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Local Key Estimation from an Audio Signal

Relying on Harmonic and Metrical Structures
Hélène Papadopoulos* and Geoffroy Peeters

Abstract—In this paper, we present a method for estimating the
progression of musical key from an audio signal. We address the
problem of local key finding by investigating the possible combi-
nation and extension of different previously proposed approaches
for global key estimation. In this work, key progression is
estimated from the chord progression. Specifically, we introduce
key dependency on the harmonic and the metrical structures. A
contribution of our work is that we address the problem of finding
an analysis window length for local key estimation that is adapted
to the intrinsic music content of the analyzed piece by introducing
information related to the metrical structure in our model. Key
estimation is not performed on empirically chosen segments but
on segments that are expressed in relationship with the tempo
period. We evaluate and analyze our results on two databases
of different styles. We systematically analyze the influence of
various parameters to determine factors important to our model,
we study the relationships between the various musical attributes
that are taken into account in our work, and we provide case
study examples.

Index Terms—Acoustic signal analysis, chord, key, downbeat,
HMM, chroma, information retrieval, music analysis.

I. INTRODUCTION

TONALITY analysis is one of the most important aspects

of Western tonal music. It describes the relationships

between the various musical keys present in a piece of

music. The elements of the melody and the harmony of a

musical fragment are related to each other by the musical

key. This aspect of music analysis has interested researchers

for a long time because the key detection task finds many

applications in content-based music information retrieval such

as classification, segmentation, indexing and summarization.

In this article, all musical concepts are formalized in the

context of modern Western tonal music, i.e. after the 16th

century. When an instrument produces a note, the human

listener perceives a pitch that is a perceptual attribute of sound.

In music, the term note is a symbol that is used to refer both to
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University Paris 11 - CNRS - Supélec, Orsay, FRANCE. This work was
partially supported by the QUAERO project.

the relative duration and to the pitch of a given sound. Pitches

are governed by structural principles and music is organized

around one or more stable reference pitches. The system of

relationships between pitches corresponds to a key. A key, as

a theoretical concept, implies a tonal center that is the most

stable pitch called the tonic, and a mode (usually major or

minor).

A scale is associated with each key. A scale is a series

of notes arranged in ascending or descending order. Fig. 1

represents a C major scale and its relative A natural minor

scale. Two consecutive notes are usually separated either by

a tone (T ) or a semitone (S). The position of tones and
semitones within a scale associated to a key characterizes

its mode. The series of seven notes of the scale without any

alterations1 is known as the diatonic scale.

In a scale, the tonic or first scale degree (I) is the first note

and it is the pitch upon which all other pitches of a piece

are hierarchically referenced. Among the seven other scale

degrees, the 3rd - the mediant - and the 5th - the dominant

- degrees are particularly important since their combination

with the tonic results in the most significant chord in a given

key.

Fig. 1. Example of major and minor scales: C major, A minor. The
accidentals that characterize the harmonic and melodic minor scales are
represented in grey.

There are two common variations of the natural minor scale:

i) The melodic minor scale, in which the 6th and the 7th

ascending degrees are raised a semitone (F# and G# in Fig.

1); ii) The harmonic minor scale, in which the 7th degree,

both ascending and descending is raised a semitone (G# in

Fig. 1). In this work, we focus on the harmonic minor scale.

We consider enharmonic equivalence, i.e. notes with different

spelling but sounding the same are considered the same (C# is

equivalent to Db). In Western tonal music, there are 12 pitches

in an octave range. The major and minor scales and the twelve

tonics give rise to a total of 24 possible keys.

A set of chords that are specific to the key can be

constructed around its scale. A chord is defined as a

1An alteration is a sharp #, which raises the pitch of a note one semitone,
or a flat b, which lowers it one semitone.
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combination of three or four notes sounded simultaneously.

The succession of chords over time is called a chord

progression. It is strongly related to the musical key.

Various approaches have been proposed for estimating the

main or global key of a piece of music. Some approaches have

been proposed for symbolic data, based on templates [1]–[3],

or geometry [4]. Others have been proposed for audio data,

based on templates [5]–[9], geometry [10], or hidden Markov

models (HMMs) [11]. Finding the main key of a piece of

music is only a small part of tonality analysis. Indeed, even

if a piece of music generally starts and ends in a particular

key referred to as the main or global key of the piece, it is

common that the composer moves between keys. A change

between different keys is called a modulation. Western tonal

music can be conceived of as a progression of a sequence

of key regions in which pitches are organized around one or

more stable tonal center. Such a key region is defined here as

a local key, as opposed to the global key.

Tonality and key are perceptual attributes. Experiments

have shown that people with different levels of music training

may not perceive equally the stability of a given pitch

within a tonal context. Moreover, the sense of key may

be more or less strong [1]. At some points, the key may

seem ambiguous or unstable and it may not be possible to

select one pitch as being more stable than the others. In this

case, a tonal center cannot be defined and the key is not

established. It must be also noticed that, if the notion of

key is quite clear in Western “classical” music, it is much

more complicated in “popular” music. For instance popular

music may use different systems, such as local tonality,

apparent tonality, no tonality etc., within a single song. All

these considerations make the key estimation task challenging.

The purpose of this work is to investigate the problem

of local key estimation, which is more complex than the

problem of global key estimation: we aim at segmenting

the music according to the points of modulation and finding

the key of each segment. Little work has been conducted

on this topic. We propose to address the problem of local

key finding by investigating the possible combination and

extension of various previously proposed approaches for

global key estimation and by introducing key dependency on

the harmonic and metrical structures.

To our knowledge, although the idea of using chords to

find the key of a musical excerpt has already been explored

[12]–[16] no precise analysis about the relationship between

the two attributes has been conducted, in particular in the

case of local key estimation. This partly comes from a lack of

databases labeled with chords and local key. One contribution

of this work is to present such a study on real recordings of

classical and popular music pieces labeled with chords and

keys containing many modulations. The problem of finding

a good analysis window length for local key estimation has

been evoked in the past, without any satisfying answer [6],

[10], [16]–[19]. Another contribution of our work is that

we address this problem by introducing information related

to the metrical structure in our model. Key estimation is

not performed on empirically chosen segment length but on

segments that are adapted to the musical content of each piece.

The structure of the paper is as follows. First, in Section

II, we review some previous works on global and local key

estimation. We then present in Section III our model for

local key estimation, which relies on a probabilistic model

for simultaneous estimation of the chord progression and the

downbeat positions. The local key estimation is based on the

harmonic and metrical structures of the piece. Eventually, in

Section IV, the proposed model is evaluated on two sets of

music pieces of various styles. The first one contains classical

music pieces and the second one consists in a set of popular

music pieces. A conclusion section closes the article.

II. RELATED WORK

In this section, we review some previous work on key

estimation. We start by template-based approaches proposed

for global key estimation that have inspired our work. We then

present previous methods proposed for local key estimation

and conclude the section by reviewing key estimation methods

based on chord progression. For a detailed review of key

estimation from audio signals, we refer the reader to [20].

A. Global Key

The problem of automatically estimating the key of a piece

of music was first addressed in the context of symbolic music

(e.g. MIDI format). In what follows, we will review two of

the most popular techniques that have been extended later

to the case of audio music. For a detailed review of key

finding in symbolic music and more generally on tonality

induction, we refer the reader to [21] or [22]. Most of the

algorithms that extract key from audio start by computing a set

of features that represent the signal, typically chroma features

[23] or Pitch Class Profiles (PCP) features [24], which are then

used as an input to a tonality induction model. The chroma

vectors are in general 12-dimensional vectors that represent

the spectral energy of the pitch classes of the chromatic scale.

The succession of chroma vectors over time is known as the

chromagram.

A large part of audio global key finding systems is based

on the use of key profiles/templates. Pitch Class Profiles

or chroma features are extracted from the signal and then

compared to theoretical templates that indicate the perceptual

importance of notes or chords within a key. This idea was

first proposed by Krumhansl and Schmuckler in [1]. In this

work, a method called the probe tone method is presented.

It gives a measure quantifying the hierarchy of notes in a

given tonal context. The algorithm, known as the Krumhansl

& Schmuckler (K-S) algorithm, computes the correlation be-

tween a vector of pitch-class durations obtained from a musical

passage and a set of major and (harmonic) minor key-profiles

corresponding to each key. The key profile that provides the

maximum correlation is taken as the most probable key of the

musical excerpt.
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Gómez & Herrera [25] extend the model proposed in [1]

to the case of polyphonic audio files by considering that

the profile value for a given pitch class represents also the

expectation of a chord in a given key. The model uses as

input features the Harmonic Pitch Class Profiles (HPCP) that

account for higher harmonics of the notes. The polyphonic

profiles for the 24 different keys are built considering only

the three main triads of the keys (tonic, subdominant and

dominant). This cognition-inspired method is compared with

several machine-learning techniques. The methodologies are

evaluated over a large audio database, achieving a 64% of

correct overall tonality (mode and key-note) estimation. In

this study, it is found that the use of machine learning

algorithms results in little improvements over the cognitive-

based technique.

Peeters [11] compares a cognitive-based method similar to

the one presented in [25] to an approach based on hidden

Markov models. Two HMMs are trained on a labeled database

in order to learn the characteristics of the major and minor

modes. From these two models, 24 HMMs corresponding to

the 24 keys are derived. The key of the audio file is then

obtained by computing the likelihood of its chroma sequence

given each HMM and selecting the one giving the highest

value. It was found that the HMM-based approach leads to a

lower recognition rate. Note that, in this work, the states in

the HMMs have no musical meanings.

Izmirli [6] presents a template-based key finding model. The

key is estimated by correlating spectral summary information

obtained from audio with pre-computed templates. The tem-

plates are obtained from real instrument sounds. For this, the

spectra of the sounds are weighted by key profiles, which

approximate the pitch distribution. Several key profiles are

compared: Krumhansl’s probe-tone ratings [1], Temperley’s

profiles [2] and a flat diatonic profile (12-dimensional vec-

tors containing 1 at pitch classes that are comprised in the

considered diatonic scale, 0 elsewhere). The combination of

Temperley’s and the diatonic profiles was found to give the

best results.

B. Local Key

Chew [26] presents a method for determining points of

modulation in a piece of music in the symbolic domain using

a geometric model for tonality called the Spiral Array which

incorporates simultaneously pitch, interval, chord and key

relations. This method is extended to the audio case by Chuan

& Chew [10]. In this work, a basic system that generates

pitch-class information using a fuzzy analysis and calculates

key results using the CEG algorithm is introduced. Three

key determination policies are investigated (nearest-neighbor

(NN), relative distance (RD), and average distance (AD)).

Experiments are conducted on 410 classical music pieces by

various composers across different time and stylistic periods

(from Baroque to Contemporary). It is found that the AD

policy gives the best main key estimation results (79%). Three
extensions to the basic key finding system are then proposed

(the modified spiral array (mSA), fundamental frequency (f0)
identification, and post-weight balancing (PWB)) and evalu-

ated on Chopin’s 24 Préludes. Quantitative evaluation of main

key estimation is proposed. The problem of local key finding

is only considered on some examples.

Another geometric tonality model describing relationships

between keys has recently been proposed in [27]. It is derived

from the cognition-based model proposed in [28]. Tones

are organized so that tonal symmetries within Western tonal

music become apparent.

Some approaches rely on a frame-by-frame analysis or

use a sliding analysis window. Purwins et al. [18] present

an approach to derive an appropriate representation of tone

centers based on the audio signal using constant-Q (CQ)

profiles. The constant-Q profiles are 12-dimensional vectors

where each component is an estimate of a pitch class. They are

derived from sampled cadential chord progressions and small

pieces of music. Tonal centers of a music piece are tracked by

computing CQ-profiles of the piece and matching every given

CQ-profile with a profile of the reference set using a fuzzy

distance. The performances of the model are demonstrated

over a Chopin’s Prélude (op.28 no 20), with profiles trained

on the 24 Chopin’s Préludes.

Zhu & Kankanhalli [29] present an approach for detecting

multiple keys and locating the key boundaries in the melody of

popular songs in MIDI format. Overlapping segments are first

extracted from the melody using a diatonic scale model, each

one corresponding to a single mode. A modality (key style)

analysis then determines the center mode of the melody of

each segment. Segments of unrelated modes are eliminated.

Key labels and boundaries are determined by grouping the

remaining segments. The effectiveness of the method is quali-

tatively measured by analyzing the output of the model while

listening to 50 English, Japanese and Chinese popular songs.

The ground truth is unknown but it is claimed that key changes

can be well perceived.

In order to study the evolution of the tonal center of a

piece of music, Gómez and Bonada [30] present a tool to

visualize the tonal content of polyphonic audio signals. The

tonal content of an audio file of music is represented by the

instantaneous evolution of the tonality and its strength. The

tool enables the measuring of the effect of the length of the

sliding window used for key tracking.

Harte et al. [31] propose a method for detecting changes in

the harmonic content of musical audio signals. A new model

for equal tempered tonal space is introduced. Segmentation

of audio signal and preprocessing stage for chord recognition

and harmonic classification algorithms using HMMs are the

main potential applications.

In some other approaches, the segmentation stage (segmen-

tation of the analyzed piece into segments that correspond to

unique keys) is more elaborate. Temperley [32], [33] proposes

a Bayesian key-finding model. The analyzed piece is divided

into short segments. The model then searches for the most

probable “key structure”, where a key structure is a labeling

of each segment with a key. Each segment can be expressed as

a series of pitch-class sets. Given a segment, the fit between

the corresponding key and the pitch-classes composing the

segment is measured using “key-profiles” derived from the
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Kostka and Payne corpus [34]. The model searches for the

most probable key structure using dynamic programming,

favoring minimum key changes between segments. It was

evaluated for main key estimation (defined by the key of the

first of segment of the structure) during the Music Information

Retrieval Evaluation eXchange (MIREX) 2005 key detection

contest 2 and received a weighted score of 91.4% correctly

estimated keys on 1252 excerpts from classical pieces.

Chai & Vercoe [17] propose a HMM-based method to

segment musical signals according to the key changes and to

identify the key of each segment. The front-end of the system

is based on the calculation of a chromagram. The key detection

task is divided into two steps: first the key root is estimated

without considering the mode because diatonic scales are

assumed and relative modes share the same diatonic scale.

The mode (major or minor) is then estimated. Ten classical

piano music pieces are employed to test the performances of

the proposed method yielding a label accuracy of 84%.
Izmirli [19] proposes a model for detecting modulations and

labeling local keys using a non-negative matrix factorization

(NMF) method for segmentation. To identify sections that

are candidates for unique local keys, groups of contiguous

chroma vectors are used as input in the segmentation stage.

The length of the window is chosen empirically. The local

keys are then found using a correlation model. The method is

evaluated on three different data sets: pop songs containing at

least one modulation, classical music annotated with a single

key, and excerpts from the Kosta and Payne corpus [34].

Local key estimation achieves up to 82.4% on popular music

and 72.5% on the Kosta and Payne corpus.

C. Key Estimation Methods Based on the Chord Progression

In Western tonal music, chords and keys are musical

attributes that are closely related to each other. It is thus

natural to rely on the chord progression for estimating the

key progression.

Hierarchical frameworks based on rule-based approaches

have been proposed. For instance, Shenoy et al. [13] present

a rule-based approach for determining the key of acoustic

musical signals from the chord progression. The succession

of chords is estimated from beat-synchronous chroma features,

on which symbolic inference is applied. Only major and minor

chords are considered. The chords, detected across all the

frames, are then collected into a single 24-dimensional vector.

For each key, a reference 24-dimensional reference vector that

corresponds to the theoretical distribution of major and minor

chords within the considered key is constructed. For instance,

the major and minor chords that can be constructed around the

CM scale using the notes of this scale are respectively CM,

FM, GM and Dm, Em, Am. The pattern that returns the highest

rank is selected as the one being the key of the song. It is found

that analysis over 16 bars (64 beats) of audio is sufficient to

determine the key of the song. The results obtained on a set

of 20 popular English songs spanning four decades of music

lead to a key estimation accuracy of 90%. However, chord

2http://www.mirex.org

recognition accuracy is not sufficient to provide usable chord

transcription.

An alternative approach is statistical frameworks. Raphael

& Stoddard [14], [35] present an approach to functional

harmonic analysis based on pitch and rhythm relying on

symbolic data. A MIDI representation of a music composition

is partitioned into sequences of one-measure length. The

goal of this work is to associate a label composed of three

variables to each sequence: the tonic (e.g. C, C#) and the

mode (major or minor) that give the musical key, and the

chord characterized by its harmonic function (scale degree,

e.g. tonic, dominant). The functional analysis of the chord

progression is supposed to guide the choice of the key when

it is ambiguous. The analysis is performed with a HMM that

allows the simultaneous estimation of chord and key. The

success of the model is demonstrated over some examples

but a quantitative evaluation is not presented.

In the framework of global key estimation, several HMM-

based works that estimate the chords and keys have been

proposed. Lee & Slaney [36], [37] propose key-dependent

chord HMMs trained on synthesized audio for chord

recognition and global key estimation. In these approaches,

24 key-dependent HMMs, one for each major and minor keys

are built. Key estimation and chord recognition are performed

simultaneously selecting the model whose likelihood is the

highest. It is observed that the proposed method is similar

to [11] but, whereas in [11] the states in the HMMs have

no musical meanings, in [36], hidden states are treated as

chords, which also allows identifying the chord sequence.

Some works that address simultaneously the problem of

estimating chords and keys using HMMs have also been

proposed. Burgoyne & Saul [38] present a HMM-based model

that tracks key simultaneously with chords. It is claimed

that transitions between chords are dependent on their tonal

context. Contrary to [37], they do not assume that music

remains in a single key from start to end. The model considers

chord and key to be inseparable properties of any given

harmony. The model is restricted to major and minor triads.

Each state of the HMM represents a chord in a possible key

(C major in the key of A minor for instance). Simplified rules

of tonal harmony are encoded in the transition matrix. The

traditional Gaussian emission distribution is replaced with a

Dirichlet distribution. The model is trained in an unsupervised

manner with the EM algorithm on five Mozart symphonies

(K.134, K.162, K.181, K.182 and K.183) and tested on the

Minuet of Mozart symphony K.550. The results reveal that

a more advanced harmonic model is needed to improve the

results.

Noland & Sandler [39] present a HMM technique for

estimating the predominant key in a symbolic musical excerpt.

The hidden states are the 24 major and minor keys and the ob-

servations are pairs of consecutive chords. Human expectation

of harmonic relationships is encoded in the model using results

from perceptual tests. The parameters of the HMM are trained

using hand-annotated chord symbols. This work is extended

to the audio case in [12] and evaluated on 110 Beatles songs,
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yielding a global key accuracy of 68%. Although this model
has only been evaluated on the case of global key estimation,

it could be used for local key estimation.

Catteau et al. [15] propose a probabilistic framework for

simultaneously estimating keys and chords. Observation likeli-

hood and chord/key transition models are derived from music

theory of Lerdahl & Jackendoff [40]. Parameter tuning and

system evaluation are performed using four databases: some

cadences and modulations, a set of 10 polyphonic audio

fragments of a duration of 60s and a set of 96 MIDI-to-wave
synthesized fragments from the MIREX 2005 key detection

contest. In this work, the segmentation of audio is based on a

fixed frame-by-frame analysis.

Rocher et al. [16] describe a method for estimating

simultaneously local keys and chords from audio signals

using a template-based approach combined with music

theory knowledge. Using chord/key pairs as vertices, they

build a weighted acyclic harmonic graph. Chord and key

progressions are obtained by finding the best path in the

graph. A multi-scale analysis is proposed in order to take into

account different kind of harmonic information. Evaluation

on 174 Beatles songs shows that the chords and the local

keys accuracy (respectively 74.9% and 62.4%) are increased
considering the mutual dependency between the two musical

attributes. Here again, the analysis window size for key

estimation is empirically set to a fixed value that does not

differ from one piece to another.

D. Summary of Related Works

It is not easy to get an idea of the performances of existing

works on local key estimation because the evaluation material

and protocol differs a lot from one work to another. In order

to provide a clearer idea of existing approaches, especially in

local key estimation, we have summarized part of the above-

mentioned works on key estimation in Table I.

III. PROPOSED APPROACH

In this paper we are interested in the problem of local key

finding in polyphonic audio files. For this, we propose to

combine and extend methods proposed for global key finding

to the case of local key finding. We rely on the above-

mentioned method for global key estimation [25] based on

key reference profiles, which are correlated with input pitch

class profiles. The underlying idea of this work is that in case

of polyphonic music, the chords can be used to estimate the

musical key. However, in this previous work, as in [11], the

chords are integrated into the key profiles, but not directly

used to estimate the key. Moreover, their relationship to keys

is not explicitly investigated. We study this relationship in the

present work. To integrate the concept of key modulating over

time, we propose to use a HMM where the hidden states are

the keys which can be observed through observable data that

are the chords. The use of the HMM allows us to integrate

some musical information about key changes, as proposed in

[39].

As underlined in Section II-B, HMMs have already been

used for local key estimation [12], [17]. However, this was

done using a frame-by-frame analysis. A contribution of the

present work is that we introduce information related to the

metrical structure of the audio file in order to make the local

key estimation robust. One of the problems when segmenting

a piece of music into sections with different keys is to

accurately choose the length of the analysis window used for

key estimation.

In the case of global key estimation, only the first seconds

of the piece are used to estimate the key. Several studies have

shown that the choice of the duration of the analyzed excerpt

has a significant impact on the key estimation results (see for

instance [6] or [10]).

Concerning local key estimation in previous work, the

length of the analysis window was found empirically. After

computing chroma vectors on short overlapping frames, a

frame-by-frame musical key analysis is performed in [17]

or [18]. Rocher et al. [16] also use a fix-length window

size (set to 30s) in their work. An alternative to sliding

window key center tracking techniques is proposed in [19]

where a segmentation stage which identifies sections that are

candidates for unique local keys is performed prior to local

key estimation. Groups of contiguous chroma vectors are used

as input. Heavily overlapped groups of chroma vectors are

averaged over a span of σ seconds. The value of the parameter

σ is found empirically (7.4s) after testing several window
sizes.

The question of optimal segment length remains an open

problem. A too small window size would focus the chro-

magram on individual chords more than on keys whereas

the use of a too large window size would lead to segments

containing several keys and key modulation points would

become ambiguous. The drawback of using an empirically

chosen window size is that key changes may be undetected

by the algorithm for pieces with a fast tempo and that, for

pieces with a slow tempo, chords may be estimated rather

than keys. Ideally, the window length should be related to

the tempo of the piece. We get around this difficulty here by

segmenting the piece according to the metrical structure. We

perform a beat-synchronous analysis. For local key estimation,

the temporal unity, which is used here for key analysis, is

the musical bar. The analysis window length is related to the

structure of the piece and fits its harmonic content. It is thus

musically meaningful and not arbitrary.

A. Model

In this section we present a model that allows the estimation

of the key progression of a musical excerpt using both the un-

derlying chord progression, which characterizes the harmonic

structure, and the downbeat positions, which characterize the

metrical structure.

Metrical level is a hierarchical structure. The beat or the

tactus level is the most salient metrical level and corresponds

to the foot-tapping rate. Musical signals are divided into units

of equal time value called measures or bars. One important

attribute of the metrical structure is the downbeats or the first
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TABLE I
SUMMARY OF RELATED WORKS ON KEY ESTIMATION.

Reference Key Approach Evaluation Material Key Label

Accuracy

Gómez & Her-

rera [25]

Global Correlation between HPCP and (K-K) profiles extended to polyphonic audio

comparison with various machine-learning methods.

878 excerpts of classical music (661 for training

and 217 for testing).

64%

Peeters [11] Global Highest likelihood of a chromagram given 24 HMM trained according to the

24 major and minor keys key.

302 European Baroque, classical and romantic

music extracts.

81%

Izmirli [6] Global Correlation between spectral summary information and weighted KS-

Temperley’s key templates.

85 classical music pieces. 86%

Chuan & Chew

[10]

Local CEG algorithm and the Spiral Array Model with various key determination

policies (NN, RD, AD)

410 classical music pieces ranging from Baroque

to Contemporary, Chopin’s 24 Préludes.

70%

Purwins et al.

[18]

Local Frame-by-frame correlation between input and trained CQ-profiles using a

fuzzy distance.

training on the 24 Chopin’s Préludes, evaluation

on Chopin’s Préludes op.28 no 20.

/

Zhu & Kankan-

halli [29]

Local Melody modality analysis by segmentation of a MIDI melody using a diatonic

scale model.

50 popular songs. qualitative

evaluation

Temperley [33] Local Bayesian approach that favors minimum key changes between segments of

MIDI data.

Main key evaluation on 1252 excerpts from clas-

sical pieces.

91.4%

Chai & Vercoe

[17]

Local Key detection divided into two steps: root and mode using two HMMs and a

chromagram as input feature.

10 classical piano pieces. 84%

Izmirli [19] Local Uses a NMF method for segmentation and correlation between groups of

contiguous chroma vectors and templates for labeling

Local key evaluation on 17 pop songs and 17

excerpts from the Kosta and Payne corpus.

82.4%

Burgoyne &

Saul [38]

Local Chords and keys simultaneously estimated from audio using a HMM based

on Dirichlet distribution and PCP as input.

5 Mozart symphonies (K. 134, K. 162, K. 181,

K.182 and K.183) for training and Mozart Sym-

phony K. 550, Minuet for testing.

/

Noland & San-

dler [12]

Local/

Global

HMM that uses pairs of consecutive chords as input features and that encodes

human expectation of harmonic relationships.

Main key evaluated on 110 Beatles songs. 91%

Catteau et al.

[15]

Local Simultaneous estimation of keys and chords using a probabilistic framework in

which chord/key transition models are derived from music theory of Lerdahl’s.

10 polyphonic audio fragments of 60s and 96

MIDI-to-wave synthesized fragments.

51.2%

Rocher et al.

[16]

Local Simultaneous estimation of keys and chords using chroma as input features

and a template-based approach combined with music theory knowledge

encoded in a weighted acyclic harmonic graph.

174 Beatles songs. 62.4%

beats of each measure. Here, the chords and the downbeats

are estimated simultaneously using a “double-state” HMM

where a state sn (n denotes the time index) is a combination
of a chord type and a position of the chord in the measure

according to the beat positions. We consider here a chord

lexicon composed of the I = 24 Major and minor triads (C
Major, . . . , B Major, C minor, . . . , B minor). We consider here

pieces predominantly in 3/4 or predominantly in 4/4 meters.
In both cases, the transition matrix will allow K = 4 beat
positions in the measure.

The 24-key space is modeled by an ergodic 24-state HMM,

where each state skey
n represents one of the 24 major and minor

keys. The emission probability of each state (each key) is a

24-dimensional vector representing the probability to observe

each of the 24 chords in this specific key. They are obtained

either directly from the chord progression or using all chord

probabilities. Given the observations, we estimate the most

likely key sequence over time in a maximum likelihood sense.

The flowchart of the model is represented in Fig. 2 and detailed

below.

B. Feature Vectors

As most chord and key detection models, the front-end of

our model is based on the extraction of a chromagram that

represents the audio signal. For chromagram computation, we

use the method we proposed in [41], briefly described here.

The audio signal is first down-sampled to 11025 Hz, con-
verted to mono by mixing both channels and converted to

the frequency domain using a constant-Q transform (CQT)

[42], which is a time/frequency transform in which the fre-

quency domain channels are geometrically spaced so that the

frequency-resolution ratio remains constant. The tuning of

the track is estimated to take into account possible deviation

Fig. 2. Flowchart of the local key estimation model.

with the standard reference pitch A4 = 440 Hz. We use

the method proposed in [11]. This step is important because

the chroma vectors are built by mapping the energy peaks

in the CQT to the 12 semitones pitch classes. The center
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frequencies of the CQT are geometrically spaced according

to the frequencies of the equal-tempered scale that we set

according to the estimated tuning. The CQT is then mapped

to the 12-dimensional chroma vectors.

To integrate the metrical structure of the piece, we built

meter-related features by averaging the chroma vectors ac-

cording to the beat positions so that we obtain one feature

vector per beat. This assumes integration of a beat-tracker

as a front-end of the system. In our experiments, we use

the beat tracker proposed by Peeters in [43] for the Quaero

test-set. In the case of the Piano Mozart test-set, we use

beat positions that have been annotated by hand because the

test-set is composed of classical music pieces containing lots

of deviations in tempo that result from the expressivity in

classical music. The performance of the beat tracker was too

poor in this case to be used as an input of our model.

In order to provide robustness against variations of dynam-

ics, the chromagram is normalized so that the components of

each chroma vector sums to unity. The feature extraction stage

is represented in Fig. 3.

Fig. 3. Chroma features extraction.

C. Harmonic and Metrical Structures

The harmonic structure is defined by the chord progression

and the metrical structure is defined by the downbeat positions.

These two musical attributes are estimated simultaneously

according to the method we proposed in [41], which we briefly

summarize here. We propose a specific topology of HMMs that

allows us to model chord dependency on metrical structure.

This model can handle pieces with complex metrical structures

such as beat addition, beat deletion or changes in the meter.

We consider an ergodic I ∗ K-state HMM that describes

the simultaneous evolution of three processes. Here n denotes
the time index. The observable variable is the chroma vector,

denoted On in the following. The unobservable processes and

the corresponding hidden variables are the chord symbols,

denoted cn and the “beat position in the measure”, denoted

bn. Each double-state sn = [i, k] is defined as an occurrence

of a chord cn = i, i ∈ [1 : I] at a “beat position in the
measure” bn = k, k ∈ [1 : K]. Here, we consider a chord
lexicon composed of I = 24 major and minor triads and

K = 4. Given the observations, we estimate the most likely
chord sequence over time and the downbeat positions in a

maximum likelihood sense.

1) The Initial State Distribution: is uniform since we have

no reason to prefer a state over another.

2) The State-Conditional Observation Likelihoods

P (On|sn): are computed as:

P (On|sn) = P (On|cn)P (On|bn) (1)

where P (On|cn) corresponds to the chord symbol observation
probabilities and P (On|bn) corresponds to the “beat position
in the measure” observation probabilities. The observation

chord symbol probabilities are obtained by computing the

correlation between the observation vectors (the chroma

vectors) and a set of chord templates which are the theoretical

chroma vectors corresponding to the I = 24 major and minor
triads. In what follows, the succession of these 24-dimensional

vectors is referred to as the chordgram. The computation of

the chordgram is detailed in Subsection III-D. The second

term in Eq. (1), P (On|bn), is a constant multiplication that
has no effect on the observation probability for state sn. The

state-conditional observation likelihoods P (On|sn) depend

actually only on the chord type.

3) The State Transition Matrix T : models the musical rules
from which the transitions between chords result. These rules

are based on the harmonic and the metrical structures. In

our HMM, T takes into account both the chord transitions

and their respective positions in the measure. To integrate

harmonic rules, we derive the I ∗ K-state transition matrix T
from a I-state chord type transition matrix Tc based on music-

theoretical knowledge about key-relationships. This matrix is

the same as the key transition matrix described below.

We integrate metrical rules in T relying on the assumption

that chords are more likely to change at the beginning of

a measure than at other positions [44]. In order to take

into account several cases of metrical structure, two different

transition matrices are built. The first one corresponds to the

case of songs in 4/4 meter with ternary passages. In this case,

we favor 4-beat measures but transitions to 3-beat measures

are allowed. The second transition matrix corresponds to the

case of songs in 3/4 meter with passages in 4/4. In this case,

we favor 3-beat measures but transitions to 4-beat measures

are allowed.

To favor chord changes on downbeats, we attribute in the

state transition matrix T a lower self-transition probability3

for chords occurring on the last beat of a measure (i.e. on

bn = K) than on other beat positions. This is illustrated in
Fig. 4.

This model allows us to consider pieces with complex

metrical structures including changes in the meter from 3/4

3Here, a self-transition means a transition between two identical chord
types, for instance from a CM chord to a CM chord.
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to 4/4 time-signature but also various exceptional situations

such as the insertions of a measure in 1/4 in a 4/4 meter

passage. Our model also allows us to handle errors in the

beat tracking stage such as beat insertion or beat deletion due

in general to tempo deviation (e.g. music tempo speed up or

slow down) not detected by the beat tracker.

Fig. 4. Chord transition matrix for a single-state HMM [left], transition
matrix in the case of a double-state HMM taking into account the position
of the chord in the measure [right]. In this figure, the darker the color, the
higher the value in the transition matrix.

4) Chord Progression and Downbeats Detection: The op-

timal succession of states sn = [i, k] over time is found using
the Viterbi decoding algorithm [45] which provides the most

likely path through the HMM states S = (s1, s2, . . . , sN )
given the sequence of observations O = (O1, O2, . . . , ON )
:

Ŝ = argmax
S

p(S, O). (2)

where p(S, O)denotes the joint probability density of the

hidden and observed variables. We estimate simultaneously the

most likely chord sequence over time and the corresponding

“beat position in the measure”, hence the downbeats.

D. Chordgram

We define the chordgram as the succession over time of the

24-dimensional vectors representing the probability to observe

each of the 24 chords at each beat-synchronous frame. These
instantaneous chord probabilities are obtained by computing

the correlation between the chroma vectors and 24 chord

templates. Each chord template is a 12-dimensional vector

that contains the theoretical amplitude values of the notes

and their harmonics composing a specific chord. The chord

templates are constructed considering the presence of the

higher harmonics of the theoretical notes it consists of. Relying

on the model presented in [5], the amplitude contribution of

the hth harmonic composing the spectrum of a note is set to

0.6h−1.

E. Extraction of Key Observation Vectors

The key observation vectors are derived from the chords.

In the evaluation part, we will compare two methods for local

key estimation. They differ from each other in the way the 24-

dimensional key observation vectorsOkey are derived from the

chords.

1) Method 1: The key observation vectors are built from the

chordgram using the instantaneous chord probabilities

P (On|cn), where On corresponds to the chroma vector

and cn = i, i ∈ [1 : 24] corresponds to the chords.

O
key
n (m) = P (On|cn = m) (3)

2) Method 2: The key observation vectors are built di-

rectly from the estimated chord progression ĉ =
(ĉ1, ĉ2, . . . , ĉn).

O
key
n (m) =



1 if ĉn = m
0 if otherwise

(4)

In general, the musical key of a music piece changes much

less often that the chords and remains the same during several

bars. We segment the piece into overlapping segments whose

length is related to the measures which are delimited by

the downbeats. The local key is thus estimated on segments

that are related to the structure and thus fit the intrinsic

music content of the piece. Because key changes occur in

general on the first beat of a measure it is important that

the analysis starts on a downbeat. Musical phrases often have

duration of 8 or 4+4 bars. In Section IV-C, we present key

estimation results segmenting pieces into 2-bar segments with

1-bar overlap, or into consecutive 1-bar segments. In our

experiments we have tested the algorithm using other analysis

window lengths and found that the local key accuracy results

decrease with longer windows. This is discussed below. The

key observation vectors are 24-dimensional vectors obtained

by averaging the chordgram or the estimated chord progression

along the segments. These 24-dimensional vectors represent

the probability to observe each of the 24 keys at a given time

instant.

F. Key Estimation From Chords and Downbeats Using Hidden

Markov Models

From the key observation vectors, we estimate the

succession of keys in the track. The method is very similar

to the one we proposed for chord estimation.

1) The Initial State Distribution: of keys is uniform ( 1

24

for each of the 24 states) since we have no reason to prefer a

key over another.

2) The Key Observation Probabilities P (Okey
n |skey

n ): are
obtained by computing the correlation between the key ob-

servation vectors and a set of key profiles that represent

the importance of each triad within a given key. The pre-

defined key templates are 24-dimensional vectors with each

bin corresponding to one of the 24 major and minor triads. We

have tested our model using four key templates as described

below.

The first three of them are derived from the knowledge that

the most important triads in a given key are those built on

the tonic, the subdominant and the dominant [1], [25]. For

instance, for a CM key, these chords correspond to CM (C-E-

G), FM (F-A-C) and GM (G-B-D).
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1) In the first pre-defined key template, we attribute a value

of 1 to each of the three main triads. It will be referred
to as “main chords” (MC) key template in the following.

2) The second key template is similar to the first one,

except that we attribute a higher value k > 1 to the
chord built on the tonic of the key. In our experiments,

we used k = 3. It will be referred to as “weighted main
chords” (WMC) key template in the following.

3) The third key template is similar to the second one,

except that we attribute a value of one to the chord

relative to the one built on the tonic (for instance Am

chord in a C major key). We consider this case because

we know from music theory that this chord has an

important function given a key. This key template will be

referred to as “weighted main chords relative” (WMCR)

in the following.

These three key templates corresponding to the C major (top)

and C minor (bottom) keys are represented in Fig. 5.

CMC#MDMD#MEM FMF#MGMG#MAMA#MBM Cm C#mDmD#mEm FmF#mGmG#mAmA#mBm
0

1

2

3

Main chords in C major keys
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CMC#MDMD#MEM FMF#MGMG#MAMA#MBM Cm C#mDmD#mEm FmF#mGmG#mAmA#mBm
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Main chords in C minor keys
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e

Fig. 5. Pre-defined 24-dimensional key templates based on the three main
triads. Dark grey: “main chords” (MC), black: “weighted main chords”
(WMC), light grey: “weighted main chords relative” (WMCR).

The 4th pre-defined key-template is built relying on a cogni-

tive experiment conducted by Krumhansl [1] that gives values

corresponding to the rating of chords in harmonic-hierarchy

experiments. In this experiment, the perceived relative struc-

tural significance of chords in tonal context is measured. For

this, several trials consisting of a strong key-defining context

followed by a single chord are presented to listeners. The

listeners are asked to rate how well the final chord fit with

the preceding key-defining context. In the experiments, three

types of chords are considered: major, minor and diminished.

However, since we consider only major and minor chords in

our model, the diminished chords were ignored. The cognitive-

based key templates corresponding to the C major (top) and

C minor (bottom) keys are represented in Fig. 6.

CMC#MDMD#MEM FMF#MGMG#MAMA#MBM Cm C#mDmD#mEm FmF#mGmG#mAmA#mBm
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Fig. 6. Pre-defined 24-dimensional cognitive-based key templates [1].

The templates corresponding to the various major and

minor keys are obtained by circular permutation from the one

corresponding to the C major and C minor keys.

Let Ti, i ∈ [1 : 24] denote a 24-dimensional key template.
The observation key probabilities P (Okey

n |skey
n ) are obtained

according to Eq. (5):

For i = 1 . . . 24, P (Okey
n |skey

n = i) =
Okey

n · Ti

‖Okey‖ · ‖Ti‖
(5)

They are normalized so that

24∑

i=1

P (Okey
n |skey

n = i) = 1.

G. State Transition Probability Distribution

Key modulations in a music piece follow musical rules that

can be reflected in the state transition matrix. To integrate

this information in key transition, we adopt the key transition

matrix proposed in [39] already used as a chord transition

matrix4. In [1], Krumhansl studies the proximity between the

various musical keys using correlations between key profiles

obtained from perceptual tests. These key profile correlations

have been used in [39] to derive a key transition matrix

in the context of local key estimation as described below.

Krumhansl gives numerical values corresponding to key profile

correlations for C major and C minor keys. The values can

be circularly shifted to give the transition probabilities for

keys other than C major and C minor. In order to have

probabilities, all the values are made positive by adding 1,

and then normalized to sum to 1 for each key. The size of the

final key transition matrix is 24 x 24.

H. Local Key Estimation

The optimal succession of states over time is found using

the Viterbi decoding algorithm that gives us the best sequence

of keys over time Skey = (skey
1 , skey

2 , . . . , skey
Nkey) given the

sequence of observations Okey = (Okey
1 , Okey

2 , . . . , Okey
Nkey).

ˆSkey = argmax
Skey

p(Skey , Okey). (6)

The music piece is thus segmented into segments that are

labeled by a key.

IV. EVALUATION

The aim of this section is to analyze the performances of the

proposed approach for local key estimation on two different

test-sets of different music styles. The impact of the various

parameters will be studied, as well as the relationship between

the various musical elements that are taken into account (key,

chords, downbeats, musical style).

4Chords and key are musical attributes related to the harmonic structure
and can be modeled in a similar way.
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A. Test-sets

The first test-set consists in 5 movements of Mozart piano

sonatas listed in Table II corresponding to about 30 minutes of

audio music. In what follows, it will be referred to as the Piano

Mozart test-set. Trained musicians from the Musichorshule

of Karlsruhe (Germany) have manually annotated the chord

and key progressions ground truth. First, a list of the chords

and key with their duration in beats has been provided.

Beat positions have then been annotated using the software

Wavesurfer. Finally, the list has been automatically mapped to

the annotated beat positions, resulting in the ground truth we

use. The pieces were annotated in part by ear but also relying

on the scores when ambiguities were found.

TABLE II
THE Piano Mozart test-set.

Reference of the piano sonata movement

KV 283 1
KV 283 2
KV 309 1
KV 310 1
KV 311 2

Each piece contains several modulations and this is one

of the main reasons why they were selected. It has to be

noticed that it is very hard to label Mozart pieces in chords

and musical keys, even for a well-trained musician, because

on the one hand, there are a lot of ornamental notes (such as

appoggiaturas, suspensions, passing notes, etc.) and on the

other hand, harmony is frequently incomplete (some notes of

the chord are missing). This makes the choice of chord labels

very difficult. Changes from one key to another are often

ambiguous, in particular when they are very short. Moreover,

modulation is very often a smooth process. It can take

several bars to properly establish a tonal center. Segments

corresponding to transitions from one key to another have

been labeled as transition parts.

The second corpus was provided during the QUAERO

project5 2009 evaluation campaign. It consists in 16 real audio

songs annotated by IRCAM. All the songs were annotated by

listening to the audio using the IRCAM QIMA annotation

software. Note that one additional difficulty in the case of

popular music annotation is that, in general, there is no score.

Effects blur musical objects and sometimes, inexistent notes

may be perceived while existing notes may be undetected. The

songs are listed in Table III and correspond to various artists

and styles. In what follows, it will be referred to as the Quaero

2009 test-set. For the sake of simplicity, we will refer to this

test-set as “popular” music, although it covers various styles

of music that include pop, rock, electro and salsa.

The characteristics of the test-sets in terms of number of

chords, chord changes, keys and key changes are shown in

Fig. 7 and Fig. 8. The total number of chord changes and key

segments is respectively 1688 and 90 for the Piano Mozart

test-set and 1871 and 92 for the Quaero 2009 test-set. Note
that some pieces are annotated in a single key but present some

5http://www.quaero.org

TABLE III
THE Quaero 2009 test-set.

Artist Album Song

Pink Floyd Dark Side of the Moon Breathe

Pink Floyd Dark Side of the Moon Brain Damage

Buenavista Social Club Buenavista Social Club Chan Chan

Buenavista Social Club Buenavista Social Club De camino a la Vereda

Dusty Springfield Dusty in Memphis Son of a Preacher Man

Aerosmith Get A Grip Cryin

Shack HMS Fable Pull Together

UB40 Labour of Love II Kingston Town

Fall out boy Infinity on High This Ain’t a Scene it’s An Arms Race

Abba Waterloo Waterloo

Cher Believe Believe

Phil Collins Single Another Day in Paradise

Santa Esmeralda Don’t Let Me Be Misunderstood Don’t Let Me Be Misunderstood

Sweet Desolation Boulevard Fox on the Run

FR David Single Words

Enya Watermark Orinoco Flow

key changes because they present regions with ambiguous keys

(denoted by “T”).

Concerning the meter, all pieces in the Piano Mozart test-

set have a constant 3/4 or 4/4 meter while 4 pieces in the
Quaero 2009 test-set have a variable meter.
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Fig. 7. characteristics of the datasets : number of different keys (black) and
number of key changes (grey) per song.

1 2 3 4 5
0

5

10

15

20

25

30

35
Piano Mozart dataset

song number

N
u
m

b
er

o
f

k
ey

s/
k
ey

ch
a
n
g
es

2 4 6 8 10 12 14 16
0

5

10

15

20
Quaero 2009 dataset

song number

N
u
m

b
er

o
f

k
ey

s/
k
ey

ch
a
n
g
es

Fig. 8. characteristics of the datasets : number of different keys (black) and
number of key changes (grey) per song.

B. Evaluation Measures

1) Chord/key Label Accuracy: For chords and key evalu-

ation, we consider label accuracy LA, which measures how

the estimated chord/key is consistent with the ground truth.

LA results correspond to the mean and standard deviation of

correctly identified chords/keys per song. Parts of the pieces

where no key can be labeled (for instance when a chromatic

scale is played) have been ignored in the evaluation. “Non-

existing chords”, noted “N” in the annotation denote noise,

silent parts or non-harmonic sounds. They are unconditionally

counted as errors in the evaluation.
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Two scores are considered: Exact Estimation EE corre-

sponds to the rate of keys/chords correctly detected; Exact

+ Neighbor E+N corresponds to the rate of correctly detected

keys/chords including neighboring keys/chords. Neighboring

key/chord considered here are harmonically close triads: par-

allel Major/ minor (EM being confused with Em), relative (Am

being confused with CM), dominant (CM being confused with

GM) or subdominant (CM being confused with FM).

For local key label accuracy, in addition to the EE and

E+N scores, we consider the MIREX Estimation score ME ,

that gives the estimation rate according to the score proposed

for the MIREX 2007 key estimation task6.

2) Local key Segmentation Accuracy: We also consider,

as in [17], another aspect of local key estimation: the

key segmentation accuracy SA indicates how the detected

modulation points are consistent with the actual positions.

It is expressed with the Precision, Recall and F-measure.

Precision(P ) is defined as the ratio of detected transitions
that are relevant. Recall(R) is defined as the ratio of relevant
transitions detected. We also give the F − measure(F )
which combines the two F = 2RP/(R + P ). Key changes
are not abrupt. Two established keys are often separated by

a transition part (labeled as T in the ground truth) where no

key is firmly established. The transition parts are taken into

account in segmentation accuracy by the use of a window w.
If a modulation is detected at frame n1 and close enough to

a relevant modulation of the ground truth labeled at frame

n2 such that |n1 − n2| < w, it is considered as correct. A
high value of w favors high precision and recall. We present

below results with w corresponding to 1 or 2 bars.

3) Statistical Significance Testing: During our experiments,

we use paired samples t-test (or dependent samples t-test) at

the 5% significance level to measure whether the difference

in the results from one method to another are statistically

significant or not.

C. Results and Discussion

We have carried out several experiments to evaluate the im-

pact of various parameters on the local key estimation results:

choice of the key templates, choice of analysis window length,

key estimation from the chordgram or from the estimated

chord progression, influence of the tolerance window.

Label and segmentation accuracy results are presented in

Tables IV to VII. For each test-set, we present the results

obtained with the parameters that were found to perform the

best : 2-bar window length / WMC key templates for the

Piano Mozart test-set, and 1-bar window length / Krumhansl

key templates for the Quaero 2009 test-set. We discuss below

the choice of these parameters (see Sections IV-C5 and IV-C6).

6The score is obtained using the following weights: 1 for correct key
estimation, 0.5 for perfect fifth relationship between estimated and ground-
truth key, 0.3 if detection of relative major/minor key, 0.2 if detection of
parallel major/minor key. Fore more details, see http://www.mirex.org.

1) Local Key and Musical Styles: The local key estimation

results are different for the two test-sets. The key estimation

results are much higher in the case of classical music (label

accuracy 80.21%, segmentation accuracy 0.5170) than in the
case of popular music (label accuracy 61.31%, segmentation
accuracy 0.3410). Also, for popular music, the standard de-
viation is high. However, most of the errors correspond to

neighboring keys, as indicated by the mirex (ME, 73.18%)
and exact + neighbors (E+N, 89.84%) scores.

The WMC key templates and transition matrix we propose

(based on cognitive experiments or music knowledge) better

reflect the tonal content and the relationships between keys

of the Piano Mozart test-set than the Quaero 2009 test-set.

Key changes in the Piano Mozart test-set are well-modeled in

the key transition matrix, whereas it is not the case for every

piece in the Quaero 2009 test-set. For instance the song Words

from FR David mainly consists in key transitions from C#

Major to D# minor. However, this transition is only ranked as

the 8th most likely one in the transition matrix. Moreover, as

discussed in Section IV-C6, the newly proposed key templates

do not always reflect accurately the tonal content of pieces in

the Quaero 2009 test-set .

The Quaero 2009 test-set contains 5 pieces with constant

key whereas our algorithm favors segmentation into several

keys. Removing these pieces from the evaluation (NC results)

increases the segmentation F-measure to 0.5055. The standard
deviation of the label accuracy results is also much lower.

As discussed in Section IV-C5, it is difficult to make a

compromise between favoring key changes and favoring

constant key.

2) Comparison Between Chordgram and Chord Progres-

sion: We have proposed two methods for local key estimation:

1) In the first case (method 1), the probability of each chord

at a given time instant is used to estimate the key.

2) In the second case (method 2), the chords are first

estimated using the 2-state HMM described in Section

III-C. The local key is then derived from the estimated

chord progression.

Tables IV and VI show that method 1 outperforms method

2. Indeed, the best key label accuracy results are obtained with

method 1, both for classical and popular music.

Table VII shows that for popular music, segmentation

accuracy is also significantly higher with method 1. Moreover,

even if method 2 slightly outperforms method 1 on the Piano

Mozart test-set (see Table V), a paired sample t-test shows that

the difference is not statistically significant and tests on a larger

database are needed. One drawback of method 2 is that errors

in the estimation of the chord progression are propagated to

the key estimation step. It thus seems better to rely on the

chordgram rather than directly on the chord progression for

estimating the local key.

It can be noticed that recall segmentation accuracy is

higher with method 2 than with method 1. Our explanation

is that chord changes are favored on downbeats in the case

of method 2 whereas changes of harmony in the chordgram

of method 1 are smoother. As a result, the key changes are
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TABLE IV
CHORDS AND LOCAL KEYS LABEL ACCURACY (LA) RESULTS ON THE Piano

Mozart test-set, USING A 2-BAR LENGTH WINDOW AND THE WMC KEY

TEMPLATE. EE: EXACT ESTIMATION RATE. E+N : ESTIMATION RATE
INCLUDING NEIGHBOR KEYS/CHORDS.ME: MIREX ESTIMATION RATE.

method 1: BASED ON THE CHORDGRAM. method 2: BASED ON THE CHORD

PROGRESSION.

Piano Mozart test-set

key LA method 1 (%)
EE 80.21± 13.56

ME 84.81± 11.86

E+N 93.36± 10.08

key LA method 2 (%)
EE 74.11± 18.92
ME 80.08± 18.64
E+N 91.19± 10.55

chord LA (%)
EE 61.43± 5.50
E+N 74.11± 18.92

TABLE V
LOCAL KEY SEGMENTATION ACCURACY (SA) RESULTS USING A 2-BAR
LENGTH WINDOW AND THEWMC TEMPLATES.method 1: BASED ON THE

CHORDGRAM. method 2: BASED ON THE CHORD PROGRESSION. TWO
TOLERANCE WINDOWS:w = 1 BAR AND w = 2 BARS.

Piano Mozart test-set

method 1 method 2

SA precision
w = 1 0.5723 0.4489
w = 2 0.8196 0.6805

SA recall
w = 1 0.4730 0.7131
w = 2 0.6874 0.8691

SA F-measure
w = 1 0.5170 0.5451
w = 2 0.7327 0.7514

TABLE VI
CHORDS AND LOCAL KEYS LABEL ACCURACY (LA) RESULTS ON THE

Quaero 2009 test-set, USING A 1-BARS LENGTH WINDOW AND THE

KRUMHANSL KEY TEMPLATE. EE: EXACT ESTIMATION RATE. E+N :
ESTIMATION RATE INCLUDING NEIGHBOR KEYS/CHORDS.ME: MIREX
ESTIMATION RATE. method 1: BASED ON THE CHORDGRAM. method 2:
BASED ON THE CHORD PROGRESSION.WC/NC: WITH/NO PIECES WITH

CONSTANT KEY.

Quaero 2009 test-set

method WC NC

key LA method 1 (%)
EE 61.31± 36.50 67.61± 26.43
ME 73.18± 27.56 78.60± 16.67
E+N 89.84± 24.70 93.74± 10.11

key LA method 2 (%)
EE 52.14± 21.17 54.02± 14.20
ME 62.84± 20.71 65.80± 13.71
E+N 80.80± 22.64 82.65± 13.06

chord LA (%)
EE 72.67±16.84 75.11± 11.82
E+N 93.78 ± 5.56 94.78± 4.90

TABLE VII
LOCAL KEY SEGMENTATION ACCURACY (SA) RESULTS USING A 1-BAR

LENGTH WINDOW AND THE KRUMHANSL TEMPLATES. method 1: BASED ON
THE CHORDGRAM. method 2: BASED ON THE CHORD PROGRESSION. TWO
TOLERANCE WINDOWS:w = 1 BAR AND w = 2 BARS.WC/NC: WITH/NO

PIECES WITH CONSTANT KEY.

Quaero 2009 test-set

method 1 method 2

WC NC WC NC

SA precision
w = 1 0.2955 0.4394 0.1620 0.2420
w = 2 0.3883 0.5713 0.2682 0.3919

SA recall
w = 1 0.5166 0.7765 0.5506 0.8167
w = 2 0.6148 0.9123 0.6875 1.0000

SA F-measure
w = 1 0.3410 0.5055 0.2377 0.3532
w = 2 0.4432 0.6504 0.3632 0.5269

blurred.

3) Relationship Between Chords and Key: The analysis of

the results piece by piece shows that there is a correlation

between the estimation of the chords and the estimation of

the key. We expected that a good estimation of the chords

would lead to a good estimation of the keys. This was

corroborated when evaluating method 2: a poor estimation of

the chords resulted in a poor estimation of the local keys. A

deeper analysis showed that if the chord estimation errors

consisted of confusions with harmonically close chords (such

as dominant or subdominant chords), the estimated key was

nevertheless either correct or a neighboring key.

4) Importance of the Metrical Structure: Musical elements

are highly organized and, when listening to a piece of music,

we can feel in general a structure and separate the piece into

several segments, as for instance verse/chorus in a popular

music song. These segments are in general related to the

metrical structure (measures or groups of measures) but also

to the key because pitches within a section are organized

around a tonal center that is characteristic of the section. It

thus seems useful to rely on the metrical structure in order to

estimate key progression. As explained above, we propose here

to use bar-related key analysis segments. In a fully-automatic

analysis, the beats and downbeats are directly estimated from

the audio. Beat and downbeat tracking results evaluated on the

Quaero test-set are presented in Table VIII. Beat tracking is

not perfect. However, some errors in the beat tracking do not

affect downbeat estimation [41] and downbeat tracking results

are fair enough to be useful for key estimation.

TABLE VIII
BEAT AND DOWNBEAT POSITION ESTIMATION RESULTS. PRECISION

(PREC), RECALL (REC), F-MEASURE (F-M).

Precision Recall F-measure

Beat 0.53± 0.37 0.72 ± 0.32 0.57± 0.35
Downbeat 0.86± 0.34 0.79 ± 0.40 0.79± 0.40

To investigate the hypothesis of the importance of the

metrical structure on the local key estimation, we run our

model without the metrical information, i.e. we perform an

analysis with a constant key analysis window. We present

results with of a duration of 30s and 10s, with 0.8s overlap7.
Results are presented in Table IX.

It can be seen that, for both test-sets, key estimation is

better when taking into account the metrical structure. The

difference in the results between the NM case and WM case

is statistically significant for segmentation accuracy for both

methods and for label accuracy in the case of method 2.

Example in Fig. 9 shows an excerpt of the first movement of

the Mozart piano sonata KV 283. The size of the window

is an essential point in key estimation. If it is too long, key

7The window must be long enough to get the sense of the key. Note that
other durations have been tested without showing any significative differences
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TABLE IX
COMPARISON OF LOCAL KEY RESULTS USING ADAPTED WINDOW LENGTH

(WITH METER, WM) OR USING A FIX ANALYSIS WINDOW LENGTH (NO
METER, NM) OF 10 OR 30S. THE TOLERANCE WINDOW IS w = 1 BAR.

Piano Mozart test-set Quaero 2009 test-set

WM NM30s NM10s WM NM30s NM10s

m1
LA (%) 80.21 72.63 69.73 61.31 57.32 58.71
SA F-m 0.52 0.06 0.19 0.34 0.03 0.15

m2
LA (%) 74.11 66.25 70.88 52.14 40.25 38.20
SA F-m 0.55 0.16 0.26 0.24 0.07 0.12

changes may be overlooked by the algorithm. For instance, in

the NM-30s case, key changes between 2:50 and 3:10 are not

detected. When a smaller fixed window is used in the NM-10s

case, segmentation is better. However, if the analysis window

is too small, the algorithm will analyze the chordal structure

of the piece instead of the key structure. For instance, in the

NM-10s case, a G major segment is estimated around 2:40

instead of remaining in D major (see the grey oval in Fig.

9). This is probably due to the presence within 2 bars of a G

major chord built on the IV th degree of D major key. Key

segmentation is also better when positioning the starting point

of the key analysis window on downbeats, since key changes

very often occur on downbeats. It helps avoiding mixing

some passages with different local keys. This is underlined in

Fig. 9 by the dashed rectangles.

5) Effect of the Length of the Analysis Window: We have

evaluated the algorithm with different window lengths: 1, 2,

4, 8 and 16 bars. Results are provided in Fig. 10.
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Fig. 10. Key estimation results in case of methods 1 and 2 according to the
length of the key analysis window.

In classical music, the length of musical phrases is very

often 4 or 8 bars. This is particularly true for Mozart’s piano

sonatas. Usually, the musical key remains constant within a

phrase (whereas the harmony changes several times). This is

why we chose to estimate the local key on segments of length

related to musical phrases. A 1-bar analysis window length is

too short because it captures the harmony (the chords) rather

than the local key. The best results were obtained using a

2-bar length analysis window. This may be due to the fact

that, especially in slow movements, some modulations occur

after only 2 bars. Passages with different local keys are very

likely to be mixed when a longer analysis window is used.

The accuracy of the results decreases with the length of the

analysis window.

For pieces belonging to the Quaero 2009 test-set, the best

results were obtained using a 1-bar analysis window length.

However, for method 1, the difference with a 2-bar and a

3-bar analysis window length is not statistically significant.

This is because the structure of the local key progression in

pieces belonging to the Quaero 2009 test-set is in general

quite more complex than in the Piano Mozart test-set.

Popular music may use many different musical systems

inside a song (local tonality, apparent tonality, no tonality

etc.). Moreover, the number of key changes within a song

varies a lot between one song to another. For instance, the

song Words from FR David has 19 key changes and the song

Pull Together from Shack has a constant key, whereas the

two songs have the same time duration. Note that, as for the

Piano Mozart test-set, a too long analysis window results in

low key estimation scores because passages with different

local keys are very likely to be mixed.

6) Effect of the Choice of the Key Templates: We evaluated

the algorithm with 4 templates, as illustrated in Table X.

TABLE X
LOCAL KEY ACCURACY (EE IN %)ON USING A 2-BAR LENGTH WINDOW
COMPARING VARIOUS KEY TEMPLATES, FOR method 1 m1 AND method 2

m2.

WMC MC WMCR Krumhansl

Mozart
m1 80.2± 13.6 79.1± 9.0 80.1± 11.8 50.0± 21.1
m2 74.1± 18.9 71.3± 18.4 73.5± 19.1 75.7± 19.9

Quaero
m1 52.2± 28.9 52.7± 33.8 51.0± 30.9 61.3± 36.5
m2 37.7± 12.0 41.0± 27.8 38.8± 13.9 52.1± 21.2
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Fig. 11. Up: Proportion of chords in the song Pull Together. Bottom:
Correlation with the WMC key templates.

For the Piano Mozart test-set, the best results are obtained

with the weighted main chords WMC templates for method

1. In the case of method 2, the cognitive-based templates

slightly outperform the WMC templates. However, statistical

tests indicate that the difference in the results is not statistically

significant.

For the Quaero 2009 test-set, the results are significantly

better with the cognitive-based key templates than with the

newly proposed key templates. The WMC key templates

are built on the assumption that the proportion of chords

built on the tonic of the local key is the highest. This is not

always the case in pieces from the Quaero 2009 test-set. For

instance, the song Pull Together from Shack is in constant

C minor key. Its chord progression consists in a loop Cm -

Fm - BbM - EbM. In the upper part of Fig. 11, we show a

24-dimensional vector that corresponds the mean duration of

each chord in the piece. In the lower part of Fig. 11, we show
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Fig. 9. Estimated key progression of an excerpt of the Mozart piano sonata KV 283. From top to bottom : downbeat positions, key ground truth, estimated
key considering metrical structure, results with a 30s fixed window and with a10s fixed window. The image has been obtained using the Open Source tool
Wavesurfer

the results of the correlation between this vector and each

of the 24 chord templates. It can be seen that the template

corresponding to Cm key is not the one that best reflects the

tonal content of the piece: BbM is much closer.

7) Smooth Modulations: The key segmentation accuracy

results are presented in Tables V and VII, in which we

consider two tolerance windows: w = 1 bar and w = 2
bars. It can be seen that the segmentation accuracy results

increase a lot when we use a 2-bar tolerance window. This

can be explained by the fact that key change is a very smooth

process that often takes several bars. Key changes are in

general annotated in the ground truth only when a musical

element clearly indicates that the key is established (for

instance when the tonic of the key is played). Between two

key changes, there may be several bars without a precisely

established key. It would be interesting to formulate and add

a “local key transition” state in the model. This is a direction

for our future works.

8) Comparison with a Direct Template-Based Method:

In order to have a better idea of the performances of the

proposed method for local key estimation, we follow [16]

and compare our results to a direct template-based method

(DTBM). This can be viewed as applying the Krumhansl-

Schmuckler key-finding algorithm to successive overlapping

frames. This method is used by Sapp in [46] for displaying a

visual content of the musical key structure of a composition in

a single picture. The signal is divided into overlapping frames

of 30s and 0.8s overlap and we compute one chroma feature
per frame8. For each frame, we compute the correlation with

the chroma feature with the 24 Krumhansl’s key templates.

The estimated key is selected as the one that gives the highest

value. Results are presented in Table XI.

For both test-sets, our model performs significantly

better than the DTBM method. Both label accuracy and

segmentation accuracy are higher. This is illustrated in Fig.

12 which shows the four first minutes of the first movement

of the Mozart piano sonata KV 309. All the key segments are

correctly detected within a precision window of one measure.

Key labels are correct in general, except that short segments

8In order to make a fair comparison with our model, we compute the chro-
magram using the same parameters than for our method (beat-synchronous
chroma features) and the average the chroma vectors so that we obtain one
feature per 30s-length frame. A length of 30s was found to be a good
compromise for local key estimation in [16].

TABLE XI
COMPARISON OF LOCAL KEY RESULTS OBTAINED WITH THE PROPOSED

METHOD (method 1) WITH RESULTS OBTAINED USING A DTBM METHOD.
THE TOLERANCE WINDOW IS w = 1 BAR.

Piano Mozart test-set Quaero 2009 test-set

meth 1
LA (%) 80.21± 13.56 61.31 ± 36.50

SA F-measure 0.52 0.34

DTBM
LA (%) 62.41± 21.52 42.10 ± 31.30

SA F-measure 0.24 0.08

of related keys are sometimes inserted, as F major in the first

C major segment. This is due to the presence of long-duration

chords built on the IV th or V th. With the DTBM method,

key segmentation precision is much lower (see the dashed

rectangles). Moreover, the algorithm gets very confused when

there are many successive modulations (see segment from

2:50 to 3:50 in the grey oval). The use of a fixed window

that may not fit the structure of the piece results in mixing

passages with different keys.

9) Analysis of Errors: For both test-sets, as indicated by

the E + N scores in Tables IV and VI , most of the errors

correspond to confusions with neighboring keys (perfect fifth

relationship between estimated and ground-truth key, relative

major/minor key, parallel major/minor key). Details are shown

in Fig. 13.

Fig. 13. Repartition of key estimation errors.

The errors may be due to various causes, as discussed

above (key template not fitting the harmonic content of the

song, length of the analysis window, etc. Note that there is

a notable predominance of sub-dominant errors in the results.

This may be due to the high value given to transitions between

subdominant chords in the cognitive-based transition matrix.

If the model does not recognize exactly a key but makes

confusion with a neighboring key, the result can still be useful

for higher-level structural analysis such as segmentation.
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Fig. 12. Estimated key progression of an excerpt of the Mozart piano sonata KV 309. From top to bottom : downbeat positions, key ground truth, estimated
key with the proposed method and the DTBM method. The image has been obtained using the Open Source tool Wavesurfer

V. CONCLUSION AND FUTURE WORKS

In this paper, we have presented a model for the estimation

of key progression of Western tonal polyphonic excerpts,

which segments an audio file into sections labeled with local

keys. The method combines and extends several previous

methods proposed for global key estimation. Our approach

to local key estimation is based on a HMM that uses pre-

defined key templates. In Western tonal music, the chord

progression is directly related to the key and, conversely, the

sense of key arises from the chords. We thus rely on the chord

progression to model the key progression. Previous works

use an empirically-chosen key analysis window size. A too

small window size would focus the chromagram on individual

chords more than on keys whereas a too large window size

would result in mixing passages with different keys and some

modulations may be overlooked. We rely here on the metrical

structure and bar-related key analysis windows. Key estimation

is not performed on empirically chosen segments but on

segments that are expressed in relationship with the tempo

period and thus that are adapted to the intrinsic music content

of the piece. Our method takes advantage of the structure of

music.

We have evaluated our model on two test-sets of various

styles (classical and popular music) that contain pieces with

complex tonal structures. Our results, illustrated by case-study

examples, show that the key progression can be estimated

relying on the harmonic structure and that its robustness is

increased when taking into account the metrical structure.

We have studied the impact of the various parameters (key

template, analysis window length, distribution of observation

key probabilities). As it could be expected, we have found

that their choice should depend on the music style. Most of

the errors correspond to confusions with neighboring keys.

Confusions with keys in perfect-fifth relationship are partic-

ularly common errors. Introducing chord functional analysis

information would help reducing these kinds of errors.

Analysis of the results shows that additional improvement of

key segmentation may be achieved in the future using a more

complex model that includes key transitions parts. However,

the prior results we obtain with our current model may already

be useful to some music-content applications such as music

mood detection for instance.

Our test-set is quite small, however, we believe it is large

enough to draw interesting observations on local key esti-

mation. It is reliable since it has been annotated by trained

musicians and it contains more than 180 key segments to be
estimated. Moreover, the results we obtain and the comparison

between the various methods are in general statistically signif-

icant. We plan to explore other music styles in order to see if

our hypothesis can be generalized to a wider range of music

styles. Popular music offers a wide range of investigations

because it may use different systems, such as local tonality,

apparent tonality, no tonality, etc. within a single song. More-

over, many other modes than major and harmonic minor are

commonly used, such as aeolian and mixolydian modes, which

opens additional challenges to the problem of key estimation.

The notion of key relationships is very complex. Our review

of previous works on the subject of local key estimation shows

that there is currently no unified evaluation methodology.

Various evaluation materials and evaluation measures for key

estimation have been used and it is not easy to get an idea of

the different methods. This partly comes from a lack of pieces

annotated in local keys. We plan to concentrate on this point

in the future. Annotation is a very important step. Besides

providing evaluation material for the designed algorithms,

the process of key annotation should help getting a better

understanding of the notion of key as a perceptual attribute,

and a better understanding of the ability of human beings of

getting a sense of how pitches are organized around a tonal

center.
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