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Local Key Estimation from an Audio Signal
Relying on Harmonic and Metrical Structures

Hélène Papadopoulos* and Geoffroy Peeters

Abstract—In this paper, we present a method for estimating the
progression of musical key from an audio signal. We address the
problem of local key finding by investigating the possible combi-
nation and extension of different previously proposed approaches
for global key estimation. In this work, key progression is
estimated from the chord progression. Specifically, we introduce
key dependency on the harmonic and the metrical structures.A
contribution of our work is that we address the problem of finding
an analysis window length for local key estimation that is adapted
to the intrinsic music content of the analyzed piece by introducing
information related to the metrical structure in our model. Key
estimation is not performed on empirically chosen segmentsbut
on segments that are expressed in relationship with the tempo
period. We evaluate and analyze our results on two databases
of different styles. We systematically analyze the influence of
various parameters to determine factors important to our model,
we study the relationships between the various musical attributes
that are taken into account in our work, and we provide case
study examples.

Index Terms—Acoustic signal analysis, chord, key, downbeat,
HMM, chroma, information retrieval, music analysis.

I. I NTRODUCTION

T ONALITY analysis is one of the most important aspects
of Western tonal music. It describes the relationships

between the various musical keys present in a piece of
music. The elements of the melody and the harmony of a
musical fragment are related to each other by the musical
key. This aspect of music analysis has interested researchers
for a long time because the key detection task finds many
applications in content-based music information retrieval such
as classification, segmentation, indexing and summarization.

In this article, all musical concepts are formalized in the
context of modern Western tonal music,i.e. after the16th

century. When an instrument produces a note, the human
listener perceives apitch that is a perceptual attribute of sound.
In music, the termnoteis a symbol that is used to refer both to
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the relative duration and to the pitch of a given sound. Pitches
are governed by structural principles and music is organized
around one or more stable reference pitches. The system of
relationships between pitches corresponds to akey. A key, as
a theoretical concept, implies a tonal center that is the most
stable pitch called thetonic, and amode (usually major or
minor).

A scale is associated with each key. Ascale is a series
of notes arranged in ascending or descending order. Fig. 1
represents a C major scale and its relative A natural minor
scale. Two consecutive notes are usually separated either by
a tone (T ) or a semitone(S). The position of tones and
semitones within a scale associated to a key characterizes
its mode. The series of seven notes of the scale without any
alterations1 is known as thediatonic scale.

In a scale, thetonic or first scale degree (I) is the first note
and it is the pitch upon which all other pitches of a piece
are hierarchically referenced. Among the seven other scale
degrees, the3rd - the mediant- and the5th - the dominant
- degrees are particularly important since their combination
with the tonic results in the most significant chord in a given
key.

Fig. 1. Example of major and minor scales: C major, A minor. The
accidentals that characterize the harmonic and melodic minor scales are
represented in grey.

There are two common variations of the natural minor scale:
i) The melodic minor scale, in which the 6th and the7th

ascending degrees are raised a semitone (F# andG# in Fig.
1); ii) The harmonic minor scale, in which the7th degree,
both ascending and descending is raised a semitone (G# in
Fig. 1). In this work, we focus on the harmonic minor scale.
We consider enharmonic equivalence,i.e. notes with different
spelling but sounding the same are considered the same (C# is
equivalent to Db). In Western tonal music, there are 12 pitches
in an octave range. The major and minor scales and the twelve
tonics give rise to a total of 24 possible keys.

A set of chords that are specific to the key can be
constructed around its scale. Achord is defined as a

1An alteration is asharp#, which raises the pitch of a note one semitone,
or a flat b, which lowers it one semitone.
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combination of three or four notes sounded simultaneously.
The succession of chords over time is called achord
progression. It is strongly related to the musical key.

Various approaches have been proposed for estimating the
mainor globalkey of a piece of music. Some approaches have
been proposed for symbolic data, based on templates [1]–[3],
or geometry [4]. Others have been proposed for audio data,
based on templates [5]–[9], geometry [10], or hidden Markov
models (HMMs) [11]. Finding the main key of a piece of
music is only a small part of tonality analysis. Indeed, even
if a piece of music generally starts and ends in a particular
key referred to as the main or global key of the piece, it is
common that the composer moves between keys. A change
between different keys is called amodulation. Western tonal
music can be conceived of as a progression of a sequence
of key regions in which pitches are organized around one or
more stable tonal center. Such a key region is defined here as
a local key, as opposed to theglobal key.

Tonality and key are perceptual attributes. Experiments
have shown that people with different levels of music training
may not perceive equally the stability of a given pitch
within a tonal context. Moreover, the sense of key may
be more or less strong [1]. At some points, the key may
seem ambiguous or unstable and it may not be possible to
select one pitch as being more stable than the others. In this
case, a tonal center cannot be defined and the key is not
established. It must be also noticed that, if the notion of
key is quite clear in Western “classical” music, it is much
more complicated in “popular” music. For instance popular
music may use different systems, such as local tonality,
apparent tonality, no tonality etc., within a single song. All
these considerations make the key estimation task challenging.

The purpose of this work is to investigate the problem
of local key estimation, which is more complex than the
problem of global key estimation: we aim at segmenting
the music according to the points of modulation and finding
the key of each segment. Little work has been conducted
on this topic. We propose to address the problem of local
key finding by investigating the possible combination and
extension of various previously proposed approaches for
global key estimation and by introducing key dependency on
the harmonic and metrical structures.

To our knowledge, although the idea of using chords to
find the key of a musical excerpt has already been explored
[12]–[16] no precise analysis about the relationship between
the two attributes has been conducted, in particular in the
case of local key estimation. This partly comes from a lack of
databases labeled with chords and local key. One contribution
of this work is to present such a study on real recordings of
classical and popular music pieces labeled with chords and
keys containing many modulations. The problem of finding
a good analysis window length for local key estimation has
been evoked in the past, without any satisfying answer [6],
[10], [16]–[19]. Another contribution of our work is that
we address this problem by introducing information related

to the metrical structure in our model. Key estimation is
not performed on empirically chosen segment length but on
segments that are adapted to the musical content of each piece.

The structure of the paper is as follows. First, in Section
II, we review some previous works on global and local key
estimation. We then present in Section III our model for
local key estimation, which relies on a probabilistic model
for simultaneous estimation of the chord progression and the
downbeat positions. The local key estimation is based on the
harmonic and metrical structures of the piece. Eventually,in
Section IV, the proposed model is evaluated on two sets of
music pieces of various styles. The first one contains classical
music pieces and the second one consists in a set of popular
music pieces. A conclusion section closes the article.

II. RELATED WORK

In this section, we review some previous work on key
estimation. We start by template-based approaches proposed
for global key estimation that have inspired our work. We then
present previous methods proposed for local key estimation
and conclude the section by reviewing key estimation methods
based on chord progression. For a detailed review of key
estimation from audio signals, we refer the reader to [20].

A. Global Key

The problem of automatically estimating the key of a piece
of music was first addressed in the context of symbolic music
(e.g. MIDI format). In what follows, we will review two of
the most popular techniques that have been extended later
to the case of audio music. For a detailed review of key
finding in symbolic music and more generally on tonality
induction, we refer the reader to [21] or [22]. Most of the
algorithms that extract key from audio start by computing a set
of features that represent the signal, typicallychromafeatures
[23] or Pitch Class Profiles(PCP) features [24], which are then
used as an input to a tonality induction model. The chroma
vectors are in general 12-dimensional vectors that represent
the spectral energy of the pitch classes of the chromatic scale.
The succession of chroma vectors over time is known as the
chromagram.

A large part of audio global key finding systems is based
on the use of key profiles/templates.Pitch Class Profiles
or chroma features are extracted from the signal and then
compared to theoretical templates that indicate the perceptual
importance of notes or chords within a key. This idea was
first proposed by Krumhansl and Schmuckler in [1]. In this
work, a method called theprobe tone methodis presented.
It gives a measure quantifying the hierarchy of notes in a
given tonal context. The algorithm, known as the Krumhansl
& Schmuckler (K-S) algorithm, computes the correlation be-
tween a vector of pitch-class durations obtained from a musical
passage and a set of major and (harmonic) minor key-profiles
corresponding to each key. The key profile that provides the
maximum correlation is taken as the most probable key of the
musical excerpt.
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Gómez & Herrera [25] extend the model proposed in [1]
to the case of polyphonic audio files by considering that
the profile value for a given pitch class represents also the
expectation of a chord in a given key. The model uses as
input features the Harmonic Pitch Class Profiles (HPCP) that
account for higher harmonics of the notes. The polyphonic
profiles for the 24 different keys are built considering only
the three main triads of the keys (tonic, subdominant and
dominant). This cognition-inspired method is compared with
several machine-learning techniques. The methodologies are
evaluated over a large audio database, achieving a64% of
correct overall tonality (mode and key-note) estimation. In
this study, it is found that the use of machine learning
algorithms results in little improvements over the cognitive-
based technique.

Peeters [11] compares a cognitive-based method similar to
the one presented in [25] to an approach based on hidden
Markov models. Two HMMs are trained on a labeled database
in order to learn the characteristics of the major and minor
modes. From these two models, 24 HMMs corresponding to
the 24 keys are derived. The key of the audio file is then
obtained by computing the likelihood of its chroma sequence
given each HMM and selecting the one giving the highest
value. It was found that the HMM-based approach leads to a
lower recognition rate. Note that, in this work, the states in
the HMMs have no musical meanings.

Izmirli [6] presents a template-based key finding model. The
key is estimated by correlating spectral summary information
obtained from audio with pre-computed templates. The tem-
plates are obtained from real instrument sounds. For this, the
spectra of the sounds are weighted by key profiles, which
approximate the pitch distribution. Several key profiles are
compared: Krumhansl’s probe-tone ratings [1], Temperley’s
profiles [2] and a flat diatonic profile (12-dimensional vec-
tors containing 1 at pitch classes that are comprised in the
considered diatonic scale, 0 elsewhere). The combination of
Temperley’s and the diatonic profiles was found to give the
best results.

B. Local Key

Chew [26] presents a method for determining points of
modulation in a piece of music in the symbolic domain using
a geometric model for tonality called the Spiral Array which
incorporates simultaneously pitch, interval, chord and key
relations. This method is extended to the audio case by Chuan
& Chew [10]. In this work, a basic system that generates
pitch-class information using a fuzzy analysis and calculates
key results using the CEG algorithm is introduced. Three
key determination policies are investigated (nearest-neighbor
(NN), relative distance (RD), and average distance (AD)).
Experiments are conducted on 410 classical music pieces by
various composers across different time and stylistic periods
(from Baroque to Contemporary). It is found that the AD
policy gives the best main key estimation results (79%). Three
extensions to the basic key finding system are then proposed
(the modified spiral array (mSA), fundamental frequency (f0)
identification, and post-weight balancing (PWB)) and evalu-
ated on Chopin’s 24Préludes. Quantitative evaluation of main

key estimation is proposed. The problem of local key finding
is only considered on some examples.

Another geometric tonality model describing relationships
between keys has recently been proposed in [27]. It is derived
from the cognition-based model proposed in [28]. Tones
are organized so that tonal symmetries within Western tonal
music become apparent.

Some approaches rely on a frame-by-frame analysis or
use a sliding analysis window. Purwinset al. [18] present
an approach to derive an appropriate representation of tone
centers based on the audio signal using constant-Q (CQ)
profiles. The constant-Q profiles are 12-dimensional vectors
where each component is an estimate of a pitch class. They are
derived from sampled cadential chord progressions and small
pieces of music. Tonal centers of a music piece are tracked by
computing CQ-profiles of the piece and matching every given
CQ-profile with a profile of the reference set using a fuzzy
distance. The performances of the model are demonstrated
over a Chopin’sPrélude(op.28 no 20), with profiles trained
on the 24 Chopin’sPréludes.

Zhu & Kankanhalli [29] present an approach for detecting
multiple keys and locating the key boundaries in the melody of
popular songs in MIDI format. Overlapping segments are first
extracted from the melody using a diatonic scale model, each
one corresponding to a single mode. A modality (key style)
analysis then determines the center mode of the melody of
each segment. Segments of unrelated modes are eliminated.
Key labels and boundaries are determined by grouping the
remaining segments. The effectiveness of the method is quali-
tatively measured by analyzing the output of the model while
listening to 50 English, Japanese and Chinese popular songs.
The ground truth is unknown but it is claimed that key changes
can be well perceived.

In order to study the evolution of the tonal center of a
piece of music, Gómez and Bonada [30] present a tool to
visualize the tonal content of polyphonic audio signals. The
tonal content of an audio file of music is represented by the
instantaneous evolution of the tonality and its strength. The
tool enables the measuring of the effect of the length of the
sliding window used for key tracking.

Harteet al. [31] propose a method for detecting changes in
the harmonic content of musical audio signals. A new model
for equal tempered tonal space is introduced. Segmentation
of audio signal and preprocessing stage for chord recognition
and harmonic classification algorithms using HMMs are the
main potential applications.

In some other approaches, the segmentation stage (segmen-
tation of the analyzed piece into segments that correspond to
unique keys) is more elaborate. Temperley [32], [33] proposes
a Bayesian key-finding model. The analyzed piece is divided
into short segments. The model then searches for the most
probable “key structure”, where a key structure is a labeling
of each segment with a key. Each segment can be expressed as
a series of pitch-class sets. Given a segment, the fit between
the corresponding key and the pitch-classes composing the
segment is measured using “key-profiles” derived from the
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Kostka and Payne corpus [34]. The model searches for the
most probable key structure using dynamic programming,
favoring minimum key changes between segments. It was
evaluated for main key estimation (defined by the key of the
first of segment of the structure) during theMusic Information
Retrieval Evaluation eXchange(MIREX) 2005 key detection
contest2 and received a weighted score of91.4% correctly
estimated keys on1252 excerpts from classical pieces.

Chai & Vercoe [17] propose a HMM-based method to
segment musical signals according to the key changes and to
identify the key of each segment. The front-end of the system
is based on the calculation of a chromagram. The key detection
task is divided into two steps: first the key root is estimated
without considering the mode because diatonic scales are
assumed and relative modes share the same diatonic scale.
The mode (major or minor) is then estimated. Ten classical
piano music pieces are employed to test the performances of
the proposed method yielding a label accuracy of84%.

Izmirli [19] proposes a model for detecting modulations and
labeling local keys using a non-negative matrix factorization
(NMF) method for segmentation. To identify sections that
are candidates for unique local keys, groups of contiguous
chroma vectors are used as input in the segmentation stage.
The length of the window is chosen empirically. The local
keys are then found using a correlation model. The method is
evaluated on three different data sets: pop songs containing at
least one modulation, classical music annotated with a single
key, and excerpts from the Kosta and Payne corpus [34].
Local key estimation achieves up to82.4% on popular music
and72.5% on the Kosta and Payne corpus.

C. Key Estimation Methods Based on the Chord Progression

In Western tonal music, chords and keys are musical
attributes that are closely related to each other. It is thus
natural to rely on the chord progression for estimating the
key progression.

Hierarchical frameworks based on rule-based approaches
have been proposed. For instance, Shenoyet al. [13] present
a rule-based approach for determining the key of acoustic
musical signals from the chord progression. The succession
of chords is estimated from beat-synchronous chroma features,
on which symbolic inference is applied. Only major and minor
chords are considered. The chords, detected across all the
frames, are then collected into a single 24-dimensional vector.
For each key, a reference 24-dimensional reference vector that
corresponds to the theoretical distribution of major and minor
chords within the considered key is constructed. For instance,
the major and minor chords that can be constructed around the
CM scale using the notes of this scale are respectively CM,
FM, GM and Dm, Em, Am. The pattern that returns the highest
rank is selected as the one being the key of the song. It is found
that analysis over 16 bars (64 beats) of audio is sufficient to
determine the key of the song. The results obtained on a set
of 20 popular English songs spanning four decades of music
lead to a key estimation accuracy of90%. However, chord

2http://www.mirex.org

recognition accuracy is not sufficient to provide usable chord
transcription.

An alternative approach is statistical frameworks. Raphael
& Stoddard [14], [35] present an approach to functional
harmonic analysis based on pitch and rhythm relying on
symbolic data. A MIDI representation of a music composition
is partitioned into sequences of one-measure length. The
goal of this work is to associate a label composed of three
variables to each sequence: the tonic (e.g. C, C#) and the
mode (major or minor) that give the musical key, and the
chord characterized by its harmonic function (scale degree,
e.g. tonic, dominant). The functional analysis of the chord
progression is supposed to guide the choice of the key when
it is ambiguous. The analysis is performed with a HMM that
allows the simultaneous estimation of chord and key. The
success of the model is demonstrated over some examples
but a quantitative evaluation is not presented.

In the framework of global key estimation, several HMM-
based works that estimate the chords and keys have been
proposed. Lee & Slaney [36], [37] propose key-dependent
chord HMMs trained on synthesized audio for chord
recognition and global key estimation. In these approaches,
24 key-dependent HMMs, one for each major and minor keys
are built. Key estimation and chord recognition are performed
simultaneously selecting the model whose likelihood is the
highest. It is observed that the proposed method is similar
to [11] but, whereas in [11] the states in the HMMs have
no musical meanings, in [36], hidden states are treated as
chords, which also allows identifying the chord sequence.

Some works that address simultaneously the problem of
estimating chords and keys using HMMs have also been
proposed. Burgoyne & Saul [38] present a HMM-based model
that tracks key simultaneously with chords. It is claimed
that transitions between chords are dependent on their tonal
context. Contrary to [37], they do not assume that music
remains in a single key from start to end. The model considers
chord and key to be inseparable properties of any given
harmony. The model is restricted to major and minor triads.
Each state of the HMM represents a chord in a possible key
(C major in the key of A minor for instance). Simplified rules
of tonal harmony are encoded in the transition matrix. The
traditional Gaussian emission distribution is replaced with a
Dirichlet distribution. The model is trained in an unsupervised
manner with the EM algorithm on five Mozart symphonies
(K.134, K.162, K.181, K.182 and K.183) and tested on the
Minuet of Mozart symphony K.550. The results reveal that
a more advanced harmonic model is needed to improve the
results.

Noland & Sandler [39] present a HMM technique for
estimating the predominant key in a symbolic musical excerpt.
The hidden states are the 24 major and minor keys and the ob-
servations are pairs of consecutive chords. Human expectation
of harmonic relationships is encoded in the model using results
from perceptual tests. The parameters of the HMM are trained
using hand-annotated chord symbols. This work is extended
to the audio case in [12] and evaluated on 110 Beatles songs,
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yielding a global key accuracy of68%. Although this model
has only been evaluated on the case of global key estimation,
it could be used for local key estimation.

Catteauet al. [15] propose a probabilistic framework for
simultaneously estimating keys and chords. Observation likeli-
hood and chord/key transition models are derived from music
theory of Lerdahl & Jackendoff [40]. Parameter tuning and
system evaluation are performed using four databases: some
cadences and modulations, a set of 10 polyphonic audio
fragments of a duration of60s and a set of 96 MIDI-to-wave
synthesized fragments from the MIREX 2005 key detection
contest. In this work, the segmentation of audio is based on a
fixed frame-by-frame analysis.

Rocher et al. [16] describe a method for estimating
simultaneously local keys and chords from audio signals
using a template-based approach combined with music
theory knowledge. Using chord/key pairs as vertices, they
build a weighted acyclic harmonic graph. Chord and key
progressions are obtained by finding the best path in the
graph. A multi-scale analysis is proposed in order to take into
account different kind of harmonic information. Evaluation
on 174 Beatles songs shows that the chords and the local
keys accuracy (respectively74.9% and 62.4%) are increased
considering the mutual dependency between the two musical
attributes. Here again, the analysis window size for key
estimation is empirically set to a fixed value that does not
differ from one piece to another.

D. Summary of Related Works

It is not easy to get an idea of the performances of existing
works on local key estimation because the evaluation material
and protocol differs a lot from one work to another. In order
to provide a clearer idea of existing approaches, especially in
local key estimation, we have summarized part of the above-
mentioned works on key estimation in Table I.

III. PROPOSED APPROACH

In this paper we are interested in the problem of local key
finding in polyphonic audio files. For this, we propose to
combine and extend methods proposed for global key finding
to the case of local key finding. We rely on the above-
mentioned method for global key estimation [25] based on
key reference profiles, which are correlated with input pitch
class profiles. The underlying idea of this work is that in case
of polyphonic music, the chords can be used to estimate the
musical key. However, in this previous work, as in [11], the
chords are integrated into the key profiles, but not directly
used to estimate the key. Moreover, their relationship to keys
is not explicitly investigated. We study this relationshipin the
present work. To integrate the concept of key modulating over
time, we propose to use a HMM where the hidden states are
the keys which can be observed through observable data that
are the chords. The use of the HMM allows us to integrate
some musical information about key changes, as proposed in
[39].

As underlined in Section II-B, HMMs have already been
used for local key estimation [12], [17]. However, this was
done using a frame-by-frame analysis. A contribution of the
present work is that we introduce information related to the
metrical structure of the audio file in order to make the local
key estimation robust. One of the problems when segmenting
a piece of music into sections with different keys is to
accurately choose the length of the analysis window used for
key estimation.

In the case of global key estimation, only the first seconds
of the piece are used to estimate the key. Several studies have
shown that the choice of the duration of the analyzed excerpt
has a significant impact on the key estimation results (see for
instance [6] or [10]).

Concerning local key estimation in previous work, the
length of the analysis window was found empirically. After
computing chroma vectors on short overlapping frames, a
frame-by-frame musical key analysis is performed in [17]
or [18]. Rocheret al. [16] also use a fix-length window
size (set to30s) in their work. An alternative to sliding
window key center tracking techniques is proposed in [19]
where a segmentation stage which identifies sections that are
candidates for unique local keys is performed prior to local
key estimation. Groups of contiguous chroma vectors are used
as input. Heavily overlapped groups of chroma vectors are
averaged over a span ofσ seconds. The value of the parameter
σ is found empirically (7.4s) after testing several window
sizes.

The question of optimal segment length remains an open
problem. A too small window size would focus the chro-
magram on individual chords more than on keys whereas
the use of a too large window size would lead to segments
containing several keys and key modulation points would
become ambiguous. The drawback of using an empirically
chosen window size is that key changes may be undetected
by the algorithm for pieces with a fast tempo and that, for
pieces with a slow tempo, chords may be estimated rather
than keys. Ideally, the window length should be related to
the tempo of the piece. We get around this difficulty here by
segmenting the piece according to the metrical structure. We
perform a beat-synchronous analysis. For local key estimation,
the temporal unity, which is used here for key analysis, is
the musical bar. The analysis window length is related to the
structure of the piece and fits its harmonic content. It is thus
musically meaningful and not arbitrary.

A. Model

In this section we present a model that allows the estimation
of the key progression of a musical excerpt using both the un-
derlying chord progression, which characterizes the harmonic
structure, and the downbeat positions, which characterizethe
metrical structure.

Metrical level is a hierarchical structure. The beat or the
tactus level is the most salient metrical level and corresponds
to the foot-tapping rate. Musical signals are divided into units
of equal time value calledmeasuresor bars. One important
attribute of the metrical structure is thedownbeatsor the first
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TABLE I
SUMMARY OF RELATED WORKS ON KEY ESTIMATION.

Reference Key Approach Evaluation Material Key Label
Accuracy

Gómez & Her-
rera [25]

Global Correlation between HPCP and (K-K) profiles extended to polyphonic audio
comparison with various machine-learning methods.

878 excerpts of classical music (661 for training
and 217 for testing).

64%

Peeters [11] Global Highest likelihood of a chromagram given 24 HMM trained according to the
24 major and minor keys key.

302 European Baroque, classical and romantic
music extracts.

81%

Izmirli [6] Global Correlation between spectral summary information and weighted KS-
Temperley’s key templates.

85 classical music pieces. 86%

Chuan & Chew
[10]

Local CEG algorithm and the Spiral Array Model with various key determination
policies (NN, RD, AD)

410 classical music pieces ranging from Baroque
to Contemporary, Chopin’s 24Préludes.

70%

Purwins et al.
[18]

Local Frame-by-frame correlation between input and trained CQ-profiles using a
fuzzy distance.

training on the 24 Chopin’sPréludes, evaluation
on Chopin’sPréludesop.28 no 20.

/

Zhu & Kankan-
halli [29]

Local Melody modality analysis by segmentation of a MIDI melody using a diatonic
scale model.

50 popular songs. qualitative
evaluation

Temperley [33] Local Bayesian approach that favors minimum key changes between segments of
MIDI data.

Main key evaluation on 1252 excerpts from clas-
sical pieces.

91.4%

Chai & Vercoe
[17]

Local Key detection divided into two steps: root and mode using twoHMMs and a
chromagram as input feature.

10 classical piano pieces. 84%

Izmirli [19] Local Uses a NMF method for segmentation and correlation between groups of
contiguous chroma vectors and templates for labeling

Local key evaluation on 17 pop songs and 17
excerpts from theKosta and Payne corpus.

82.4%

Burgoyne &
Saul [38]

Local Chords and keys simultaneously estimated from audio using aHMM based
on Dirichlet distribution and PCP as input.

5 Mozart symphonies (K. 134, K. 162, K. 181,
K.182 and K.183) for training and Mozart Sym-
phony K. 550, Minuet for testing.

/

Noland & San-
dler [12]

Local/
Global

HMM that uses pairs of consecutive chords as input features and that encodes
human expectation of harmonic relationships.

Main key evaluated on 110 Beatles songs. 91%

Catteau et al.
[15]

Local Simultaneous estimation of keys and chords using a probabilistic framework in
which chord/key transition models are derived from music theory of Lerdahl’s.

10 polyphonic audio fragments of60s and 96
MIDI-to-wave synthesized fragments.

51.2%

Rocher et al.
[16]

Local Simultaneous estimation of keys and chords using chroma as input features
and a template-based approach combined with music theory knowledge
encoded in a weighted acyclic harmonic graph.

174 Beatles songs. 62.4%

beats of each measure. Here, the chords and the downbeats
are estimated simultaneously using a “double-state” HMM
where a statesn (n denotes the time index) is a combination
of a chord type and a position of the chord in the measure
according to the beat positions. We consider here a chord
lexicon composed of theI = 24 Major and minor triads (C
Major, . . . , B Major, C minor, . . . , B minor). We consider here
pieces predominantly in3/4 or predominantly in4/4 meters.
In both cases, the transition matrix will allowK = 4 beat
positions in the measure.

The 24-key space is modeled by an ergodic 24-state HMM,
where each stateskey

n represents one of the 24 major and minor
keys. The emission probability of each state (each key) is a
24-dimensional vector representing the probability to observe
each of the 24 chords in this specific key. They are obtained
either directly from the chord progression or using all chord
probabilities. Given the observations, we estimate the most
likely key sequence over time in a maximum likelihood sense.
The flowchart of the model is represented in Fig. 2 and detailed
below.

B. Feature Vectors

As most chord and key detection models, the front-end of
our model is based on the extraction of a chromagram that
represents the audio signal. For chromagram computation, we
use the method we proposed in [41], briefly described here.

The audio signal is first down-sampled to11025 Hz, con-
verted to mono by mixing both channels and converted to
the frequency domain using a constant-Q transform (CQT)
[42], which is a time/frequency transform in which the fre-
quency domain channels are geometrically spaced so that the
frequency-resolution ratio remains constant. The tuning of
the track is estimated to take into account possible deviation

Fig. 2. Flowchart of the local key estimation model.

with the standard reference pitchA4 = 440 Hz. We use
the method proposed in [11]. This step is important because
the chroma vectors are built by mapping the energy peaks
in the CQT to the 12 semitones pitch classes. The center
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frequencies of the CQT are geometrically spaced according
to the frequencies of the equal-tempered scale that we set
according to the estimated tuning. The CQT is then mapped
to the 12-dimensional chroma vectors.

To integrate the metrical structure of the piece, we built
meter-related features by averaging the chroma vectors ac-
cording to the beat positions so that we obtain one feature
vector per beat. This assumes integration of a beat-tracker
as a front-end of the system. In our experiments, we use
the beat tracker proposed by Peeters in [43] for theQuaero
test-set. In the case of thePiano Mozart test-set, we use
beat positions that have been annotated by hand because the
test-set is composed of classical music pieces containing lots
of deviations in tempo that result from the expressivity in
classical music. The performance of the beat tracker was too
poor in this case to be used as an input of our model.

In order to provide robustness against variations of dynam-
ics, the chromagram is normalized so that the components of
each chroma vector sums to unity. The feature extraction stage
is represented in Fig. 3.

Fig. 3. Chroma features extraction.

C. Harmonic and Metrical Structures

The harmonic structure is defined by the chord progression
and the metrical structure is defined by the downbeat positions.
These two musical attributes are estimated simultaneously
according to the method we proposed in [41], which we briefly
summarize here. We propose a specific topology of HMMs that
allows us to model chord dependency on metrical structure.
This model can handle pieces with complex metrical structures
such as beat addition, beat deletion or changes in the meter.

We consider an ergodicI ∗ K-state HMM that describes
the simultaneous evolution of three processes. Heren denotes
the time index. The observable variable is the chroma vector,
denotedOn in the following. The unobservable processes and
the corresponding hidden variables are the chord symbols,
denotedcn and the “beat position in the measure”, denoted
bn. Each double-statesn = [i, k] is defined as an occurrence

of a chordcn = i, i ∈ [1 : I] at a “beat position in the
measure”bn = k, k ∈ [1 : K]. Here, we consider a chord
lexicon composed ofI = 24 major and minor triads and
K = 4. Given the observations, we estimate the most likely
chord sequence over time and the downbeat positions in a
maximum likelihood sense.

1) The Initial State Distribution:is uniform since we have
no reason to prefer a state over another.

2) The State-Conditional Observation Likelihoods
P (On|sn): are computed as:

P (On|sn) = P (On|cn)P (On|bn) (1)

whereP (On|cn) corresponds to the chord symbol observation
probabilities andP (On|bn) corresponds to the “beat position
in the measure” observation probabilities. The observation
chord symbol probabilities are obtained by computing the
correlation between the observation vectors (the chroma
vectors) and a set of chord templates which are the theoretical
chroma vectors corresponding to theI = 24 major and minor
triads. In what follows, the succession of these 24-dimensional
vectors is referred to as thechordgram. The computation of
the chordgram is detailed in Subsection III-D. The second
term in Eq. (1),P (On|bn), is a constant multiplication that
has no effect on the observation probability for statesn. The
state-conditional observation likelihoodsP (On|sn) depend
actually only on the chord type.

3) The State Transition MatrixT : models the musical rules
from which the transitions between chords result. These rules
are based on the harmonic and the metrical structures. In
our HMM, T takes into account both the chord transitions
and their respective positions in the measure. To integrate
harmonic rules, we derive theI ∗ K-state transition matrixT
from aI-state chord type transition matrixTc based on music-
theoretical knowledge about key-relationships. This matrix is
the same as the key transition matrix described below.

We integrate metrical rules inT relying on the assumption
that chords are more likely to change at the beginning of
a measure than at other positions [44]. In order to take
into account several cases of metrical structure, two different
transition matrices are built. The first one corresponds to the
case of songs in 4/4 meter with ternary passages. In this case,
we favor 4-beat measures but transitions to 3-beat measures
are allowed. The second transition matrix corresponds to the
case of songs in 3/4 meter with passages in 4/4. In this case,
we favor 3-beat measures but transitions to 4-beat measures
are allowed.

To favor chord changes on downbeats, we attribute in the
state transition matrixT a lower self-transition probability3

for chords occurring on the last beat of a measure (i.e. on
bn = K) than on other beat positions. This is illustrated in
Fig. 4.

This model allows us to consider pieces with complex
metrical structures including changes in the meter from 3/4

3Here, a self-transition means a transition between two identical chord
types, for instance from a CM chord to a CM chord.
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to 4/4 time-signature but also various exceptional situations
such as the insertions of a measure in 1/4 in a 4/4 meter
passage. Our model also allows us to handle errors in the
beat tracking stage such as beat insertion or beat deletion due
in general to tempo deviation (e.g.music tempo speed up or
slow down) not detected by the beat tracker.

Fig. 4. Chord transition matrix for a single-state HMM [left], transition
matrix in the case of a double-state HMM taking into account the position
of the chord in the measure [right]. In this figure, the darkerthe color, the
higher the value in the transition matrix.

4) Chord Progression and Downbeats Detection:The op-
timal succession of statessn = [i, k] over time is found using
the Viterbi decoding algorithm [45] which provides the most
likely path through the HMM statesS = (s1, s2, . . . , sN )
given the sequence of observationsO = (O1, O2, . . . , ON )
:

Ŝ = argmax
S

p(S, O). (2)

where p(S, O)denotes the joint probability density of the
hidden and observed variables. We estimate simultaneouslythe
most likely chord sequence over time and the corresponding
“beat position in the measure”, hence the downbeats.

D. Chordgram

We define thechordgramas the succession over time of the
24-dimensional vectors representing the probability to observe
each of the24 chords at each beat-synchronous frame. These
instantaneous chord probabilities are obtained by computing
the correlation between the chroma vectors and 24 chord
templates. Each chord template is a 12-dimensional vector
that contains the theoretical amplitude values of the notes
and their harmonics composing a specific chord. The chord
templates are constructed considering the presence of the
higher harmonics of the theoretical notes it consists of. Relying
on the model presented in [5], the amplitude contribution of
the hth harmonic composing the spectrum of a note is set to
0.6h−1.

E. Extraction of Key Observation Vectors

The key observation vectors are derived from the chords.
In the evaluation part, we will compare two methods for local
key estimation. They differ from each other in the way the 24-
dimensional key observation vectorsOkey are derived from the
chords.

1) Method 1: The key observation vectors are built from the
chordgramusing the instantaneous chord probabilities
P (On|cn), whereOn corresponds to the chroma vector
andcn = i, i ∈ [1 : 24] corresponds to the chords.

O
key
n (m) = P (On|cn = m) (3)

2) Method 2: The key observation vectors are built di-
rectly from the estimated chord progression̂c =
(ĉ1, ĉ2, . . . , ĉn).

O
key
n (m) =



1 if ĉn = m
0 if otherwise (4)

In general, the musical key of a music piece changes much
less often that the chords and remains the same during several
bars. We segment the piece into overlapping segments whose
length is related to the measures which are delimited by
the downbeats. The local key is thus estimated on segments
that are related to the structure and thus fit the intrinsic
music content of the piece. Because key changes occur in
general on the first beat of a measure it is important that
the analysis starts on a downbeat. Musical phrases often have
duration of 8 or 4+4 bars. In Section IV-C, we present key
estimation results segmenting pieces into 2-bar segments with
1-bar overlap, or into consecutive 1-bar segments. In our
experiments we have tested the algorithm using other analysis
window lengths and found that the local key accuracy results
decrease with longer windows. This is discussed below. The
key observation vectors are 24-dimensional vectors obtained
by averaging thechordgramor the estimated chord progression
along the segments. These 24-dimensional vectors represent
the probability to observe each of the 24 keys at a given time
instant.

F. Key Estimation From Chords and Downbeats Using Hidden
Markov Models

From the key observation vectors, we estimate the
succession of keys in the track. The method is very similar
to the one we proposed for chord estimation.

1) The Initial State Distribution:of keys is uniform (1
24

for each of the 24 states) since we have no reason to prefer a
key over another.

2) The Key Observation ProbabilitiesP (Okey
n |skey

n ): are
obtained by computing the correlation between the key ob-
servation vectors and a set of key profiles that represent
the importance of each triad within a given key. The pre-
defined key templates are 24-dimensional vectors with each
bin corresponding to one of the 24 major and minor triads. We
have tested our model using four key templates as described
below.

The first three of them are derived from the knowledge that
the most important triads in a given key are those built on
the tonic, the subdominant and the dominant [1], [25]. For
instance, for a CM key, these chords correspond to CM (C-E-
G), FM (F-A-C) and GM (G-B-D).
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1) In the first pre-defined key template, we attribute a value
of 1 to each of the three main triads. It will be referred
to as “main chords” (MC) key template in the following.

2) The second key template is similar to the first one,
except that we attribute a higher valuek > 1 to the
chord built on the tonic of the key. In our experiments,
we usedk = 3. It will be referred to as “weighted main
chords” (WMC) key template in the following.

3) The third key template is similar to the second one,
except that we attribute a value of one to the chord
relative to the one built on the tonic (for instance Am
chord in a C major key). We consider this case because
we know from music theory that this chord has an
important function given a key. This key template will be
referred to as “weighted main chords relative” (WMCR)
in the following.

These three key templates corresponding to the C major (top)
and C minor (bottom) keys are represented in Fig. 5.

CMC#MDMD#MEM FMF#MGMG#MAMA#MBM Cm C#mDmD#mEm FmF#mGmG#mAmA#mBm
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CMC#MDMD#MEM FMF#MGMG#MAMA#MBM Cm C#mDmD#mEm FmF#mGmG#mAmA#mBm
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Fig. 5. Pre-defined 24-dimensional key templates based on the three main
triads. Dark grey: “main chords” (MC), black: “weighted main chords”
(WMC), light grey: “weighted main chords relative” (WMCR).

The4th pre-defined key-template is built relying on a cogni-
tive experiment conducted by Krumhansl [1] that gives values
corresponding to the rating of chords in harmonic-hierarchy
experiments. In this experiment, the perceived relative struc-
tural significance of chords in tonal context is measured. For
this, several trials consisting of a strong key-defining context
followed by a single chord are presented to listeners. The
listeners are asked to rate how well the final chord fit with
the preceding key-defining context. In the experiments, three
types of chords are considered: major, minor and diminished.
However, since we consider only major and minor chords in
our model, the diminished chords were ignored. The cognitive-
based key templates corresponding to the C major (top) and
C minor (bottom) keys are represented in Fig. 6.
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Fig. 6. Pre-defined 24-dimensional cognitive-based key templates [1].

The templates corresponding to the various major and
minor keys are obtained by circular permutation from the one
corresponding to the C major and C minor keys.

Let Ti, i ∈ [1 : 24] denote a 24-dimensional key template.
The observation key probabilitiesP (Okey

n |skey
n ) are obtained

according to Eq. (5):

For i = 1 . . . 24, P (Okey
n |skey

n = i) =
Okey

n · Ti

‖Okey‖ · ‖Ti‖
(5)

They are normalized so that
24∑

i=1

P (Okey
n |skey

n = i) = 1.

G. State Transition Probability Distribution

Key modulations in a music piece follow musical rules that
can be reflected in the state transition matrix. To integrate
this information in key transition, we adopt the key transition
matrix proposed in [39] already used as a chord transition
matrix4. In [1], Krumhansl studies the proximity between the
various musical keys using correlations between key profiles
obtained from perceptual tests. These key profile correlations
have been used in [39] to derive a key transition matrix
in the context of local key estimation as described below.
Krumhansl gives numerical values corresponding to key profile
correlations for C major and C minor keys. The values can
be circularly shifted to give the transition probabilitiesfor
keys other than C major and C minor. In order to have
probabilities, all the values are made positive by adding 1,
and then normalized to sum to 1 for each key. The size of the
final key transition matrix is 24 x 24.

H. Local Key Estimation

The optimal succession of states over time is found using
the Viterbi decoding algorithm that gives us the best sequence
of keys over timeSkey = (skey

1 , skey
2 , . . . , skey

Nkey) given the
sequence of observationsOkey = (Okey

1 , Okey
2 , . . . , Okey

Nkey).

ˆSkey = argmax
Skey

p(Skey , Okey). (6)

The music piece is thus segmented into segments that are
labeled by a key.

IV. EVALUATION

The aim of this section is to analyze the performances of the
proposed approach for local key estimation on two different
test-sets of different music styles. The impact of the various
parameters will be studied, as well as the relationship between
the various musical elements that are taken into account (key,
chords, downbeats, musical style).

4Chords and key are musical attributes related to the harmonic structure
and can be modeled in a similar way.
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A. Test-sets

The first test-set consists in 5 movements of Mozart piano
sonatas listed in Table II corresponding to about 30 minutesof
audio music. In what follows, it will be referred to as thePiano
Mozart test-set. Trained musicians from the Musichorshule
of Karlsruhe (Germany) have manually annotated the chord
and key progressions ground truth. First, a list of the chords
and key with their duration in beats has been provided.
Beat positions have then been annotated using the software
Wavesurfer. Finally, the list has been automatically mapped to
the annotated beat positions, resulting in the ground truthwe
use. The pieces were annotated in part by ear but also relying
on the scores when ambiguities were found.

TABLE II
THE Piano Mozart test-set.

Reference of the piano sonata movement
KV 283 1
KV 283 2
KV 309 1
KV 310 1
KV 311 2

Each piece contains several modulations and this is one
of the main reasons why they were selected. It has to be
noticed that it is very hard to label Mozart pieces in chords
and musical keys, even for a well-trained musician, because
on the one hand, there are a lot of ornamental notes (such as
appoggiaturas, suspensions, passing notes, etc.) and on the
other hand, harmony is frequently incomplete (some notes of
the chord are missing). This makes the choice of chord labels
very difficult. Changes from one key to another are often
ambiguous, in particular when they are very short. Moreover,
modulation is very often a smooth process. It can take
several bars to properly establish a tonal center. Segments
corresponding to transitions from one key to another have
been labeled as transition parts.

The second corpus was provided during the QUAERO
project5 2009 evaluation campaign. It consists in 16 real audio
songs annotated by IRCAM. All the songs were annotated by
listening to the audio using the IRCAM QIMA annotation
software. Note that one additional difficulty in the case of
popular music annotation is that, in general, there is no score.
Effects blur musical objects and sometimes, inexistent notes
may be perceived while existing notes may be undetected. The
songs are listed in Table III and correspond to various artists
and styles. In what follows, it will be referred to as theQuaero
2009 test-set. For the sake of simplicity, we will refer to this
test-set as “popular” music, although it covers various styles
of music that include pop, rock, electro and salsa.

The characteristics of the test-sets in terms of number of
chords, chord changes, keys and key changes are shown in
Fig. 7 and Fig. 8. The total number of chord changes and key
segments is respectively1688 and 90 for the Piano Mozart
test-setand 1871 and 92 for the Quaero 2009 test-set. Note
that some pieces are annotated in a single key but present some

5http://www.quaero.org

TABLE III
THE Quaero 2009 test-set.

Artist Album Song
Pink Floyd Dark Side of the Moon Breathe
Pink Floyd Dark Side of the Moon Brain Damage
Buenavista Social Club Buenavista Social Club Chan Chan
Buenavista Social Club Buenavista Social Club De camino a la Vereda
Dusty Springfield Dusty in Memphis Son of a Preacher Man
Aerosmith Get A Grip Cryin
Shack HMS Fable Pull Together
UB40 Labour of Love II Kingston Town
Fall out boy Infinity on High This Ain’t a Scene it’s An Arms Race
Abba Waterloo Waterloo
Cher Believe Believe
Phil Collins Single Another Day in Paradise
Santa Esmeralda Don’t Let Me Be Misunderstood Don’t Let Me Be Misunderstood
Sweet Desolation Boulevard Fox on the Run
FR David Single Words
Enya Watermark Orinoco Flow

key changes because they present regions with ambiguous keys
(denoted by “T”).

Concerning the meter, all pieces in thePiano Mozart test-
set have a constant3/4 or 4/4 meter while 4 pieces in the
Quaero 2009 test-sethave a variable meter.
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Fig. 7. characteristics of the datasets : number of different keys (black) and
number of key changes (grey) per song.
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Fig. 8. characteristics of the datasets : number of different keys (black) and
number of key changes (grey) per song.

B. Evaluation Measures

1) Chord/key Label Accuracy:For chords and key evalu-
ation, we considerlabel accuracy LA, which measures how
the estimated chord/key is consistent with the ground truth.
LA results correspond to the mean and standard deviation of
correctly identified chords/keys per song. Parts of the pieces
where no key can be labeled (for instance when a chromatic
scale is played) have been ignored in the evaluation. “Non-
existing chords”, noted “N” in the annotation denote noise,
silent parts or non-harmonic sounds. They are unconditionally
counted as errors in the evaluation.
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Two scores are considered:Exact Estimation EEcorre-
sponds to the rate of keys/chords correctly detected;Exact
+ Neighbor E+Ncorresponds to the rate of correctly detected
keys/chords including neighboring keys/chords. Neighboring
key/chord considered here are harmonically close triads: par-
allel Major/ minor (EM being confused with Em), relative (Am
being confused with CM), dominant (CM being confused with
GM) or subdominant (CM being confused with FM).

For local key label accuracy, in addition to theEE and
E+N scores, we consider theMIREX EstimationscoreME ,
that gives the estimation rate according to the score proposed
for the MIREX 2007 key estimation task6.

2) Local key Segmentation Accuracy:We also consider,
as in [17], another aspect of local key estimation: the
key segmentation accuracy SAindicates how the detected
modulation points are consistent with the actual positions.
It is expressed with the Precision, Recall and F-measure.
Precision(P ) is defined as the ratio of detected transitions
that are relevant.Recall(R) is defined as the ratio of relevant
transitions detected. We also give theF − measure(F )
which combines the twoF = 2RP/(R + P ). Key changes
are not abrupt. Two established keys are often separated by
a transition part (labeled asT in the ground truth) where no
key is firmly established. The transition parts are taken into
account in segmentation accuracy by the use of a windoww.
If a modulation is detected at framen1 and close enough to
a relevant modulation of the ground truth labeled at frame
n2 such that|n1 − n2| < w, it is considered as correct. A
high value ofw favors high precision and recall. We present
below results withw corresponding to 1 or 2 bars.

3) Statistical Significance Testing:During our experiments,
we usepaired samples t-test(or dependent samples t-test) at
the 5% significance level to measure whether the difference
in the results from one method to another are statistically
significant or not.

C. Results and Discussion

We have carried out several experiments to evaluate the im-
pact of various parameters on the local key estimation results:
choice of the key templates, choice of analysis window length,
key estimation from thechordgram or from the estimated
chord progression, influence of the tolerance window.

Label and segmentation accuracy results are presented in
Tables IV to VII. For each test-set, we present the results
obtained with the parameters that were found to perform the
best : 2-bar window length / WMC key templates for the
Piano Mozart test-set, and 1-bar window length / Krumhansl
key templates for theQuaero 2009 test-set. We discuss below
the choice of these parameters (see Sections IV-C5 and IV-C6).

6The score is obtained using the following weights: 1 for correct key
estimation, 0.5 for perfect fifth relationship between estimated and ground-
truth key, 0.3 if detection of relative major/minor key, 0.2if detection of
parallel major/minor key. Fore more details, see http://www.mirex.org.

1) Local Key and Musical Styles:The local key estimation
results are different for the two test-sets. The key estimation
results are much higher in the case of classical music (label
accuracy80.21%, segmentation accuracy0.5170) than in the
case of popular music (label accuracy61.31%, segmentation
accuracy0.3410). Also, for popular music, the standard de-
viation is high. However, most of the errors correspond to
neighboring keys, as indicated by the mirex (ME, 73.18%)
and exact + neighbors (E+N, 89.84%) scores.

The WMC key templates and transition matrix we propose
(based on cognitive experiments or music knowledge) better
reflect the tonal content and the relationships between keys
of the Piano Mozart test-setthan theQuaero 2009 test-set.
Key changes in thePiano Mozart test-setare well-modeled in
the key transition matrix, whereas it is not the case for every
piece in theQuaero 2009 test-set. For instance the songWords
from FR David mainly consists in key transitions from C#
Major to D# minor. However, this transition is only ranked as
the 8th most likely one in the transition matrix. Moreover, as
discussed in Section IV-C6, the newly proposed key templates
do not always reflect accurately the tonal content of pieces in
the Quaero 2009 test-set.

The Quaero 2009 test-setcontains 5 pieces with constant
key whereas our algorithm favors segmentation into several
keys. Removing these pieces from the evaluation (NC results)
increases the segmentation F-measure to0.5055. The standard
deviation of the label accuracy results is also much lower.
As discussed in Section IV-C5, it is difficult to make a
compromise between favoring key changes and favoring
constant key.

2) Comparison Between Chordgram and Chord Progres-
sion: We have proposed two methods for local key estimation:

1) In the first case (method 1), the probability of each chord
at a given time instant is used to estimate the key.

2) In the second case (method 2), the chords are first
estimated using the 2-state HMM described in Section
III-C. The local key is then derived from the estimated
chord progression.

Tables IV and VI show thatmethod 1outperformsmethod
2. Indeed, the best key label accuracy results are obtained with
method 1, both for classical and popular music.

Table VII shows that for popular music, segmentation
accuracy is also significantly higher withmethod 1. Moreover,
even if method 2slightly outperformsmethod 1on thePiano
Mozart test-set(see Table V), a paired sample t-test shows that
the difference is not statistically significant and tests ona larger
database are needed. One drawback ofmethod 2is that errors
in the estimation of the chord progression are propagated to
the key estimation step. It thus seems better to rely on the
chordgramrather than directly on the chord progression for
estimating the local key.

It can be noticed that recall segmentation accuracy is
higher with method 2than with method 1. Our explanation
is that chord changes are favored on downbeats in the case
of method 2whereas changes of harmony in thechordgram
of method 1are smoother. As a result, the key changes are
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TABLE IV
CHORDS AND LOCAL KEYS LABEL ACCURACY (LA) RESULTS ON THEPiano

Mozart test-set, USING A 2-BAR LENGTH WINDOW AND THE WMC KEY
TEMPLATE. EE: EXACT ESTIMATION RATE. E+N: ESTIMATION RATE

INCLUDING NEIGHBOR KEYS/CHORDS. ME: MIREX ESTIMATION RATE.
method 1: BASED ON THE CHORDGRAM. method 2: BASED ON THE CHORD

PROGRESSION.

Piano Mozart test-set

key LA method 1(%)
EE 80.21± 13.56

ME 84.81± 11.86

E+N 93.36± 10.08

key LA method 2(%)
EE 74.11± 18.92
ME 80.08± 18.64
E+N 91.19± 10.55

chord LA (%) EE 61.43± 5.50
E+N 74.11± 18.92

TABLE V
LOCAL KEY SEGMENTATION ACCURACY (SA) RESULTS USING A2-BAR

LENGTH WINDOW AND THE WMC TEMPLATES. method 1: BASED ON THE
CHORDGRAM. method 2: BASED ON THE CHORD PROGRESSION. TWO

TOLERANCE WINDOWS: w = 1 BAR AND w = 2 BARS.

Piano Mozart test-set
method 1 method 2

SA precision
w = 1 0.5723 0.4489
w = 2 0.8196 0.6805

SA recall
w = 1 0.4730 0.7131
w = 2 0.6874 0.8691

SA F-measure
w = 1 0.5170 0.5451
w = 2 0.7327 0.7514

TABLE VI
CHORDS AND LOCAL KEYS LABEL ACCURACY (LA) RESULTS ON THE

Quaero 2009 test-set, USING A 1-BARS LENGTH WINDOW AND THE

KRUMHANSL KEY TEMPLATE. EE: EXACT ESTIMATION RATE. E+N:
ESTIMATION RATE INCLUDING NEIGHBOR KEYS/CHORDS. ME: MIREX

ESTIMATION RATE. method 1: BASED ON THE CHORDGRAM. method 2:
BASED ON THE CHORD PROGRESSION. WC/NC: WITH /NO PIECES WITH

CONSTANT KEY.

Quaero 2009 test-set
method WC NC

key LA method 1(%)
EE 61.31± 36.50 67.61± 26.43
ME 73.18± 27.56 78.60± 16.67

E+N 89.84± 24.70 93.74± 10.11

key LA method 2(%)
EE 52.14± 21.17 54.02± 14.20
ME 62.84± 20.71 65.80± 13.71

E+N 80.80± 22.64 82.65± 13.06

chord LA (%)
EE 72.67±16.84 75.11± 11.82

E+N 93.78 ± 5.56 94.78± 4.90

TABLE VII
LOCAL KEY SEGMENTATION ACCURACY (SA) RESULTS USING A1-BAR

LENGTH WINDOW AND THE KRUMHANSL TEMPLATES. method 1: BASED ON
THE CHORDGRAM. method 2: BASED ON THE CHORD PROGRESSION. TWO

TOLERANCE WINDOWS: w = 1 BAR AND w = 2 BARS. WC/NC: WITH /NO

PIECES WITH CONSTANT KEY.

Quaero 2009 test-set
method 1 method 2

WC NC WC NC

SA precision
w = 1 0.2955 0.4394 0.1620 0.2420
w = 2 0.3883 0.5713 0.2682 0.3919

SA recall
w = 1 0.5166 0.7765 0.5506 0.8167
w = 2 0.6148 0.9123 0.6875 1.0000

SA F-measure
w = 1 0.3410 0.5055 0.2377 0.3532
w = 2 0.4432 0.6504 0.3632 0.5269

blurred.

3) Relationship Between Chords and Key:The analysis of
the results piece by piece shows that there is a correlation
between the estimation of the chords and the estimation of
the key. We expected that a good estimation of the chords
would lead to a good estimation of the keys. This was
corroborated when evaluatingmethod 2: a poor estimation of
the chords resulted in a poor estimation of the local keys. A
deeper analysis showed that if the chord estimation errors
consisted of confusions with harmonically close chords (such
as dominant or subdominant chords), the estimated key was
nevertheless either correct or a neighboring key.

4) Importance of the Metrical Structure:Musical elements
are highly organized and, when listening to a piece of music,
we can feel in general a structure and separate the piece into
several segments, as for instance verse/chorus in a popular
music song. These segments are in general related to the
metrical structure (measures or groups of measures) but also
to the key because pitches within a section are organized
around a tonal center that is characteristic of the section.It
thus seems useful to rely on the metrical structure in order to
estimate key progression. As explained above, we propose here
to use bar-related key analysis segments. In a fully-automatic
analysis, the beats and downbeats are directly estimated from
the audio. Beat and downbeat tracking results evaluated on the
Quaero test-setare presented in Table VIII. Beat tracking is

not perfect. However, some errors in the beat tracking do not
affect downbeat estimation [41] and downbeat tracking results
are fair enough to be useful for key estimation.

TABLE VIII
BEAT AND DOWNBEAT POSITION ESTIMATION RESULTS. PRECISION

(PREC), RECALL (REC), F-MEASURE (F-M ).

Precision Recall F-measure
Beat 0.53± 0.37 0.72 ± 0.32 0.57± 0.35

Downbeat 0.86± 0.34 0.79 ± 0.40 0.79± 0.40

To investigate the hypothesis of the importance of the
metrical structure on the local key estimation, we run our
model without the metrical information, i.e. we perform an
analysis with a constant key analysis window. We present
results with of a duration of30s and10s, with 0.8s overlap7.
Results are presented in Table IX.

It can be seen that, for both test-sets, key estimation is
better when taking into account the metrical structure. The
difference in the results between the NM case and WM case
is statistically significant for segmentation accuracy forboth
methods and for label accuracy in the case ofmethod 2.
Example in Fig. 9 shows an excerpt of the first movement of
the Mozart piano sonata KV 283. The size of the window
is an essential point in key estimation. If it is too long, key

7The window must be long enough to get the sense of the key. Notethat
other durations have been tested without showing any significative differences
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TABLE IX
COMPARISON OF LOCAL KEY RESULTS USING ADAPTED WINDOW LENGTH

(WITH METER, WM) OR USING A FIX ANALYSIS WINDOW LENGTH (NO
METER, NM) OF 10 OR 30S. THE TOLERANCE WINDOW ISw = 1 BAR.

Piano Mozart test-set Quaero 2009 test-set
WM NM30s NM10s WM NM30s NM10s

m1
LA (%) 80.21 72.63 69.73 61.31 57.32 58.71
SA F-m 0.52 0.06 0.19 0.34 0.03 0.15

m2
LA (%) 74.11 66.25 70.88 52.14 40.25 38.20
SA F-m 0.55 0.16 0.26 0.24 0.07 0.12

changes may be overlooked by the algorithm. For instance, in
the NM-30scase, key changes between 2:50 and 3:10 are not
detected. When a smaller fixed window is used in theNM-10s
case, segmentation is better. However, if the analysis window
is too small, the algorithm will analyze the chordal structure
of the piece instead of the key structure. For instance, in the
NM-10s case, a G major segment is estimated around 2:40
instead of remaining in D major (see the grey oval in Fig.
9). This is probably due to the presence within 2 bars of a G
major chord built on theIV th degree of D major key. Key
segmentation is also better when positioning the starting point
of the key analysis window on downbeats, since key changes
very often occur on downbeats. It helps avoiding mixing
some passages with different local keys. This is underlinedin
Fig. 9 by the dashed rectangles.

5) Effect of the Length of the Analysis Window:We have
evaluated the algorithm with different window lengths: 1, 2,
4, 8 and 16 bars. Results are provided in Fig. 10.
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Fig. 10. Key estimation results in case of methods 1 and 2 according to the
length of the key analysis window.

In classical music, the length of musical phrases is very
often 4 or 8 bars. This is particularly true for Mozart’s piano
sonatas. Usually, the musical key remains constant within a
phrase (whereas the harmony changes several times). This is
why we chose to estimate the local key on segments of length
related to musical phrases. A 1-bar analysis window length is
too short because it captures the harmony (the chords) rather
than the local key. The best results were obtained using a
2-bar length analysis window. This may be due to the fact
that, especially in slow movements, some modulations occur
after only 2 bars. Passages with different local keys are very
likely to be mixed when a longer analysis window is used.
The accuracy of the results decreases with the length of the
analysis window.

For pieces belonging to theQuaero 2009 test-set, the best
results were obtained using a 1-bar analysis window length.
However, for method 1, the difference with a 2-bar and a

3-bar analysis window length is not statistically significant.
This is because the structure of the local key progression in
pieces belonging to theQuaero 2009 test-setis in general
quite more complex than in thePiano Mozart test-set.
Popular music may use many different musical systems
inside a song (local tonality, apparent tonality, no tonality
etc.). Moreover, the number of key changes within a song
varies a lot between one song to another. For instance, the
songWordsfrom FR David has 19 key changes and the song
Pull Together from Shack has a constant key, whereas the
two songs have the same time duration. Note that, as for the
Piano Mozart test-set, a too long analysis window results in
low key estimation scores because passages with different
local keys are very likely to be mixed.

6) Effect of the Choice of the Key Templates:We evaluated
the algorithm with 4 templates, as illustrated in Table X.

TABLE X
LOCAL KEY ACCURACY (EE IN %)ON USING A 2-BAR LENGTH WINDOW

COMPARING VARIOUS KEY TEMPLATES, FORmethod 1 m1AND method 2
m2.

WMC MC WMCR Krumhansl

Mozart
m1 80.2 ± 13.6 79.1 ± 9.0 80.1 ± 11.8 50.0 ± 21.1
m2 74.1 ± 18.9 71.3 ± 18.4 73.5 ± 19.1 75.7 ± 19.9

Quaero
m1 52.2 ± 28.9 52.7 ± 33.8 51.0 ± 30.9 61.3 ± 36.5
m2 37.7 ± 12.0 41.0 ± 27.8 38.8 ± 13.9 52.1 ± 21.2
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Fig. 11. Up: Proportion of chords in the songPull Together. Bottom:
Correlation with the WMC key templates.

For thePiano Mozart test-set, the best results are obtained
with the weighted main chords WMC templates formethod
1. In the case ofmethod 2, the cognitive-based templates
slightly outperform the WMC templates. However, statistical
tests indicate that the difference in the results is not statistically
significant.

For the Quaero 2009 test-set, the results are significantly
better with the cognitive-based key templates than with the
newly proposed key templates. The WMC key templates
are built on the assumption that the proportion of chords
built on the tonic of the local key is the highest. This is not
always the case in pieces from theQuaero 2009 test-set. For
instance, the songPull Together from Shack is in constant
C minor key. Its chord progression consists in a loop Cm -
Fm - BbM - EbM. In the upper part of Fig. 11, we show a
24-dimensional vector that corresponds the mean duration of
each chord in the piece. In the lower part of Fig. 11, we show
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Fig. 9. Estimated key progression of an excerpt of the Mozartpiano sonata KV 283. From top to bottom : downbeat positions,key ground truth, estimated
key considering metrical structure, results with a30s fixed window and with a10s fixed window. The image has been obtained using the Open Source tool
Wavesurfer

the results of the correlation between this vector and each
of the 24 chord templates. It can be seen that the template
corresponding to Cm key is not the one that best reflects the
tonal content of the piece: BbM is much closer.

7) Smooth Modulations:The key segmentation accuracy
results are presented in Tables V and VII, in which we
consider two tolerance windows:w = 1 bar andw = 2
bars. It can be seen that the segmentation accuracy results
increase a lot when we use a 2-bar tolerance window. This
can be explained by the fact that key change is a very smooth
process that often takes several bars. Key changes are in
general annotated in the ground truth only when a musical
element clearly indicates that the key is established (for
instance when the tonic of the key is played). Between two
key changes, there may be several bars without a precisely
established key. It would be interesting to formulate and add
a “local key transition” state in the model. This is a direction
for our future works.

8) Comparison with a Direct Template-Based Method:
In order to have a better idea of the performances of the
proposed method for local key estimation, we follow [16]
and compare our results to adirect template-based method
(DTBM). This can be viewed as applying the Krumhansl-
Schmuckler key-finding algorithm to successive overlapping
frames. This method is used by Sapp in [46] for displaying a
visual content of the musical key structure of a compositionin
a single picture. The signal is divided into overlapping frames
of 30s and0.8s overlap and we compute one chroma feature
per frame8. For each frame, we compute the correlation with
the chroma feature with the 24 Krumhansl’s key templates.
The estimated key is selected as the one that gives the highest
value. Results are presented in Table XI.

For both test-sets, our model performs significantly
better than the DTBM method. Both label accuracy and
segmentation accuracy are higher. This is illustrated in Fig.
12 which shows the four first minutes of the first movement
of the Mozart piano sonata KV 309. All the key segments are
correctly detected within a precision window of one measure.
Key labels are correct in general, except that short segments

8In order to make a fair comparison with our model, we compute the chro-
magram using the same parameters than for our method (beat-synchronous
chroma features) and the average the chroma vectors so that we obtain one
feature per30s-length frame. A length of30s was found to be a good
compromise for local key estimation in [16].

TABLE XI
COMPARISON OF LOCAL KEY RESULTS OBTAINED WITH THE PROPOSED

METHOD (method 1) WITH RESULTS OBTAINED USING ADTBM METHOD.
THE TOLERANCE WINDOW ISw = 1 BAR.

Piano Mozart test-set Quaero 2009 test-set

meth 1
LA (%) 80.21± 13.56 61.31 ± 36.50

SA F-measure 0.52 0.34

DTBM
LA (%) 62.41± 21.52 42.10 ± 31.30

SA F-measure 0.24 0.08

of related keys are sometimes inserted, as F major in the first
C major segment. This is due to the presence of long-duration
chords built on theIV th or V th. With the DTBM method,
key segmentation precision is much lower (see the dashed
rectangles). Moreover, the algorithm gets very confused when
there are many successive modulations (see segment from
2:50 to 3:50 in the grey oval). The use of a fixed window
that may not fit the structure of the piece results in mixing
passages with different keys.

9) Analysis of Errors: For both test-sets, as indicated by
the E + N scores in Tables IV and VI , most of the errors
correspond to confusions with neighboring keys (perfect fifth
relationship between estimated and ground-truth key, relative
major/minor key, parallel major/minor key). Details are shown
in Fig. 13.

Fig. 13. Repartition of key estimation errors.

The errors may be due to various causes, as discussed
above (key template not fitting the harmonic content of the
song, length of the analysis window, etc. Note that there is
a notable predominance of sub-dominant errors in the results.
This may be due to the high value given to transitions between
subdominant chords in the cognitive-based transition matrix.
If the model does not recognize exactly a key but makes
confusion with a neighboring key, the result can still be useful
for higher-level structural analysis such as segmentation.
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Fig. 12. Estimated key progression of an excerpt of the Mozart piano sonata KV 309. From top to bottom : downbeat positions, key ground truth, estimated
key with the proposed method and the DTBM method. The image has been obtained using the Open Source toolWavesurfer

V. CONCLUSION AND FUTURE WORKS

In this paper, we have presented a model for the estimation
of key progression of Western tonal polyphonic excerpts,
which segments an audio file into sections labeled with local
keys. The method combines and extends several previous
methods proposed for global key estimation. Our approach
to local key estimation is based on a HMM that uses pre-
defined key templates. In Western tonal music, the chord
progression is directly related to the key and, conversely,the
sense of key arises from the chords. We thus rely on the chord
progression to model the key progression. Previous works
use an empirically-chosen key analysis window size. A too
small window size would focus the chromagram on individual
chords more than on keys whereas a too large window size
would result in mixing passages with different keys and some
modulations may be overlooked. We rely here on the metrical
structure and bar-related key analysis windows. Key estimation
is not performed on empirically chosen segments but on
segments that are expressed in relationship with the tempo
period and thus that are adapted to the intrinsic music content
of the piece. Our method takes advantage of the structure of
music.

We have evaluated our model on two test-sets of various
styles (classical and popular music) that contain pieces with
complex tonal structures. Our results, illustrated by case-study
examples, show that the key progression can be estimated
relying on the harmonic structure and that its robustness is
increased when taking into account the metrical structure.

We have studied the impact of the various parameters (key
template, analysis window length, distribution of observation
key probabilities). As it could be expected, we have found
that their choice should depend on the music style. Most of
the errors correspond to confusions with neighboring keys.
Confusions with keys in perfect-fifth relationship are partic-
ularly common errors. Introducing chord functional analysis
information would help reducing these kinds of errors.

Analysis of the results shows that additional improvement of
key segmentation may be achieved in the future using a more
complex model that includes key transitions parts. However,
the prior results we obtain with our current model may already
be useful to some music-content applications such as music
mood detection for instance.

Our test-set is quite small, however, we believe it is large
enough to draw interesting observations on local key esti-
mation. It is reliable since it has been annotated by trained
musicians and it contains more than180 key segments to be
estimated. Moreover, the results we obtain and the comparison
between the various methods are in general statistically signif-

icant. We plan to explore other music styles in order to see if
our hypothesis can be generalized to a wider range of music
styles. Popular music offers a wide range of investigations
because it may use different systems, such as local tonality,
apparent tonality, no tonality, etc. within a single song. More-
over, many other modes than major and harmonic minor are
commonly used, such as aeolian and mixolydian modes, which
opens additional challenges to the problem of key estimation.

The notion of key relationships is very complex. Our review
of previous works on the subject of local key estimation shows
that there is currently no unified evaluation methodology.
Various evaluation materials and evaluation measures for key
estimation have been used and it is not easy to get an idea of
the different methods. This partly comes from a lack of pieces
annotated in local keys. We plan to concentrate on this point
in the future. Annotation is a very important step. Besides
providing evaluation material for the designed algorithms,
the process of key annotation should help getting a better
understanding of the notion of key as a perceptual attribute,
and a better understanding of the ability of human beings of
getting a sense of how pitches are organized around a tonal
center.
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[22] E. Gómez, “Tonal description of music audio signals,”Ph.D. dissertation,
Universitat Pompeu Fabra, Barcelona, Spain, 2006.

[23] G. Wakefield, “Mathematical representation of joint time-chroma dis-
tribution,” in Proceedings of the SPIE Conference on Advanced Signal
Processing Algorithms, Architecture and Implementation, Denver, CO,
USA, July 19-21 1999, pp. 637–645.

[24] T. Fujishima, “Real-time chord recognition of musicalsound: a system
using common lisp music,” inProceedings of the International Computer
Music Conference (ICMC), Beijing, China, October 22-28 1999, pp.
464–467.
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