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We design a data-dependent metric in R d and use it to define the knearest neighbors of a given point. Our metric is invariant under all affine transformations. We show that, with this metric, the standard k-nearest neighbor regression estimate is asymptotically consistent under the usual conditions on k, and minimal requirements on the input data.

Introduction

The prediction error of standard nonparametric regression methods may be critically affected by a linear transformation of the coordinate axes. It is typically the case for the popular k-nearest neighbor (k-NN) predictor (Fix and Hodges [START_REF] Fix | Discriminatory analysis. Nonparametric discrimination: Consistency properties[END_REF][START_REF] Fix | Discriminatory analysis: Small sample performance[END_REF], Cover and Hart [START_REF] Cover | Nearest neighbor pattern classification[END_REF], Cover [START_REF] Cover | Estimation by the nearest neighbor rule[END_REF][START_REF] Cover | Rates of convergence for nearest neighbor procedures[END_REF]), where a mere rescaling of the coordinate axes has a serious impact on the capabilities of this estimate. This is clearly an undesirable feature, especially in applications where the data measurements represent physically different quantities, such as temperature, blood pressure, cholesterol level, and the age of the patient. In this example, a simple change in, say, the unit measure of the temperature parameter will lead to totally different results, and will thus force the statistician to use a somewhat arbitrary preprocessing step prior to the k-NN estimation process. Furthermore, in several practical implementations, one would like, for physical or economical reasons, to supply the freshly collected data to some machine without preprocessing.

In this paper, we discuss a variation of the k-NN regression estimate whose definition is not affected by affine transformations of the coordinate axes. Such a modification could save the user a subjective preprocessing step and would save the manufacturer the trouble of adding input specifications.

The data set we have collected can be regarded as a collection of independent and identically distributed R d × R-valued random variables D n = {(X 1 , Y 1 ), . . . , (X n , Y n )}, independent of and with the same distribution as a generic pair (X, Y ) satisfying E|Y | < ∞. The space R d is equipped with the standard Euclidean norm . . For fixed x ∈ R d , our goal is to estimate the regression function r(x) = E[Y |X = x] using the data D n . In this context, the usual k-NN regression estimate takes the form

r n (x; D n ) = 1 k n kn i=1 Y (i) (x),
where (X (1) (x), Y (1) (x)), . . . , (X (n) (x), Y (n) (x)) is a reordering of the data according to increasing distances X ix of the X i 's to x. (If distance ties occur, a tie-breaking strategy must be defined. For example, if X ix = X jx , X i may be declared "closer" if i < j, i.e., the tie-breaking is done by indices.) For simplicity, we will suppress D n in the notation and write r n (x) instead of r n (x; D n ). Stone [START_REF] Stone | Consistent nonparametric regression[END_REF] showed that, for all p ≥ 1, E[r n (X)-r(X)] p → 0 for all possible distributions of (X, Y ) with E|Y | p < ∞, whenever k n → ∞ and k n /n → 0 as n → ∞. Thus, the k-NN estimate behaves asymptotically well, without exceptions. This property is called L p universal consistency.

Clearly, any affine transformation of the coordinate axes influences the k-NN estimate through the norm . , thereby illuminating an unpleasant face of the procedure. To illustrate this remark, assume that a nontrivial affine transformation T : z → Az+b (that is, a nonsingular linear transformation A followed by a translation b) is applied to both x and X 1 , . . . , X n . Examples include any number of combinations of rotations, translations, and linear rescalings. Denote by

D ′ n = (T (X 1 ), Y 1 ), . . . , (T (X n ), Y n ) the transformed sample. Then, for such a function T , one has r n (x; D n ) = r n (T (x); D ′ n ) in general, whereas r(X) = E[Y |T (X)]
since T is bijective. Thus, to continue our discussion, we are looking in essence for a regression estimate r n with the following property:

r n (x; D n ) = r n (T (x); D ′ n ). (1.1)
We call r n affine invariant. Affine invariance is indeed a very strong but highly desirable property. In R d , in the context of k-NN estimates, it suffices to be able to define an affine invariant distance measure, which is necessarily data-dependent. With this objective in mind, we develop in the next section an estimation procedure featuring (1.1) which in form coincides with the k-NN estimate, and establish its consistency in Section 3. Proofs of the most technical results are gathered in Section 4.

It should be stressed that what we are after in this article is an estimate of r which is invariant by an affine transformation of both the query point x and the original regressors X 1 , . . . , X n . When the sole regressors are subject to such a transformation, it is then more natural to talk of "affine equivariant" regression estimates rather than of "affine invariant" ones; this is more in line with the terminology used, for example, in Ollila, Hettmansperger, and Oja [START_REF] Ollila | Estimates of regression coefficients based on sign covariance matrix[END_REF] and Ollila, Oja, and Koivunen [START_REF] Ollila | Estimates of regression coefficients based on lift rank covariance matrix[END_REF]. These affine invariance and affine equivariance requirements, however, are strictly equivalent.

There have been many attempts in the nonparametric literature to achieve affine invariance. One of the most natural ones relates to the so-called transformation-retransformation proposed by Chakraborty, Chaudhuri, and Oja [START_REF] Chakraborty | Operating transformation retransformation on spatial median and angle test[END_REF]. That method and many variants have been discussed in texts such as [START_REF] Devroye | A Probabilistic Theory of Pattern Recognition[END_REF] and [START_REF] Györfi | A Distribution-Free Theory of Nonparametric Regression[END_REF] for pattern recognition and regression, respectively, but they have also been used in kernel density estimation (see, e.g., Samanta [START_REF] Samanta | A note on uniform strong convergence of bivariate density estimates[END_REF]). It is worth noting that, computational issues aside, the transformation step (i.e., premultiplication of the regressors by M-1 n , where Mn is an affine equivariant scatter estimate) may be based on a statistic Mn that does not require finiteness of any moment. A typical example is the scatter estimate proposed in Tyler [START_REF] Tyler | A distribution-free M-estimator of multivariate scatter[END_REF] or Hettmansperger and Randles [START_REF] Hettmansperger | A practical affine equivariant multivariate median[END_REF]. Rather, our procedure takes ideas from the classical nonparametric literature using concepts such as multivariate ranks. It is closed in spirit of the approach of Paindaveine and Van Bever [START_REF] Paindaveine | Nonparametric consistent depth-based classifiers[END_REF], who introduce a class of depth-based classification procedures that are of a nearest neighbor nature.

There are also attempts at getting invariance to other transformations. The most important concept here is that of invariance under monotone transformations of the coordinate axes. In particular, any strategy that uses only the coordinatewise ranks of the X i 's achieves this. The onus, then, is to show consistency of the methods under the most general conditions possible. For example, using an L p norm on the d-vectors of differences between ranks, one can show that the classical k-NN regression function estimate is universally consistent in the sense of Stone [START_REF] Stone | Consistent nonparametric regression[END_REF]. This was observed by Olshen [START_REF] Olshen | Comments on a paper by C.J. Stone[END_REF], and shown by Devroye [START_REF] Devroye | A universal k-nearest neighbor procedure in discrimination[END_REF] (see also Gordon and Olshen [15,[START_REF] Gordon | Consistent nonparametric regression from recursive partitioning schemes[END_REF], Devroye and Krzyżak [START_REF] Devroye | New multivariate product density estimators[END_REF], and Biau and Devroye [START_REF] Biau | On the layered nearest neighbour estimate, the bagged nearest neighbour estimate and the random forest method in regression and classification[END_REF] for related works). Rules based upon statistically equivalent blocks (see, e.g., Anderson [START_REF] Anderson | Some nonparametric multivariate procedures based on statistically equivalent blocks[END_REF], Quesenberry and Gessaman [START_REF] Quesenberry | Nonparametric discrimination using tolerance regions[END_REF], Gessaman [START_REF] Gessaman | A consistent nonparametric multivariate density estimator based on statistically equivalent blocks[END_REF], Gessaman and Gessaman [START_REF] Gessaman | A comparison of some multivariate discrimination procedures[END_REF], and Devroye, Györfi, and Lugosi [START_REF] Devroye | A Probabilistic Theory of Pattern Recognition[END_REF]Section 21.4]) are other important examples of regression methods invariant with respect to monotone transformations of the coordinate axes. These methods and their generalizations partition the space with sets that contain a fixed number of data points each.

It would be interesting to consider in a future paper the possibility of morphing the input space in more general ways than those suggested in the previous few paragraphs of the present article. It should be possible, in principle, to define appropriate metrics to obtain invariance for interesting large classes of nonlinear transformations, and show consistent asymptotic behaviors.

An affine invariant k-NN estimate

The k-NN estimate we are discussing is based upon the notion of empirical distance. Throughout, we assume that the distribution of X is absolutely continuous with respect to the Lebesgue measure on R d and that n ≥ d.

Because of this density assumption, any collection

X i 1 , . . . , X i d (1 ≤ i 1 < i 2 < . . . < i d ≤ n) of d points among X 1 , .
. . , X n are in general position with probability 1. Consequently, there exists with probability 1 a unique hyperplane in R d containing these d random points, and we denote it by

H(X i 1 , . . . , X i d ).
With this notation, the empirical distance between d-vectors x and x ′ is defined as

ρ n (x, x ′ ) = 1≤i 1 <...<i d ≤n 1 {segment (x,x ′ ) intersects the hyperplane H(X i 1 ,...,X i d )} .
Put differently, ρ n (x, x ′ ) just counts the number of hyperplanes in R d passing through d out of the points X 1 , . . . , X n , that are separating x and x ′ . Roughly, "near" points have fewer intersections, see Figure 1 that depicts an example in dimension 2. x Figure 1: An example in dimension 2. The empirical distance between x and x ′ is 4. (Note that the hyperplane defined by the pair [START_REF] Chakraborty | Operating transformation retransformation on spatial median and angle test[END_REF][START_REF] Cover | Estimation by the nearest neighbor rule[END_REF] indeed cuts the segment (x, x ′ ), so that the distance is 4, not 3.) This hyperplane-based concept of distance is known in the multivariate rank tests literature as the empirical lift-interdirection function (Oja and Paindaveine [START_REF] Oja | Optimal signed-rank tests based on hyperplanes[END_REF], see also Randles [START_REF] Randles | A distribution-free multivariate sign test based on interdirections[END_REF], Oja [START_REF] Oja | Affine invariant multivariate sign and rank tests and corresponding estimates: A review[END_REF], and Hallin and Paindaveine [START_REF] Hallin | Optimal tests for multivariate location based on interdirections and pseudo-Mahalanobis ranks[END_REF] for companion concepts). It was originally mentioned (but not analyzed) in Hettmansperger, Möttönen, and Oja [START_REF] Hettmansperger | The geometry of the affine invariant multivariate sign and rank methods[END_REF], and independently suggested as an affine invariant alternative to ordinary metrics in the monograph of Devroye, Gÿorfi, and Lugosi [START_REF] Devroye | A Probabilistic Theory of Pattern Recognition[END_REF]Section 11.6]. We speak throughout of distance even though, for a fixed sample of size n, ρ n is only defined with probability 1 and is not a distance measure stricto sensu (in particular, ρ n (x, x ′ ) = 0 does not imply that x = x ′ ). Nevertheless, this empirical distance is invariant under affine transformations x → Ax + b, where A is some arbitrary nonsingular linear map and b any offset vector (see, for instance, Oja and Paindaveine [START_REF] Oja | Optimal signed-rank tests based on hyperplanes[END_REF]Section 2.4]). Now, fix x ∈ R d and let ρ n (x, X i ) be the empirical distance between x and some observation X i in the sample X 1 , . . . , X n . (That is, the number of hyperplanes in R d passing through d out of the observations X 1 , . . . , X n , that are cutting the segment (x, X i )). In this context, the k-NN estimate we are considering still takes the familiar form

r n (x) = 1 k n kn i=1 Y (i) (x),
with the important difference that now the data set (X 

p ≥ 1, if k n → ∞ and k n /n → 0, E |r n (x) -r(x)| p → 0 as n → ∞.
The following corollary is a consequence of Theorem 2.1 and the Lebesgue dominated convergence theorem.

Corollary 2.1 (Global L p consistency) Assume that X has a probability density, that Y is bounded, and that the regression function r is µ-almost surely continuous. Then, for all

p ≥ 1, if k n → ∞ and k n /n → 0, E |r n (X) -r(X)| p → 0 as n → ∞.
The conditions of Stone's universal consistency theorem given in [START_REF] Stone | Consistent nonparametric regression[END_REF] are not fulfilled for our estimate. For the standard nearest neighbor estimate, a key result used in the consistency proof by Stone is that a given data point cannot be the nearest neighbor of more than a constant number (say, 3 d ) other points. Such a universal constant does not exist after our transformation is applied. That means that a single data point can have a large influence on the regression function estimate. While this by itself does not imply that the estimate is not universally consistent, it certainly indicates that any such proof will require new insights. The addition of two smoothness constraints, namely that X has a density (without, however, imposing any continuity conditions on the density itself) and that r is µ-almost surely continuous, is sufficient.

The complexity of our procedure in terms of sample size n and dimension d is quite high. There are n d possible choices of hyperplanes through d points. This collection of hyperplanes defines an arrangement, or partition of R d into polytopal regions, also called cells or chambers. Within each region, the distance to each data point is constant, and thus, a preprocessing step might consist of setting up a data structure for determining to which cell a given point x ∈ R d belongs: This is called the point location problem. Meiser [START_REF] Meiser | Point location in arrangements of hyperplanes[END_REF] showed that such a data structure exists with the following properties: (1) it takes space O(n d+ε ) for any fixed ε > 0, and (2) point location can be performed in O(log n) time. Chazelle's cuttings [START_REF] Chazelle | Cutting hyperplanes for divide-and-conquer[END_REF] improve [START_REF] Anderson | Some nonparametric multivariate procedures based on statistically equivalent blocks[END_REF] to O(n d ). Chazelle's processing time for setting up the data structure is O(n d ). Still in the preprocessing step, one can determine for each cell in the arrangement the distances to all n data points: This can be done by walking across the graph of cells or by brute force. When done naively, the overall set-up complexity is O(n 2d+1 ). For each cell, one might keep a pointer to the k nearest neighbors. Therefore, once set up, the computation of the regression function estimate takes merely O(log n) time for point location, and O(k) time for retrieving the k nearest neighbors.

One could envisage a reduction in the complexity by defining the distances not in terms of all hyperplanes that cut a line segment, but in terms of the number of randomly drawn hyperplanes that make such a cut, where the number of random draws is now a carefully selected number. By the concentration of binomial random variables, such random estimates of the distances are expected to work well, while keeping the complexity reasonable. This idea will be explored elsewhere.

Proof of the theorem

Recall, since X has a probability density with respect to the Lebesgue measure on R d , that any collection X i 1 , . . . ,

X i d (1 ≤ i 1 < i 2 < . . . < i d ≤ n) of d points among X 1 , . . . , X n defines with probability 1 a unique hyperplane H(X i 1 , . . . , X i d ) in R d .
Thus, in the sequel, since no confusion is possible, we will freely refer to "the hyperplane H(X i 1 , . . . , X i d ) defined by X i 1 , . . . , X i d " without further explicit mention of the probability 1 event.

Let us first fix some useful notation. The distribution of the random variable X is denoted by µ and its density with respect to the Lebesgue measure is denoted by f . For every ε > 0, we let B x,ε = {y ∈ R d : yx ≤ ε} be the closed Euclidean ball with center at x and radius ε. We write A c for the complement of a subset A of R d . For two random variables Z 1 and Z 2 , the notation

Z 1 ≤ st Z 2 means that Z 1 is stochastically dominated by Z 2 , that is, for all t ∈ R, P{Z 1 > t} ≤ P{Z 2 > t}.
Our first goal is to show that for µ-almost all x, as k n /n → 0, the quantity max i=1,...,kn X (i) (x)x converges to 0 in probability, i.e., for every ε > 0, lim n→∞ P max i=1,...,kn

X (i) (x) -x > ε = 0. (3.1)
So, fix such a positive ε. Let δ be a real number in (0, ε) and γ n be a positive real number (eventually function of x and ε) to be determined later. To prove identity (3.1), we use the following decomposition, which is valid for all x ∈ R d : P max i=1,...,kn

X (i) (x) -x > ε ≤ P    min i=1,...,n X i ∈B c x,ε ρ n (x, X i ) < γ n    + P    max i=1,...,n X i ∈B x,δ ρ n (x, X i ) ≥ γ n    + P {Card {i = 1, . . . , n : X i -x ≤ δ} < k n } := A + B + C. (3.2)
The convergence to 0 of each of the three terms above-from which identity (3.1) immediately follows-are separately analyzed in the next three paragraphs.

Analysis of A.

As for now, taking an affine geometry point of view, we keep x fixed and see it as the origin of the space. Recall that each point in the Euclidean space R d (with the origin at x) may be described by its hyperspherical coordinates (see, e.g., Miller [25, Chapter 1]), which consist of a nonnegative radial coordinate r and d -1 angular coordinates θ 1 , . . . , θ d-1 , where θ d-1 ranges over [0, 2π) and the other angles range over [0, π] (adaptation of this definition to the cases d = 1 and d = 2 is clear). For a (d -1)-dimensional vector Θ = (θ 1 , . . . , θ d-1 ) of hyperspherical angles, we let B x,ε (Θ) be the unique closed ball anchored at x in the direction Θ and with diameter ε (see Figure 2 which depicts an illustration in dimension 2). We also let L x (Θ) be the axe defined by x and the direction Θ, and let as well S x,ε (Θ) be the open segment obtained as the intersection of L x (Θ) and the interior of B x,ε (Θ).

x

Θ ε 2 N 2 x,ε (Θ) N 1 x,ε (Θ) R 2 x,ε (Θ) R 1 x,ε (Θ) S x,ε (Θ) L x (Θ)
Figure 2: The ball B x,ε (Θ) and related notation. Illustration in dimension 2.

Next, for fixed x, ε and Θ, we split the ball

B x,ε (Θ) into 2 d-1 disjoint regions R 1 x,ε (Θ), . . . , R 2 d-1
x,ε (Θ) as follows. First, the Euclidean space R d is sequentially divided into 2 d-1 symmetric quadrants rotating around the axe L x (Θ) (boundary equalities are broken arbitrarily). Next, each region R j

x,ε (Θ) is obtained as the intersection of one of the 2 d-1 quadrants and the ball B x,ε (Θ).

The numbers of sample points falling in each of these regions are denoted hereafter by N 1

x,ε (Θ), . . . , N 2 d-1

x,ε (Θ) (see Figure 2). Letting finally V d be the volume of the unit d-dimensional Euclidean ball, we are now in a position to control the first term of inequality (3.2). Proposition 3.1 For µ-almost all x ∈ R d and all ε > 0 small enough,

P    min i=1,...,n X i ∈B c x,ε ρ n (x, X i ) < γ n    → 0 as n → ∞, provided γ n = n d V d 2 2d+1 ε d f (x) 2 d-1 . Proof of Proposition 3.1 Set p x,ε = min j=1,...,2 d-1 inf Θ µ R j x,ε (Θ) ,
where the infimum is taken over all possible hyperspherical angles Θ. We know, according to technical Lemma 4.1, that for µ-almost all x and all ε > 0 small enough,

p x,ε ≥ V d 2 2d ε d f (x) > 0. (3.3)
Thus, in the rest of the proof, we fix such an x and assume that ε is small enough so that the inequalities above are satisfied.

Let X ⋆ be defined as the intersection of the line (x, X) with B x,ε , and let Θ ⋆ be the (random) hyperspherical angle corresponding to X ⋆ (see Figure 3 for an example in dimension 2).

x X

X ⋆ ε N 2 x,ε (Θ ⋆ ) N 1 x,ε (Θ ⋆ ) Θ ⋆ Figure 3: The ball B x,ε (Θ ⋆ ) in dimension 2.
Denote by N x,ε (Θ ⋆ ) the number of hyperplanes passing through d out of the observations X 1 , . . . , X n and cutting the segment S x,ε (Θ ⋆ ). We have

P    min i=1,...,n X i ∈B c x,ε ρ n (x, X i ) < γ n    ≤ nP {ρ n (x, X ⋆ ) < γ n } = nP {N x,ε (Θ ⋆ ) < γ n } ≤ nP N 1 x,ε (Θ ⋆ ) . . . N 2 d-1 x,ε (Θ ⋆ ) n 2 d-1 -d < γ n ,
where the last inequality follows from technical Lemma 4.2. Thus,

P    min i=1,...,n X i ∈B c x,ε ρ n (x, X i ) < γ n    ≤ n 2 d-1 j=1 P N j x,ε (Θ ⋆ ) < γ n n 2 d-1 -d 1/2 d-1 = n 2 d-1 j=1 P N j x,ε (Θ ⋆ ) < γ 1/2 d-1 n n 1-d/2 d-1 .
Clearly, conditionally on Θ ⋆ , each

N j x,ε (Θ ⋆ ) satisfies Binomial (n, p x,ε ) ≤ st N j x,ε (Θ ⋆ )
and consequently, by inequality

(3.3), Binomial n, V d 2 2d ε d f (x) ≤ st N j x,ε (Θ ⋆ ).
Thus, for each j = 1, . . . , 2 d-1 , by Hoeffding's inequality for binomial random variables (Hoeffding [START_REF] Hoeffding | Probability inequalities for sums of bounded random variables[END_REF]), we are led to

P N j x,ε (Θ ⋆ ) < γ 1/2 d-1 n n 1-d/2 d-1 = E P N j x,ε (Θ ⋆ ) < γ 1/2 d-1 n n 1-d/2 d-1 |Θ ⋆ ≤ exp -2 γ 1/2 d-1 n n 1-d/2 d-1 -n V d 2 2d ε d f (x) 2 /n
as soon as γ

1/2 d-1 n n 1-d/2 d-1 < n V d 2 2d ε d f (x). Therefore, taking γ n = n d V d 2 2d+1 ε d f (x) we obtain P    min i=1,...,n X i ∈B c x,ε ρ n (x, X i ) < γ n    ≤ 2 d-1 n exp -n V d 2 2d ε d f (x) 2 /2 .
The upper bound goes to 0 as n → ∞.

Analysis of B.

Consistency of the second term in inequality (3.2) is established in the following proposition.

Proposition 3.2 For µ-almost all x ∈ R d , all ε > 0 and all δ > 0 small enough,

P    max i=1,...,n X i ∈B x,δ ρ n (x, X i ) ≥ γ n    → 0 as n → ∞, provided γ n = n d V d 2 2d+1 ε d f (x) 2 d-1 . (3.4) 
Proof of Proposition 3.2 Fix x in a set of µ-measure 1 such that f (x) > 0 and denote by N x,δ the number of hyperplanes that cut the ball B x,δ . Clearly,

P    max i=1,...,n X i ∈B x,δ ρ n (x, X i ) ≥ γ n    ≤ P {N x,δ ≥ γ n } .
Observe that, with probability 1,

N x,δ = 1≤i 1 <...<i d ≤n 1 {H(X i 1 ,...,X i d )∩B x,δ =∅} ,
whence, since X 1 , . . . , X n are identically distributed,

E[N x,δ ] = n d P {H(X 1 , . . . , X d ) ∩ B x,δ = ∅} ≤ n d d! P {H(X 1 , . . . , X d ) ∩ B x,δ = ∅} .
Consequently, given the choice (3.4) for γ n and the result of technical Lemma 4.3, it follows that

E[N x,δ ] < γ n /2
for all δ small enough, independently of n. Thus, using the bounded difference inequality (McDiarmid [START_REF] Mcdiarmid | On the method of bounded differences[END_REF]), we obtain, still with the choice

γ n = n d V d 2 2d+1 ε d f (x) 2 d-1 , P {N x,δ ≥ γ n } ≤ P {N x,δ -E[N x,δ ] ≥ γ n /2} ≤ exp -2 (γ n /2) 2 n 2d-1 = exp - V d 2 2d+1 ε d f (x) 2 d n/2 .
This upper bound goes to zero as n tends to infinity, and this concludes the proof of the proposition.

Analysis of C.

To achieve the proof of identity (3.1), it remains to show that the third and last term of (3.2) converges to 0. This is done in the following proposition. Proposition 3.3 Assume that k n /n → 0 as n → ∞. Then, for µ-almost all x ∈ R d and all δ > 0,

P {Card {i = 1, . . . , n : X i -x ≤ δ} < k n } → 0 as n → ∞.
Proof of Proposition 3.3 Recall that the collection of all x with µ(B x,τ ) > 0 for all τ > 0 is called the support of µ, and note that it may alternatively be defined as the smallest closed subset of R d of µ-measure 1 (Parthasarathy [START_REF] Parthasarathy | Probability Measures on Metric Spaces[END_REF]Chapter 2]). Thus, fix x in the support of µ and set p x,δ = P{X ∈ B x,δ }, so that p x,δ > 0. Then the following chain of inequalities is valid:

P {Card {i = 1, . . . , n : X i -x ≤ δ} < k n } = P {Binomial (n, p x,δ ) < k n } ≤ P {Binomial (n, p x,δ ) ≤ np x,δ /2} (for all n large enough, since k n /n tends to 0) ≤ exp(-np 2 x,δ /2),
where the last inequality follows from Hoeffding's inequality (Hoeffding [21]). This terminates the proof of Proposition 3.3.

We have proved so far that, for µ-almost all x, as k n /n → 0, the quantity max i=1,...,kn X (i) (x)x converges to 0 in probability. By the elementary inequality

E 1 k n kn i=1
1 { X (i) (x)-x >ε} ≤ P max i=1,...,kn

X (i) (x) -x > ε ,
it immediately follows that, for such an x,

E 1 k n kn i=1 1 { X (i) (x)-x >ε} → 0 (3.5)
provided k n /n → 0. We are now ready to complete the proof of Theorem 2.1.

Fix x in a set of µ-measure 1 such that consistency (3.5) holds and r is continuous at x (this is possible by the assumption on r). Because |a + b| p ≤ 2 p-1 (|a| p + |b| p ) for p ≥ 1, we see that

E |r n (x) -r(x)| p ≤ 2 p-1 E 1 k n kn i=1 Y (i) (x) -r X (i) (x) p + 2 p-1 E 1 k n kn i=1 r X (i) (x) -r(x) p .
Thus, by Jensen's inequality,

E |r n (x) -r(x)| p ≤ 2 p-1 E 1 k n kn i=1 Y (i) (x) -r X (i) (x) p + 2 p-1 E 1 k n kn i=1 r X (i) (x) -r(x) p := 2 p-1 I n + 2 p-1 J n .
Firstly, for arbitrary ε > 0, we have

J n = E 1 k n kn i=1 r X (i) (x) -r(x) p 1 { X (i) (x)-x >ε} + E 1 k n kn i=1 r X (i) (x) -r(x) p 1 { X (i) (x)-x ≤ε} , whence J n ≤ 2 p ζ p E 1 k n kn i=1 1 { X (i) (x)-x >ε} + sup y∈R d : y-x ≤ε |r(y) -r(x)| p (since |Y | ≤ ζ).
The first term on the right-hand side of the latter inequality tends to 0 by (3.5) as k n /n → 0, whereas the rightmost one can be made arbitrarily small as ε → 0 since r is continuous at x. This proves that J n → 0 as n → ∞.

Next, by successive applications of inequalities of Marcinkiewicz and Zygmund [START_REF] Marcinkiewicz | Sur les fonctions indépendantes[END_REF] (see also Petrov [33, pages 59-60]), we have for some positive constant C p depending only on p,

I n ≤ C p E 1 k 2 n kn i=1 Y (i) (x) -r X (i) (x) 2 p/2 ≤ (2ζ) p C p k p/2 n (since |Y | ≤ ζ).
Consequently, I n → 0 as k n → ∞, and this concludes the proof of the theorem.

Some technical lemmas

The notation of this section is identical to that of Section 3. In particular, it is assumed throughout that X has a probability density f with respect to the Lebesgue measure λ on R d . This requirement implies that any collection

X i 1 , . . . , X i d (1 ≤ i 1 < i 2 < . . . < i d ≤ n) of d points among X 1 , . . . , X n define with probability 1 a unique hyperplane H(X i 1 , . . . , X i d ) in R d .
Recall finally that, for x ∈ R d and ε > 0, we set

p x,ε = min j=1,...,2 d-1 inf Θ µ R j x,ε (Θ) ,
where the infimum is taken over all possible hyperspherical angles Θ, and the regions R j x,ε (Θ), j = 1, . . . , 2 d-1 , define a partition of the ball B x,ε (Θ). Recall also that the numbers of sample points falling in each of these regions are denoted by N 1

x,ε (Θ), . . . , N 2 d-1

x,ε (Θ). For a better understanding of the next lemmas, the reader should refer to Figure 2 

p x,ε ≥ V d 2 2d ε d f (x) > 0.
Proof of Lemma 4.1 We let x be a Lebesgue point of f , that is, an x such that for any collection A of subsets of B 0,1 with the property that for all A ∈ A, λ(A) ≥ cλ(B 0,1 ) for some fixed c > 0,

lim ε→0 sup A∈A x+εA f (y)dy λ{x + εA} -f (x) = 0, (4.1) 
where x + εA = {y ∈ R d : (yx)/ε ∈ A}. As f is a density, we know that µ-almost all x satisfy this property (see, for instance, Wheeden and Zygmund [START_REF] Wheeden | Measure and Integral. An Introduction to Real Analysis[END_REF]). Moreover, since f is µ-almost surely positive, we may also assume that f (x) > 0.

Thus, keep such an x fixed. Fix also j ∈ {1, . . . , 2 d-1 }, and set

p j x,ε = inf Θ µ R j x,ε (Θ) .
Taking for A the collection of regions R j 0,1 (Θ) when the hyperspherical angle Θ varies, that is,

A = R j 0,1 (Θ) : Θ ∈ [0, π] d-2 × [0, 2π) , and observing that λ R j x,ε (Θ) = V d 2 d-1 ε 2 d ,
we may write, for each j = 1, . . . ,

2 d-1 , 2 d-1 p j x,ε V d (ε/2) d -f (x) = inf Θ µ R j x,ε (Θ) λ R j x,ε (Θ) -f (x) = inf A∈A x+εA f (y)dy λ{x + εA} -f (x) ≤ sup A∈A x+εA f (y)dy λ{x + εA} -f (x) .
The conclusion follows from identity (4.1).

Lemma 4.2 Fix x ∈ R d , ε > 0 and Θ ∈ [0, π] d-2 ×[0, 2π). Let N x,ε ( 
Θ) be the number of hyperplanes passing through d out of the observations X 1 , . . . , X n and cutting the segment S x,ε (Θ). Then, with probability 1,

N x,ε (Θ) ≥ N 1 x,ε (Θ) . . . N 2 d-1 x,ε (Θ) n 2 d-1 -d . Proof of Lemma 4.2 If one of the N j x,ε (Θ) (j = 1, . . . , 2 d-1
) is zero, then the result is trivial. Thus, in the rest of the proof, we suppose that each N j

x,ε (Θ) is positive and note that this implies n

≥ 2 d-1 . Pick sequentially 2 d-1 observations, say X i 1 , . . . , X i 2 d-1 , in the 2 d-1 regions R 1 x,ε (Θ), . . . , R 2 d-1
x,ε (Θ). By construction, the polytope defined by these 2 d-1 points cuts the axe L x,ε (Θ). Consequently, with probability 1, any hyperplane drawn according to d out of these 2 d-1 points cuts the segment S x,ε (Θ). The result follows by observing that there are exactly N 1

x,ε (Θ) . . . N 2 d-1

x,ε (Θ) such polytopes. Lemma 4.3 For 1 ≤ i 1 < . . . < i d ≤ n, let H(X i 1 , . . . , X i d ) be the hyperplane passing through d out of the observations X 1 , . . . , X n . Then, for all x ∈ R d , P {H(X i 1 , . . . , X i d ) ∩ B x,δ = ∅} → 0 as δ ↓ 0.

Proof of Lemma 4.3 Given two hyperplanes H and H ′ in R d , we denote by Φ(H, H ′ ) the (dihedral) angle between H and H ′ . Recall that Φ(H, H ′ ) ∈ [0, π] and that it is defined as the angle between the corresponding normal vectors.

Fix 1 ≤ i 1 < . . . < i d ≤ n. Let E δ be the event

E δ = X i j -x > δ : j = 1, . . . , d -1 ,
and let H(x, X i 1 , . . . , X i d-1 ) be the hyperplane passing through x and the d-1 points X i 1 , . . . , X i d-1 . Clearly, on E δ , the event {H(X i 1 , . . . , X i d )∩B x,δ = ∅} is the same as Φ H(x, X i 1 , . . . , X i d-1 ), H(X i 1 , . . . ,

X i d ) ≤ Φ δ ,
where Φ δ is the angle formed by H(x, X i 1 , . . . , X i d-1 ) and the hyperplane going trough X i 1 , . . . , X i d-1 and tangent to B x,δ (see Figure 4 for an example in dimension 2).

Thus, with this notation, we may write P {H(X i 1 , . . . , X i d ) ∩ B x,δ = ∅} ≤ P{E c n } + P {H(X i 1 , . . . , X i d ) ∩ B x,δ = ∅, E n } ≤ P{E c n } + P Φ H(x, X i 1 , . . . , X i d-1 ), H(X i 1 , . . . , X i d ) ≤ Φ δ , E n .

X i 1 X i 2 δ x Φ δ Figure 4:
The hyperplanes H(x, X i 1 , . . . , X i d-1 ) and H(X i 1 , . . . , X i d ), and the angle Φ δ . Illustration in dimension 2.

Since X has a density, the first of the two terms above tends to zero as δ ↓ 0. To analyze the second term, first note that, conditionally on X i 1 , . . . , X i d-1 , the angle Φ(H(x, X i 1 , . . . , X i d-1 ), H(X i 1 , . . . , X i d )) is absolutely continuous with respect to the Lebesgue measure on R. This follows from the following two observations: i) the random variable X i d has a density with respect to the Lebesgue measure on R d , and ii) conditionally on X i 1 , . . . , X i d-1 , Φ(H(x, X i 1 , . . . , X i d-1 ), H(X i 1 , . . . , X i d )) is obtained from X i d via translations, orthogonal transformations, and the arctan function.

Thus, writing P Φ H(x, X i 1 , . . . , X i d-1 ), H(X i 1 , . . . , X i d ) ≤ Φ δ , E n = E 1 En P Φ H(x, X i 1 , . . . , X i d-1 ), H(X i 1 , . . . ,

X i d ) ≤ Φ δ |X i 1 , . . . , X i d-1
and noting that, on the event E n , for fixed X i 1 , . . . , X i d-1 , Φ δ ↓ 0 as δ ↓ 0, we conclude by the Lebesgue dominated convergence theorem that P Φ H(x, X i 1 , . . . , X i d-1 ), H(X i 1 , . . . , X i d ) ≤ Φ δ → 0 as δ ↓ 0.

  and Figure3.

Lemma 4 . 1

 41 For µ-almost all x ∈ R d and all ε > 0 small enough,

  1 , Y 1 ), . . . , (X n , Y n ) is reordered according to increasing values of the empirical distances ρ n (x, X

i ), not the original Euclidean metric. By construction, the estimate r n has the desired affine invariance property and, moreover, it coincides with the standard (Euclidean) estimate in dimension d = 1. In the next section, we prove the following theorem. The distribution of the random variable X is denoted by µ. Theorem 2.1 (Pointwise L p consistency) Assume that X has a probability density, that Y is bounded, and that the regression function r is µalmost surely continuous. Then, for µ-almost all x ∈ R d and all

d-1 ,

Acknowledgments. We thank two anonymous referees for valuable comments and insightful suggestions.

 [START_REF] Biau | On the layered nearest neighbour estimate, the bagged nearest neighbour estimate and the random forest method in regression and classification[END_REF]Research partially supported by the French National Research Agency under grant ANR-09-BLAN-0051-02 "CLARA". 3 Research carried out within the INRIA project "CLASSIC" hosted by Ecole Normale Supérieure and CNRS. 4 Research sponsored by NSERC Grant A3456 and FQRNT Grant 90-ER-0291. 5 Research sponsored by NSERC Grant RGPIN 402438-2011. 6 Research sponsored by NSERC Grant N00118.

1