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Abstract

This paper addresses robust deconvolution filtering when the system and noise dynamics are obtained by parametric system
identification. Consistent with standard identification methods, the uncertainty in the estimated parameters is represented
by an ellipsoidal uncertainty region. Three problems are considered: 1) Computation of the worst case H2 performance of a
given deconvolution filter in this uncertainty set. 2) Design of a filter which minimizes the worst case H2 performance in this
uncertainty set. 3) Input design for the identification experiment, subject to a limited input power budget, such that the filter
in 2) gives the smallest possible worst-case H2 performance. It is shown that there are convex relaxations of the optimization
problems corresponding to 1) and 2) while the third problem can be treated via iterating between two convex optimization
problems.

1 Introduction

In many applications it is of interest to estimate the
input to a dynamical system given measurements of
the output, examples include seismic signal process-
ing [12], telecommunication [8], etc. Compounding
factors are that in general measurements are noise
corrupted and, furthermore, that the system through
which the signal passes is not known exactly but un-
certain. In deconvolution filtering the original signal is
estimated by filtering the measured signal(s) through
a filter. The measured signal is {y} which is given by
y(t) = G0(z)u(t) + H0(z)e(t) where G0 is the dynam-
ics of the system through which {u} passes and where
the term H0(z)e(t) represents an aggregation of distur-
bances, modelled as zero mean white noise {e} filtered
through some dynamics H0. The measured signal y
is filtered through the causal deconvolution filter F ,
resulting in the estimate û(t − nk) = F (z)y(t). The
delay nk corresponds to the degree of non-causality (or
smoothing) that will be allowed in the filtering.

In the sequel, we will suppose that all signals are wide-
sense stationary and that the power spectrum Φu(ω)
of the signal u(t) is given by Φu(ω) = |Wu(ejω)|2 with
Wu(z) being a known stable transfer function. The vari-
ance of e(t) is denoted by σ2

e . We assume that u and e
are independent. We will also assume that G0 and H0

are stable linear time invariant systems and H0 is fur-
ther assumed to be inversely stable and monic.

The filter F (z) should be designed in order to give an
accurate estimate of the input signal. By this we mean
an estimate such that the mean-square error J0(F ) =

Ē
[
(û(t) − u(t))2

]
:= limN→∞

1
N

∑N
t=1 E

[
(û(t) − u(t))2

]

is small. When the system G0 and noise dynamics H0 are
perfectly known, the Wiener filter is the optimal filter.

When G0 and H0 are uncertain, the filter F should be
robust, i.e. it should give good (but maybe not optimal)
performance for any system in the class of systems (i.e.
the uncertainty region) to which G0 and H0 may be-
long. There is a rich literature on robust filtering in gen-
eral, see, e.g., [6, 15, 13], and also on robust deconvolu-
tion filtering, see [4, 5]. This contribution is nevertheless
the first one to our knowledge which investigates the ro-
bust filtering problem in combination with system iden-
tification. We will indeed consider the case where pre-
diction error identification in a full-order model struc-
ture [11] has delivered the uncertainty regions contain-
ing G0 = G(z, θ0) and H0 = H(z, θ0) at a certain user-
chosen probability level. These uncertainty regions are
parametric:

G0(z) ∈ DG = {G(z, θ) | θ ∈ U }

H0(z) ∈ DH = {H(z, θ) | θ ∈ U }
(1)

where U is an ellipsoid in the parameter space centered

at the identified parameter vector θ̂N and shaped by the

inverse R of the covariance matrix Pθ of θ̂N :

U = {θ | (θ − θ̂N )T R (θ − θ̂N ) < χ} (2)
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where χ is a constant related to the desired probability
level Pr(θ0 ∈ U) and R can be estimated from the data
[11]. This ellipsoid U thus characterizes the uncertainty
of both G and H . To the best of the authors’ knowledge,
the use of parametric ellipsoidal uncertainty in robust
H2-deconvolution filtering is new. Consequently, the first
technical contribution of this paper is to give a solution
for the robust H2 deconvolution problem with such un-
certainty description. To do so, we adopt the dynamic
multiplier approach of [13] since, as stressed in [13], this
is the least conservative and the most universally appli-
cable of the existing methods. Our contribution is to de-
duce an appropriate factorization of the dynamic multi-
plier for the nonstandard uncertainty (2) and to adapt
the continuous-time results of [13] to the case of discrete-
time systems as considered in prediction error identifi-
cation.

G(θ)

H(θ)

F

+

e(t)

y(t)

M(z)

Θ

e(t)
ε(t)

u(t)

z-nk
+

+

-

ε(t)

u(t)

q(t) p(t)

Fig. 1. Filter to be analyzed (left) and corresponding LFT
loop (right).

More specifically, let us consider Figure 1 (left-
hand side) where the true system has been re-
placed by G(z, θ) and H(z, θ) for one arbitrary
θ ∈ U and let us define J(θ, F ) = Ē

[
ǫ2(t, θ)

]
where

ǫ(t, θ)
∆
= F (z) (G(z, θ)u(t) + H(z, θ)e(t))−u(t−nk). We

have thus that J0(F ) < γ if J(θ, F ) < γ ∀θ ∈ U . Given
this set-up, we will study the following two problems:

1. Performance validation. Given a filter F (z) and
an uncertainty region U , verify that J(θ, F ) < γ ∀θ ∈ U
for some given γ. We are in fact interested by the small-
est γ for which the latter holds (i.e. the worst case per-
formance achieved by the filter over the plants described
by a θ in U). This worst case performance JWC is thus
the solution γopt of the following optimization problem:

minγ γ

s.t. J(θ, F ) < γ, ∀θ ∈ U
(3)

2. Robust H2 filter design. Given an uncertainty re-
gion U , determine a filter F such that J(θ, F ) < γ ∀θ ∈
U for the smallest possible γ. The to-be-designed filter
F is thus the solution Fopt of the following optimization
problem:

minγ,F γ

s.t. J(θ, F ) < γ, ∀θ ∈ U
(4)

In this paper, we will restrict attention to filters with pre-
specified state-space matrices AF and BF . This covers,
e.g., FIR filters, which are commonly used in Telecom-
munications applications, but also Laguerre and Kautz
filters.

3. Optimal input design for robust filtering. Fi-
nally, we will also analyze a third problem: the optimal
design of the identification experiment leading to U . An
important characteristic of the uncertainty ellipsoid U
is indeed that it is dependent on the experimental con-
ditions of this identification experiment. These exper-
imental conditions are the number N of input-output
data and the spectrum Φuid

(ω) of the excitation signal
uid used during the identification. The subscript id in
Φuid

(ω) is there to distinguish the input signal during
the identification (i.e. uid) and the one that has to be re-
constructed (i.e. u). In this paper, we will suppose that
the number of data is given and U will therefore be only
dependent on Φuid

(ω). To show this dependence, U will
be also sometimes denoted by U(Φuid

). More details on
the relation between Φuid

and U(Φuid
) will be given in

Section 4.

Suppose that there is a constraint on the maximal power
for the excitation signal uid for the identification exper-
iment, which is supposed to be conducted in open loop.
Suppose also, as mentioned above, that the number N
of data is given. The optimal experiment design problem
consists in this case of determining the input spectrum
Φuid

of uid that delivers an uncertainty region U(Φuid
)

for which the corresponding robust filter F leads to the
smallest worst case performance. The optimal Φuid

is the
solution Φopt

uid
of the following optimization problem:

min
γ,F,Φu

id

γ (5)

s.t. J(θ, F ) < γ ∀θ ∈ U(Φuid
) (6)

1

2π

∫ π

−π

Φuid
(ω) dω < α (7)

where α represents the maximum allowed power. The
corresponding robust filter is then given by the optimal
filter Fopt in the same optimization problem.

It is important to note that the topic of this paper, in
general, and our optimal input design problem for robust
filtering, in particular, can be related to the problem of
designing optimal training sequences for wireless com-
munication systems [10]. These training sequences are
used to identify a model of the communication channel
that can be subsequently used to design a filter for the
reconstruction of the emitted signal from the received
signal. The problem considered in [10] is nevertheless
restricted to static transfer functions G0 and the objec-
tive of optimizing the performance of the reconstruction
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filter (used in the above formulation) is replaced by a
simpler criterion on the matrix R defining U .

The three problems presented above will be covered in
the ensuing three sections. Section 5 contains a numeri-
cal illustration and the paper is concluded in Section 6.

2 Validation problem

2.1 Reformulation in the LFT framework

The validation problem (3) is basically a robustness anal-
ysis problem. Solving such a problem requires to refor-
mulate it in the LFT framework where the uncertain el-
ements (i.e. the parameter vector θ in our case) are sep-
arated from the other elements [17]. For this purpose,
let us first take a look at Figure 1. Since e and u are
independent and since Φu(ω) = |Wu(ejω)|2, we can say
that u(t) = Wu(z)ū(t) and e(t) = σeē(t) with ū(t) and
ē(t) independent white noises with unit variance. Conse-
quently, the cost function J(F, θ) is equal to the squared
H2-gain of the vector of transfer functions:

V(z) =
[

σeF (z)H(z, θ) ((F (z)G(z, θ)) − z−nk)Wu(z)
]

which is the transfer function between
[ ē(t)

ū(t)

]
and ǫ(t).

We have thus:

J(F, θ) = ‖V(z)‖
2
2 :=

1

2π

∫ π

−π

Trace(V∗(ejω)V(ejω)) dω

The different parametrizations of G(z, θ) and H(z, θ)
which are commonly used in prediction error identifica-
tion (ARX, BJ,.. structures) [11] can all be expressed as:

G(z, θ) =
Z1θ

1 + Z2θ
H(z, θ) =

1 + Z3θ

1 + Z4θ
(8)

with Zi(z) row vectors of dimension k containing only

delays and zeros and θ ∈ Rk×1. We observe that both
G(z, θ) and H(z, θ) can be easily transformed into an
LFT in θ [17]. Consequently, the transfer function be-

tween v(t) :=
[ ē(t)

ū(t)

]
and ǫ(t) can be easily rewritten

both as an LFT in Θbis = Diag(θ, θ) (θ ∈ Rk) and as

an LFT in Θ = Diag(∆θ, ∆θ) (∆Θ := θ − θ̂N ). It is to
be noted that the uncertainty structure Θ in this prob-
lem is similar to the one we obtain from identification
of MIMO systems (see our previous contribution [1]).
Thus, we have that

[

p

ǫ

]

=

=M(z)
︷ ︸︸ ︷
[

M11 M12

M21 M22

][

q

v

]

, q =

=Θ
︷ ︸︸ ︷
[

∆θ 0

0 ∆θ

]

p (9)

(see the right-hand side of Figure 1), which is an
LFT transformation. We will use the notation ǫ(t) =
F(M(z), Θ)v(t).

Based on what has been developed above, Problem 1
(see (3)) can be reformulated as follows:

minγ γ

s.t. ‖F(M(z), Θ)‖2
2 < γ ∀θ ∈ U

(10)

with Θ as in (9).

To be able to develop some of the coming results, it will
be necessary to make the following two assumptions.

Assumption 1 The transfer functions G(z, θ) and
H(z, θ) are stable for all θ ∈ U .

Assumption 2 The transfer matrix M12(z) in (9) has
no direct term i.e. M12(z) contains at least one delay.

Recall that we have assumed that both G0(z) and H0(z)
are stable. Assumption 1 states thus that the systems
in the uncertainty regions (1) for G0 and H0 are also
stable. Given an uncertainty U , Assumption 1 can be
easily verified using the results in [7]. If, for a given U ,
we conclude that Assumption 1 does not hold, then we
can also conclude that the worst case performance JWC

(the solution of (3)) is equal to infinity. Assumption 2 is
also not restrictive since, given the parametrization (8)
where the vectors Zi(z) have no direct terms, the LFT
relation (9) can always be chosen such that the matrix
M12(z) has no direct term.

2.2 Multiplier describing the uncertainty

As mentioned in the introduction, we will solve (10)
using an approach based on dynamic multipliers. For
this purpose, we need to define a very general affine
parametrization of the set of hermitian matrices Π sat-
isfying:

θ ∈ U =⇒

[

Θ

I

]T

Π

[

Θ

I

]

> 0 (11)

The matrix Π is a representation of the structure of the
uncertainty Θ and is called multiplier (see e.g. [14]). Ro-
bustness problems can generally be solved by solving an
LMI system where it is required to find a family of these
multipliers Π i.e. one multiplier for each frequency (dy-
namic multiplier). This family will be represented by in-
troducing the frequency-dependent notation: Π(ω). For
H2 analysis problems such as in (10), this frequency de-
pendence will have to take the form of the frequency re-
sponse of a matrix of transfer functions. More precisely,
we will need a factorized version of Π(ω) of the form:

Π(ω) = Ψ∗(ejω) P Ψ(ejω) (12)

where P = PT is a frequency-independent matrix and
Ψ(z) is a matrix of stable transfer functions.

An appropriate expression for the multiplier Π(ω) of the
nonstandard uncertainty set Θ has been developed in our
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recent contribution [1]. However, in that paper, treating
an H∞ analysis problem, the factorization (12) was cir-
cumvented by using a gridding of the frequency range.
The factorization of this multiplier is therefore a contri-
bution of this paper and is given in Proposition 1 whose
proof is given in Appendix A.

Proposition 1 Consider the uncertainty Θ defined
in (9) with θ ∈ U (see (2)). Define the vector
B(z) = (B0 B1 B2 ... Bb)

T containing basis functions
Bi(z) (i = 0...b) for some user-chosen positive integer b.
Restricting the parametrization of the frequency depen-
dence to functions that can be written as linear combi-
nation of Bi(e

jω) and B∗
i (ejω) (i = 0...b), the multiplier

Π(ω) satisfying (11) can be factorized into (12) with:

Ψ(z) =










B(z) ⊗ I2k 0

0 B(z) ⊗ I2

I2k 0

0 I2










and P =










−LR 0

0 Λ



 P T
21

P21 0







with Λ =








Λ0 · · · Λb

... 0 0

ΛT
b 0 0








; LR = Λ ⊗
R

χ

P21 =










(

K0...Kb

)

+
(

L0...Lb

)







Ξ0

...

Ξb







T

−







Υ0

...

Υb







T

(

Υ0...Υb

)

+
(

Ξ0...Ξb

)

0










The elements Λi, Ξi, Υi, Li and Ki (i = 0..b) of the
parametrization of P can take any values provided that:

Υi =




li,1 li,2

li,2 li,3



 ; Ξi =




0 l̃i,2

−l̃i,2 0





Li =




Li,1 Li,2

Li,2 Li,3



 ; Ki =




0 Ki,2

−Ki,2 0





with li,j and l̃i,j ∈ R1×k and with Ki,j = −KT
i,j ∈ Rk×k

and Li,j = −LT
i,j ∈ Rk×k. Finally, the elements of the

matrix Λ are constrained as follows: Λi ∈ R2×2 (i =
0...b), Λ0 = ΛT

0 and there must exist a matrix X = XT

such that the following LMI is satisfied:




AT

BXAB − X AT
BXBB

BT
BXAB BT

B XBB



 +




CT

B

DT
B



Λ
(

CB DB

)

> 0

(13)

with (AB, BB, CB, DB) a state-space realization of B(z)⊗
I2. In the sequel, we will denote by P the class of matrices
P having the structure given above.

Remark 1 Different types of basis functions can be con-
sidered. Possible choices are orthonormal basis functions
such as the FIR basis functions B(z) = (1 z−1 ... z−b)T

or the Laguerre basis functions.

In the sequel, we will show that solving (10) will require
the determination of a matrix P having the structure in
Proposition 1. The affine parametrization of P will make
possible a solution via LMI-based optimization.

2.3 LMI formulation for the validation problem

Knowing that the squared H2 gain of a transfer func-
tion is equivalent to the energy of the pulse response of
this transfer function, it is of interest to restrict the in-
put of the LFT system (9) to signals v(t) = wδ(t) (with

w
∆
=
[

w1 w2

]T

∈ R2×1 and δ(t) the discrete-time pulse

signal). Considering now the signal q(t) of the LFT (9)
and v(t) = wδ(t) as inputs and using the transfer ma-
trices Mij(z) and Ψ(z) (see (9) and (12)), we define the
following system (in the frequency domain) :




z1(e

jω)

z2(e
jω)



 =








Ψ(ejω)




I2k 0

M11(e
jω) M12(e

jω)





[

M21(e
jω) M22(e

jω)
]














q(ejω)



w1

w2











(14)
The state-space representation of this new system is

denoted:

x(t + 1) = Ax(t) + B1q(t) + B2




w1δ(t)

w2δ(t)








z1(t)

z2(t)



=




C1

C2



 x(t) +




D11

D21



 q(t) +




D12

D22








w1δ(t)

w2δ(t)



 (15)

We are now in position to present a method to compute
an upper bound for the worst case performance JWC .
This is done in the following proposition whose proof is
given in Appendix B.

Proposition 2 Consider the validation problem (3) for
the LFT (9) with an uncertainty Θ such that (11) holds.
Consider the class P of matrices P having the structure
given in Proposition 1. Finally, consider that Assump-
tions 1 and 2 hold. Then, the solution γopt of the follow-
ing LMI optimization problem is an upper bound for the
solution of (3):

min
γ, Q=QT , K=KT , P∈P

γ

s.t. Trace(Q) < γ, (16)

BT
2 KB2 +

[

D12

D22

]T [

P 0

0 1

][

D12

D22

]

< Q, (17)

F1(K) + F2(P ) < 0 (18)
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where

F1(K) :=

[

I 0

A B1

]T [

−K 0

0 K

][

I 0

A B1

]

(19)

F2(P ) :=

[

C1 D11

C2 D21

]T [

P 0

0 1

][

C1 D11

C2 D21

]

(20)

The matrices in these LMIs are defined in (15).

In the LMI problem of Proposition 2, determining P ∈
P consists of determining the different elements of the
affine parametrization of P i.e. the actual decision vari-
ables are Λi, Υi, etc (see Proposition 1). Note also that
the LMI (13) has also to be taken into account. Propo-
sition 2 holds for any uncertainty type provided this un-
certainty has a multiplier Π(ω) satisfying (12). As such,
Proposition 2 is thus an adaptation towards discrete-
time systems of the validation result for continuous-time
system in [13]. Besides the intrinsic differences between
discrete- and continuous-time systems, the main differ-
ences with [13] is that we have to carefully choose the
LFT (9) (see Assumption 2) in order to prove the re-
sult (see Appendix B) and that we have to carefully
deal with the fact that the matrices D12 and D22 can
be nonzero with discrete-time systems. The latter adds
an extra term in the LMI (17). As in [13], the result is
only an upper bound of the solution of (3) because of the
conservatism introduced by the fact that the implication
in (11) is only in one direction and by the restriction of
the frequency dependence in Proposition 1.

3 Robust H2 filter design

In this section, we consider Problem 2 (see (4)) i.e. the
robust filter design problem. The only difference from
the performance validation problem is that, instead of
considering F as a given transfer function, this filter is
now also a decision variable.

In this paper, we will restrict attention to filters hav-
ing a state-space representation (AF , BF , CF , DF ) with
prespecified matrices AF and BF . This covers, e.g., FIR
filters, which are commonly used in Telecommunications
applications where deconvolution filtering is often used,
but also Laguerre and Kautz filters. Other filters having
this property are filters with pre-specified denominator.
Due to this restriction, the additional decision variables
are the matrices CF and DF since those matrices con-
tain the to-be-determined coefficients. We will now in-
vestigate how these matrices appear in (17), (18).

In order to be able to rewrite the matrix inequali-
ties (17), (18) as functions of CF and DF , we need to
derive a (minimal) state-space representation for the
system (14). Indeed, the state-space matrices of this sys-
tem appear in the considered matrix inequalities. The
system (14) can be represented as in Figure 2 where p
is the same as in (9) and where the dependence of (14)

q(t)

L(z)

p(t)q(t)

v(t) y(t)

z1(t)
Ψ

F

u(t-nk)

z2(t)=ε(t)+

-

Fig. 2. Schematic of system (14).

on F is represented. The minimal state-space represen-
tation for the system (14) can be easily deduced from a
minimal state-space representation for the transfer ma-
trix L defined in Figure 2. Let us therefore suppose that
we have a minimal realization for the transfer matrix L:

x̄(t + 1) = Āx̄(t) + B̄1q(t) + B̄2v(t)












q(t)

p(t)





y(t)

u(t − nk)










=







C̄1

C̄2

C̄3







x(t) +







D̄1q

D̄2q

0







q(t) +







0

D̄2v

D̄3v







v(t)

Note that D̄3v 6= 0 only when nk = 0. Using now
the formulae on page 34 of [17] and denoting by
(AΨ, BΨ, CΨ, DΨ) a minimal state-space representation
of Ψ(z), the state-space matrices of a minimal realiza-
tion of the system (14) are given by:

A =







Ā 0 0

BΨC̄1 AΨ 0

BF C̄2 0 AF







, B1 =







B̄1

BΨD̄1q

BF D̄2q







, B2 =







B̄2

0

BF D̄2v







C1 =
[

DΨC̄1 CΨ 0
]

, C2 =
[

DF C̄2 − C̄3 0 CF

]

and D11 = DΨD̄1q, D12 = 0, D21 = DF D̄2q, D22 =
DF D̄2v − D̄3v. Consequently, we see that C2, D21 and
D22 are the only matrices which are functions of CF

and DF and that, furthermore, they are linear func-
tions of CF and DF . Let us now consider the depen-
dence on CF and DF of the matrix inequality (17) i.e.
BT

2 KB2+DT
12PD12+DT

22D22 < Q. Because of the prod-
uct DT

22D22, such an expression is not an LMI in DF .
However, using the Schur complement, we see that this
inequality is equivalent to:

[

Q − BT
2 KB2 − DT

12PD12 DT
22

D22 1

]

> 0 (21)

The latter expression is an LMI in Q, P , K but now also
in DF . Similarly (18) is equivalent to an LMI in Q, P ,
K, CF and DF :






−F1(K) −
[

C1 D11

]T

P
[

C1 D11

] [

C2 D21

]T

[

C2 D21

]

1








> 0

(22)
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The robust filter design problem (4) now can be written

min
γ, Q=QT , K=KT , P∈P, CF , DF

γ

s.t. (16), (21) and (22) hold

We denote this LMI-based optimization problem
ROBFILT for future reference. The robust filter has
then the state-space realization (AF , BF , C

opt
F , D

opt
F )

with C
opt
F and D

opt
F solutions of ROBFILT and AF

and BF the prespecified matrices. Like Proposition 2,
ROBFILT is an adaptation of continuous-time robust
filtering results (see e.g. [13]) to the discrete-time case.

4 Experiment design for robust H2 filtering

Now let us turn to our third problem i.e the optimal ex-
periment design problem (5). For this purpose, it is im-
portant to define clearly the relation between the power
spectrum Φuid

and the uncertainty region U obtained
after an open-loop identification with N data (N is sup-
posed given) and with an excitation signal uid of power
spectrum Φuid

(Φuid
will be the decision variable for ex-

periment design). We will here use the following relation
that was also used e.g. in [9, 2]:

U(Φuid
) = {θ | (θ − θ̂init)

T R(Φuid
)(θ − θ̂init) < χ }

R(Φuid
) =

N

2π

∫ π

−π

F1(e
jω)F ∗

1 (ejω)Φuid
(ω)+F2(e

jω)F ∗

2 (ejω) dω

where θ̂init is a known initial estimate of the true
system (e.g. obtained from an earlier identification ex-
periment; note that, in the simulation example of next
section, we will use the true parameter vector as ini-

tial estimate) and F1 = H−1(z, θ̂init)
∂G(z,θ)

∂θ

∣
∣
∣
θ̂init

and

F2 = H−1(z, θ̂init)
∂H(z,θ)

∂θ

∣
∣
∣
θ̂init

. In this expression, we

do not consider the random relation between Φuid
and

the to-be-identified parameter vector. Indeed, we pose
the center of the ellipsoid equal to the a-priori estimate

θ̂init.Consequently, the only dependence of U on Φuid

is via the matrix R which is equal to the inverse of the
covariance matrix Pθ of the to-be-identified parameter
vector. The expression of R given above is the asymp-
totic expression of P−1

θ where θ0 has been replaced by

θ̂init [11].

Note now that the expression for R is affine in Φuid
(ω)

and that this matrix R only appears in P in the optimiza-
tion problem ROBFILT . As shown in Proposition 1,
the matrix P is bilinear in R and the matrix Λ. Thus if
we modify ROBFILT by keeping Λ fixed and adding
Φuid

to the decision variables (and adding (7)), the mod-
ified problem is still an LMI. We denote this modified
optimization problem MODROBFILT for future ref-
erence.

Consequently, in order to determine the optimal input
spectrum Φuid

for the identification, we can use an itera-
tive algorithm. Each iteration of this algorithm is made
of two steps. In a first step, for a fixed spectrum Φuid

and
thus a fixed R, we solve ROBFILT. This delivers a value
for the decision variable Λ. In a second step, we solve
MODROBFILT to optimize on Φuid

by fixing Λ to the
value found in the first step. This delivers a new value
for Φuid

that can be subsequently used in Step 1. This
approach is inspired by the DK-approach in µ-synthesis
[17].

The spectrum Φuid
will be generally parametrized as

follows [9]:

Φuid
(ω) =

M∑

r=−M

βr ejωr > 0 (23)

with M an user choice and βr = β−r ∈ R. This cor-
responds to signals uid obtained by filtering a white
noise through a FIR filter of order M + 1. With this
parametrization, R can be rewritten as an affine func-
tion of the coefficients βr (r = 0...M) and the con-
straint (7) as β0 < α (see [9]). The coefficients βr

(r = 0...M) become so the actual decision variables of
MODROBFILT . This choice for the parametrization
of Φuid

also ensures that R will remain strictly positive-
definite. Note that the positivity of the spectrum Φuid

can be easily ensured via an extra LMI on the coeffi-
cients βr (r = 0...M) (see [9]).

Remark 2 Note that Φuid
does not influence the uncer-

tainty of the parameters that only appear in H(z, θ). This
uncertainty can only be influenced by the number of data
used for the identification and, if this uncertainty is too
large, the number N of data should be increased.

Remark 3 Assumption 1 must be verified for the un-
certainty region U deduced from the designed Φuid

.
This can be verified a-posteriori after each iteration or
directly incorporated as an extra LMI constraint into
MODROBFILT using e.g. the multiplier (with fixed
Λ) and the separation of graph theorem (see e.g. [14]).

5 Numerical illustrations

We consider the following Box-Jenkins true system:

y(t) = G0(z)u(t) + H0(z)e(t) with G0(z) = b0z−1

1+f0z−1

and H0(z) = 1 + c0z
−1 with b0 = 3.6, c0 = −0.9 and

f0 = −0.7. Both G0 and H0 are represented in a Bode
plot in Figure 3. The variance σ2

e of the noise e(t) is
here chosen equal to 1. We would like to reconstruct
the signal u(t) of this system based on a measurement
of the output y(t). We will suppose that the to-be-
reconstructed input is a white noise of variance 10000
i.e. Φu(ω) = 10000 and Wu(z) = 100 and that the delay
nk in Figure 1 is equal to one.
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In order to determine a robust deconvolution filter F to
reconstruct this input, we first identify a model and an
uncertainty for the system using 1000 input-output data
generated by a white noise of variance 1. To determine
F , we will use ROBFILT . For this purpose, we need
to fix some variables such as b, B(z) and nf . The scalar
b is the size of the basis function vector B(z) which al-
lows to factorize the multiplier Π(ω). It is to be noted
that the larger b, the closer the optimal γ deduced with
ROBFILT will be from the actual value of the worst
case performance JWC (γ is indeed an upper bound of
JWC and will be denoted J

up
WC in the sequel). On the

other hand, the larger b, the larger the complexity of
the optimization problem (see the expression of Ψ(z) in
Proposition 1). As a trade-off choice, the value of b is
here chosen equal to 2. We have also to choose which
types of basis functions we will use in B. Here, we have
chosen Laguerre basis functions and we have chosen the
pole ζ of these Laguerre functions by trial and error as
the one for which ROBFILT delivers the filter F with
the smallest JWC . For white noise, this is ζ = e−3. Fi-
nally, the scalar nf is the order of the parametrization
of the filter F (z) that will be here chosen as a FIR. A
similar trade-off as for the value of b must be done for
nf : we have here chosen nf = 3.

For Φuid
(ω) = 1 ∀ω, the optimization problem

ROBFILT delivers a filter F achieving an upper bound
of the robust performance J

up
WC = 2.14. In order to have

an idea of the conservatism, we compute a lower bound
for JWC by gridding U . The computed lower bound is
here J low

WC = 1.26. The conservatism could seem high,
but these numbers have to be compared with the power
of the to-be-reconstructed signal equal to 10000. This
comparison shows that the conservatism is in fact lim-
ited.

We will now determine the spectrum Φuid
of power α = 1

which minimizes the robust performance using the re-
sults of Section 4. For this purpose, we determine the pa-
rameters αr = α−r in the classical parametrization (23)
where M is chosen equal to 30. The spectrum Φuid

ob-
tained after the first iteration is represented in black
dashed in Figure 4 where it is compared to Φuid

(ω) = 1
∀ω (blue dashdot).

We continue to iterate between ROBFILT and
MODROBFILT . After three iterations, we obtain
the spectrum represented in red solid in Figure 4. This
spectrum Φuid

(ω) delivers an uncertainty U for which
J

up
WC is equal to 0.756 while J low

WC = 0.43. With respect
to the initial white spectrum, this is an improvement of
65% for both J

up
WC and J low

WC . Additional iterations do
not yield further improvement. Consequently, to recon-
struct a white noise signal u(t), an identification with
a white noise excitation uid(t) is far from optimal. The
optimal excitation signal is a signal that concentrates

its power 1 around the frequency 0.15 as can be seen
in Figure 4. Using such a signal instead of white noise
indeed reduces the guaranteed performance of the de-
signed filter by 65%. Such an improvement can also be
explained by observing the reduction in volume of the
uncertainty ellipses obtained when you use the optimal
excitation signal instead of a white noise signal (see Fig-
ure 5 where we represent those ellipses centered at 0 for
comparison purposes and where we restrict attention
to the parameters b, f in the G-transfer function). It
is to be noted that the optimal spectrum concentrates
its power in the region of the pole of G0 (located at
ω = 0.35) and of the zero of H0 (located at ω = 0.1).

The optimal filter F (z) corresponding to this third it-
eration is represented in Figure 3 where we can observe
that |F (ejω)| ≈ |G0(e

jω)|−1. It is to be noted that the
optimal filter does not change significantly when going
from a white noise excitation signal to the optimal exci-
tation signal.
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Fig. 3. Bode plot of G0 (red dashed), of H0 (blue dashdot)
and of the optimal filter F obtained after three iterations
(black solid)
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Fig. 4. White noise spectrum Φuid
(ω) = 1 (blue dash-

dot), Spectrum Φuid
(ω) obtained after one iteration (black

dashed), Φuid
(ω) obtained after three iterations (red solid)

6 Conclusions

In this contribution we have addressed the problem of
robust deconvolution for ellipsoidal parametric uncer-
tainty. In addition, we have taken the further step of

1 A sinusoid of power 1 and frequency 0.15 would even de-
liver slightly better results: J

up

WC = 0.71 and J low
WC = 0.41.
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Fig. 5. Uncertainty ellipses when Φuid
(ω) = 1 (blue dashdot)

and when Φuid
(ω) is the optimal spectrum obtained after

three iterations (red solid)

considering the problem of how to design the input in
an identification experiment such that the resulting ro-
bust filter gives the smallest possible worst-case H2 per-
formance in the set of uncertain systems. We believe
these methods to have wide applicability. As an example,
these results allow with minor adaptations to compute
the worst case H2 performance achieved by a controller
over an uncertainty set delivered by system identifica-
tion. This is an extension of the results in [7] considering
H∞ performance.
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A Proof of Proposition 1

In[1], a very general parametrization of the multiplier
Π(ω) satisfying (11) is proposed:

Π(ω) =











−Z0 ⊗
R
χ

+




j A11 B12 + jA12

−B12 + jA12 jA22



 ∗




j p11 p̃12 + jp12

−p̃12 + jp12 jp22



 Z0











where R is the matrix defining U (see (2)). The other el-
ements in this parametrization are frequency-dependent
and can take any values provided that pij(ω), p̃ij(ω) ∈

R1×k, Z0(ω) a positive definite Hermitian matrix of di-

mension 2 and Aij(ω) Bij(ω) ∈ Rk×k with Aij = −AT
ij

and Bij = −BT
ij .
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Consequently, we must prove that the factorization of
Proposition 1 is a factorization of the above Π(ω). It is
indeed the case. The frequency function Z0(ω) in Π(ω)
is factorized as Z0(ω) = (B∗ ⊗ I2)Λ(B ⊗ I2) which is
Hermitian and which is guaranteed to be positive defi-
nite by the existence of X = XT such that (13) holds.
The latter is a consequence of the Kalman Yakubovitch
Popov (KYP) Lemma [3]. Similarly, the other frequency
functions are factorized as follows: Z0(ω) ⊗ R

χ
= (B∗ ⊗

I2k)LR(B ⊗ I2k),



j p11 jp12

+jp12 jp22



 =
(

Υ0 ... Υb

)

(B⊗I2k)−(B∗
⊗I2)







Υ0

...

Υb







The factorization of

(

j A11 jA12

jA12 jA22

)

is as above with Υi

replaced by Li (i = 0...b). We have also:



0 p̃12

−p̃12 0



 =
(

Ξ0 ... Ξb

)

(B⊗ I2k)+ (B∗
⊗ I2)







Ξ0

...

Ξb







Finally, the factorization of

(

0 B12

−B12 0

)

is as above

but with Ξi replaced by Ki (i = 0...b). All these factor-
izations lead to the desired properties for the elements
of Π(ω).

B Proof of Proposition 2

The first part of the proof consists of establishing that
the LMIs (17) and (18) for some Q = QT implies that
the system (15) has the following property:

+∞∑

t=0




z1(t)

z2(t)





T 


P 0

0 1








z1(t)

z2(t)



 < w
T
Qw (B.1)

for any trajectory of the system. To show this, we first
observe that, due to Assumption 2, the system (9), from
which (15) is deduced, has the property that q(t = 0) = 0
when the input vector v(t) is such that v(t < 0) = 0.
Consequently, since here v(t) = wδ(t), the state-space
representation (15) for t > 0 can be simplified to

x(t + 1) = Ax(t) + B1q(t)
[

z1(t)

z2(t)

]

=

[

C1

C2

]

x(t) +

[

D11

D21

]

q(t) (B.2)

if we impose the following initial conditions: x(1) = B2w

and

(

z1(0)

z2(0)

)

=

(

D12

D22

)

w

The LMI (18) ensures that, for any trajectory of the
system (B.2),




x(t)

q(t)





T

(F1(K) + F2(P ))




x(t)

q(t)



 < 0

⇐⇒ x(t + 1)T Kx(t + 1) − x(t)T Kx(t) + ...

... +




z1(t)

z2(t)





T 


P 0

0 1








z1(t)

z2(t)



 < 0

The latter constraint is of the form g(t) < 0 and holds
for each time t > 0. Consequently, it implies that
∑+∞

t=1 g(t) < 0 and thus, A being stable, that

+∞∑

t=1

(

z1(t)

z2(t)

)T [

P 0

0 1

](

z1(t)

z2(t)

)

< x(1)T Kx(1) (B.3)

The first LMI (17) ensures that, for any trajectory of the
system (B.2),

wT



BT
2 KB2 +




D12

D22





T 


P 0

0 1








D12

D22







w < wT Qw

⇐⇒ x(1)T Kx(1) < wT Qw − wT




D12

D22





T 


P 0

0 1








D12

D22



w

Combining (B.3) and the last expression, we ob-
tain (B.1).

For the second part of the proof, we can follow the rea-
soning in e.g. [13, 16]. Indeed, it is very easy to show us-
ing (9), (12), (14) and Parseval’s theorem that the prop-
erty (B.1) is equivalent to the property:

1

2π

∫ π

−π




q(ejω)

p(ejω)





∗

Π(ω)




q(ejω)

p(ejω)



+

ǫ(ejω)∗ǫ(ejω) dω < wT Qw

(B.4)

for any trajectory of (14) (note that Assumption 1 en-
sures that Parseval’s theorem can be used). Introducing
the relation p = Θq of the LFT (9) which is the original
system with which (14) is defined, we see that the prop-
erty (B.4) for any trajectory of (14) is equivalent to the
property:

1

2π

∫ π

−π

p
∗(ejω)




Θ

I2





T

Π(ω)




Θ

I2



 p(ejω)+

ǫ(ejω)∗ǫ(ejω) dω < wT Qw

for any trajectory of the LFT (9) when v(t) = wδ(t).
Now using (11), we see that the latter implies that, for
all θ ∈ U , 1

2π

∫ π

−π
ǫ(ejω)∗ǫ(ejω) dω < wT Qw which, com-

bined to (16) for some Q = QT , yields ‖F(M(z), Θ)‖2
2 <

γ for all θ ∈ U .
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