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1 Introduction

The problem studied in this paper involves stochastic differential games with a finite number
of players. We compare two methods of investigations which offer, in the asymptotic regime
of large populations (i.e when the number of players N → ∞), a structure which is simple
enough to be amenable to actual solutions, both from the theoretical and numerical points of
view.

In order to derive tractable solutions, we assume that all the players are similar in their
behavior, and that each individual on his own, can hardly influence the outcome of the
game. We further strengthen the symmetry of the problem by assuming that the interaction
between the players is of mean field type in the sense that whenever an individual player has
to make a decision, he or she sees only averages of functions of the private states of the other
players. These games are symmetric in the sense that all the players are identical, but they
are not anonymous (see for example [?]) or with weak interaction in the sense of [?]. In the
large population limit, a given player should feel the presence of the other players through
the statistical distribution of the private states of the other players, and should determine
his optimal strategy by optimizing his appropriately modified objective criterion taking the
limit N → ∞ into account. The search for an approximate Nash equilibrium of the game
in this asymptotic regime is essentially dictated by the Mean Field Game (MFG for short)
proposition of Lasry and Lions. See for example [?, ?, ?, ?, ?, ?].

However, without the optimization part, and when all the players use the same distributed
feedback strategy (which is eventually what transpires in the MFG approach), the large
population regime is reminiscent of Mark Kac’s propagation of chaos theory put on rigorous
mathematical ground by Mc Kean and Vlasov (MKV for short). See for example Sznitmann’s
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beautiful mathematical treatment [?]. Indeed, according to these works, one expects that
in the limit N → ∞, the private states of the individual players evolve independently of
each other, each of them satisfying a specific stochastic differential equation with coefficients
depending upon the statistical distribution of the private state in question. Having each player
optimize his own objective function under the constraints of this new private state dynamics
amounts to the stochastic control of McKean-Vlasov dynamics, mathematical problem not
understood in general. See nevertheless [?]. Coming back to our original problem we may
wonder if the optimization over the feedback strategies in this new control problem lead to
one form of approximate equilibrium for the original N player game? In any case, if such a
problem can be solved, the issue is to understand how an optimal feedback strategy for such
a problem compares with the result of the MFG analysis.

The main thrust of this paper is to investigate the similarities and the differences between
the MFG approach and the search for an optimal strategy for MKV dynamics. In Section 4 we
give a pedagogical introduction to these two very related (and sometimes confused) problems
with the specific goal to explain the differences between their nature and solutions. As both
these problems lead to the analysis of Forward Backward Stochastic Differential Equations
(FBSDEs) where the marginal distributions of the solutions appear in the coefficients, we
devote Section 5 to the construction of solutions to these problems which have not been
studied in the literature. The remainder part of the paper is devoted to the special class
of Linear Quadratic (LQ) stochastic games. We implement the MFG approach and analyze
the optimal control of MKV dynamics in sections 6 and 71. We provide explicit examples in
Section 8. While bearing some similarity to the contents of this section, the results of [?] on
some linear quadratic MFGs are different in the sense that they concern some infinite horizon
stationary cases without any attempt to compare the results of the MFG approach to the
control of the corresponding Mc Kean Vlasov dynamics. We conclude in Section 9 where we
revisit the original example of CO2 emissions regulation which is introduction in Section 2 as
a motivation.

2 Motivation from GHG Emissions Regulation

For the sake of motivation, we present a toy model of the simplest form of Green House Gas
(GHG) emissions regulation. Since our goal is to motivate the analysis of the mathematical
problems discussed later in the paper, we shall not worry about the lack of realism of this
model.

A set {1, ·, N} of firms compete in an economy where green house gas emissions are
regulated. For each firm i, we denote by Ei

t the cumulative emissions, up to time t, of firm i,
and we assume that their dynamics satisfy

dEi
t = (bit − αi

t)dt+ σitdWt, Ei
0 = 0. (1)

where assumptions on the individual emission rates bit and the volatilities σit can be chosen
as in [?] for the sake of definiteness. The process (αi

t)0≤t≤T represents the abatement rate of
firm i, and it can be viewed as the control the firm can exert on it emissions output. Note

1After completion of this work, we were made aware of the appearance on the web of a very recent technical
report by A. Bensoussan, K. C. J. Sung, S. C. P. Yam, and S. P. Yung entitled Linear Quadratic Mean Field

Games. In this independent work, the authors present a study of linear quadratic mean field games in relation
to the control of McKean-Vlasov dynamics very much in the spirit of what we do in Section 6 and Section 7
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that in the case αi
t ≡ 0, the process (Ei

t)0≤t≤T gives the cumulative emissions of firm i in
the absence of regulation, situation which is called Business as Usual, BAU in short. At the
start t = 0 of the regulation implementation period, each firm i is allocated a number Λi of
permits (also called certificates of emission, or allowances). The cap

Λ(N) =

N
∑

i=1

Λi (2)

can be viewed as the emissions target set by the regulator for the period [0, T ]. If at the end
of the regulation period [0, T ], the aggregate emissions in the economy exceed the cap, i.e. if:

N
∑

i=1

Ei
T > Λ(N), (3)

then each firm i has to offset its emissions Ei
T (expressed in CO2 ton equivalent) by redeeming

one permit per ton, or by paying a penalty λ for each ton not covered by a certificate. In
other words, firm i has to pay

λi = λ(Ei
T − Λi)

+1[Λ(N),∞)(
N
∑

j=1

Ej
T ) (4)

where we use the notation x+ = max(x, 0) for the positive part of the real number x, and 1A
for the indicator function of the set A. The penalty λ is currently equal to 100 euros in the
European Union Emissions Trading Scheme (EU ETS).

Remark 1. In the case of cap-and-trade regulations, a market on which emissions certificates
can be bought and sold is also created as part of the regulation. In order to avoid penalties,
firms whose productions are likely to lead to cumulative emissions in excess of their initial
allocations Λi may engage in buying allowances from firms which expect to meet demand
with less emissions than their own initial allocations. For the sake of simplicity, the present
discussion concentrates on the cap part, and disregards the trade part of the regulation.

In search for an optimal behavior, each firm needs to solve the following optimization
problem. If we assume that the abatement costs for firm i are given by a function ci : R → R

which is C1 and strictly convex, is normalized to satisfy ci(0) = min ci , and satisfies Inada-
like conditions, (ci(x) = β|x|1+α for some β > 0 and α > 0 is an example of such a cost
function), and if its abatement strategy is αi, its terminal wealth is given by

W i
T = xi −

∫ T

0
ci(αi

t)dt− λ(Ei
T − Λi)

+1[Λ(N),∞)(
N
∑

j=1

Ej
T ).

Recall that in our simple model, firms do not trade allowances. Now if we view the cumulative
emissions Ei

t as the private state of firm i, and if we assume that each firm tries to maximize
its expected terminal wealth, or equivalently minimize the objective function

J i(α) = E





∫ T

0
ci(αi

t)dt+ λ(Ei
T − Λi)

+1[Λ,∞)(
N
∑

j=1

Ej
T )



 (5)
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where we set αt = (α1
t , · · · , αN

t ), then we have formulated our emission regulation model
as a stochastic differential game. Notice that in this particular example, the equations (1)
giving the dynamics of the private states Ei

t are decoupled. However, equations (5) giving the
expected costs to minimize are coupled in a very specific way, namely through the average of
the values of all the private states. This is a particular form of interaction of mean field type
which we define rigorously in the next subsection.

3 Stochastic Differential Game with Mean Field Interactions

Motivated by the simple example of emissions regulation discussed above, we single out a
class of stochastic differential games where the interaction between the players is given in
terms of functions of average characteristics of the private states and actions of the individual
players.

In our formulation, the state of the system (which is controlled by the actions of the
individual players) is given at each time t by a vector Xt = (X1

t , · · · , XN
t ) whose N compo-

nents Xi
t can be interpreted as the private states of the individual players. A typical example

capturing the kind of symmetry which we would like to include in our models is given by mod-
els in which the dynamics of the private states are given by coupled stochastic differential
equations of the form

dXi
t =

1

N

N
∑

j=1

b̃(t,Xi
t , X

j
t , α

i
t)dt+ σdW i

t (6)

where b̃ is a function of time, the values of two private states, and the control of one player.
For the sake of simplicity, we assume that each process (Xi

t)0≤t≤T is univariate. Otherwise,
the notations become more involved while the results remain essentially the same. The
present discussion can accommodate models where the volatility σ is a function with the
same structure as b̃. We refrain from considering this level of generality to keep the notations
to a reasonable level. We use the notation αt = (α1

t , · · · , αN
t ) for the players strategies. Notice

that the dynamics (6) can be rewritten in the form:

dXi
t = b(t,Xi

t , µ
N
t , α

i
t)dt+ σdW i

t (7)

if the function b of time, a private state, a probability distribution on private states, and a
control, is defined by

b(t, x, µ, α) =

∫

b̃(t, x, x′, α) dµ(x′) (8)

and the measure µNt is defined as the empirical distribution of the private states, i.e.

µNt =
1

N

N
∑

j=1

δ
Xj

t
. (9)

Interactions given by functions of the form (8) will be called linear or of order 1. We could
imagine that the drift of (6) giving the interaction between the private states is of the form

1

N2

N
∑

j,k=1

b̃(t,Xi
t , X

j
t , X

k
t , α

i
t)
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which could be rewritten, still with µ = µNt , in the form

b(t, x, µ, α) =

∫

b̃(t, x, x′, x′′, α) dµ(x′)dµ(x′′). (10)

Interactions of this form will be called quadratic or of order 2. Clearly, one can extend this
definition to interactions of all orders, and more generally, we will say that the interaction
is fully nonlinear if it is given by a drift of the form b(t,Xi

t , µ
N
t , αt) for a general function

b defined on [0, T ] × R × P(R) × A where P(R) denotes the set of probabilities on the real
line and A the space in which at each time t ∈ [0, T ], the controls can be chosen by the
individual players. In general, we say that the game involves interactions of the mean field
type if the coefficients of the stochastic differential equation giving the dynamics of a private
state depend upon the other private states exclusively through the empirical distribution of
these private states – in other words if the interaction is fully nonlinear in the sense just
defined – and if the running and terminal cost functions have the same structure.

Remark 2. As in the case of the toy model discussed earlier, the dependence upon the empir-
ical distribution µNt of the private states can degenerate to a dependence upon some moments
of this distribution. To be more specific, we can have

b(t, x, µ, α) =

∫

b̃(t, x, 〈ϕ, µ〉, α) (11)

for some scalar function ϕ of the private states, where we use the adjointity notation

〈ϕ, µ〉 =
∫

ϕ(x′)dµ(x′)

for the integral of a function with respect to a measure. In such a case, we shall say that the
interaction is scalar.

To summarize the problem at hand, the game consists in minimizing simultaneously costs
of the form

J i(α) = E

[
∫ T

0
f(t,Xi

t , µ
N
t , α

i
t)dt+ g(XT , µ

N
T )

]

(12)

under constraints of the form

dXi
t = b(t,Xi

t , µ
N
t , α

i
t)dt+ σdW i

t . (13)

Note that for symmetry reasons, we chose the running and terminal cost functions f and g
to be the same for all the players. Our goal is to search for equilibriums of such a stochastic
differential game.

3.1 The Single Player Problem in the Large Population Regime N → ∞
Given that the problem is intractable in most cases (see nevertheless the discussion of the
linear quadratic case in Section ?? below), we try to identify realistic models for which
approximate optimal strategies and Nash equilibria can be identified and computed.

For the sake of definiteness, we restrict ourselves to equilibriums given by Markovian
strategies in closed loop feedback form

αt = (φ1(t,Xt), · · · , φN (t,Xt))
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for some deterministic functions φ1, · · · , φN of time and the state of the system. Further, we
assume that the strategies are of distributed type in the sense that the function φi giving the
strategy of player i depends upon the state Xt of the system only through the private state
Xi

t of player i. In other words, we request that:

αi
t = φi(t,Xi

t), i = 1, · · · , N.

Moreover, given the symmetry of the set-up, we restrict our search for equilibriums to situa-
tions in which all the players use the same feedback strategy function, i.e.

φ1(t, · ) = · · · = φN (t, · ) = φ(t, · ), 0 ≤ t ≤ T.

for some common deterministic function φ. The search for an equilibrium for a game with a
fixed finite number of players involves an optimization. The large population regime involves
taking a limit, and it would be interesting to understand if the order in which these operations
are performed influences the outcome of the analysis.

3.2 Natural Question

The thrust of the paper is to give the rationale for the four arrows of the following diagram,
explain the mathematics behind these arrows, and settle the question of the commutativity
of the diagram.

SDE State Dynamics

for N players

Optimization
Nash Equilibrium

for N players
limN→∞

limN→∞ McKean Vlasov Dynamics

Optimization
Mean Field

Controlled McK-

It is important to emphasize one more time what we mean with the limit N → ∞. We want
to identify properties of the limit which, when re-injected into the game with finitely many
players, give an approximate solution to the problem we are unable to solve directly for the
stochastic game with N players.

4 Mean Field Games (MFG) versus Control of MKV Dynam-
ics

4.1 Optimizing First

If we first search for a Nash equilibrium when the number N of players is finite and fixed,
each player i assumes that the other players have already chosen their strategies, say α1∗

t =
φ1∗(t,X1

t ), · · · , αi−1∗ = φi−1∗(t,Xi−1
t ), αi+1∗

t = φi+1∗(t,Xi+1
t ), · · · , αN∗

t = φN∗(t,XN
t ), and

under this assumption, solves the optimization problem:

φi∗ = arg inf
φ

E

[
∫ T

0
f(t,Xi

t , µ
N
t , φ(t,X

i
t))dt+ g(XT , µ

N
T )

]

(14)

when the dynamics of his own private state is controlled by the feedback control αi
t = φ(t,Xi

t)
while the dynamics of the private states of the other players are controlled by the feedbacks
αj
t = φj∗(t,Xj

t ) for j = 1, · · · , i− 1, i+ 1, · · · , N . So when writing an equation for a critical
point (typically a first order condition), we apply an infinitesimal perturbation to φ without
perturbing any of the other φj∗ for j 6= i and look for conditions under which this deviation for
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player i does not make him better off when the other players do not deviate from the strategies
they use. A perturbation of φ could in principle affect the dynamics of all the private states
by changing the empirical distribution of these private states. However, especially when the
number of players N is large, a form of the law of large numbers should make this empirical
measure µNt quite insensitive to small perturbations of φ. So for all practical purposes, the
optimization problem (14) can be solved as (or at least its solution can be approximated by)
a standard stochastic control problem once the the family (µNt )0≤t≤T of probability measures
is fixed.

So in this approach, the search for an approximate Nash equilibrium is based on the
following strategy: first one fixes a family (µt)0≤t≤T of probability measures, next, one solves
the standard stochastic control problem (parameterized by the choice of the family (µt)0≤t≤T ):

φ∗ = arg inf
φ

E

[
∫ T

0
f(t,Xt, µt, φ(Xt))dt+ g(XT , µT )

]

(15)

subject to the dynamic constraint

dXt = b(t,Xt, µt, φ(Xt))dt+ σdW̃t (16)

for some Wiener process (W̃t)0≤t≤T , and finally, once a solution φ is found for each choice of
the family (µt)0≤t≤T , then the family of measures is determined (typically by a fixed point
argument) so that at each time t, the statistical distribution of the solution Xt of (16) is
exactly µt.

The role of the limit N → ∞ (large number of players) is to guarantee the stability of the
empirical measure µNt when a single player perturbs his strategy while the other players keep
theirs unchanged, and the fact that this stable distribution has to be the common statistical
distribution of all the private states Xi

t . Performing the optimization over φ when the family
(µt)0≤t≤T of probability measures is kept fixed is the proper way to implement the notion of
Nash equilibrium whereby each player is not better off if he deviates from his strategy while
all the other players keep theirs untouched, as implied by the lack of change in (µt)0≤t≤T and
hence (µNt )0≤t≤T .

Summary of the procedure:

1. Fix a deterministic function [0, T ] ∋ t →֒ µt ∈ P(R);

2. Solve the standard stochastic control problem

φ∗ = arg inf
φ

E

[
∫ T

0
f(t,Xt, µt, φ(t,Xt))dt+ g(XT , µT )

]

subject to (17)

dXt = b(t,Xt, µt, φ(t,Xt))dt+ σdWt;

3. Determine the function [0, T ] ∋ t →֒ µt ∈ P(R) so that

∀t ∈ [0, T ], L(Xt) = µt.

Once these three steps have been taken successfully, the feedback function φ∗ provides strate-
gies αj∗

t = φ∗(t,Xj
t ) that, if used by all the players j = 1, · · · , N , form an approximate Nash

equilibrium for the game.
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This is the philosophy of the Mean Field Game (MFG) approach to the search for an
approximate Nash equilibrium when the interaction is of mean field type.

Assuming that the family µ = (µt)0≤t≤T of probability distributions has been frozen, the
Hamiltonian of the stochastic control problem is

Hµ(t, x, y, α) := yb(t, x, µt, α) + f(t, x, µt, α). (18)

Recall that we are limiting ourselves to the case of constant and identical volatilities σ for the
sake of simplicity. In all the examples considered in this paper, there exists a regular function
α̂ satisfying:

α̂ = α̂µ : [0, T ]× R× R ∋ (t, x, y) →֒ α̂(t, x, y) ∈ arg inf
α∈A

Hµ(t, x, y, α). (19)

We denote by Hµ(t, x, y) this infimum:

Hµ(t, x, y) = inf
α∈A

Hµ(t, x, y, α). (20)

In this paper, we solve stochastic control problems using the probabilistic approach based
on the Pontryagin minimum principle and solving the adjoint forward-backward stochastic
differential equations. For the sake of completeness, we review the Lasry-Lions’ approach
using the Hamilton-Jacobi-Bellman (HJB for short) equation leading to the solution of a
forward-backward system of nonlinear Partial Differential Equations (PDEs for short).

HJB / PDE approach

Since µ is frozen, the stochastic control problem is Markovian and we can introduce the HJB
value function:

v(t, x) = inf
α∈At

E

[
∫ T

t
f(s,Xs, µs, αs)ds+ g(XT , µT )|Xt = x

]

. (21)

where At denotes the set of admissible controls over the interval [t, T ]. We expect that the
HJB value function v is the solution in some sense (most likely in the viscosity sense only) of
the Hamilton-Jacobi-Bellman (HJB) equation (see [?])

∂tv +
σ2

2
∂2xxv +Hµ(t, x, ∂xv(t, x)) = 0 (22)

with terminal condition v(T, x) = g(x, µT ).

In the end, we would like µ = (µt)0≤t≤T to be the flow of marginal distributions of the
optimally controlled private state. Clearly, this sounds like a circular argument at this stage
since this stochastic differential equation actually depends upon µ, and it seems that only
a fixed point argument can resolve such a quandary. In any case, the flow of statistical
distributions should satisfy Kolmogorov’s equation. In other words, if we use the notation

β(t, x) = b(t, x, µt, φ(t, x))

where φ is the optimal feedback control (think of φ(t, x) = α̂µ(t, x, σ−1∂xv(t, x))), then the
flow (νt)0≤t≤T of measures should be given by νt = L(Xt) and satisfy Kolmogorov’s equation

∂tν −
σ2

2
∂2xxν − div(β(t, x)ν) = 0 (23)

9



with initial condition ν0 = µ0. This PDE can be given a rigorous meaning in the sense of
distributions. When νt has a smooth density, integration by part can be used to turn the
formal PDE (23) for ν into a classical PDE for the density of ν.

Setting νt = L(Xt) = µt when (Xt)0≤t≤T is the diffusion optimally controlled by the
feedback function φ gives a system of coupled nonlinear forward-backward PDEs (22)-(23)
called the MFG PDE system. See [?, ?, ?, ?, ?, ?].

Pontryagin Principle/ FBSDE approach

Given the frozen folw of measures µ, the stochastic optimization problem is a standard
stochastic control problem and as such, its solution can be approached via the stochastic
Pontryagin principle. For each open-loop adapted control α = (αt)0≤t≤T , we denote by
X
α = (X

α
t )0≤t≤T the associated state, any solution (Yt, Zt)0≤t≤T of the BSDE

dYt = −∂xHµ
(

t,Xt, µt, αt

)

dt+ ZtdWt, (24)

is called a set of adjoint processes and the BSDE (24) is called the adjoint equation. It
turns out that when the Hamiltonian Hµ is convex with respect to the variables (x, α) and
the terminal cost g is convex with respect to the variable x, the forward component of any
solution to the forward-backward stochastic system (FBSDE)

{

dXt = b
(

t,Xt, µt, α̂
µ(t,Xt, pt)

)

dt+ σdWt,

dYt = −∂xHµ
(

t,Xt, µt, α̂
µ(t,Xt, Yt)

)

dt+ ZtdWt,

with the right initial condition for X0 and terminal condition YT = ∂xg(XT , µT ), is an op-
timally controlled path for (17). In particular, if we want to include point 3. of the MFG
approach as outlined earlier, namely if we want to enforce µt = L(Xt), the optimal state
dynamics in the MFG approach is given by the forward component of any solution to the
stochastic forward-backward system

dXt = b
(

t,Xt,L(Xt), α̂
L(X)(t,Xt, pt)

)

dt+ σdWt,

dYt = −∂xHL(X)
(

t,Xt,L(Xt), α̂
L(X)(t,Xt, Yt)

)

dt+ YtdWt,
(25)

with the right initial condition for X0 and with the terminal condition YT = ∂xg(XT ,L(XT )).
This FBSDE is of McKean-Vlasov type as formally introduced in the next subsection.

4.2 Taking the Limit N → ∞ First

If we now suppose that the feedback function φ is fixed, at least temporarily, the theory
of propagation of chaos states that if we consider the solution XN

t = (XN,1
t , · · · , XN,N

t )

of the system of N stochastic differential equations (13) with αi
t = φ(t,XN,i

t ), then in the
limit N → ∞, for any fixed integer k, the joint distribution of the k-dimensional process
{(XN,1

t , · · · , XN,k
t )}0≤t≤T converges to a product distribution (in other words the k processes

(XN,i
t )0≤t≤T for i = 1, · · · , k become independent in the limit) and the distribution of each

single marginal process converges toward the distribution of the unique solution ξ = (ξt)0≤t≤T

of the McKean-Vlasov evolution equation

dξt = b(t, ξt,L(ξt), φ(t, ξt))dt+ σdW̃t (26)
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where (W̃t)0≤t≤T is a standard Wiener process. So if the common feedback control function
φ is fixed, in the limit N → ∞, the private states of the players become independent of each
other, and for each given i, the distribution of the private state process (XN,i

t )0≤t≤T evolving
according to (13) converges toward the distribution of the solution of (26). So if we optimize
after taking the limit N → ∞, i.e. assuming that the limit has already been taken, the
objective of each player becomes the minimization of the functional

J(φ) = E

[
∫ T

0
f(t, ξt,L(ξt), φ(t, ξt))dt+ g(ξT ,L(ξT ))

]

(27)

over a class of admissible feedback controls φ. Minimization of (27) over φ under the dynam-
ical constraint (26) is a form of optimal stochastic control problem where the controls are in
closed loop feedback form. More generally, such a problem can be stated as in (17) for open
loop control α = (αt)0≤t≤T adapted to any specific information structure.

α∗ = arg inf
φ

E

[
∫ T

0
f(t, ξt,L(ξt), αt)dt+ g(ξT ,L(ξT ))

]

subject to (28)

dξt = b(t, ξt,L(ξt), αt)dt+ σdWt; .nonumber (29)

Naturally, we call this problem the optimal control of the stochastic McKean-Vlasov dynamics.

Standard techniques from stochastic control of Markovian systems cannot be used for
this type of stochastic differential equations and a solution to this problem is not known
in general even though solutions based on appropriate analogs of the Pontryagin minimum
principle have been sought for by several authors. We first review the results of [?] which are
the only published ones which we know of. They concern scalar interactions only for which
the dependence upon the probability measure of the drift and cost functions are of the form

b(t, x, µ, α) = b(t, x, 〈ψ, µ〉, α)
f(t, x, µ, α) = f(t, x, 〈γ, µ〉, α)

g(x, µ) = g(x, 〈ζ, µ〉)

for some convex functions ψ, γ, and ζ. Here and throughout the paper we use the adjointity
notation 〈ϕ, µ〉 to denote the integral of the function ϕ with respect to the measure µ. Notice
that we use the same notations b, f and g for functions where the variable µ, which was a
measure, is replaced by a numeric variable. As we explained earlier, this setting could be
sufficient for the analysis of most of the linear quadratic models we consider in sections 6
and 7. We review the more general results [?] of the first two named authors in the following
section. The results of [?] also require that we also assume that

(A1) g is convex in (x, x′);

(A2) the Hamiltonian H is convex in (x, x′1, x
′
2, α);

(A3) the partial derivatives ∂x′b, ∂x′f and ∂x′g are non-negative.

where the Hamiltonian function H is defined as:

H(t, x, x′1, x
′
2, y, α) = yb(t, x, x′1, α) + f(t, x, x′2, α) (30)
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The major difference with the classical case is in the form of the adjoint equation. Given a
control process α = (αt)0≤t≤T and a process ]xi = (ξt)0≤t≤T satisfying

dξt = b(t, ξt,L(ξt), αt)dt+ σdWt (31)

a pair of processes y = (yt)0≤t≤T and z = (zt)0≤t≤T satisfying











dyt = −[∂xb(t,Xt,E{ψ(ξt)}, αt)yt + ∂xf(t, ξt,E{γ(ξt)}, αt)]dt+ ztdW̃t

− [E{∂x′b(t, ξt,E{ψ(ξt)}, αt)yt}∂xψ(ξt) + E{∂x′f(t, ξt,E{γ(ξt)}, αt)}∂xγ(ξt)]dt
yT = ∂xg(ξT ,E{ζ(ξT )}) + E{∂x′g(ξT ,E{ζ(XT )})}∂xζ(ξT )

(32)
is called a pair of adjoint processes and this BSDE of the McKean-Vlasov type (as its coef-
ficients depend upon the distribution of the solution) is called the adjoint equation. Under
these condition, the main result of [?] states that:

Theorem 4.1. If ψ, γ, and ζ are convex and (A1) - (A3) are satisfied, if ξ = ξ satisfies
(31) for some control process α = (αt)0≤t≤T , if y = (yt)0≤t≤T and z = (zt)0≤t≤T is a pair of
adjoint processes and if

H̃(t, ξt, yt, αt) = inf
α∈A

H̃(t, ξt, yt, α) (33)

for all t ∈ [0, T ] almost surely, then the control α = (αt)0≤t≤T is optimal.

The Hamiltonian H appearing in (33) is defined for any random variable ξ as:

H̃(t, ξ, y, α) = yb(t, ξ,E{ψ(ξ)}, α) + f(t, ξ,E{γ(ξ)}, α) (34)

4.3 First Discussion of the Differences

The general form of MKV dynamics is given by the solution of non-standard stochastic
differential equations in which the distribution of the solution appears in the coefficients:

dξt = b(t, ξt,L(ξt), αt)dt+ σdWt, ξ0 = x, (35)

where σ is a positive constant. For a given admissible control α = (αt)0≤t≤T we write ξα for
the unique solution to (35), which exists under the usual growth and Lipchitz conditions on
the function b, see [?] for example. The problem is to optimally control this process so as to
minimize the expectation:

JMKV (α) = E

[
∫ T

0
f(t, ξ

α
t ,L(ξ

α
t ), αt)dt+ g(ξ

α
T ,L(ξ

α
T ))

]

. (36)

On the other hand, the dynamics arising from the MFG approach are given by the solution
of standard stochastic differential equation:

dXt = b(t,Xt, µt, at)dt+ σdWt, X0 = x, (37)

where µ = (µt)0≤t≤T is a deterministic function with values in the space of probability mea-
sures, which can be understood as a (temporary) proxy or candidate for the anticipated
statistical distribution of the random variables Xt. The expectation that has to be minimized
is now:

JMFG(a) = E

[
∫ T

0
f(t,X

α
t , µt, αt)dt+ g(X

α
T , µT )

]

, (38)
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and an equilibrium takes place if for an optimal control α, the anticipated distribution µt
actually coincides with L(Xα

t ) for every t ∈ [0, T ]. While very similar, the two problems differ
by a very important point: the timing of the optimization.

In the MKV control problem (35)-(36), at each time t, the statistical distribution µt is
matched to the distribution of the state, and once we have µt = L(Xt), then do we optimize
the objective function. On the other hand, for the MFG problem (37)-(38), the optimization
is performed for each fixed family µ = (µt)0≤t≤T of probability distributions, and once the
optimization is performed, one matches the distributions µt to the laws of the optimally
controlled process.

5 Solvability of General MKV Forward-Backward Stochastic
Equations

We argued that optimal paths to both MFG and MKV control problems appear as realizations
of the forward component of the solution of systems of forward-backward stochastic equations
of MKV type, though the corresponding forward-backward systems are different. On one
hand, the forward-backward system of the MFG approach appears as a standard forward-
backward system derived from the classical form of the stochastic Pontryagin principle, a
nonlinear term of MKV type appearing as a result of the fixed point argument of the third step
of the MFG approach. On the other hand, as we saw in the special case of scalar interactions
studied in [?] when we introduced the adjoint equation in this set-up, the forward-backward
system associated with the MKV control problem involves additional terms coming from the
need to optimize with respect to the interaction terms.

In this section, we address the solvability of general stochastic forward-backward equations
of MKV type. Due to the heavy technical nature of the results and their proofs, we only give
sketches of proof, all the arguments being detailed in the forthcoming work [?] by the two
first named authors.

Forward-backward systems such as (21) and (32) as special cases of more general fully cou-
pled forward and backward stochastic differential equations involving the marginal distribu-
tions of the forward solutions. Changing the notation ever so slightly in order to accommodate
the FBSDEs appearing in both analyses, we consider equations of the form:

dXt = B
(

t,Xt, Yt,L(Xt)
)

dt+ σdWt

dYt = −F
(

t,Xt, Yt,L(Xt)
)

dt+ ZtdWt, 0 ≤ t ≤ T,
(39)

with YT = G(XT ,L(XT )) as terminal condition. For simplicity, X and Y are both one
dimensional, but our strategy also applies in the higher-dimensional setting.

Because of the coupled structure of the system, solvability is a hard question to tackle:
fully coupled forward-backward systems are instances of stochastic two-point-boundary-value
problem for which both existence and uniqueness are known to fail under standard Cauchy-
Lipschitz condition. When the coefficients do not depend on the marginal distributions of the
solutions, the forward and backward equations may be decoupled by taking advantage of the
noise. Indeed, when the noise is non-degenerate, it has a decoupling effect by regularizing the
underlying FBSDE value function. We refer to [?] for a review of this strategy. Recall that
by FBSDE value function, we mean the function u giving Yt as a function of Xt, say u(t,Xt).
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In general, it satisfies the quasilinear PDE

∂tu(t, x) +
1

2
σ2∂2xxu(t, x) +B(t, x, u(t, x))∂xu(t, x) + F (t, x, u(t, x)) = 0, (40)

for t ∈ [0, T ] and x ∈ R, with u(T, x) = G(x). Within the theory of optimal control, when
the forward-backward system derives from the stochastic Pontryagin principle, the FBSDE
value function u appears as the derivative of the HJB value function v which solves the HJB
equation.

When the solution interacts with itself, e.g. with its own distribution, the standard Markov
structure breaks down. Indeed, the marginal distribution of the process X at time t is needed
to compute the transitions towards the future values of the state of the system. Basically,
the Markov property must be considered in a larger space, namely the Cartesian product of
the state space of the forward process, which is R in the present situation, with the space of
probability measures on the state space, which is infinite dimensional if the state space is not
finite. The PDE approach is not sufficient anymore: the underlying heat kernel derived from
the noise still has a smoothing property in the finite-dimensional component, but does not
have any regularizing effect in the infinite-dimensional direction.

In the forthcoming paper [?], the solvability of the equation is tackled by a compactness
argument and the Schauder fixed point theorem. Given an element µ of the space E =
P1(C([0, T ])) of probability measures on the space of C([0, T ]) of real valued continuous
functions on [0, T ], we consider the system

dXt = B
(

t,Xt, Yt, µt
)

dt+ σdWt

dYt = −F
(

t,Xt, Yt, µt
)

dt+ ZtdWt, 0 ≤ t ≤ T,
(41)

with YT = G(XT , µT ) as terminal condition. Here µ = (µt)0≤t≤Y is the flow of marginal
distributions where µt denotes the image (pulled forward) of µ under the t-th coordinate map
C([0, T ]) ∋ w →֒ w(t) ∈ R. If this system admits a unique solution, we can consider as output
the measure L(X). The following result is proven in [?]:

Theorem 5.1. Assume σ > 0 and that B, F and G are bounded Lipschitz continuous with
respect to the space variable for the Euclidean distance, and with respect to to the McKean
Vlasov component for the Wasserstein metric, uniformly in the other variables. Then, the
mapping Φ : E ∋ µ 7→ L(X) ∈ E has a fixed point, where E = P1(C([0, T ],R)).

Recall that the Wasserstein metric between two probability measures η and η′ on R
N ,

N ≥ 1 is the square root of the infimum of
∫

R2N |z − z′|2dπ(z, z′) over all the probability
measures π on R

2N admitting η and η′ as marginals.
Notice that given any µ in E, the forward-backward system is standard, so that unique

solvability holds, see e.g. Delarue [?]. The proof consists in showing that Φ leaves a bounded
closed convex subset Γ ⊂ E stable and that the restriction of Φ to Γ is continuous and
has a relatively compact range, E being endowed with the topology of weak convergence of
measures.. A complete proof is given in [?].

The application of Theorem 5.1 to the solvability of the adjoint equations in (25) and
(32) is not so straighforward. Indeed, the coefficients B and F therein derive from a convex
Hamiltonian structure, which means that they stand for the derivatives with respect to the
state space parameter (and also possibly with respect to the measure parameter) of the
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underlying Hamiltonian function. In practice, the Hamiltonian function is expected to grow
at infinity at a rate which could be quadratic with respect to to the state space parameter
and the control variable, so that boundedness of the coefficients B and F is expected to
fail. Similarly, the terminal cost G in (25) and (32) may have quadratic growth, so that the
terminal condition in the adjoint equations is not bounded in practice. As a consequence,
refinements of Theorem 5.1 are necessary for our specific purposes.

Here is a first straightforward refined statement of this kind: when the coefficient B grows
at most linearly in (x, y) and L(X), and F and G are bounded, existence of a solution still
holds true. When we say that B is at most of linear growth with respect to to (x, y,L(X)),
we mean that

|B(t, x, y,L(X))| ≤ C

[

1 + |x|+ |y|+
(
∫

RN

|x′|2dµ(x′)
)1/2]

, µ = L(X).

Solvability follows from a compactness argument again. Approximating the drift B by a
sequence of bounded drifts (Bn)n≥1, we can prove that, for the corresponding solutions
((Xn

t , Y
n
t = un(t,Xn

t ))0≤t≤T )n≥1, the distributions (L(Xn))n≥1 are tight and that the func-
tions (un)n≥1 are equicontinuous on compact subsets of [0, T ]× R

N . The proof follows from
two key observations: first, since f and g are bounded, the functions (un)n≥1 are uniformly
bounded, so that the processes (Xn)n≥1 are tight; second, by smoothing properties of keat
kernels, the functions (un)n≥1 are locally uniformly continuous, see [?]. Extracting a conver-
gent subsequence, we can pass to the limit by using stability of forward-backward stochastic
differential equations.

Here is another straightforward refinement: when G is bounded, and F is bounded with
respect to to all the parameters but y, and has a linear growth with respect to y, the solvability
still holds. Indeed, a standard maximum principle for BSDEs says that the process Y is
bounded, the bound depending upon the bound of G and the growth of F only, so that F
may be seen as a bounded driver.

5.1 Solvability of the MFG Adjoint Equations

For our specific purposes, the main point is to allow F and G to grow at most linearly.
The strategy developed in [?] consists in approximating the Hamiltonian structure of the
MFG/MKV control problem by a sequence of convex Hamiltonian structures with bounded
derivatives. Such an approximation argument relies on the following lemma:

Lemma 5.2. If id ≥ 1, given any continuous c-strongly convex function Φ : (x, α) ∈ R
d ×

R
d → R with c > 0, there exists a non-decreasing sequence (Φn)n≥1 of smooth convex functions

which converge toward Φ uniformly on compacts, such that ∂xΦ
n is bounded on the whole space

for each n ≥ 1, and Φn is c-strongly convex in α for each n ≥ 1.

Sketch of the Proof. We use the Legendre transform and define Φn as a mollification of
Φn,0(x, α) = sup|y|≤n infz∈Rd [〈y, x − z〉 + Φ(z, α)]. The desired properties then follow from
standard argument in convex analysis.

We can now state the following result for the MFG approach.

Theorem 5.3. Let us assume that
(i) The cost function f has non-negative values and is twice-continuously differentiable

with respect to x and α, with Lipschitz-continuous derivatives with respect to x, α and µ,
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the Lipschitz property holding for the Euclidean norm in x and α and for the Wasserstein
distance in µ. Moreover, f is convex in (x, α) for (t, µ) fixed in the sense that there exists a
constant λ > 0 such that:

f(t, x′, µ, α′)− f(t, x, µ, α)− 〈(x′ − x, α′ − α),∇(x,α)f(x, µ, α)〉 ≥ λ|α′ − α|2,

for all t ∈ [0, T ], x, x′, α, α′ ∈ R and µ ∈ P1(R);
(ii) The terminal cost g is non-negative twice-continuously differentiable with respect to

x, with Lipschitz-continuous derivatives in x and µ, the Lipschitz property holding for the
Euclidean norm in x and for the Wasserstein distance in µ. Moreover, g is convex in x when
µ is fixed;

(iii) b is affine in x and α in the sense that b(t, x, µ, α) = b0(t, µ) + b1(t)x+ b2(t)α where
b0, b1 and b2 are bounded and b0 is Lipschitz-continuous with respect to µ for the Wasserstein
distance.

Then, the adjoint equation (25) has at least one solution.

We emphasize that the mean-field linear-quadratic models investigated later in the paper
do not satisfy the boundedness condition required for b0 in (iii). In the proof, the boundedness
condition ensures that the fixed point measures of the approximating MFG problems are
tight. In the linear-quadratic framework, the tightness condition can be expressed differently,
as the problem may be reformulated directly, by investigating solvability of associated Ricatti
equations, see Section ?? below.

Sketch of Proof. Condition (i) says that ∂2α,αf ≥ λ, so that ∂αf is strictly increasing
with respect to to α. Recalling (18) and (43), α̂(t, x, p, µ) which is the unique solution of
the equation b2(t)p + ∂αf(t, x, µ, α̂) = 0,inherits the regularity properties of the coefficients
and is Lipschitz continuous with respect to x, p and µ, the Lipschitz continuity with respect
to µ being with respect to the Wasserstein distance. We are looking for the conclusion of
Theorem 5.1 with B(t, x, p, µ) = b(t, x, α̂(t, x, p, µ)), F (t, x, p, µ) = ∂xf(t, x, µ, α̂(t, x, p, µ))
and G(x, µ) = ∂xg(x, µ).

Approximating f and g by two non-decreasing sequences (fn)n≥1 and (gn)n≥1, as given
by Lemma 5.2, we can find, for each n ≥ 1, a solution (Xn, Y n) to the adjoint equations
associated with the approximate Hamiltonian

Hn,µ(t, x, y, α) = b(t, x, µ, α)y + fn(t, x, µ, y, α), t ∈ [0, T ], x, y, α ∈ R, µ ∈ P1(R),

and thus with Bn(t, x, p, µ) = b(t, x, α̂n(t, x, p, µ)), Fn(t, x, p, µ) = ∂xf
n(t, x, µ, α̂n(t, x, p, µ))

and Gn(x, µ) = ∂xg
n(x, µ), where

α̂n(t, x, p, µ) = argminαH
n,µ(t, x, p, α).

Clearly, α̂n(t, x, p, µ) converges towards α̂(t, x, p, µ) as n→ +∞.
For any n ≥ 1, we denote byXn the process controlled by (α̂n

t = α̂n(t,Xn
t , Y

n
t ,L(Xn

t )))0≤t≤T

and un the FBSDE value function such that Y n
t = un(t,Xn

t ), for any t ∈ [0, T ]. Our goal is to
establish tightness of the processes (Xn)n≥1 and relative compactness of the functions (un)n≥1

for the topology of uniform convergence on compact subsets of [0, T ] × R
d. The crucial step

is to prove that the growth of the functions (un)n≥1 can be controlled, uniformly in n ≥ 1.
In order to do so, we compare the behavior of Xn to the behavior of the process Un

controlled by βn defined by:

βns =

{

α̂n
s , 0 ≤ s ≤ t,

0, t < s ≤ T.
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Repeating the proof of the stochastic maximum principle and using the strict convexity of
the approximate Hamiltonian Hn with respect to the parameter α, we bound the conditional
cost

E

[

gn
(

Xn
T ,L(Xn

T )
)

+

∫ T

t

[

λ|α̂n
s |2 + fn

(

s,Xn
s ,L(Xn

s ), α̂
n
s

)]

ds|Ft

]

≤ E

[

gn
(

Un
T ,L(Un

T )
)

+

∫ T

t
fn
(

s, Un
s ,L(Xn

s ), 0
)

ds|Ft

]

.

The key observation is to note that, by boundedness of b0, we have:

E[ sup
t≤s≤T

|Un
s |2|Ft] ≤ C(1 + |Xn

t |2),

for some constant C independent of n. Modifying the constant C if necessary, we deduce that

E

[
∫ T

t
|α̂n

s |2
∣

∣Ft

]

≤ C(1 + |Xn
t |2),

from which
E[ sup

t≤s≤T
|Xn

s |2|Ft] ≤ C(1 + |Xn
t |2)

easily follows. Standard BSDE arguments imply that |un(t, x)| ≤ C(1 + |x|), and in turn,
tightness of the family (Xn)n≥1. Uniform continuity of the family (un)n≥1 on compact subsets
follows from the smoothing effect of heat kernels, see [?].

Let (u, µ) be the limit of a convergent subsequence which we still denote (un,L(Xn))n≥1.
The smoothing effect of heat kernels can also be used to prove that the functions (un)n≥1 are
uniformly locally Lipschitz-continuous in space, so that u itself is locally Lipschitz-continuous
in space. Since u grows at most linearly, the SDE

dXt = B
(

t,Xt, u(t,Xt), µt
)

dt+ σdW̃t,

is strongly solvable. We can also solve the backward equation

dYt = −F
(

t,Xt, Yt, µt
)

dt+ ZtdW̃t, YT = G(XT , µT ).

By stability of forward and backward equations separately, it is plain to see that X is the
limit of the (Xn)n≥1 and that Y is the limit of the ((un(t,Xn

t ))0≤t≤T )n≥1. Passing to the limit
in the approximating forward-backward systems, we conclude that (X,Y ) solves the adjoint
equation in (25).

5.2 Solvability of the adjoint Equations of the MKV Control Problem

We claim:

Theorem 5.4. In the framework of Theorem 4.1, assume that γ and ζ are twice-differentiable
convex functions, with bounded second-order derivatives and that b, f and g are twice-differen-
-tiable functions with bounded second-order derivatives that satisfy (A1) - (A3). Assume in
addition that b is linear with respect to x, x′ and α, namely b(t, x, x′, α) = b0(t) + b1(t)x +
b2(t)x

′ + b3(t)α, where b1, b2 and b3 are bounded functions. Assume similarly that ψ(ξ) = ξ
so that 〈ψ, µ〉 stands for the expectation of µ. Assume finally f is λ-convex with respect to α,
for some λ > 0, so that H in (30) is also λ-convex with respect to α.

Then, the forward-backward system (32), with αt = α̂(t, ξt, yt,L(ξt)), is uniquely solvable,
where α̂(t, ξ, y, µ) = argminαH(t, ξ, 〈ψ, µ〉, 〈γ, µ〉, y, α).
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Sketch of Proof. As in the proof of Theorem 5.3, we first notice that the function α̂ is
well-defined and Lipschitz-continuous w.r.t to ξ, y and µ. Still as in the proof of Theorem
5.3, we consider non-decreasing sequences of convex functions (fn)n≥1, (g

n)n≥1, (γ
n)n≥1 and

(ζn)n≥1, with bounded first- and second-order derivatives, converging towards f , g, γ and
ζ respectively as n → +∞. For each n ≥ 1, we define the Hamiltonian Hn by replacing
f by fn in (30), and we consider the forward-backward system (32) by replacing (f, g, γ, ζ)
therein by (fn, gn, γn, ζn) and αt by α̂

n
t = α̂n(t, ξt, yt,L(ξt)) the argument of the minimum

of Hn(t, ξ, 〈ψ, µ〉, 〈γ, µ〉, y, α): it is the forward-backward system associated with the Hamil-
tonian Hn. We denote by (Xn, Y n) its solution.

By the stochastic Pontryagin principle, the process (α̂n
t )0≤t≤T minimizes the cost function

(27), with f , g, γ and ζ therein replaced by fn, gn, γn and ζn. In particular, Jn(α̂n) ≤
Jn(α̂n+p), for p ≥ 0. Actually, by λ-convexity of fn with respect to α, we can even write:

Jn
(

α̂n
)

+ λE

∫ T

0
|α̂n

s − α̂n+p
s |2ds ≤ Jn

(

α̂n+p
)

.

Recalling the proof of Lemma 5.2, fn and gn inherits the monotonicity property of f and g
with respect to x′, and for any admissible control β, Jn(β) ≤ Jn+p(β). Therefore,

Jn
(

α̂n
)

+ λE

∫ T

0
|α̂n

s − α̂n+p
s |2ds ≤ Jn+p

(

α̂n+p
)

.

In particular, the sequence (Jn(α̂n))n≥1 is non-decreasing. Thus, it has a limit since it is
bounded by supn≥1(J

n(0)) <∞. We deduce that (α̂n)n≥1 is a Cauchy sequence. By stability
of standard McKean Vlasov SDEs, we deduce that that

lim
n→+∞

sup
p≥1

E
[

sup
0≤s≤T

|Xn+p
s −Xn

s |2
]

= 0.

This proves that the processes (Xn)n≥1 converge for the norm E[sup0≤s≤T | · |2]1/2, towards a
continuous adapted process X. By standard results of stability for BSDEs, we then deduce
that the same holds for the processes (Y n)n≥1, that is

lim
n→+∞

sup
p≥1

E
[

sup
0≤s≤T

|Y n+p
s − Y n

s |2
]

= 0.

One then deduce the existence of the limit Y , and the fact that (X,Y ) satisfies the forward-
backward system (32). Uniqueness easily follows from the stochastic Pontryagin principle.

Remark 3. Uniqueness in Theorem 5.4 says that, for any t ∈ [0, T ], Yt is a function of Xt.
This also follows from a standard change of filtration, as usually done in the theory of BSDEs.
In particular, the optimal control α̂ is a feedback control, as expected.

6 Mean Field Linear Quadratic (LQ) Games

This section is devoted to a class of models for which we can push the analysis further, to the
point of deriving explicit formulas in some cases. In the general case of d′-dimensional private
states, with d′ possibly greater than 1, imposing mean field interaction to a linear quadratic
model of a stochastic differential games forces the dynamics of the private states to be of the
form

dXi
t = [AtX

i
t +AtXt + btα

i
t + βt]dt+ σdW i

t , i = 1, · · · , N
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with individual costs:

J i(α) = E

{
∫ T

0
[
1

2
αi†
t Ntα

i
t + ‖MtX

i
t + M̃tXt‖2dt+

1

2
‖QXT + Q̃XT ‖2

}

where Xt denotes the average of the Xi
t . In the notation used in this paper for the drift and

cost functions, this means

b(t, x, µ, α) = Atx+Atµ+Btα+ βt

f(t, x, µ, α) =
1

2
α†
tNtαt

g(x, µ) =
1

2
‖Qx+Qµ‖2

where the d′ × d′ matrices At, At, Mt and M t, the d
′ × k′ matrix Bt, the k

′ × k′ matrix Nt,
and the d′ × 1 vector βt are deterministic continuous functions of t ∈ [0, T ], and the d′ × d′

matrices Q, and Q are deterministic and symmetric. Recall that we use the notation µ for
the mean of measure µ, i.e. µ =

∫

xdµ(x).

6.1 Solving the N-player Game

Under specific assumptions on the matrix coefficients (in particularBt andNt being symmetric
and invertible), existence of open loop Nash equilibriums for Linear Quadratic (LQ for short)
stochastic differential games of the type considered in this section can be proven using the
stochastic Pontryagin principle approach. See for example [?]. We refrain from giving more
specific in the general set-up as we are about to re-derive these results in the particular case
of mean field models which we consider below.

As in our introductory discussion, we assume that d′ = 1 for the sake of simplicity. In
other words, individual private states are one dimensional. This assumption is not essential,
its goal is only to keep the notation to a reasonable level of complexity. See nevertheless
Remark 4 below. Moreover, we also assume that k′ = 1 so that the actions of the individual
players are also one-dimensional. Using lower cases for scalars where we used upper cases for
matrices, the dynamics of the private states rewrite:

dxit = [atx
i
t + atxt + bta

i
t + βt]dt+ σdW i

t , i = 1, · · · , N.

Similarly, the individual costs become:

J i(α) = E

{
∫ T

0
[
nt
2
(αi

t)
2 + (mtxt +mtxt)

2]dt+
1

2
(qxT + qxT )

2

}

We will assume throughout that bt > 0 and nt > 0.

6.2 Implementing the MFG Approach

As explained earlier, the first step of the MFG approach is to fix a flow µ = (µt)0≤t≤T of
probability measures in lieu of the empirical measures of the players’ private states, and solve
the resulting control problem for one single player. Since the empirical measure of the players’
private states enters only the state equations and the cost functions through its mean, it is
easier to choose a real valued deterministic function (µt)0≤t≤T (which we should denote µ in
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order to be consistent with the convention used so far in our notation system) as a proxy for
the mean of the empirical distribution of the private states. Then the individual stochastic
control problem is to minimize

J(a) = E

{
∫ T

0
[
nt
2
α2
t + (mtxt +mtµt)

2]dt+
1

2
(qxT + qµT )

2

}

subject to the dynamical constraint

dxt = [atxt + atµt + btαt + βt]dt+ σdWt,

Given that the deterministic function t →֒ µt is assumed fixed, the Hamiltonian of the stochas-
tic control problem is equal to

Hµ(t, x, y, α) = y[atx+ atµt + btα+ βt] +
1

2
(mtx+mtµt)

2 +
1

2
ntα

2. (42)

The optimal control α̂ minimizing the Hamiltonian is given by:

α̂ = − bt
nt
y (43)

and the minimum Hamiltonian by

Hµ(t, x, y) = inf
α∈A

Hµ(t, x, y, α) = (atx+ aµt + βt)y +
1

2
(mtx+mµt)

2 − 1

2

b2t
nt
y2

HJB Approach

As explained earlier, we state the MFG system of coupled nonlinear PDEs for the sake of
completeness only since we eventually use the stochastic Pontryagin principle to solve this
optimal control problem. In the particular case at hand, the classical forward-backward MFG
system reads

∂tv(t, x) =
σ2

2
∂2xxv(t, x) + (atx+ aµt + βt)∂xv(t, x)−

1

2

b2t
nt
∂xv(t, x)

2 +
1

2
(mtx+mtµt)

2 (44)

for the HJB equation, and

∂tνt =
σ2

2
∂2xxνt − div([atxt + atµt −

b2t
nt
∂xv(t, x) + βt]νt) (45)

for the Kolmogorov’s equation. Recall the expression (43) for the optimal control and the
fact that the adjoint variable y is related to the state variable x by the FBSDE value function
which is the derivative of the HJB value function. In any case, this Kolmogorov’s equation
needs to be solved simultaneously under the fixed point condition µt =

∫

xdνt(x) for all
t ∈ [0, T ].
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Pontryagin Minimum Principle Approach

In the present situation, the classical adjoint equation reads

dyt = −[atyt +mt(mtxt +mtµt)]dt+ ztdWt, yT = q(qxT + qµT ). (46)

Notice that because of the special form of the coefficients, this BSDE does not involve the
control α̂t explicitly. With our choice of α̂t, the forward dynamics of the state become:

dxt = [atxt + atµt −
b2t
nt
yt + βt]dt+ σdWt. (47)

and the problem reduces to the proof of the existence of a solution to the standard FBSDE
(47) - (46) and the analysis of the properties of such a solution. In particular, we will need to
check that this solution is amenable to the construction of a fixed point for µ. Notice that,
once this FBSDE is solved (43) will provide us with an open loop optimal control for the
problem. For the remainder of the proof, we streamline the notation and rewrite the FBSDE
as

{

dxt = [atxt + btyt + ct]dt+ σdWt, x0 = x

dyt = [mtxt − atyt + dt]dt+ ztdWt, yT = qxT + r
(48)

where in order to better emphasize the linear nature of the FBSDE we set:

• at = at, bt = −b2t /nt, ct = βt + atµt;

• mt = −m2
t , dt = −mtmtµt;

• q = q2, r = qqµT .

Notice the abuse of notation: the at, bt, ct, mt, dt, q and r appearing in the left hand sides
are new variables and parameters while the quantities in the right hand sides are the original
coefficients of our LQ-game. Linear FBSDEs of the form (48) have been studied in [?, ?], but
for the sake of completeness we construct a solution from scratch. Because of the linearity of
the system (48), we expect the FBSDE value function to be affine in the space variable, so
we search for deterministic functions ηt and χt such that

yt = ηtxt + χt, 0 ≤ t ≤ T. (49)

Computing dyt from this ansatz using the expression of dxt from (48) we get

dyt = [(η̇t + atηt + btη
2
t )xt + χ̇t + btηtχt + ctηt]dt+ σηtdWt

and identifying term by term with the expression of dyt given in (48) we get:











η̇t = −btη2t − 2atηt +mt, ηT = q

χ̇t + (at + btηt)χt = dt − ctηt, χT = r

zt = rηt.

(50)

The first equation is a Ricatti equation. Its solution is obtained by solving the second order
linear equation

−btθ̈t − [ḃt − 2atbt]θ̇t +mtb
2
t θt = 0,
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with terminal conditions θT = 1 and θ̇T = bT q. In terms of the original coefficients, this
second order ordinary differential equation rewrites:

b2t
nt
θ̈t − [

ḃ2t
nt

− 2at
b2t
nt

]θ̇t −m2
t

b4t
n2t
θt = 0,

with terminal conditions θT = 1 and θ̇T = −qb2T /nT . We need a solution t →֒ θt which does
not vanish, so an extra assumption guaranteeing the strict positivity of the discriminant of
this equation needs to be imposed on the coefficients. Once such a positive solution is found,
the solution ηt of the Ricatti equation is obtained by setting

ηt = −nt
b2t

θ̇t
θt
.

Remark 4. While we claimed that restricting ourselves to the one dimensional case d′ = 1
was not restrictive, but it is only fair to mention that the solution of matrix valued Ricatti’s
equations is more involved and requires extra assumptions, and the assumptions needed to
guarantee the invertibility of θt are rather technical.

In any case, once ηt is computed, we plug its value in the third equation to determine zt,
and in the second equation which can then be solved by:

χt = re
∫ T

t
[au+buηu]du −

∫ T

t
[ds − csηs]e

∫ s

t
[au+buηu]duds,

or in terms of the original coefficients

χt = qqµT e
∫ T

t
[au−ηub2u/nu]du +

∫ T

t
[msmsµs + (βs + asµs)ηs]e

∫ s

t
[au−ηub2u/nu]duds. (51)

Now that the deterministic functions ηt and χt are computed, we rewrite the forward stochas-
tic differential equation for the dynamics of the state using the ansatz (67)

dxt = [(at + btηt)xt + btχt + ct]dt+ σdWt, x0 = x.

Such a stochastic differential equation is solved explicitly

xt = xe
∫ t

0 (au+buηu)du +

∫ t

0
(bsχs + cs)e

∫ t

s
(au+buηu)duds+ σ

∫ t

0
e
∫ t

s
(au+buηu)dudWs. (52)

We see here that things can go wrong if au + buηu is not integrable near u = 0. Even
without going back to the original coefficients, we notice that xt is a Gaussian process of the
Ornstein-Uhlenbeck type. Its expectation is

E{xt} = xe
∫ t

0 (au+buηu)du +

∫ t

0
(bsχs + cs)e

∫ t

s
(au+buηu)duds. (53)

Notice that the function t →֒ µt which we started from is present, though hidden, in the right
hand side. A solution of the MFG approach, is obtained if we can determine this function so
that the expectation E{xt} given by (53) above is exactly µt. In other words, we need to find
a fixed point to the mapping U which takes the function µ : [0, T ] ∋ t →֒ µt into the function
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ν = U(µ) : [0, T ] ∋ t →֒ νt where νt is defined as the right hand side of (53). We introduce
some temporary notation in order to express U in a more manageable way, and prove the
existence of a fixed point. First we notice that the solution (ηt)0≤t≤T of the Ricatti equation
in (50) does not depend upon µ = (µt)0≤t≤T , so that αt = at + btηt is also independent of µ.
Looking closely at formula (51) giving the value of χt, we notice that it can be written in the
form

χt = qµT e
∫ T

t
αtdu +

∫ T

t
γsµse

∫ s

t
αududs+ δt

where the constant q and the function α, γ and δ do not depend upon µ.

Consequently, µt is of the form

µt = αtx+ βt + qγtxT +

∫ t

0
δsxsds+

∫ t

0
ηs

∫ T

s
xuζududs

for some nice functions α, β, γ, δ, η, ζ, but it is not clear to me what will make such a
function a contraction – short of assuming T small enough !

A Simple Example

For the sake of illustration, we consider the frequently used example where the drift b reduces
to the control, namely b(t, x, µ, α) = α, so that at = at = βt = 0, bt = 1 and the state equation
reads

dxt = αtdt+ σdWt.

We also assume that the running cost is simply the square of the control, i.e. nt = 1 and
mt = mt = 0. Using the notations and the results above, we see that the FBSDE of the MFG
approach has the simple form

{

dxt = −ytdt+ σdWt

dyt = ztdWt

(54)

which we solve by postulating yt = ηtxt + χt, and solving for the two deterministic functions
η an χ. We find:

ηt =
q

1 + q(T − t)
, χt =

r

1 + q(T − t)
,

and plugging these expressions into (52) we get

xt = x
1 + q(T − t)

1 + qT
− rt

1 + qT
+ σ[1 + q(T − t)]

∫ t

0

dWs

1 + q(T − s)
. (55)

Notice further that the optimal control αt and the adjoint process yt satisfy

−αt = yt =
q

1 + q(T − t)
xt +

r

1 + q(T − t)

and that the only quantity depending upon the fixed mean function t →֒ µt is the constant
r = qqµT which depends only upon the mean state at the end of the time interval. This
makes the search for a fixed point very simple and one easily check that if

µT =
x

1 + q(q + q)T

then the mean at time T of the random variable xT given by (55) is µT .

23



6.3 More Tractable Examples

Motivated by the specific form of our introductory example of emission regulation, we gener-
alize the simple example discussed above by keeping the same forms for the state dynamics
and the running cost, but considering more general terminal cost functions g(x, µ). From the
specific form of Kolmogorov’s equation

µt = E{Xt} = x+

∫ t

0

∫

∂xv(t, x, µs)νs(dx)ds,

where v is the solution to (22) for (µt)t∈[0,T ] frozen. The HJB equation being:

∂tv +
σ2

2
∂2xxv +

|∂xv|2
2

= 0, v|t=T (x) = g(x, µT ),

a Hopf-Cole change of variable reducing this nonlinear HJB equation to a classical linear heat
equation shows that we can get solutions in closed form when g is linear or quadratic in its
first variable.

Linear terminal cost.

In this case the terminal cost is of the form g(x, x′) = xγ(x′) and the fixed point equation for
the mean is

µt = x+ t γ(µt).

Consequently, existence of a solution amounts to the existence of fixed points for the trans-
formation x′ →֒ x+ t γ(x′), for a given x and for every t ∈ [0, T ]. The invariant distributions
of this dynamical system are described by the Poisson’s equation

θ̇(t) = γ(θ(T )), t ∈ (0, T ], θ(0) = x.

Quadratic terminal cost.

In this case, g(x, x′) = x2 γ(x′) and we have to consider the existence of a fixed point for the
function

(θs)s∈(0,t] →֒ x+ γ(θ(T ))

∫ t

0
θ(s)ds, ∀t ∈ (0, T ],

or equivalently the existence of a solution to the following initial value problem:

θ̇(t) = γ(θ(T ))θ(t), t ∈ (0, T ], θ(0) = x.

Remark 5. We did not consider the case of a constant terminal cost g(x, x′) = γ(x′) because
the solution is trivial one (µt ≡ x).

7 Control of Mean Field LQ McKean Vlasov Dynamics

As before, we assume d′ = 1 and k′ = 1. The problem of the optimal control of the Mean Field
Linear Quadratic McKean-Vlasov dynamics consists in the minimization of the functional

J(α) = E

[
∫ T

0
[
1

2
(mtξt +mtE{ξt})2 +

1

2
ntα

2
t ]dt+

1

2
(qξT + qE{ξT })2

]

(56)
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over all the admissible control processes α = (αt)0≤t≤T under the constraint

dξt = [atξt + atE{ξt}+ btαt + βt]dt+ σdWt. (57)

In order to be admissible, a control must be a progressively measurable process taking values
in a fixed subset A of an Euclidean space and satisfy an integrability condition to be specified.
So in the notations of the Pontryagin principle stated earlier in Theorem 4.1, we have

• ψ(x) = γ(x) = ζ(x) = x

• b(t, x, x′, a) = atx+ atx
′ + bta+ βt

• f(t, x, x′, a) = 1
2(mtx+mtx

′)2 + 1
2nta

2

• g(x, x′) = 1
2(qx+ qx′)2

so that the adjoint equation becomes

dpt = −[atpt +mt(mtξt +mtE{ξt})]dt+ qtdWt

− [E{atpt}+ E{mt(mtξt +mtE{ξt})}]dt, pT = (q + q)(qξT + qE{ξT }).
(58)

Notice that because of the special form of the coefficients, this BSDE does not involve the
control αt explicitly. The control appears only indirectly, through the state ξt and its mean
E{ξt}. In order to apply the Pontryagin minimum principle, we guess the candidate for the
optimal control by minimizing the Hamiltonian:

α̂ = arg inf
α∈A

H(t, x, p, α) (59)

= arg inf
a∈A

p[atx+ atx
′ + btα+ βt] +

1

2
(mtx+mtx

′)2 +
1

2
ntα

2 (60)

and the first order condition gives:
pbt + ntα = 0

so that we choose

αt = − bt
nt
pt (61)

as candidate for the optimal control. With this choice, the dynamics of the state become:

dξt = [atξt + atE{ξt} −
b2t
nt
pt + βt]dt+ σdWt. (62)

and the problem reduces to the proof of the existence of a solution to the FBSDE (62) - (58)
of the McKean-Vlasov type, and the analysis of the properties of such a solution.

In order to make the adjoint equation (58) more tractable, we assume (as in the case of
the Mean Field approach) that all the coefficients at, at, bt, βt, mt, mt, nt are deterministic
continuous functions of t ∈ [0, T ], and that q, and q are deterministic constants. In this case,
the FBSDE (62) - (58) of McKean-Vlasov type reads:

dξt = [atξt + atE{ξt} −
b2t
nt
pt + βt]dt+ σdWt, ξ0 = ξ

dpt = −[ãtpt + m̃t(m̃tξt + ˜̃mtE{ξt})]dt+ qtdWt

− [E{atpt}+ E{mt(mtξt +mtE{ξt})}]dt, pT = (q + q)(qξT + qE{ξT })

(63)
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Because of these equations are linear, we can solve first for the functions t →֒ E{ξt} and
t →֒ E{pt}. Indeed, taking expectations on both sides of (66) and rewriting the resulting
system using the notation ξt and pt for the expectations E{ξt} and E{pt} respectively, we
obtain:

{

dξt = [(at + at)ξt −
b2t
nt
pt + βt]dt, ξ0 = ξ

dpt = −[(at + at)pt + (mt +mt)ξt]dt, pT = (q + q)2ξT .
(64)

This is a typical linear system of Ordinary Differential Equations (ODEs) for the function ξt
and pt with mixed initial/terminal conditions, ξ0 = x, pT = (q+ q)2ξT , so there is absolutely
no guarantee that a solution exists. In order to decouple the initial and terminal boundary
conditions, we search a solution in the form pt = ηtξt + χt for two deterministic functions ηt
and χt to be found. Simple arithmetic shows that the system (64) is equivalent to

{

η̇t =
b2t
nt
η2t − 2(at + at)ηt − (mt +mt)

2, ηT = (q + q)2

χ̇t −[
b2t
nt

− (at + at)]χt = −βtηt, χT = 0.
(65)

The first equation is a Ricatti equation whose solution is obtained by solving the second order
linear equation

b2t
nt
θ̈t − [

b̈2t
nt

− 2(at + at)
b2t
nt

]θ̇t − (mt +mt)
2 b

4
t

n2t
θt = 0

with terminal conditions θT = 1 and θ̇T = (q + q)2
b2
T

nT
and setting

ηt = −nt
b2t

θ̇t
θt
.

The same remarks about the positivity of θt apply here as well. Once ηt is computed, we plug
its value in the second equation which can then be solved by:

χt =

∫ T

t
βsηse

∫ s

t
[au+au−b2u/nu]duds.

Now that the deterministic functions ηt and χt are computed, we solve for ξt and pt by
plugging our ansatz pt = ηtξt + χt into the first equation of (64). We get:

dξt = [(at + at −
b2t
nt
ηt)ξt + βt −

b2t
nt
χt]dt, ξ0 = ξ

whose solution is

ξt = e
∫ t

0 (au+au−ηub2u/nu)duξ +

∫ t

0
[βs −

b2s
ns
χs]e

∫ t

s
(au+au−ηub2u/nu)duds,

which we in turn, plug in the ansatz pt = ηtξt + χt to get the value of pt.

We can now replace the expectations E{ξt} and E{pt} appearing in the FBSDE (66) of
McKean-Vlasov type by the deterministic functions ξt and pt obtained solving the forward
backward system of ODEs, and solve the linear FBSDE

{

dξt = [atξt + btpt + ct]dt+ σdWt, ξ0 = ξ

dpt = [mtξt − atpt + dt]dt+ qtdWt, pT = qξT + r
(66)

where for the purpose of this part of the proof, and in order to lighten the notation, we use
the same abuse of notation we used in the case of the MFG approach by setting:
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• at = at, bt = −b2t /nt, ct = βt + atξt;

• mt = −m2, dt = −mt(2mt +mt)ξt − at)pt;

• q = q(q + q), r = q(q + q)ξT

We are now dealing with a Markovian linear FBSDE, so we suspect that the FBSDE value
function is affine and we search for deterministic functions ηt and χt such that

pt = ηtξt + χt, 0 ≤ t ≤ T. (67)

As in the case of the search for the means ξt and pt, we look for the necessary consequences
of such an ansatz, and we try to derive the final form of the solution of the FBSDE from
there. Computing dpt from the ansatz using the expression of dξt from (66) and identifying
the result with the expression of dpt given in (66) we get:











η̇t = −btη2t − 2atηt +mt, ηT = q

χ̇t + (at + btηt)χt = dt − ctηt, χT = r

qt = rηt.

(68)

We proceed as before, first finding ηt (which gives automatically qt by the third equation
of (68)) by solving the Ricatti equation, and then, plugging the resulting ηt into the second
equation, we solve for χt. As before, once ηt and χt are determined, we rewrite the forward
stochastic differential equation for the dynamics of the state using the ansatz

dξt = [(at + btηt)ξt + btχt + ct]dt+ σdWt, ξ0 = ξ

which is solved explicitly

ξt = e
∫ t

0 (au+buηu)duξ +

∫ t

0
(bsχs + cs)e

∫ t

s
(au+buηu)duds. (69)

Notice that (69) shows that the optimally controlled state is still Gaussian despite the nonlin-
earity due to the McKean-Vlasov nature of the dynamics. While the expectation E{ξt} = ξt
was already computed, expression (69) can be used to compute the variance of ξt as a function
of time. Because of the linearity of the ansatz and the fact that ηt and χt are deterministic,
the adjoint process (pt)0≤t≤T is also Gaussian.

Remark 6. Using again the form of the ansatz, we see that the optimal control αt which was
originally identified as an open loop control in (61), is in fact in closed loop feedback form
since it can be rewritten as

αt = − bt
nt
ηtξt −

bt
nt
χt (70)

via the feedback function φ(t, ξ) = −bt(ηtξ + χt)/nt which incidently shows that the optimal
control is also a Gaussian process.

8 Comparison of Mean Field and McKean-Vlasov Approxi-
mations

In this section we provide simple examples confirming that the problems are different by
showing that they have different solutions. Note that we shall see that they can coincide in
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some special cases. We first concentrate on the simple case:

b(t, x, µ, α) = α, f(t, x, µ, α) =
α2

2

which we already considered earlier. We saw that in both cases, the optimal control is simply
the negative of the adjoint process, the difference between the two cases being that the
FBSDEs giving the optimally controlled state and the adjoint process are different. While
the analysis of the previous sections was given for a very specific form of the quadratic terminal
cost, we discuss now several related forms of the function g for which we can still conclude.

The case g(x, x′) = xx′. Here we only compare the end-of-the-period means. We know from
section ?? that the solution to the MFG problem is such that µT = x+µTT , so that we have:

µT =
c

1− T
. (71)

On the other hand, taking expectations on both sides of the FBSDE we get that:

pt = −2E[XT ], t ∈ [0, T ],

xt = −pt, x0 = x,

from which we see that
E[xT ] =

c

1− 2T
. (72)

(71) and (72) clearly show that the terminal means of the optimally controlled state are
different in the MKV control problem and the MFG problem.

The case g(x, x′) = xx′2. In this example we point out that we can also use system (??)-(??)
to find necessary conditions to the MFG problem. First we take (µt)t∈[0,T ] as given, and then
we write the system it must satisfy:

pmfg
t = −E[XT ]

2, t ∈ [0, T ],

E[Xt] = −pmfg
t , E[X0] = x.

At the equilibrium, we must have µT = E[XT ], then

T µ2T − µT + x = 0. (73)

On the other hand, we write the averaged FBSDE after taking expectations for the MKV
control problem, we get:

3T x2T − xT + x = 0. (74)

Existence of a solution and uniqueness depend upon the parameters T and x. Let us have
a quick look at these issues more in details. Let Smfg = {(T, x) ∈ R

2
+; 1 − 4Tx ≥ 0} and

Smkv be defined in the same way. They represent the sets of solutions to both problems. It
is easy to see that Smkv ⊂ Smfg. Moreover, there exists a continuum of pairs (T, x) such that
there is uniqueness in the MKV control problem while there are two solutions to the MFG
problems. In particular, if T = 1, x = 1/12, then we have

xT =
1

6
, and µT =

3±
√
6

6
.

Additive running cost. It is obvious from the averaged FBSDE after taking expectations
that the solutions x and µ do not coincide when the coefficients of the model have the form:
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• b(t, x, x′, a) = b1(x) + b2(x
′) + b3(a);

• f(t, x, x′, a) = f1(t, x) + f2(t, x
′) + a2/2;

• g(x, x′) = g1(x,
′ ) + g2(x, x

′).

The case f(t, x, x′, a) = a2/2 + xx′. In this example we take g = 0 and b(t, x, x′, a) = a.
Writing the necessary the averaged FBSDE after taking expectations for both problems, we
get:

d

dt
pmfg
t = −µt, pmfg

T = 0
d

dt
pmkv
t = −2xt, p

mkv
T = 0,

d

dt
µt = −pmfg

t , µ0 = c
d

dt
xt = −pmkv

t , x0 = x.

These are classical systems with exponential solutions. After computations, we finally have
the following solutions:

xt = x

(

3

2
− e

√
2(T−t) + e−

√
2(T−t)

e
√
2T + e−

√
2T

)

, and µt = x

(

2− e(T−t) + e−(T−t)

eT + e−T

)

.

The linear-quadratic case with zero terminal cost. This classical case corresponds to
b(t, x, x′, a) = a, f(t, x, x′, a) = a2/2+(x−x′)2/2. As we have already investigated the impact
of the terminal cost, we take g = 0 here. Here it is easy to see that the trivial solution (p = 0)
solves both problems.

9 Back to the Carbon Emissions Regulation Example

We revisit the emissions regulation example presented in Section 2, switching from the original
notation of the emissions literature to the notation used in this paper. The private states
Xi

t = Ei
t are one-dimensional and the drift of their dynamics and the running cost function

are of the form:
b(t, x, µ, α) = −α, and f(t, x, µ, α) = c(α)

(for the sake of simplicity we assume that the BAU dift bit is zero) while the function giving
the terminal cost is the function g defined on R× P1(R) by

g(x, µ) = λ(x− ΛN )+1{µ>ΛN}

where ΛN = Λ/N stands for the cap per firm. The quantity ΛN is the relevant form of the
cap as it makes sense in the limit N → ∞ of a large number of firms treated similarly by the
regulator.

9.1 The Mean Field Game Approximation

As explained earlier, approximate Nash equilibrium provided by the MFG approach are given
by the solutions of a forward-backward system of nonlinear PDEs which, in the present set-up,
if we assume quadratic abatement costs c(ξ) = ξ2, reads:

(Kolmogorov) ∂tm− σ2

2
m′′ + (−v′m)′ = 0, m(0, .) = m0(.),

(HJB) ∂tv +
σ2

2
v′′ − 1

2
(v′)2 = 0, v(T, .) = vT (.,m(T )).
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where the function m(t, · ) stands for the density of the measure µt = L(Xt) so that:

mt = µt =

∫

xm(t, x) dx

and v for the HJB value function of the stochastic control problem when the family {µt}0≤t≤T

is frozen. These PDEs are simple enough to be solved by a Hopf-Cole change of variables:

v = −σ2 log u ↔ u = exp
(

− v

σ2

)

m = uψ ↔ ψ =
m

u
.

Then the pair (u, ψ) solves the simple forward-backward system:

∂tψ − σ2

2
ψ′′ = 0, ψ(0, .) = ψ0(u(0, .)),

∂tu+
σ2

2
u′′ = 0, u(T, .) = uT (., ψ(T, .)),

consisting of two fundamental heat equations coupled only at the end points of the time
interval. Here

ψ0(f(y)) =
m0(y)

f(y)
and ψT (y, f(y)) = exp

(

−λy
σ2

1{
∫

ye−λy/σ2
f(y)dy > ΛN}

)

.

Though MFG problems cannot be solved analytically in general, here the specific and simple
form of the mean-field interaction term vT (depending only upon the global distribution’s first
moment) leads to an easy computation of the solutions by allowing us to take full advantage
of the adjoint structure of the terminal cost. We need to distinguish three cases:

• The Business As Usual (BAU) Solution. If we assume that the cap is not reached, then
u(T, y) = 1 forall y ∈ R, which implies that forall (t, y) ∈ [0, T ]×R, we have v(t, y)=0,
and consequently the optimal abatement strategy is to do nothing, i.e. at = 0. This
corresponds to BAU. So in this case m(t, y) = ϕ0,σ2t ⋆m0(y), where ϕ0,σ2t is the density
of the Gaussian distribution with mean 0 and variance 2σ2t. Then one should check
that the mean of ϕ0,σ2T ⋆m0(y) is lower than Λ in order to conclude that this is a Nash
equilibrium approximation. This happens whenever y0 < Λ.

• The Abatement Solution. Suppose now that the cap is exceeded. In this case the
terminal condition is linear: vT (y) = λy. An easy computation shows that v(t, y) =
−σ2 log(ϕ0,σ2(T−t)(y)), φ(t, x) = λ (abatement strategy) and m(t, x) = ϕλt,σ2t ⋆ m0(x).
Now one should check that we eventually have themT > ΛN which, sincemT = m0−λT ,
is equivalent to the condition m0 > ΛN + λT .

• Non-Existence. Finally, if m0 belongs to the interval [ΛN ,ΛN + λT ], it is easy to see
that there is no solution (i.e. no MFG approximate Nash equilibrium). Indeed, in
the reasonable (from the point of view of the choices of Λ, λ, and T ) cap-and-trade
schemes, the cap is expected to be reached so that the players have an abatement
strategy, and it is often observed that the cap is in fact not reached at the end of
the period. Now, from the MFG theory viewpoint, the intuition is as follows. An
individual firm with negligible impact on the overall emission can emit whatever it
wants without impacting significantly the global emissions. However, as soon as this
becomes everybody’s strategy, the cap is reached.
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Let us emphasize that we could also have used the result of Section 6 (linear terminal cost
case) to directly get the existence condition for the specific g = uT .
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