)
∼→ (W ×W )/∆Z(W ), that restricts to an

isomorphism D(r0) ∩ H
∼→ ∆W/∆Z(W ). This provides a bijection G/H

∼→ (W × W )/∆W .
Composing with the inverse of the bijection W

∼→ (W × W )/∆W, w 7→ (w, 1), we obtain a

bijection G/H
∼→ W .

From now on, we identify the sets G/H and W through this bijection. Note that this
bijection depends on the choices of r0 and of ι. Since M is the Galois closure of L/K, we have
⋂

g∈G Hg = 1, hence the left action of G on W induces an injection G ⊂ S(W ).

2.5. Calogero-Moser cells.

Definition 2.1. Let r ∈ R. The r-cells of W are the orbits of I(r) in its action on W .

Let c ∈ A
S/∼
C

. Choose rc ∈ R with p(rc) = c̄ × 0 × 0. The rc-cells are called the two-sided

Calogero-Moser c-cells of W . Choose now rleftc ∈ R contained in rc with p(rleftc ) = c̄×V/W×0 ∈
P. The rleftc -cells are called the left Calogero-Moser c-cells of W . We have I(rleftc ) ⊂ I(rc).
Consequently, every left cell is contained in a unique two-sided cell.

The map sending w ∈ W to π(w−1(rc)) induces a bijection from the set of two-sided cells to
Υ−1(c× 0× 0).
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2.6. Families and cell multiplicities. Let E be an irreducible representation of C[W ]. We
extend it to a representation of S(V )⋊W by letting V act by 0. Let

∆(E) = e · IndH

S(V )⋊W (A⊗C E), where e =
1

|W |
∑

w∈W

w,

be the spherical Verma module associated with E. It is a Q-module.

Let c ∈ A
S/∼
C

and let ∆left(E) = (R/rleftc )⊗P ∆(E).

Definition 2.2. Given Γ a left cell, we define the cell multiplicity mΓ(E) of E as the multiplicity
of ∆left(E) at the component OΓ(r

left
c ).

Note that
∑

Γ mΓ(E) · [OΓ(r
left
c )] is the support cycle of ∆left(E).

There is a unique two-sided cell Λ containing all left cells Γ such that mΓ(E) 6= 0. Its image
in Q is the unique q ∈ Υ−1(c× 0 × 0) such that (Q/q)⊗Q ∆(E) 6= 0. The corresponding map
Irr(W ) → Υ−1(c×0×0) is surjective, and its fibers are the Calogero-Moser families of Irr(W ),
as defined by Gordon [Go1].

2.7. Dimension 1. Let V be a one-dimensional complex vector space, let d ≥ 2 and let W be
the group of d-th roots of unity acting on V . Let ζ = exp(2iπ/d), let s = ζ ∈ W and ci = csi
for 1 ≤ i ≤ d− 1. We have A = C[c1, . . . , cd−1] and

H = A〈x, ξ, s|sxs−1 = ζ−1x, sξs−1 = ζξ and [ξ, x] =

d−1∑

i=1

cis
i〉.

Let eu = ξx −
∑d−1

i=1 (1 − ζ i)−1cis
i. We have P = A[xd, ξd] and Q = A[xd, ξd, eu]. Define

κ1, . . . , κd = κ0 by κ1+· · ·+κd = 0 and
∑d−1

i=1 cis
i =

∑d−1
i=0 (κi−κi+1)εi, where εi =

1
d

∑d−1
j=0 ζ

ijsj .

We have A = C[κ1, . . . , κd]/(κ1 + · · ·+ κd).

The normalization of the Galois closure is described as follows. There is an isomorphism of
A-algebras

A[X, Y, Z]/
(
XY −

d∏

i=1

(Z − κi)
) ∼→ Q, X 7→ xd, Y 7→ ξd and Z 7→ eu.

We have an isomorphism of A-algebras

A[X, Y, λ1, . . . , λd]/
(
e1(λ) = e1(κ), . . . , ed−1(λ) = ed−1(κ), ed(λ) = ed(κ) + (−1)d+1XY

) ∼→ R

where Z = λd and where ei denotes the i−th elementary symmetric function. We have G = Sd,
acting by permuting the λi’s, and H = Sd−1.

Let p0 = (κ1, . . . , κd) ∈ SpecP and r0 = (κ1, . . . , κd, λ1 − ζλd, . . . , λd−1 − ζd−1λd) ∈ SpecR.

We have D(r0) = 〈(1, 2, . . . , d)〉 ⊂ Sd and C(r0) = C(X, Y, λd = d
√
XY ) = C(X, Y, Z =

d
√
XY ). The composite bijection D(r0)

∼→ G/H
∼→ W is an isomorphism of groups given by

(1, . . . , d) 7→ s.

Fix c ∈ Cd−1 and let κ1, . . . , κd ∈ C corresponding to c. Consider r = rc or rleftc as in §2.5.
Then I(r) is the subgroup of Sd stabilizing (κ1, . . . , κd). The left c-cells coincide with the two-
sided c-cells and two elements si and sj are in the same cell if and only if κi = κj . Finally, the
multiplicity mΓ(det

j) is 1 if sj ∈ Γ and 0 otherwise.
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3. Coxeter groups

3.1. Kazhdan-Lusztig cells. Following Kazhdan-Lusztig [KaLu] and Lusztig [Lu2, Lu4], let
us recall the construction of cells.

We assume here V is the complexification of a real vector space VR acted on by W . We
choose a connected component C of VR −

⋃

s∈S ker(s− 1) and we denote by S the set of s ∈ S
such that ker(s− 1)∩ C̄ has codimension 1 in C̄. This makes (W,S) into a Coxeter group, and
we denote by l the length function.

Let Γ be a totally ordered free abelian group and let L : W → Γ be a weight function, i.e.,
a function such that L(ww′) = L(w) + L(w′) if l(ww′) = l(w) + l(w′). We denote by vγ the
element of the group algebra Z[Γ] corresponding to γ ∈ Γ.

We denote by H the Hecke algebra of W : this is the Z[Γ]-algebra generated by elements Ts

with s ∈ S subject to the relations

(Ts − vL(s))(Ts + v−L(s)) = 0 and TsTtTs · · ·
︸ ︷︷ ︸

mst terms

= TtTsTt · · ·
︸ ︷︷ ︸

mst terms

for s, t ∈ S with mst 6=∞

where mst is the order of st. Given w ∈ W , we put Tw = Ts1 · · ·Tsn , where w = s1 · · · sn is a
reduced decomposition.

Let i be the ring involution of H given by i(vγ) = v−γ for γ ∈ Γ and i(Ts) = T−1
s . We denote

by {Cw}w∈W the Kazhdan-Lusztig basis of H . It is uniquely defined by the properties that
i(Cw) = Cw and Cw − Tw ∈

⊕

w′∈W Z[Γ<0]Tw′.

We introduce the partial order ≺L on W . It is the transitive closure of the relation given
by w′ ≺L w if there is s ∈ S such that the coefficient of Cw′ in the decomposition of CsCw in
the Kazhdan-Lusztig basis is non-zero. We define w ∼L w′ to be the corresponding equivalence
relation: w ∼L w′ if and only if w ≺L w′ and w′ ≺L w. The equivalence classes are the left
cells. We define ≺LR as the partial order generated by w ≺LR w′ if w ≺L w′ or w−1 ≺L w′−1.
As above, we define an associated equivalence relation ∼LR. Its equivalence classes are the
two-sided cells.

When Γ = Z, L = l, and W is a Weyl group, a definition of left cells based on primitive
ideals in enveloping algebras was proposed by Joseph [Jo]: let g be a complex semi-simple Lie
algebra with Weyl group W . Let ρ be the half-sum of the positive roots. Given w ∈ W , let Iw
be the annihilator in U(g) of the simple module with highest weight −w(ρ)− ρ. Then, w and
w′ are in the same left cell if and only if Iw = Iw′.

3.2. Representations and families. Let Γ be a left cell. Let W≤Γ (resp. W<Γ) be the set
of w ∈ W such that there is w′ ∈ Γ with w ≺L w′ (resp. w ≺L w′ and w 6∈Γ). The left cell
representation of W over C associated with Γ [KaLu, Lu4] is the unique representation, up to
isomorphism, that deforms into the left H-module

( ⊕

w∈W≤Γ

Z[Γ]Cw

)

/
( ⊕

w∈W<Γ

Z[Γ]Cw

)

.

Lusztig [Lu1, Lu4] has defined the set of constructible characters of W inductively as the
smallest set of characters with the following properties: it contains the trivial character, it is
stable under tensoring by the sign representation and it is stable under J-induction from a
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parabolic subgroup. Lusztig’s families are the equivalences classes of irreducible characters of
W for the relation generated by χ ∼ χ′ if χ and χ′ occur in the same constructible character.
Lusztig has determined constructible characters and families for all W and all parameters.

Lusztig has shown for equal parameters, and conjectured in general, that the set of left cell
characters coincides with the set of constructible characters.

3.3. A conjecture. Let c ∈ RS/∼. Let Γ be the subgroup of R generated by Z and {cs}s∈S .
We endow it with the natural order on R. Let L : W → Γ be the weight function determined
by L(s) = cs if s ∈ S.

The following conjecture is due to Gordon and Martino [GoMa]. A similar conjecture has
been proposed independently by the second author1. It is known to hold for types An, Bn, Dn

and I2(n) [Go2, GoMa, Be, Ma1, Ma2].

Conjecture 3.1. The Calogero-Moser families of irreducible characters of W coincide with the
Lusztig families.

We propose now a conjecture involving partitions of elements of W , via ramification. The
part dealing with left cell characters could be stated in a weaker way, using Q and not R, and
thus not needing the choice of prime ideals, by involving constructible characters.

Conjecture 3.2. There is a choice of rleftc ⊂ rc such that

• the Calogero-Moser two-sided cells (resp. left cells) coincide with the Kazhdan-Lusztig
two-sided cells (resp. left cells)

• the representations
∑

E∈Irr(W )mΓ(E)E, where Γ is a Calogero-Moser left cell, coincide
with the left cell representations of Kazhdan-Lusztig.

Various particular cases and general results supporting Conjecture 3.2 are provided in [BoRou].
In particular, the conjecture holds for W = B2, for all choices of parameters.
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[BoRou] C. Bonnafé and R. Rouquier, Calogero-Moser cells, in preparation.
[EtGi] P. Etingof and V. Ginzburg, Symplectic reflection algebras, Calogero-Moser space and deformed Harish-

Chandra homomorphism, Inv. Math. 147 (2002), 243–348.
[Go1] I. Gordon, Baby Verma modules for rational Cherednik algebras, Bull. London Math. Soc. 35 (2003),

321–336.
[Go2] I. Gordon, Quiver varieties, category O for rational Cherednik algebras, and Hecke algebras, Int. Math.

Res. Papers (2008), Article ID rpn006, 69 pages.
[GoMa] I. Gordon and M. Martino, Calogero-Moser space, restricted rational Cherednik algebras, and two-sided

cells, Math. Res. Lett. 16 (2009), 255–262.
[Jo] A. Joseph, Goldie rank in the enveloping algebra of a semisimple Lie algebra. I, II, J. Algebra 65

(1980), 269–283, 284–306.
[KaLu] D. Kazhdan and G. Lusztig, Representations of Coxeter groups and Hecke algebras, Inv. Math. 53

(1979), 165–184.
[Lu1] G. Lusztig, A class of irreducible representations of a Weyl group. II, Indag. Math. 44 (1982), 219–226.
[Lu2] G. Lusztig, Left cells in Weyl groups, in “Lie group representations, I”, 99–111, Lecture Notes in Math.

1024, Springer, Berlin, 1983

1Talk at the Enveloping algebra seminar, Paris, December 2004.
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