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Simultaneous beat and downbeat-tracking using a

probabilistic framework: theory and large-scale

evaluation
Geoffroy Peeters and Helene Papadopoulos

Abstract—This paper deals with the simultaneous estimation
of beat and downbeat location in an audio-file. We propose a
probabilistic framework in which the time of the beats and
their associated beat-positions-inside-a-measure role, hence the
downbeats, are considered as hidden states and are estimated
simultaneously using signal observations. For this, we propose
a “reverse” Viterbi algorithm which decodes hidden states
over beat-numbers. A beat-template is used to derive the beat
observation probabilities. For this task, we propose the use of
a machine-learning method, the Linear Discriminant Analysis,
to estimate the most discriminative beat-templates. We propose
two observations to derive the beat-position-inside-a-measure
observation probability: the variation over time of chroma
vectors and the spectral balance. We then perform a large-scale
evaluation of beat and downbeat-tracking using six test-sets. In
this, we study the influence of the various parameters of our
method, compare this method to our previous beat and downbeat-
tracking algorithms, and compare our results to state-of-the-art
results on two test-sets for which results have been published. We
finally discuss the results obtained by our system in the MIREX-
09 contest for which our system ranked first for the “McKinney
Collection” test-set.

Index Terms—Beat-tracking, Downbeat, Beat-templates, Lin-
ear Discriminant Analysis, hidden Markov model, reverse Viterbi
decoding.

I. INTRODUCTION

BEat-tracking and downbeat-tracking are among the most

challenging subjects in the music-audio research commu-

nity. This is due to their large use in many applications: beat/

downbeat-synchronous analysis (such as for score alignment or

for cover- version identification), beat/ downbeat-synchronous

processing (time- stretching, beat- shuffling, beat- slicing),

music analysis (beat taken as a prior for pitch estimation, for

onset detection or chord estimation) or visualization (time-grid

in audio sequencers). This is also due to the complexity of the

task. While tempo estimation is mainly a problem of peri-

odicity detection (with the inherent octave ambiguities), beat-

tracking is both a problem of periodicity detection and a prob-

lem of location of the beginning of the periods inside the signal

(with the inherent ambiguities of the rhythm itself). Downbeat

location is mainly a perceptual notion arising from the music

construction process. Considering that the best results obtained

in the last Audio Beat Tracking contest (MIREX-09) are far

from being perfect, this problem is far from being solved. If

most beat-tracking algorithms achieve good results for most

G. Peeters and H. Papadopoulos are with the Sound Analysis/Synthesis
Team of Ircam - CNRS STMS, 1 pl. Igor Stravinsky 75004 Paris, France (see
http://www.ircam.fr).

rock, pop or dance music tracks (except for highly compressed

tracks), this is not the case when considering classical, jazz,

world music or recent Western mainstream music styles such

as Drum’n’Bass or R’n’B (which use complex rhythms).

In the following, we review related works in beat

and downbeat-tracking, we review our previous beat and

downbeat-tracking algorithms, we then present our new al-

gorithm and compare it to existing works, we details each

part of our new algorithm and finally perform a large-scale

evaluation.

A. Related works

Related works in beat-tracking: This paper deals with

beat-tracking from audio signal. We consider tempo period

and meter has input parameters of our system and deal with

audio data. Numerous good overviews exist in the field of

tempo estimation or beat-tracking from symbolic data (see for

example [1] [2]). We mainly reviews here existing approaches

related to beat-tracking from audio signal.

Methods can be roughly classified according to the front-

end of the model. Two types of front-ends can be used: -

discrete onset representation extracted from the audio signal

(Goto [3] [4], Dixon [5]), or - continuous-valued onset func-

tion (Scheirer [6], Klapuri [7], Davies [8]).

They can also be classified according to the model used

for the tracking. Goto [9] and Dixon [5] use a multi-agents

model. Each agent propagates an assumption of beat-period

and beat-phase, a “manager” then decides about the best

agents. Scheirer [6] and Jehan [10] use resonating comb-filers

which states provides the phase hence the beat information.

Klapuri [7] extends this method by using the states as input to a

hidden Markov model tracking phase evaluation. Probabilistic

formulations of the beat-tracking problem are also proposed.

For example Cemgil [11] proposes a Bayesian framework for

symbolic data, it is adapted and extended to the audio case by

Hainsworth [12]. Laroche [13] proposes the use of dynamic

programming to estimate simultaneously beat-period and beat-

phase. Dynamic programming is also used by Ellis [14] to

estimate beat-phase given tempo as input. Mixed approaches

are also proposed. For example Davies [8] mixes a comb-

filterbank approach with a multi-agent approach (he uses two

agents representing a General State and Context-Dependent

State). Most algorithms relying on histogram methods for

beat-period estimation use a different algorithm for beat-phase

estimation (Seppanen [15], Gouyon [16]). This is because his-

togram does not provides phase information. However, recent
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approaches succeed to use directly the phase information to

derive beat-phase (Autocorrelation Phase Matrix of Eck [17],

mid-level representation of Grosche [18]).

Finally, we can classify them according to the method

used to associate a beat likelihood to a time. Existing

algorithms either use directly the values of the discrete onsets

(or of the continuous onset function) at the specific time, or

compute a cross-correlation between the local discrete onset

sequence (or local continuous onset function) and a beat-

template representing the theoretical pulses corresponding to

the local tempo.

For a long time, the performances of the various ap-

proaches have been difficult to compare because authors were

using different test-sets and different evaluation rules. Only

recently, common test-sets (such as the ones used in [7]

and [12]) and evaluation rules (such as the ones collected

by [19]) have allowed this comparison. Also, the IMIRSEL

team, has provided MIREX evaluation frameworks for audio

beat-tracking in 2005 [20], 2006 [21] and 2009 [22] through

MIREX contests. Among the top-ranked participants to these

contests are (in alphabetical order): Alonso, Davies, Dixon,

Ellis, Eck, Gouyon, Klapuri, Uhle.

Related works in downbeat-tracking: Most of the

proposed approaches for downbeat detection rely on prior

knowledge (such as tempo, time-signature of the piece or

hand-annotated beat positions). The system of Allan [23]

relies upon the assumption that a piece of music will contain

repeated patterns. It presents a model that uses autocorrelation

to determine the downbeats given beat-positions. It has been

tested on 42 different pieces of music at various metrical

levels, in several genres. It achieves a success rate of 81%
for pieces in 4/4 time-signature and needs more testing on

3-based time-signatures. The model of Jehan [24] is tempo

independent, does not require beat tracking but requires prior

knowledge acquired through listening or learning during a

supervised training stage where downbeats are hand-labeled.

The model has only been applied to music in 4/4 meter. Goto

[25] proposes two approaches to downbeat estimation. For

percussive music, the downbeats are estimated using rhythmic

pattern information. For non-percussive music, the downbeats

are estimated using chord change information. Klapuri [7]

proposes a full analysis of musical meter into three different

metrical levels: tatum, tactus and measure level. The down-

beats are identified by matching rhythmic pattern templates to

a mid-level representation. Ellis [26] uses a similar “template-

based” approach in a drum-pattern classification task. Davies

[27] proposes an approach based on a spectral difference

between band-limited beat-synchronous analysis frames. The

sequence of beat positions of the input signal is required and

the time-signature is to be known a priori. A recent method that

segments the audio according to the position of the bar lines

has been presented in Gainza [28]. The position of each bar

line is predicted by using prior information about the position

of previous bar lines as well as the estimated bar length.

The model does not depend on the presence of percussive

instruments and allows moderate tempo deviations.

B. Presentation of our previous system

1) Tempo/ meter estimation system: This paper concerns

the beat and downbeat-tracking problem. For this, we con-

sider as input parameters an onset-energy-function f(t), time-

variable tempo bpm(t) = 60/Tb(t) and meter (2/4, 3/4

or 6/8). The onset-energy-function has a sampling rate of

172Hz (step of 5.8ms). It is computed using a reassigned-

spectral-energy-flux function (RSEF). The system used for the

estimation of these input parameters is the one described in

[29]. This system has been positively estimated in [29] and in

the MIREX-05 contest [20] for tempo estimation1.

2) Previous beat-tracking algorithm: Our previous beat-

tracking algorithm was inspired from a P-sola analysis method

for locating the Glottal Closure Instants (GCIs) [30]. This

method proceeds in two separated stages. The first stage

locates a set of local maxima of f(t) with an inter-distance

close to the local estimated tempo period Tb(t). The second

stage performs a least-square optimization in order to satisfy

simultaneously two constraints: c-a) “markers close to the

local maxima”, c-b) “inter-distance between markers close to

Tb(t)”. We refer the reader to [31] for more details about this

method, which we call P-sola in the following.

3) Previous downbeat-tracking algorithm: Our previous

downbeat-tracking algorithm was based on a chord-detection

algorithm [32]. This algorithm takes as input the location of

the beat-markers, and computes for each beat, a chroma vector

using Constant-Q transform. The chord succession is then

obtained using an hidden Markov model given the observed

chroma, chord emission and chord transition probabilities. The

downbeats are estimated using the assumption that chords are

more likely to change on the downbeat positions.

C. Paper contribution and organisation

In this paper, we present a probabilistic framework for the

simultaneous estimation of beat and downbeat location given

estimated tempo and meter as input.

In part II, we propose a probabilistic framework for this

using a hidden Markov model formulation in which beat-times

and their associated beat-position-in-measure (bpim) are the

hidden states. We give the big picture in II-A, present the

HMM formulation in part II-B and the specific reverse Viterbi

decoding algorithm in part II-C.

We then details the various part of the model: initial

probability (part III), emission probabilities (par IV), transition

probabilities (part V). The emission probabilities are estimated

using a beat observation probability and bpim observation

probabilities. In part IV-A, we propose, for the beat obser-

vation probability, the use of a machine learning approach to

estimate the best beat-templates. In part IV-B, we propose, for

the bpim observation probability, the use of two observations:

based on the analysis of chroma vectors variation over time

(part IV-B1) based on the analysis of spectral balance (part

IV-B2). In part V, we present the transition probabilities which

take into account the fact that hidden states represent beats in

specific beat-position-in-measure.

1In MIREX-05, our tempo evaluation system ranked first with 95.71% in
the category “At Least One Tempo Correct”.
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Finally in part VI, we propose a large-scale evaluation

of beat and downbeat tracking using six different test-sets.

We compare our results to state-of-the-art results and discuss

the results obtained by our algorithm during the MIREX-09

contests.

Comparison to related works: Our algorithm works with

a continuous onset-function rather than a series of discrete

onsets. The method used to associate a beat likelihood to a

time is a beat-template method. We propose a method to train

the most discriminative beat-templates by using Linear Dis-

criminant Analysis (LDA). This is an important contribution

of this paper. As we will see, the LDA-trained beat-templates

allows improving estimation results over the results obtained

with more simple beat-templates representing the theoretical

pulses corresponding to the local tempo [33].

The simultaneous estimation of beat and downbeat is then

formulated as a hidden Markov model in which hidden

states are the beat-times and their associated beat-position-in-

measure. The concept of beat-position-in-measure and the use

of it to derive the downbeat is inspired by the authors previous

works [32], [34]. The use of a probabilistic formulation has

some links with the Bayesian framework of Cemgil [11] and

Hainsworth [12] but the formulation is here very different and

used to perform simultaneous beat and downbeat-tracking. The

formulation of hidden-states as beat-times can be linked with

Laroche [33] and Ellis [14] dynamic programming approaches,

especially concerning the decoding algorithm. However, in the

present work, we provide a probabilistic formulation using

a hidden Markov model which allows the extension of the

hidden states to the down-beat estimation problem. It should be

noted that our use of hidden Markov model is not related to the

way Klapuri [7] uses it. In [7], two independent hidden Markov

models, which hidden states represent phase evaluation, are

used to track separately beat and downbeat phase.

In our system two observation probabilities are used to

compute the beat-position-in-measure. They are coming from

the analysis of chroma vectors variation over time and spec-

tral balance (representing typical pop/ rock rhythm patterns

through the time evolution of the spectral distribution). These

can be linked to the works of Goto [3], [4] or Klapuri [7].

However, in our case we do not explicitly estimate chords

or kick/ snare events. We only model the consequences on

the signal of their presence (chroma variation and spectral

distribution). Also we do not create a downbeat observation

model but a beat-position-in-measure model. Also this model

is based on past and future signal observations of the local

measure the beat is located in. This provides us with an

inherent local normalization of the probabilities, or in other

words to a local adaptation of the sensitivity.

II. PROBABILISTIC FRAMEWORK

A. Introduction

We define the “beat position inside a measure” (bpim) [32]

as the position of a beat relative to the downbeat position of

the measure it is located in (βj with j ∈ [1, B] where B is the

number of beats in a measure: β1 denotes the downbeat, β2 the

second beat of the measure . . . ). We will use the estimation of

the βj associated to each beat to derive the downbeats (β1).

We define {β} as the set of times being a beat position. We

define {βj} as the set of times being in a βj , with j ∈ [1, B].
B can have a fixed value in case of constant meter, or takes

the maximum number of allowed beats in a measure in case

of variable meters. Of course {βj} is a sub-set of {β} since

the bpim are by definition beats. Beat-tracking is the problem

of finding the t ∈ {β}, downbeat-tracking is the problem of

finding the t ∈ {β1}. In this work, we solve the problem of

finding the t ∈ {βj}∀j.

Without any prior assumption, any time t of a music track

can be considered as a t ∈ {βj}. We therefore defines a set

of hidden states corresponding to each time t of a music track

in each possible βj . For a given track, the number of hidden

states is fixed and depends on the track length (through the

quantization of the times axis) and B. We note ti the values

of the discretization of the time-axis of a music track: ti =
iQ i ∈ N

⋃

[0, ⌊ T
Q⌋] where Q is the discretization step (we

use here Q = 0.05ms) and T is the total length of the music

track.

We note si the hidden states defined by ti ∈ {β} and si,j

the ones defined by ti ∈ {βj}. Our goal is to decode the path

through the si,j that best explains our signal observation o(t).
For this we consider the observation probabilities:

pobs(ti ∈ {βj}|o(t)) = pobs(ti ∈ {β}|o(t)) · pobs(ti ∈ {βj}|o(t))

pobs(si,j |o(t)) = pobs(si|o(t)) · pobs(si,j |o(t))
(1)

Typically, the goal of pobs(ti ∈ {β}|o(t)) is to estimate

precisely the position of the beat. In the opposite, pobs(ti ∈
{βj}|o(t)) uses information surrounding ti to analyze its local

musical context and estimate its bpim role. Because of the use

of surrounding information, it’s temporal accuracy is lower

than the one of pobs(ti ∈ {β}|o(t)). We therefore require

pobs(ti ∈ {β}|o(t)) to be highly discriminative in terms of

beat and non-beat information. We also consider the transition

probabilities

ptrans(ti′ ∈ {βj′}|ti ∈ {βj}) = ptrans(ti′ ∈ {β}|ti ∈ {β})·

ptrans(ti′ ∈ {βj′}|ti ∈ {βj})

ptrans(si′,j′ |si,j) = ptrans(si′ |si) · ptrans(sj′ |sj)
(2)

In the transition probabilities, we will use the fact that if ti ∈
{β} than the next ti′ ∈ {β} must be separated by a local

tempo period. We will also use the fact that if ti ∈ {βj} than

the next ti′ ∈ {β} must be in βj+1modB (i.e. following the

succession of bpim implied by the local musical meter).

B. Hidden Markov model

We consider the usual hidden Markov model formulation

[35], which models the probability to observe the hidden states

s given the observation o(t) over time t. This model is defined

by - the definition of the hidden states s, - the initial probability

pinit(s), - the emission probability pobs(o|s), - the transition

probability ptrans(s
′|s). The best path through the hidden

states s given the observations o(t) over time is found using

the Viterbi decoding algorithm.
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In our formulation, the hidden states si,j are defined as

ti ∈ βj , i.e. “time ti is a beat and is in a specific βj”. It

should be noted that the time is therefore part of the hidden

state definition. This is done in order to be able to apply

the periodicity constraint2 in the transition probabilities. The

probabilities are defined as follows:

• the initial probability pinit(si,j) = pinit(ti ∈ {βj})
represents the initial probability to be in hidden state

[time ti is a beat and is in a specific bpim βj]. While

in usual Viterbi decoding, “initial” refers to the time t0
(since the usual decoding operates over time); in our case

“initial” refers only to the beginning of the decoding

without explicit reference to a time.

• the emission probability pobs(o(t)|si,j) = pobs(o(t)|ti ∈
{βj}) represents the probability to observe o(t) given that

[time ti is a beat and is in a specific bpim βj]. Note that

in this formulation the hidden states si,j have a non-null

emission probability only when t = ti in o(t) (this is

because we cannot emit o(t) when ti 6= t).
• the transition probability ptrans(si′,j′ |si,j) =

ptrans(ti′ ∈ {βj′}|ti ∈ {βj}) represents the probability

to transit from [time ti is a beat and is in a specific βj]

to [time ti′ is a beat and is in a specific βj′ ]. Because

we only allow transitions to increasing times ti, our

model is a Left-Right hidden Markov model.

C. Decoding: “reverse” Viterbi algorithm

Because of the introduction of the times ti in the hidden

state definition, the Viterbi decoding is performed over a

variable named “beat-numbers” (instead of over time) and

noted bnk ∈ N. Therefore, we somehow reverse the axis of

the Viterbi algorithm since we decode times (the hidden states

si,j = ti ∈ {β}) over the “beat-numbers” bnk. We compare

the usual Viterbi formulation to the reverse Viterbi formulation

in Figure 1 in which we ommit the j index for clarity.

timetk-1 tk tk+1

si

si'

si''

state

pobs(o(tk) | si' )

ptrans (si'|si)

beat num.

si=ti in B

state/ tim
e

bnk-1
bnk bnk+1

si'=ti' in B
pobs(o(bn k) | si'=ti' in B)

ptrans (si'=ti' in B | s i=ti in B)

Fig. 1. [Left:] Usual Viterbi decoding: gramwe decode the state si over

time tk given a) the probability to observe o(t) at time tk given a state

si′ : pobs(o(tk)|si′ ), b) the probability to transit from state si to state si′ :

ptrans(si′ |si). [Right:] Reverse Viterbi decoding: we decode the states si

(or ti ∈ {β}) over beat-number bnk given a) the probability to observe o(t)
at beat number bnk given a state si′ (or ti′ ∈ {β}): pobs(o(t)|si′ = ti′ ∈
{β}), b) the probability to transit from state si (or time ti ∈ {β}) to state

si′ (or time ti′ ∈ {β}) : ptrans(si′ = ti′ ∈ {β}|si = ti ∈ {β}).

In the following, we explain the Forward and specific

Backward algorithm we use.

2The periodicity constraint represents the fact that the times ti associated
to two successive beats must be separated by a local tempo period Tb.

1) Forward: We first remark that the emission probability

pobs(o(t)|si,j) does not vary over the decoding axis. This is

because the decoding operates over the succession of beat

number bnk (and not over the time) over which pobs(o(t)|si,j)
remains constant. Because of that, the same pobs(o(t)|si,j)
is used over the whole decoding (initialization and forward).

The Forward algorithm is actually mainly governed by the

transition probabilities.

• Initialization: We initialize the decoding using

δ0(si,j) = pinit(si,j) · pobs(o(t)|si,j), i.e. estimating

the most-likely si,j (ti ∈ {βj}) at beat number

bn0 (beginning of the track) given their observation

probabilities.

• Forward: We go on by computing δk(si′,j′) =
pobs(o(t)|si′,j′) maxi,j [ptrans(si′,j′ |si,j) · δk−1(si,j)].

• Ending: We note τk the value of the time ti associated to

the most-likely ending state si,j for a forward path going

until step bnk. We stop the forward algorithm when τk

reaches the end of the music track.

2) Backward: In the usual Viterbi algorithm, the final

path is found by using the backward algorithm starting from

the most-likely ending state. However, in our reverse Viterbi

decoding formulation, the last decoded hidden states (which

correspond to the last bnk which is chosen such as with τk

close to the end of the music track) can correspond to a time

τk in a silent part (the end of the files can be a silence period)

which is not a beat. In other words, we do not know which the

best ending state is since we do not know which the last bnk

is. We therefore modified the backward algorithm as follows3.

Modified backward algorithm: Instead of computing a

single backward path, we compute all the backward paths

for all the bnk with τk close to the end of the track. Since

these various paths can have different (but close) lengths, we

normalize the log-likelihood of each path by its length before

comparing them. We finally choose the path which has the

highest normalized log-likelihood.

3) Result: The decoding attributes to each beat number bnk

the best hidden state si,j considering the observation o(t).
It therefore provides us simultaneously the best times ti for

the beat locations and their associated βj , among which β1

represent the downbeat locations. In Figure 2, we illustrate

the results of this decoding algorithm on a real signal.

III. INITIAL PROBABILITY

The initial probability pinit(si,j) = pinit(ti ∈ {βj})
represent the probability to be in hidden state [time ti is a

beat and is in a specific βj] at the beginning of the decoding.

We do not favor any βj in particular, but we favor ti to be a

time close to the beginning of the track. pinit(si,j) is modeled

as a Gaussian function with µ = 0, σ = 0.5 evaluated on the

ti of all the states.

IV. EMISSION PROBABILITIES

The emission probability pobs(o(t)|si,j) = pobs(o(t)|ti ∈
{βj}) represents the probability to observe o(t) given [time

3It should be noted that in [14], Ellis also faced this problem in its Dynamic
Programming approach and proposed a different solution to this problem.
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Fig. 2. Viterbi decoding and backtracking: onset-energy-function (continuous

thin line), states si,j and associated observation probability (dots), maximum

observation probability of each bnk (O sign), best path (continuous thick line

and △ sign), bnk (normal number), β (bold number). Signal=”Aerosmith -

Cryin”.

ti is a beat and is in a specific βj]. As explained above, this

probability has a non-null emission probability only when t =
ti. This probability is computed using4:

pobs(ti ∈ {βj}|o(t)) = pobs(t = ti) · pobs(ti ∈ {β}|o1(t))

· pobs(ti ∈ {βj}|o2(t), o3(t))
(3)

In this, we have subdivided o(t)) as three observation

vectors o1(t)), o2(t) and o3(t). We now explain the two terms

in parts IV-A and IV-B.

A. Beat observation probabilities pobs(ti ∈ {β}|o1(t))

pobs(ti ∈ {β}|o1(t)) represents the probability to observe

[time ti is a beat] given the observation o1 at time t. As

explained above, t must be equal to ti. We therefore use the ti
notation in the following. As in many works, this probability

is estimated by computing the correlation between - a beat-

template g(t) chosen to correspond to the local tempo Tb(ti)
and - the local onset-energy function starting at time ti. The

beat-template g(t) can be a simple function with values of

1 at the expected beat-position and 0 otherwise (as used in

[33]). In [31], we have proposed the use of machine learning

to find the beat-template that maximizes the discrimination

between the correlation values obtained when ti ∈ {β} and

when ti /∈ {β}. We summarize it here using our framework

notations and refer the reader to [31] for details and evaluation

of it.

1) Learning the best beat-template by Linear Discriminant

Analysis: We note fi(t) = f(t, t ∈ [ti, ti + 4Tb]) the values

of the local onset-energy function starting at time ti. The

beat-template g(t) must be chosen such as (a) to have the

4In order to split pobs(ti ∈ {βj}|o(t)) in two terms we use the assumption
that o1 and o2, o3 are independent, and that o1 and o2, o3 are independent

conditionally to ti ∈ {βj}, i.e. knowing ti ∈ {βj}, the knowledge of o1

does not bring information on o2, o3.

1 1.5 2 2.5 3 3.5 4 4.5 5
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Normalized Time

Fig. 3. Average value F (n) for the RWC-Popular-Music test-set (thick line),

LDA-trained beat-template g(n) (thick line)

maximum correlation with fi(t) when ti ∈ {β}, (b) to provide

the largest discrimination between the correlation values when

ti ∈ {β} and when ti /∈ {β}. The condition (b) is needed

in our case since the values of correlation will be used as

observation probabilities in our framework. In the following,

we only discuss the case of a “binary subdivision of the beat”

and “binary grouping of the beat into bar”. Extension to other

meters is straightforward.

We note g(1) . . . g(N) the discrete sequence of values

of the beat-template g(t) representing a one-bar duration.

Considering a 4/4 meter, g(1) represents the value of at the

downbeat position, g(1 + kN
4 ) with k ∈ [0, 1, 2, 3] the values

at the beat positions. In the same way, we define Fi(n) as

the function obtained by sampling the local values of fi(t) by

N value: Fi(1) = fi(ti) . . . Fi(N) = fi(ti + 4Tb). If ti is a

beat-position, Fi(1 + kN
4 ) with k ∈ [0, 1, 2, 3] represent the

values at the beat positions.

The correlation between g(n) and Fi(n) can be written as

(neglecting the normalization terms): ci(j) =
∑N

n=1 Fi(n +
j)g(n)

If we choose ti as a beat-position, we therefore look for the

beat-template (the values of g(n), n ∈ [1, N ]) for which

• (a) ci(j) is maximum at j ∈ [0, N
4 , 2N

4 , 3N
4 ]

• (b) ci(j) is minimum for all the other values of j

The problem of finding the best values of g(n) is close to the

problem of finding the best weights to apply to the dimensions

of multi-dimensional observations in order to maximize class

separation. This problem can be solved using Linear Discrimi-

nant Analysis (LDA) [36]. In our case the weights are the g(n),
the dimensions of the observations are the successive values

of Fi(n) 5 and the two classes are “beat” and “non-beat”. We

therefore apply a two-class Linear Discriminant Analysis to

our problem.

Creating observations for the two-class LDA problem:

In order to apply the Linear Discriminant Analysis, we create

observations for the two classes “beat” and “non-beat”. These

observations are coming from a test-set annotated into beat

and downbeat positions. We create for each track l of the test-

set and for each annotated bar m of a track, the corresponding

Fi,l,m(n). We then compute the vector Fi,l(n) by averaging

the values of Fi,l,m(n) over all bars of a track. By shifting

(circular permutation is assumed in the following) Fi,l(n),

5It should be noted that considering the values of Fi(n) as points in a
multi-dimensional features space has been also used in [37] in the framework
of rhythm classification.
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we create two sets of observations corresponding to the two

classes “beat” and “non-beat”: - “beat” class: the four patterns

F b
l (n) = Fi,l(n + j) with j ∈ [0, N

4 , 2N
4 , 3N

4 ], - “non-

beat” class: all the remaining patterns Fnb
l (n) = Fi,l(n + j)

with j ∈ [1, N ] j /∈ [0, N
4 , 2N

4 , 3N
4 ]. We then apply Linear

Discriminant Analysis considering the two set of observations

F b
l (n) and Fnb

l (n) and their associated classes “beat” and

“non-beat”.

Linear Discriminant Analysis: We compute the matrix

U such that after transformation of the multi-dimensional

observation by this matrix, the ratio of the Between-Class-

Inertia and the Total-Inertia is maximized. If we note u the

column vectors of U , this maximization leads to the condition

T−1Bu = λu, where T is the Total-Inertia matrix and B
the Between-Class-Inertia matrix. The column vectors of U

are then given by the eigen vectors of the matrix T−1B
associated to the eigen values λ. Since our problem is a two-

classes problem, only one column remains in U . This column

gives us the weights to apply to F (n) in order to obtain the

best separation between the classes “beat” and “non-beat”. It

therefore defines the best beat-template g(n).
Result: In Figure 3, we illustrate this for the RWC-

Popular-Music test-set [38]. The thin line represents the aver-

age (over the 100 tracks) vector F (n), the thick line represents

the values of g(n) obtained by Linear Discriminant Analysis.

As one can see, the LDA-trained beat-template assigns - large

positive weights at the beat-positions (1, 2, 3, 4) and - negative

weights at the counter-beat positions (1.5, 2.5, . . . ) and at

the just-before/ just-after beat positions. The use of negative

weights is a major difference with the weights used in usual

beat-templates (as in [33]) which only use positive or zero

weights. The specific locations of the negative weights allow

reducing the common counter-beat detection errors (negative

weights at the counter-beat positions) and the precision of the

beat location (negative weights at the just-before/ just-after

beat positions). This wouldn’t be achieved by using a model

where all the positions outside the main beats are set to a

constant negative number.

Use of the LDA-trained beat-templates: In the beat-

tracking process, the LDA-trained beat-templates g(n) are

used to create the beat-templates corresponding to the local

tempo Tb(ti). For this, g(n) is considered as representing the

interval [0, 4Tb(ti)] and is interpolated to provide the values

corresponding to the sampling rate of f(t): 172 Hz. In order

to save computation time, the values of gTb(t) for all possible

tempo Tb can be stored in a table.

For the evaluation of beat and downbeat-tracking algorithms

of part VI-C, we will use a beat-template derived from an

LDA-training on the “PopRock extract” test-set. It has then

been manually modified to keep only the salient points. It is

represented on the right part of Figure 4 in comparison with

the “simple” (as used in [33]) beat-template in the left part.

2) Optimization considerations: As mentioned above, the

hidden states are defined as t ∈ {β}. For this, the time axis

of a music track is discretized into ti = iQ i ∈ [0, T
Q ] with

Q = 0.05ms. Large values of Q allows decreasing the number

of hidden states but however decrease the temporal-precision

of the beat-tracking. Because of that, we reassign the time
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Fig. 4. Beat-templates used for the computation of the observation probability

for a tempo of 120bpm (beat period of 0.5s) and a binary subdivision and

grouping of the beat [LEFT]: Simple beat template (as used in [33]) [RIGHT]:

LDA trained beat-template.

ti of the state si,j to the position around ti which leads to

the maximum correlation between the local signal f(t, t ∈
[ti, ti + 4Tb]) and the beat-template g(t). The horizon over

which the maximum correlation is searched for is proportional

to the local tempo Tb(ti) and defined by L = Tb(ti)/32.

B. BPIM observation probabilities pobs(ti ∈ {βj}|o2, o3(t))

pobs(ti ∈ {βj}|o2(t), o3(t)) represents the probability to

observe [time ti is a βj] given the observation o2, o3 at time

t. Any probability derived from signal observations (such as

based on harmonic, spectral or loudness/ silence variation) that

allows distinguishing between the various βj can be used for it.

We use here two assumptions to derive the “bpim probability”.

Each assumption is coupled with a characteristic which is

coupled with a signal observation. The first one is based on the

chord-change / harmonic-variation / chroma-vector-variation

triplet. The second one is based on the rhythm-pattern / low-

high-frequency alternance / spectral-distribution triplet. This

probability is computed using6:

pobs(ti ∈ {βj}|o2(ti), o3(ti)) = pobs(ti ∈ {βj}|o2(ti))

· pobs(ti ∈ {βj}|o3(ti)) (4)

In this,

• pobs(ti ∈ {βj}|o2(ti)) is the probability to observe [time

ti is a βj] given the observation of chroma vectors

variation.

• pobs(ti ∈ {βj}|o3(ti)) is the probability to observe [time

ti is a βj] given the observation of spectral distribution.

1) BPIM probability based on chroma variation: The as-

sumption we use is that chords are more likely to change

between β4 and β1 for a 4/4 meter. [4] or [32] also used this

assumption for downbeat estimation. We use it here to derive

the probability of all βj at all times ti. The characteristics

implied by this assumption is that, if ti is a β1, the harmonic

content on its left and on its right should be different. The

observation we use to highlight this, is the variation of chroma

vectors over time. A large variation indicates a potential

change in harmony at time ti hence a higher probability to

6In order to split pobs(ti ∈ {βj}|o2o3) in two terms we use the
assumption that o2 and o3 are independent, and that o2 and o3 are independent

conditionally to ti ∈ {βj}, i.e. knowing ti ∈ {βj}, the knowledge of o3

does not bring information on o2.
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observe a downbeat at ti hence a β1. The probabilities for the

other βj=2,3,4 are derived in the same way.

Chroma vector computation: The chroma vectors (or

Pitch-Class-Profile vectors) [39] are computed as in [40], i.e.

the Short Time Fourier Transform is first computed with a

Blackman analysis window of length 0.1856ms and a hop

size of 0.0309ms. Each bin is then converted to a note-

scale. Median-filtering is applied to each note-band in order

to reduce transients and noise. Note-bands are then grouped

into 12-dimensions vectors. We note C(l, t) the values of the

l ∈ [1, 12] dimension of the chroma vector at time t.
Chroma vector variation: We compare the values taken

by C(l, t) on the left of ti and on its right using two temporal

window of duration α. We note Li,1 = [ti − αTb, ti] the

left window and Ri,1 = [ti, ti + αTb] the right window. α
is expressed as a multiple of the local beat duration. In the

experiment of part VI, we will compare the results obtained

with α = 2 (assumption that chords change twice per measure)

and α = 4 (once per measure).

Sliding-window method: In the same way, we compute

pobs(ti ∈ {βj}|o2(ti)) (the probability that ti is the jth bpim),

using the assumption that the harmonic content should be

different on the left of ti − (j − 1)Tb and on its right. This is

illustrated in the left part of Figure 5 for the case of a 4/4 meter

(j = 1, 2, 3, 4). The computation of pobs(ti ∈ {βj}|o2(ti)) is

therefore obtained by comparing C(l, t) on the intervals Li,j

and Ri,j defined by

• Li,j = [ti − (α + (j − 1))Tb, ti − (j − 1)Tb],
• Ri,j = [ti − (j − 1)Tb, ti + (α − (j − 1))Tb].

We name this method “sliding-window method” since we slide

the analyzed signal according to our βj assumption.

Distance measures: We study two measures for the

computation of the chroma vectors variation. The first measure

is the symmetrized Mahalanobis distance: d(Li,j , Ri,j) =
1
2 ((µ2 − µ1)

T Σ−1
1 (µ2 − µ1) + (µ1 − µ2)

T Σ−1
2 (µ1 − µ2))

where µ1 and µ2 (Σ1 and Σ2) are the 12-dim mean vectors

(12x12dim diagonal covariance matrixes) of the values of

C(l, t ∈ Li,j) and C(l, t ∈ Ri,j) respectively. The second

measure is a simple “1-cosine” distance using the vectors µ
1

and µ
2

(it has value of 1 when µ
1

and µ
2

are in orthogonal

directions): d(Li,j , Ri,j) = 1 −
µ

1
·µ

2

||µ
1
||||µ

2
|| . In the experiment

of part VI, we will compare both distances.

BPIM probabilities: Both distances have large values

when Li,j and Ri,j have different harmonic content which

indicates a potential downbeat. We therefore use the distances

d(Li,j , Ri,j) has probabilities. For this the probabilities are

normalized:

pobs(ti ∈ {βj}|o2(ti)) =
1

∑

j d(Li,j , Ri,j)
d(Li,j , Ri,j) (5)

In Figure 6, we illustrate the computation of pobs(ti ∈
{βj}|o2(ti)) on a real signal using α = 2 and a “1-cosine”

distance.

2) BPIM probability based on spectral distribution: The

assumption we use is that many music tracks in popular

music (pop, rock, electro) use rhythm patterns alternating

the presence of kick on β1,3 and snare on β2,4. [3] or [7]

ti

-aL aL
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-(a+2)L (a-2)L

-(a+3)L (a-3)L

pobs(t in B j | o2(t))
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pobs(t in B 2 | o2(t))
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pobs(t in B 4 | o2(t))

bnk-1

bnk

B1 B2 B3 B4

B1

B2

B3

B4

ptrans (Bj' | Bj)

Fig. 5. [LEFT] Computation of observation probabilities for the bpim from

chromagram observation. [RIGHT] Transition probabilities between bpim.
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Fig. 6. [TOP] 12-dim chromagram over time, [BOTTOM] pobs(ti ∈
{βj}|o2(ti)) for j = 1, 2, 3, 4 , on signal= “All Saints - Pure Shores”

from test-set “PopRock extract”.

also used this assumption. The characteristics implied by

this assumption is that the spectral energy distribution will

concentrate on lower frequencies for β1,3 than for β2,4. The

observation we use to highlight this, is the relative spectral

balance between high and low energy content.

Spectral balance computation: At each time ti, we

compute the ratio of the high frequency to the low frequency

energy content. For this we use a window centered on ti of

length L and a cutting frequency kmax:

r(ti) =

∑ti+L/2
t=ti−L/2

∑N/2
k=kmax |S(ωk, t)|2

∑ti+L/2
t=ti−L/2

∑kmax
k=1

∑

k |S(ωk, t)|2
(6)

where N is the number of bins of the Short Time Fourier

Transform. L was chosen experimentally to Tb/2 and kmax
to correspond to 150Hz.

Example: Using the “PopRock extract” test-set annotated

into beat and downbeat, we have measured the values of r(ti)
for ti ∈ {βj=1,2,3,4}. For 135 over the 156 titles of this test-set,

r(ti) is larger for the β2/β4 than for the β1/β3. We therefore

use it to create a probability to observe β = 1, 3 or β = 2, 4.

BPIM probability: As for the chroma-variation-measure,

we use a sliding-window method to derive r(ti) for all βj . At

each time ti, we compute the four values:

rj(ti) = r(ti − (j − 1)Tb) (7)
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rj is then normalized over the j to sum unit. If ti ∈ β1, the

following sequence of rj will be observed [r1=low, r2=high,

r3=low, r4=high]. Since we would like the probability to have

high values for β1, low values for β2, . . . we take the negative

of rj(ti) as probability:

pobs(ti ∈ {βj}|o3(ti)) = 1 − rj(ti) (8)

In Figure 7, we illustrate the computation of pobs(ti ∈
{βj}|o3(ti)) on a real signal. The left parts of each figure

represent the spectrogram of the signal and super-imposed to

it the four regions used for the computation: ti + [−L
2 , L

2 ],
ti−Tb+[−L

2 , L
2 ], ti−2Tb+[−L

2 , L
2 ] and ti−3Tb+[−L

2 , L
2 ].

We also indicate the cutting frequency of 150Hz. The right

part of each figure indicates the four values of pobs(ti ∈
{βj}|o3(ti)) at the given position. The upper figure represents

the values obtained when ti is a β1, the lower one a β2.
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Fig. 7. [TOP] Spectrogram and pobs(ti ∈ {βj}|o3(ti)) for j = 1, 2, 3, 4
for ti on a β1, [BOTTOM] Spectrogram and pobs(ti ∈ {βj}|o3(ti)) for

j = 1, 2, 3, 4 for ti on a β2 on signal= “Aerosmith - Walk This Way” from

test-set “PopRock extract”.

V. TRANSITION PROBABILITIES

The transition probability ptrans(ti′ ∈ {βj′}|ti ∈ {βj})
represents the probability to transit from [time ti is a beat and

is in a specific βj] to [time ti′ is a beat and is in a specific

βj′ ]. We compute it using:

ptrans(ti′ ∈ {βj′}|ti ∈ {βj}) = ptrans(ti′ ∈ {β}|ti ∈ {β})·

ptrans(ti′ ∈ {βj′}|ti ∈ {βj})
(9)

We also add the condition that only transition to increasing

times ti (increasing states si,j) are allowed. This makes our

model a Left-Right HMM.

A. Beat transition probabilities

ptrans(ti′ ∈ {β}|ti ∈ {β}) represents the fact that the

successive times ti associated to the beats must have an inter-

distance close to the local tempo period Tb(ti). The transition

probability models the tolerated departure from this period.

We have used a Gaussian function with µ = Tb(ti), σ = 0.05s

evaluated at ∆ = ti′ − ti.

B. BPIM transition probabilities

ptrans(ti′ ∈ {βj′}|ti ∈ {βj}) represents the probability

to transit from a beat in βj to a beat in βj′ . This transition

probability constrains the βj to follow the circular permutation

specific to the considered musical meter: 1 → 2 → 3 → 4 →
1 → . . . for a 4/4 meter; 1 → 2 → 3 → 1 . . . for a 3/4 meter.

As proposed in [34], a generic formulation of the transition

matrix allowing potential meter changes between 4/4 and 3/4

meters over time can be written as

Mtrans(bnk−1, bnk) =









0 1 0 0
0 0 1 0
α 0 0 1

1 − α 0 0 0









(10)

where bnk is the beat-number used for the decoding axis and

α ∈ [0, 1] is a coefficient favoring meter changes (α > 0) or

constant-4/4-meter-over-time (α = 0). In the experiments done

so far, we have obtained better results using α = 0 (constant-

4/4-meter-over-time). In the experiment of part VI, we will

therefore only consider the case α = 0 (constant-4/4-meter-

over-time). The corresponding matrix is illustrated in the right

part of Figure 5.

VI. EVALUATION

In this part, we evaluate the performance of the proposed

algorithm for beat and downbeat-tracking using various con-

figurations. We compare them to the results obtained with our

previous systems and to the results obtained to state-of-the-

art results. It should be noted that the evaluation performed

here only concerns the quality of beat and downbeat-tracking

algorithms. However, because the input of our system are the

time-variable tempo and meter estimations coming from the

algorithm of [29], the results obtained also depend on the

quality of the estimation of those.

A. Evaluation rules

Over the years, a large number of measures have been

proposed to estimate the performances of beat-tracking algo-

rithms: F-measure of Dixon [5], Gaussian error function of

Cemgil [41], set of boolean decisions of Goto [42], perceptual

P-score of McKinney [43], continuity based measures CMLc,

CMLt, AMLc, AMLt of Goto [42], Hainsworth [44] and

Klapuri [7], information based criteria based of Davies [19].

We refer the reader to [19] or to the set of rules used for the

MIREX-09 “Audio Beat Tracking” contest [22] for a good and

detailed overview of those.

In this evaluation, we indicate the results using two cri-

teria7. The first is the F-measure for a relative-tempo-length

Precision Window of 0.1. We use it for beat and downbeat

evaluation when comparing the performances of the various

configurations of our system. The second is the set of CMLc,

CMLt, AMLc and AMLt criteria. We use them in order to be

7The results of the experiments using the other criteria (using
Dixon, Cemgil, Goto, McKinney . . . criteria) can be found at the
following URL http:// recherche.ircam.fr/ equipes/

analyse-synthese/ peeters/ pub/ IEEEbeatdownbeat/.
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able to compare our results to the ones published in previous

works on the same test-sets.

F-measure at a relative-tempo-length Precision Window

of 0.1: Considering a given beat/ downbeat marker annotation

and a given track, we note - A: the number of annotated beats

(downbeats), - D: the number of detected ones and - CD(PW):

the number of correctly detected ones within a given Precision

Window (PW). From this we derive the following measures:

• Recall(PW ) = CD(PW )
A ,

• Precision(PW ) = CD(PW )
D ,

• FMeasure(PW ) = 2R(PW )·P (PW )
R(PW )+P (PW ) .

Note that the Precision Window is centered on the annotated

beat (downbeats) for the Recall and on the estimated beat for

the Precision.

Octave errors: Using this measure, we do not consider

octave errors as correct8. For a correct beat marking but at

twice (three time) the tempo, the Recall will be 1 but the

Precision 0.5 (0.33). for a correct beat marking at half (one

third of) the tempo, the Precision will be 1 but the Recall 0.5

(0.33).

Adaptive Precision Window: In our evaluation the Precision

Window is defined as a percentage of the local annotated beat

length Tb. This is done in order to avoid drawing misleading

conclusions from the results9. PW=α means that the estimated

beat should be at a maximum distance of ±αTb the annotated

beat. For a given track, we consider the minimum value of

Tb(ti) over time (the fastest annotated tempo). The values

given in the following correspond to the average (over all

tracks of a test-set) of the F-measure(PW=0.1).

Statistical hypothesis tests: Considering that the values

given in the evaluation are only estimates of the average F-

measure, we also perform statistical tests (pair wise Student

T-tests) in order to infer the statistical significances of the

difference of values. We use a 10% significance level10.

CMLc, CMLt, AMLc and AMLt: When comparing our

results to previously published results we will use the follow-

ing measures: - CMLc (Correct Metrical Level with continuity

required), - CMLt (same but no continuity required), - AMLc

(All Metrical Level with continuity required) and - AMLt

(same but no continuity required). We refer the reader to

[42] [44] and [7] for more details. For the implementation

of CMLc, CMLt, AMLc and AMLt we have used the imple-

mentation kindly provided by M. Davies11. These measures

correspond to the “Correct” and “Accept d/h” criteria and

the “Continuity required” and “Individual estimate” categories

8This is because the usual halving or doubling of the tempo is actually
only correct for a binary simple meter. For most test-sets we do not have
information about the grouping/subdivision of the beats/ tactus (by two or
three). Moreover, in the case of beat-tracking, - doubling the tempo will
require to check that the detected markers correspond to all the tatum (and
not only the counter-beat ones), - halving the tempo will require to check that
the detected markers corresponds to the dominant beats (downbeats) in the
measure.

9Indeed a fixed PW of 0.166s would be restrictive for slow tempi (half-beat
duration of 0.5 at 60bpm) but will mean accepting counter-beat as correct for
fast tempi (half-beat duration of 0.166s at 180bpm).

10The choice of 10%, instead of the usual 5%, has been made to better
emphasizes the differences between algorithms.

11The evalbeat toolbox is accessible at http:// www.elec.qmul.ac.uk/ digi-
talmusic/ downloads/ beateval/ beateval.zip

used in [7]. A precision window of 17.5% as in [7] is used

for both estimated marker position and estimated tempo.

B. Test-sets

For the evaluation, we have used six test-sets.

T-PR: The “PopRock extract” is a collection of 155 major

top-ten hits of the past decades. Only 20s extract of the tracks

are considered. The annotations into beat and downbeat have

been made by one of the authors.

T-RWC-P: The “RWC Popular Music” [45] is a collection

of 100 tracks in full-duration of Pop-rock-ballad-heavy-metal

popular music.

T-RWC-J: The “RWC Jazz Music” [45] is a collection of

50 tracks in full-duration of Jazz-music with solo piano, guitar,

small ensemble or modern-jazz orchestra. The difficulty of this

test-set comes from the complexity of the rhythms used in

Jazz-music.

T-RWC-C: The “RWC Classical Music” [45] is a collection

of 59 tracks in full-duration of Classical-music. The difficulty

of this test-set comes from the tempo variations used in

Classical-music. The annotations of the three RWC test-sets

are provided by the AIST [46].

T-KLA: “Klapuri” test-set is the one used in [7]. It contains

505 tracks of a wide range of music genre (pop, metal, electro,

classical). 474 of them are annotated in beat positions for an

excerpt in the middle of the track. Because only beat-phase

annotations are provided we do not evaluate downbeat-tracking

here.

T-HAI: “Hainsworth” test-set is the one used in [12], [8]

and [47]. It contains 222 tracks, each around 60s length

from a large variety of music genres and with time-variable

tempo. Because only beat-phase annotations are provided we

do not evaluate downbeat-tracking here. It should be noted

that only the values of Davies “Detection Function” DF
are provided (not the audio signal). The DF function has a

sampling rate of 86.2Hz (step of 11.6ms). Therefore we have

modified our system in order to use the DF function instead

of our reassigned-spectral-energy-flux (RSEF) function. This

concerns both our tempo/ meter estimation and beat-tracking

algorithms. We therefore test the generalization of the LDA-

trained beat-templates when applied to other functions than

the one (the RSEF function) used for training.

The T-PR, and the RWC test-sets have been used since

they are annotated in beat and downbeat positions. The three

RWC test-sets are also available to the research community for

comparison. The T-KLA and T-HAI12 have been used in order

to provide a comparison with state-of-the-art published results.

We also present the results obtained during the MIREX-09

evaluation which use other test-sets.

C. Beat and Downbeat-tracking results and discussion

In this part, we evaluate the performances of various config-

urations of our beat and downbeat-tracking algorithm. Table

I indicates the results in terms of F-measure with a Precision

12We are grateful to A. Klapuri, St. Hainsworth and M. Davies to have let
us access these test-sets for the present evaluation
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Window of 0.1 for T-PR, T-RWC-P, T-RWC-J and T-RWC-C

using the following configurations:

• “P-sola” are the results obtained with the P-sola beat-

tracking algorithm [31] (no downbeat estimation is avail-

able for this algorithm).

• “Viterbi” refers to the model proposed in this paper.

• “Viterbi no-DB” refer to the reduced model without

estimating the downbeat and βj (we only use pobs(ti ∈
{β}|o1))

• “Viterbi DB” refer to the full model including downbeat

estimation (we use pobs(ti ∈ {βj}|o1, o2, o3))
• “Simple/ LDA” refers to the use of the corresponding

beat-template in the computation of pobs(ti ∈ {β}|o1).
• “α = 4 / α = 2” refers to the duration of the window

used for the computation of pobs(ti ∈ {βj}|o2(t)).
• “COS/ MAH” refers to the use of the “1-cosine” or

“Mahalanobis” distance for the computation of pobs(ti ∈
{βj}|o2(t)).

• “CHRO” refers to the use of observation probability

based on chroma variation (pobs(ti ∈ {βj}|o2))
• “SPEC” refers to the use of observation probability based

on spectral distribution (pobs(ti ∈ {βj}|o3)). Note that

we do not provide the results using “SPEC” alone since

the use of pobs(ti ∈ {βj}|o3) alone did not lead to good

results.

• “Chord Detection” refers to the results obtained using the

downbeat estimation obtained using the chord estimation

algorithm of [32]. In this case, the input of the system is

the best beat estimation (“Viterbi no-DB LDA”).

As mentioned in part IV-A1 the LDA-trained beat-template

used in all the experiments here is a beat-template manually

derived from an LDA-training on T-PR (see Figure 4). It

should be noted also that when using the Viterbi algorithm,

both beat and downbeat estimation are obtained at the same

time.

TABLE I
Beat and Downbeat estimation results for T-PR, T-RWC-P, T-RWC-J and

T-RWC-C.

P-sola against Viterbi: We first compare the P-sola to

the Viterbi beat-tracking algorithm. For this we use the base-

line Viterbi algorithm, i.e. using the “Simple” beat-template.

Results shows a large improvement of the F-measure(PW=0.1)

for all test-sets except for T-RWC-C. This difference is statis-

tically significant for T-PR, T-RWC-P and T-RWC-J.

Choice of the beat-template (LDA or Simple): We

then compare the use of a “Simple” (as used in [33]) to the

LDA-trained beat-template. The use of the LDA-trained beat-

template leads to a small improvement of beat-tracking results

for 2 over 4 test-sets: from FMeas=0.91 to 0.93 for T-PR, 0.4

to 0.42 for T-RWC-C. Remark that the largest improvement

is obtained on T-PR which is the test-set used to train the

LDA-trained beat template. There is however no statistical

significance for these 2 test-sets. We will show in the following

that for T-KLA and T-HAI (which are larger test-sets), there

is a statistically significant difference between the “Simple”

and LDA-trained beat-templates.

We now evaluate the results of downbeat-tracking.

Best parameters for BPIM probability based on chroma

variation: For 3 over 4 test-sets, the use of a window duration

of α = 2 (making the assumption that chords change twice

per measure) leads to better results than α = 4 (chords change

once per measure): FMeas=0.68 and 0.53 for T-PR, 0.76 and

0.78 for T-RWC-P, 0.46 and 0.40 for T-RWC-J, 0.35 and 0.23

for T-RWC-C. This difference is statistically significant for

T-PR and T-RWC-C.

For all test-sets, the use of the “1-cosine” distance leads to

better results than the use of the symmetrized Mahalanobis

distance: FMeas=0.68 and 0.44 for T-PR, 0.76 and 0.49 for

T-RWC-P, 0.46 and 0.31 for T-RWC-J, 0.35 and 0.23 for T-

RWC-C. This difference is statistically significant for the four

test-sets. This result is surprising since the “1-cosine” distance

does not take into account the inherent chroma variation inside

Li,j and Ri,j . The bad results obtained with the Mahalanobis

distance may be explained by the fact that Li,j and Ri,j are

too short to reliably estimate the covariance matrices.

Using simultaneously BPIM probability based on

chroma variation and spectral balance: For 3 over 4

test-sets, the inclusion of the BPIM probability based on

“spectral balance” allows to further increase the results: from

FMeas=0.68 to 0.74 for T-PR, 0.76 to 0.8 for T-RWC-P, 0.46

to 0.47 for T-RWC-J, 0.35 to 0.34 for T-RWC-C. The increase

is larger when the file duration is short (T-PR). This can be

explained by the fact that BPIM probability based on chroma

variation necessitates long duration observation which is not

the case of BPIM probability based on spectral balance. Hence

a large increase for short duration files. The increase also

mainly occurs for files belonging to the Pop and Rock music

genre. This can be explained by the fact that BPIM probability

based on “spectral balance” makes the underlying assumption

of a “kick/ snare/ kick/ snare” rhythm pattern, which does

not exist in Jazz and Classical music. However there is no

statistical significance for none of the test-set.

Downbeat estimation (Viterbi against Chord detection):

We finally compare the results obtained with our complete

system (Viterbi DB LDA a=2 COS CHRO/SPEC) to the results

obtained using the “Chord detection” algorithm of [32]. For

3 over 4 test-sets, the proposed algorithm allows to improve

the downbeat-tracking results: FMeas=0.74 and 0.64 for T-

PR, 0.8 and 0.81 for T-RWC-P, 0.47 and 0.44 for T-RWC-J,



MANUSCRIPT SUBMITTED FOR PUBLICATION IN IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING 11

0.34 and 0.32 for T-RWC-C. Only for T-PR, this difference is

statistically significant.

Variations among test-set: As one can observe, the perfor-

mances of beat-marking are best for the T-PR (FMeas=0.93)

and T-RWC-P (0.84) than for the more complex Jazz rhythm

of T-RWC-J (0.57) or the time-variable tempo of Classical

music of T-RWC-C (0.42). The same can be observed for the

downbeat marking (0.74, 0.8, 0.47, 0.34).

D. Comparison to other works

1) Evaluation using Klapuri [7] test-set: In Table II, we

compare the results of our Viterbi algorithm using “simple”

or “LDA-trained” beat-templates to the results published in

[7] using the test-set used in [7]. The LDA-trained beat-

templates achieved higher results than the “simple” beat-

template: FMeas=0.64 and 0.67. This difference is statistically

significant. For the criteria for which temporal continuity is not

required (CMLt and AMLt), the performances of our Viterbi-

LDA algorithm are higher than that of [7]: from CMLt= 64

to 65, from AMLt= 80 to 83. This improvement is however

small. For the criteria for which temporal continuity is required

(CMLc and AMLc), the performances of our algorithm are

lower than that of [7].

TABLE II
Beat estimation results for T-KLA [7] and T-HAI [12] test-set.

2) Evaluation using Hainsworth [12] test-set: In Table

II, we compare the results of our Viterbi algorithm using

“simple” or “LDA-trained” beat-templates to the recent results

published in Stark [47] using the test-set used in [12], [8] and

[47]. “Klapuri et al. (NC)” refers to the non-causal algorithm

of [7], “Davies and Plumbley (NC)” refers to the non-causal

algorithm of [8] and “SDP + 1stbeat + Tempo” refers to the

results obtained with the Stark et al. algorithm [47] using

annotated tempo and annotated first beat-phase. Again, for

this test-set, the LDA-trained beat-templates achieved higher

results than the “simple” beat-template: FMeas=0.56 and 0.63.

This difference is again statistically significant. This is an

important results since the input of our system was in this

case Davies “Detection Function” DF and not our reassigned-

spectral-energy-flux (RSEF) function which was used for the

training of the LDA-beat templates. This somehow proofs the

generalibity of the proposed LDA-trained beat templates. For

the criteria for which octave errors are considered corrects

(AMLc and AMLt), the performances of our Viterbi-LDA

algorithm are higher than all the other algorithms: AMLc=70.8

and AMLt=81.8. For the criteria for which octave errors are

not considered corrects (CMLc and CMLt), the performances

of our algorithm are lower than that of the other algorithms.

These results could indicate that our tempo estimation system

suffers from many octave errors. However, this results must

be taken with care since we did not have access to the audio

data but only to the values of the DF function. Because, the

DF function has different properties than our RSEF function,

it may not fit completely the shape of the templates (see [29])

used for our tempo/ meter estimation.

3) MIREX Audio Beat Tracking Contest results: We have

submitted our tempo and beat-marking system to the MIREX-

09 Audio Tempo Extraction contest [22]. For this evaluation,

we tested four configuration of the tempo estimation stage

of [29] (variable-over-time or constant-over-time tempo

estimation, meter estimated or forced to 4/4) but only one

of the beat marking stage (corresponding to Viterbi DB

LDA COS CHRO). Two test-sets were used: the “McKinney

Collection” and the “Sapp’s Mazurka Collection”. The

“McKinney Collection” is a set of 160 musical excerpts; each

recording has been annotated by 40 different listeners (39

in a few cases) [48] [49]. The “Sapp’s Mazurka Collection”

is a set of 322 files drawn from the Mazurka.org dataset

put together by Craig Sapp. He was also responsible for

creating the high-quality ground-truth files. The whole set

of performance measures, collected by Davies, was used for

the evaluation: F-Measure, Cemgil, Goto, P-score, CMLc,

CMLt, AMLc, AMLt, . . . . On the “McKinney Collection”

test-set, for 8 criteria over 10, our system ranked first, and

this whatever configuration of the tempo estimation stage.

For the two remaining criteria (AMLc and Davies D criteria),

our system ranked second whatever configuration of the

tempo estimation part. Since this test-set is the same as the

one used in the MIREX-06 “Audio Beat Tracking” task,

and since the P-score is available for both MIREX-06 and

MIREX-09, we compare the largest P-score obtained in

MIREX-06 to the ones we have obtained in 2009. In 2006,

Dixon reaches a P-score 0.575. In 2009, our system whatever

configuration of it has a P-score from 0.579 to 0.592. On

the “Sapp’s Mazurka Collection” test-set, the best performing

algorithm was the DRP3 from Davies, and this for all criteria.

The best performing configuration of our system was with

[variable-over-time tempo estimation, meter is estimated]

which ranked 2nd for 8 criteria over 10 (except the Goto

and Davies D criteria). We refer the reader to http://

www.music-ir.org/ mirex/ 2009/ index.php/

Audio_Beat_Tracking_Results for more details.

VII. CONCLUSION AND FUTURE WORKS

In this paper we have proposed a probabilistic framework

for simultaneous beat and downbeat-tracking from an audio

signal given estimated tempo and meter as input.

We have proposed a hidden Markov model formulation

in which hidden states are defined as “time t is a beat in

a specific beat-position-in-measure”. Since times are part of

the hidden states definition, we have proposed a “reverse”

Viterbi decoding algorithm which decodes times over beat-

numbers. The beat observation probabilities are obtained by
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using beat-templates. We have proposed the use of Linear

Discriminant Analysis to compute the most discriminant beat-

templates. We have shown that the use of this LDA-trained

beat-template allows an improvement of beat-tracking results

for 4 over the 6 test-sets used in our evaluation. For the

“Klapuri” and “Hainsworth” test-sets, this difference is sta-

tistically significant. It is important to note that “Klapuri” and

“Hainsworth” test-sets are the two largest and were not part

of the development of our system.

The beat-position-inside-measure (bpim) allows deriving

simultaneously beat and downbeat position. We have proposed

two bpim observation probabilities. The first probability is

based on analyzing the variation of chroma vector over time.

We have studied two window lengths for their computation

(corresponding to the assumptions that chord change twice or

once per measure) and two distances for their comparison (“1-

cosine” and symmetrized Mahalanobis). The best results have

been obtained using a window length of two beats and a “1-

cosine” distance. The second probability is based on analyzing

the temporal pattern of the spectral balance. The inclusion of

this second probability allows increasing further the downbeat

tracking results.

We have compared the results obtained by our new systems

to our previous P-sola beat-tracking algorithm (as used in

MIREX-05 contest) [31]. Results show a large improvement

of the beat-tracking results which is statistically significant

for all test-sets. We have then compared the results obtained

by our new system to our previous chord-based downbeat-

tracking algorithm [32]. The new algorithm allows increasing

the results for 3 over 4 test-sets. For the “PopRock extract”

test-set, the difference is statistically significant.

We have compared our results to the one obtained in [7]

[12] [8] and [47] using the same test-sets and evaluation

measures. For the “Klapuri” test-set, the proposed algorithm

allows improving the results for the measures CMLt and AMLt

(which do not require temporal contiguity), however this is not

the case for the category CMLc and AMLc (which require

temporal contiguity). Our algorithm seems therefore to suffer

from temporal discontinuity. This may be due to the large

transition probability assigned to ptrans(ti′ ∈ {β}|ti ∈ B) in

our experiment. For the “Hainsworth” test-set, the proposed

algorithm allows improving the results for the measures AMLc

and AMLt (which consider octave errors as correct), however

this is not the case for the category CMLc and CMLt (which

do not consider octave errors as correct). Our algorithm

seems therefore to suffer from octave errors. Finally, we

have discussed the results obtained by our algorithm in the

last MIREX-09 beat-tracking contest in which our algorithm

ranked first for the “McKinney Collection” test-set but only

ranked second for the “Mazurka” test-set.

Considering the results obtained and the adaptability to

include new observation probabilities, the proposed proba-

bilistic formulation is promising. The computation time and

memory cost is however higher than other methods. However,

the method can be highly optimized when implementing it.

The C++ version of this algorithm was for example the

fastest algorithm in the MIREX-09 contest. Future works will

concentrate on adding new type of observations probabilities

for the bpim probability such as relative silence detection.

The LDA-trained beat template used here was the one trained

on the PopRock test-set. This PopRock template was applied

to Jazz and Classical music. Ideally, one would choose the

most appropriate LDA-trained beat-template for the music

genre studied. Further work will therefore concentrate on

integrating automatic music genre estimation to our system in

order to choose the most appropriate beat-template. Finally,

our current system is composed of two independent parts:

tempo and meter estimation on one side, beat and downbeat

estimation on the other side. Both parts use a hidden Markov

model formulation, further work will therefore concentrate on

estimating them simultaneously in the same framework as did

for example Laroche in [33].
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