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Introduction and main results

Let X = (X i ) i∈Z d be a stationary real random field defined on the probability space (Ω, F , P). We observe the random field X on a region Λ n , n ∈ N * , but the observations are contamined with noise such as measurement errors. In fact, we observe only the random field Y = (Y i ) i∈Z d defined for any i in Z d by Y i = X i + θ i where the error variables (θ i ) i∈Z d are identically distributed and independent of X. We denote by f Y , f X and f θ the marginal density of Y , X and θ respectively and we have f Y = f X ⋆ f θ . We observe a sample of Y and we want to estimate f X using the deconvolution kernel approach introduced by Stefanski and Carroll [START_REF] Stefanski | Deconvoluting kernel density estimators[END_REF]. Previous key results on deconvolution kernel density estimators for time series are Fan [START_REF] Fan | Asymptotic normality for deconvolution kernel density estimators[END_REF], [START_REF] Fan | On the optimal rates of convergence for nonparametric deconvolution problems[END_REF] and Masry [START_REF] Masry | Asymptotic normality for deconvolution estimators of multivariate densities of stationary processes[END_REF], [START_REF] Masry | Strong consistency and rates for deconvolution of multivariate densities of stationary processes[END_REF]. For strongly mixing random fields indexed by the lattice Z d , Li [START_REF] Li | Asymptotic normality for deconvolution kernel density estimators from random fields[END_REF] obtained a central limit theorem for the deconvolution kernel density estimator using the socalled Bernstein's small and large blocks technique and coupling arguments initiated by Tran [START_REF] Tran | Kernel density estimation on random fields[END_REF]. Note that the extension of asymptotic result for time series to the spatial setting is not trivial because of difficulties coming from spatial ordering. The purpose of this work is to put on light a new approach for the asymptotic normality of kernel density estimators. In fact, we are going to apply the Lindeberg's method (see [START_REF] Lindeberg | Eine neue Herleitung des Exponentialgezetzes in der Wahrscheinlichkeitsrechnung[END_REF]) in order to improve the result by Li [START_REF] Li | Asymptotic normality for deconvolution kernel density estimators from random fields[END_REF] in several directions. This new approach was recently applied successfully in El Machkouri and Stoica [START_REF] Machkouri | Asymptotic normality of kernel estimates in a regression model for random fields[END_REF] and El Machkouri [START_REF] Machkouri | Asymptotic normality for the parzen-rosenblatt density estimator for strongly mixing random fields[END_REF] for the Nadaraya-Watson estimator and the Parzen-Rosenblatt estimator respectively in the setting of random fields. 

Given two σ-algebras U and V of F , we recall the α-mixing coefficient introduced by

Rosenblatt [START_REF] Rosenblatt | A central limit theorem and a strong mixing condition[END_REF] defined by α(U, V) = sup{|P(A ∩ B) -P(A)P(B)| , A ∈ U, B ∈ V}.

For any τ in N * ∪ {∞} and any positive integer n, we consider the mixing coefficient

α 1,τ (n) defined by α 1,τ (n) = sup {α(σ(X k ), F B ), k ∈ Z d , |B| ≤ τ, ρ(B, {k}) ≥ n},
where F B = σ(X i ; i ∈ B) and the distance ρ is defined for any subsets B 1 and B 2 of Z d by ρ(B 1 , B 2 ) = min{|i -j|, i ∈ B 1 , j ∈ B 2 }. We say that the random field (X i ) i∈Z d is strongly mixing if lim n→∞ α 1,τ (n) = 0 for some τ in N * ∪ {∞}.

Let (b n ) n≥1 be a sequence of positive numbers going to zero as n goes to infinity. The deconvolving kernel density estimator for f X is defined for any x in R by

fn (x) = 1 |Λ n |b n i∈Λn g n x -Y i b n (2) 
where for any z in R,

g n (z) = 1 2π R e -itz φ K (t) φ θ (t/b n ) dt.
The kernel density estimator fn defined by (2) can be written for any x in R as

fn (x) = 1 2π R e -itx φn (t) φ K (tb n ) φ θ (t) dt (3) 
where

φn (t) = 1 |Λ n | i∈Λn e itY i .
We consider the following assumptions: The following result establishes the asymptotic bias of the estimator fn .

Proposition 1 (Li [START_REF] Li | Asymptotic normality for deconvolution kernel density estimators from random fields[END_REF], 2008) If φ K is continuous then, for any real x,

E( fn (x)) -----→ n→+∞ f (x).
Now, we investigate the asymptotic variance of the estimator fn .

Proposition 2 Assume that m≥1 m 2d-1 α 1,1 (m) < ∞. For any x in R, we have

lim n→∞ |Λ n |b 2β+1 n V( fn (x)) = f Y (x) B 2 R |t| 2β |φ K (t)| 2 dt := σ 2 (x). (4) 
Our main result is the following.

Theorem 1 Assume that Assumptions (A1), ..., (A5) hold and

+∞ m=1 m 2d-1 α 1,∞ (m) < ∞. (5) 
Then for any positive integer k and any distinct points x 1 , ..., x k in R,

(|Λ n |b 2β+1 n ) 1/2    fn (x 1 ) -E fn (x 1 ) . . . fn (x k ) -E fn (x k )    L -----→ n→+∞ N (0, V ) (6) 
where V is a diagonal matrix with diagonal elements

v ii = f Y (x i ) B 2 R |t| 2β |φ K (t)| 2 dt.
Remark 1. Theorem 1 improves Theorem 4.1 and Theorem 4.2 in [START_REF] Li | Asymptotic normality for deconvolution kernel density estimators from random fields[END_REF] in three directions: the regions Λ n where the random field is observed are not reduced to rectangular ones, the assumption (A5) on the bandwidth b n is minimal and the mixing condition Since the mixing property is often unverifiable and might be too restrictive, it is important to provide limit theorems for nonmixing and possibly nonlinear spatial processes.

So, in the sequel, we consider that (X i ) i∈Z d is a field of identically distributed real random variables with a marginal density f such that

X i = F ε i-s ; s ∈ Z d , i ∈ Z d , (7) 
where (ε j ) j∈Z d are i.i.d. random variables and F is a measurable function defined on R Z d . In the one-dimensional case (d = 1), the class [START_REF] Fan | Asymptotic normality for deconvolution kernel density estimators[END_REF] includes linear as well as many widely used nonlinear time series models as special cases. More importantly, it provides a very general framework for asymptotic theory for statistics of stationary time series (see [START_REF] Wu | Nonlinear system theory: another look at dependence[END_REF] and the review paper [START_REF] Wu | Asymptotic theory for stationary processes[END_REF]). Let (ε ′ j ) j∈Z d be an i.i.d. copy of (ε j ) j∈Z d and consider for any positive integer n the coupled version

X * i of X i defined by X * i = F ε * i-s ; s ∈ Z d where ε * j = ε j 1 1 {j =0} + ε ′ 0 1 1 {j=0} for any j in Z d .
In other words, we obtain X * i from X i by just replacing ε 0 by its copy ε ′ 0 . Following Wu [START_REF] Wu | Nonlinear system theory: another look at dependence[END_REF], we introduce appropriate dependence measures: let i in Z d and p > 0 be fixed. If X i belongs to L p (that is, E|X i | p is finite), we define the physical dependence measure δ i,p = X i -X * i p where . p is the usual L p -norm and we say that the random field

(X i ) i∈Z d is p-stable if i∈Z d δ i,p < ∞. For d ≥ 2
, the reader should keep in mind the following two examples already given in [START_REF] Machkouri | A central limit theorem for stationary random fields[END_REF] : Linear random fields: Let (ε i ) i∈Z d be i.i.d random variables with ε i in L p , p ≥ 2. The linear random field X defined for any i in Z d by

X i = s∈Z d a s ε i-s with (a s ) s∈Z d in R Z d such that i∈Z d a 2 i < ∞ is of the form (7) with a linear functional g. For any i in Z d , δ i,p = a i ε 0 -ε ′ 0 p . So, X is p-stable if i∈Z d |a i | < ∞.
Clearly, if H is a Lipschitz continuous function, under the above condition, the subordinated

process Y i = H(X i ) is also p-stable since δ i,p = O(|a i |).
Volterra field : Another class of nonlinear random field is the Volterra process which plays an important role in the nonlinear system theory (Casti [START_REF] Casti | Nonlinear system theory[END_REF], Rugh [START_REF] Rugh | Nonlinear system theory[END_REF]): consider the second order Volterra process

X i = s 1 ,s 2 ∈Z d a s 1 ,s 2 ε i-s 1 ε i-s 2 ,
where a s 1 ,s 2 are real coefficients with a s 1 ,s 2 = 0 if s 1 = s 2 and (ε i ) i∈Z d are i.i.d. random variables with ε i in L p , p ≥ 2. Let

A i = s 1 ,s 2 ∈Z d (a 2 s 1 ,i + a 2 i,s 2 ) and B i = s 1 ,s 2 ∈Z d (|a s 1 ,i | p + |a i,s 2 | p ).
By the Rosenthal inequality, there exists a constant C p > 0 such that

δ i,p = X i -X * i p ≤ C p A 1/2 i ε 0 2 ε 0 p + C p B 1/p i ε 0 2 p .
Theorem 2 Let (X i ) i∈Z d be defined by the relation [START_REF] Fan | Asymptotic normality for deconvolution kernel density estimators[END_REF] and assume that (A1), ..., (A5) hold. If ( 5) is replaced by the condition

i∈Z d |i| 5d 2 δ i < ∞ (8)
then the conclusion of Theorem 1 still holds.

Proofs

Throughout this section, the symbol κ will denote a generic positive constant which the value is not important and for any i = (i 1 , ..., i d ) ∈ Z d , we denote |i| = max 1≤k≤d |i k |.

Recall also that for any finite subset B of Z d , we denote |B| the number of elements in B. Let τ ∈ N * ∪ {∞} be fixed and consider the sequence (m n,τ ) n≥1 defined by

m n,τ = max      v n ,      1 b n |i|>vn |i| d α 1,τ (|i|)   1 d    + 1      (9) 
where v n = b 

Lemma 1 If τ ∈ N * ∪ {∞} and m≥1 m 2d-1 α 1,τ (m) < ∞ then m n,τ → ∞, m d n,τ b n → 0 and 1 m d n,τ b n |i|>mn,τ |i| d α 1,τ (|i|) → 0.
Proof of Proposition 2. Let z be fixed in R. For any i in Z d , we denote

Z i (z) = 1 b n g n z -Y i b n -Eg n z -Y i b n .
The proof of the following lemma is done in the appendix.

Lemma 2 For any z in R, b 2β+1 n E(Z 2 0 (z)) -----→ n→∞ σ 2 (z) := f Y (z) B 2 R |u| 2β |φ K (u)| 2 du ( 10 
)
and

sup i∈Z d \{0} E |Z 0 (s)Z i (t)| = O(b -2β n )
for any s and t in R.

Let x in R be fixed. We have

|Λ n |b 2β+1 n V( fn (x)) = b 2β+1 n E Z 2 0 (x) + b 2β+1 n |Λ n | i,j∈Λn i =j Cov(Z i (x), Z j (x)). (11) 
Since

(Z i ) i∈Z d is stationary, we have b 2β+1 n |Λ n | i,j∈Λn i =j Cov(Z i (x), Z j (x)) ≤ b 2β+1 n i∈Z d \{0} |E (Z 0 (x)Z i (x)) | ≤ b 2β+1 n   m d n,1 sup i∈Z d \{0} E |Z 0 (x)Z i (x)| + |i|>m n,1 |E (Z 0 (x)Z i (x)) |   .
By Rio's covariance inequality (cf. [START_REF] Rio | Covariance inequalities for strongly mixing processes[END_REF], Theorem 1.1), we know that

|E (Z 0 (x)Z i (x)) | ≤ κ Z 0 (x) 2 ∞ α 1,1 (|i|). Since Z 0 (x) ∞ ≤ κb -β-1 n and τ ∈ N * ∪ {∞}, we obtain b 2β+1 n |Λ n | i,j∈Λn i =j Cov(Z i (x), Z j (x)) ≤ κ   m d n,1 b 2β+1 n sup i∈Z d \{0} E |Z 0 (x)Z i (x)| + 1 m d n,1 b n |i|>m n,1 |i| d α 1,1 (|i|)   .
Applying Lemma 1 and the second part of Lemma 2, we derive

lim n→∞ b 2β+1 n |Λ n | i,j∈Λn i =j Cov(Z i (x), Z j (x)) = 0. (12) 
Combining [START_REF] Li | Asymptotic normality for deconvolution kernel density estimators from random fields[END_REF], [START_REF] Lindeberg | Eine neue Herleitung des Exponentialgezetzes in der Wahrscheinlichkeitsrechnung[END_REF] and [START_REF] Masry | Asymptotic normality for deconvolution estimators of multivariate densities of stationary processes[END_REF], we obtain (4). The proof of Proposition 2 is complete.

Proof of Theorem 1. Without loss of generality, we consider only the case k = 2 and we refer to x 1 and x 2 as x and y (x = y). Let λ 1 and λ 2 be two constants such that λ 2 1 + λ 2 2 = 1 and denote

S n = λ 1 (|Λ n |b 2β+1 n ) 1/2 ( fn (x)-E fn (x))+λ 2 (|Λ n |b 2β+1 n ) 1/2 ( fn (y)-E fn (y)) = i∈Λn b β+ 1 2 n ∆ i |Λ n | 1/2
where ∆ i = λ 1 Z i (x) + λ 2 Z i (y) and for any z in R,

Z i (z) = 1 b n g n z -Y i b n -Eg n z -Y i b n .
We consider the notation

η = λ 2 1 f Y (x) + λ 2 2 f Y (y) B 2 R |t| 2β |φ K (t)| 2 dt. ( 13 
)
The proof of the following technical result is postponed to the annex.

Lemma 3 b 2β+1 n E(∆ 2 0
) converges to η as n goes to infinity and

sup i∈Z d \{0} E|∆ 0 ∆ i | = O(b -2β n ).
In order to prove the convergence in distribution of S n to √ ητ 0 where τ 0 ∼ N (0, 1),

we follow the Lindeberg's method used in the proof of the central limit theorem for stationary random fields by Dedecker [START_REF] Dedecker | A central limit theorem for stationary random fields[END_REF]. Let ϕ be a one to one map from

[1, κ] ∩ N * to a finite subset of Z d and (ξ i ) i∈Z d a real random field. For all integers k in [1, κ], we denote S ϕ(k) (ξ) = k i=1 ξ ϕ(i) and S c ϕ(k) (ξ) = κ i=k ξ ϕ(i)
with the convention S ϕ(0) (ξ) = S c ϕ(κ+1) (ξ) = 0. To describe the set Λ n , we define the one to one map ϕ from [1, |Λ n |] ∩ N * to Λ n by: ϕ is the unique function such that ϕ(k) < lex ϕ(l) for 1 ≤ k < l ≤ |Λ n |. From now on, we consider a field (τ i ) i∈Z d of i.i.d. random variables independent of (∆ i ) i∈Z d such that τ 0 has the standard normal law N (0, 1). We introduce the fields Γ and γ defined for any i in Z d by

Γ i = b β+ 1 2 n ∆ i |Λ n | 1/2 and γ i = τ i √ η |Λ n | 1/2
where η is defined by [START_REF] Masry | Strong consistency and rates for deconvolution of multivariate densities of stationary processes[END_REF]. Let h be any function from

R to R. For 0 ≤ k ≤ l ≤ |Λ n |+1, we introduce h k,l (Γ) = h(S ϕ(k) (Γ) + S c ϕ(l) (γ)).
With the above convention we have that

h k,|Λn|+1 (Γ) = h(S ϕ(k) (Γ)) and also h 0,l (Γ) = h(S c ϕ(l) (γ)).
In the sequel, we will often write h k,l instead of h k,l (Γ). We denote by

B 4 1 (R) the unit ball of C 4 b (R): h belongs to B 4 1 (R) if and only if it belongs to C 4 (R) and satisfies max 0≤i≤4 h (i) ∞ ≤ 1. It suffices to prove that for all h in B 4 1 (R), E h S ϕ(|Λn|) (Γ) -----→ n→+∞ E (h (τ 0 √ η)) .
We use Lindeberg's decomposition:

E h S ϕ(|Λn|) (Γ) -h (τ 0 √ η) = |Λn| k=1 E (h k,k+1 -h k-1,k ) . Now, h k,k+1 -h k-1,k = h k,k+1 -h k-1,k+1 + h k-1,k+1 -h k-1,k .
Applying Taylor's formula we get that:

h k,k+1 -h k-1,k+1 = Γ ϕ(k) h ′ k-1,k+1 + 1 2 Γ 2 ϕ(k) h ′′ k-1,k+1 + R k and h k-1,k+1 -h k-1,k = -γ ϕ(k) h ′ k-1,k+1 - 1 2 γ 2 ϕ(k) h ′′ k-1,k+1 + r k where |R k | ≤ Γ 2 ϕ(k) (1 ∧ |Γ ϕ(k) |) and |r k | ≤ γ 2 ϕ(k) (1 ∧ |γ ϕ(k) |). Since (Γ, τ i ) i =ϕ(k) is inde- pendent of τ ϕ(k) , it follows that E γ ϕ(k) h ′ k-1,k+1 = 0 and E γ 2 ϕ(k) h ′′ k-1,k+1 = E η |Λ n | h ′′ k-1,k+1
Hence, we obtain

E h(S ϕ(|Λn|) (Γ)) -h (τ 0 √ η) = |Λn| k=1 E(Γ ϕ(k) h ′ k-1,k+1 ) + |Λn| k=1 E Γ 2 ϕ(k) - η |Λ n | h ′′ k-1,k+1 2 + |Λn| k=1 E (R k + r k ) . Let 1 ≤ k ≤ |Λ n | be fixed. Noting that |∆ 0 | is bounded by κb -β-1 n
and applying the first part of Lemma 3, we derive

E|R k | ≤ b 3β+ 3 2 n E|∆ 0 | 3 |Λ n | 3/2 = O 1 (|Λ n | 3 b n ) 1/2 and E|r k | ≤ E|γ 0 | 3 |Λ n | 3/2 ≤ η 3/2 E|τ 0 | 3 |Λ n | 3/2 = O 1 |Λ n | 3/2 . Consequently, we obtain |Λn| k=1 E (|R k | + |r k |) = O 1 (|Λ n |b n ) 1/2 + 1 |Λ n | 1/2 = o(1). Now, it is sufficient to show lim n→+∞ |Λn| k=1 E(Γ ϕ(k) h ′ k-1,k+1 ) + E Γ 2 ϕ(k) - η |Λ n | h ′′ k-1,k+1 2 = 0. (14) 
First, we focus on

|Λn| k=1 E Γ ϕ(k) h ′ k-1,k+1
. On the lattice Z d we define the lexicographic order as follows: if i = (i 1 , ..., i d ) and j = (j 1 , ..., j d ) are distinct elements of Z d , the notation i < lex j means that either i 1 < j 1 or for some p in {2, 3, ..., d}, i p < j p and i q = j q for 1 ≤ q < p. Let the sets {V M i ; i ∈ Z d , M ∈ N * } be defined as follows:

V 1 i = {j ∈ Z d ; j < lex i} and for M ≥ 2, V M i = V 1 i ∩ {j ∈ Z d ; |i -j| ≥ M}.
For any subset L of

Z d define F L = σ(∆ i ; i ∈ L) and set E M (∆ i ) = E(∆ i |F V M i ), M ∈ N * . For all M in N * and all integer k in [1, |Λ n |],
we define

E M k = ϕ([1, k] ∩ N * ) ∩ V M ϕ(k) and S M ϕ(k) (Γ) = i∈E M k Γ i .
For any function Ψ from R to R, we define

Ψ M k-1,l = Ψ(S M ϕ(k) (Γ) + S c ϕ(l) (γ)).
We are going to apply this notation to the successive derivatives of the function h. Our aim is to show that

lim n→+∞ |Λn| k=1 E Γ ϕ(k) h ′ k-1,k+1 -Γ ϕ(k) S ϕ(k-1) (Γ) -S mn,∞ ϕ(k) (Γ) h ′′ k-1,k+1 = 0.
where (m n,∞ ) n≥1 is the sequence defined by [START_REF] Hall | Martingale limit theory and its application[END_REF]. First, we use the decomposition

Γ ϕ(k) h ′ k-1,k+1 = Γ ϕ(k) h ′ mn,∞ k-1,k+1 + Γ ϕ(k) h ′ k-1,k+1 -h ′ mn,∞ k-1,k+1 .
We consider a one to one map

ψ from [1, |E mn,∞ k |] ∩ N * to E mn,∞ k and such that |ψ(i) - ϕ(k)| ≤ |ψ(i -1) -ϕ(k)|. This choice of ψ ensures that S ψ(i) (Γ) and S ψ(i-1) (Γ) are F V |ψ(i)-ϕ(k)| ϕ(k) -measurable. The fact that γ is independent of Γ imply that E Γ ϕ(k) h ′ S c ϕ(k+1) (γ) = 0. Therefore E Γ ϕ(k) h ′ mn,∞ k-1,k+1 = |E mn,∞ k | i=1 E Γ ϕ(k) (Θ i -Θ i-1 ) (15) 
where

Θ i = h ′ S ψ(i) (Γ) + S c ϕ(k+1) (γ) . Since S ψ(i) (Γ) and S ψ(i-1) (Γ) are F V |ψ(i)-ϕ(k)| ϕ(k)
measurable, we can take the conditional expectation of Γ ϕ(k) with respect to

F V |ψ(i)-ϕ(k)| ϕ(k)
in the right hand side of [START_REF] Rio | Covariance inequalities for strongly mixing processes[END_REF]. On the other hand the function h

′ is 1-Lipschitz, hence

|Θ i -Θ i-1 | ≤ |Γ ψ(i) |. Consequently, E Γ ϕ(k) (Θ i -Θ i-1 ) ≤ E|Γ ψ(i) E |ψ(i)-ϕ(k)| Γ ϕ(k) | and E Γ ϕ(k) h ′ mn,∞ k-1,k+1 ≤ |E mn,∞ k | i=1 E|Γ ψ(i) E |ψ(i)-ϕ(k)| (Γ ϕ(k) )|.
Hence,

|Λn| k=1 E Γ ϕ(k) h ′ mn,∞ k-1,k+1 ≤ b 2β+1 n |Λ n | |Λn| k=1 |E mn,∞ k | i=1 E|∆ ψ(i) E |ψ(i)-ϕ(k)| (∆ ϕ(k) )| ≤ b 2β+1 n |j|≥mn,∞ ∆ j E |j| (∆ 0 ) 1 .
For any j in Z d , we have

∆ j E |j| (∆ 0 ) 1 = Cov |∆ j | 1 1 E |j| (∆ 0 )≥0 -1 1 E |j| (∆ 0 )<0 , ∆ 0 .
So, applying Rio's covariance inequality (cf. [START_REF] Rio | Covariance inequalities for strongly mixing processes[END_REF], Theorem 1.1), we obtain

∆ j E |j| (∆ 0 ) 1 ≤ 4 α 1,∞ (|j|) 0 Q 2 ∆ 0 (u)du
where

Q ∆ 0 is defined by Q ∆ 0 (u) = inf{t ≥ 0 ; P(|∆ 0 | > t) ≤ u} for any u in [0, 1]. Since |∆ 0 | is bounded by κb -β-1 n , we have Q ∆ 0 (u) ≤ κb -β-1 n and ∆ j E |j| (∆ 0 ) 1 ≤ κb -2β-2 n α 1,∞ (|j|).
Finally, we derive

|Λn| k=1 E Γ ϕ(k) h ′ mn,∞ k-1,k+1 ≤ κ b n |j|≥mn,∞ α 1,∞ (|j|) ≤ κ m d n,∞ b n |j|≥mn,∞ |j| d α 1,∞ (|j|)
and by Lemma 1, we obtain lim n→+∞

|Λn| k=1 E Γ ϕ(k) h ′ mn,∞ k-1,k+1
= 0. Applying again Taylor's formula, it remains to consider

Γ ϕ(k) (h ′ k-1,k+1 -h ′ mn,∞ k-1,k+1 ) = Γ ϕ(k) (S ϕ(k-1) (Γ) -S mn,∞ ϕ(k) (Γ))h ′′ k-1,k+1 + R ′ k , where |R ′ k | ≤ 2|Γ ϕ(k) (S ϕ(k-1) (Γ) -S mn,∞ ϕ(k) (Γ))(1 ∧ |S ϕ(k-1) (Γ) -S mn,∞ ϕ(k) (Γ)|)|. Denoting W n = {-m n,∞ + 1, ..., m n,∞ -1} d and W * n = W n \{0}, it follows that |Λn| k=1 E|R ′ k | ≤ 2b 2β+1 n E |∆ 0 | i∈Wn |∆ i | 1 ∧ b β+ 1 2 n |Λ n | 1/2 i∈Wn |∆ i | = 2b 2β+1 n E     ∆ 2 0 + i∈W * n |∆ 0 ∆ i |   1 ∧ b β+ 1 2 n |Λ n | 1/2 i∈Wn |∆ i |   ≤ 2b 3β+ 3 2 n |Λ n | 1/2 i∈Wn E(∆ 2 0 |∆ i |) + 2b 2β+1 n i∈W * n E|∆ 0 ∆ i |. Since |∆ 0 | is bounded by κb -β-1 n , we derive |Λn| k=1 E|R ′ k | ≤ κb 2β+ 1 2 n |Λ n | 1/2 i∈Wn E(|∆ 0 ∆ i |) + 2b 2β+1 n i∈W * n E|∆ 0 ∆ i | = κb 2β+1 n E(∆ 2 0 ) (|Λ n |b n ) 1/2 + κb 2β+1 n (|Λ n |b n ) 1/2 + 2b 2β+1 n i∈W * n E(|∆ 0 ∆ i |) ≤ κ 1 (|Λ n |b n ) 1/2 + b 2β+1 n (|Λ n |b n ) 1/2 + b 2β+1 n m d n,∞ b -2β n (by Lemma 3) = κ 1 (|Λ n |b n ) 1/2 + 1 (|Λ n |b n ) 1/2 + 1 m d n,∞ b n = o(1)
(by Lemma 1 and Assumption (A5)).

So, we have shown that

lim n→+∞ |Λn| k=1 E Γ ϕ(k) h ′ k-1,k+1 -Γ ϕ(k) (S ϕ(k-1) (Γ) -S mn,∞ ϕ(k) (Γ))h ′′ k-1,k+1 = 0.
In order to obtain ( 14) it remains to control

F 0 = E   |Λn| k=1 h ′′ k-1,k+1 Γ 2 ϕ(k) 2 + Γ ϕ(k) S ϕ(k-1) (Γ) -S mn,∞ ϕ(k) (Γ) - η 2|Λ n |   .
Let µ be the law of the stationary real random field (∆ i ) i∈Z d and consider the projection π 0 from R Z d to R defined by π 0 (ω) = ω 0 and the family of translation operators

(T i ) i∈Z d from R Z d to R Z d defined by (T i (ω)) k = ω k+i for any i ∈ Z d and any ω in R Z d . Denote by B the Borel σ-algebra of R. The random field (π 0 • T i ) i∈Z d defined on the probability space (R Z d , B Z d , µ
) is stationary with the same law as (∆ i ) i∈Z d , hence, without loss of generality, one can suppose that (Ω, F , P) = (R Z d , B Z d , µ) and ∆ i = π 0 • T i . Recall that ρ is the metric defined for any finite subsets B 1 and B 2 of

Z d by ρ(B 1 , 2 2 ) = min{|i -j| ; i ∈ B 1 , j ∈ B 2 } and |i -j| = max 1≤k≤d |i k -j k | for any i = (i 1 , .
.., i d ) and j = (j 1 , ..., j d ) in Z d . We consider the following sets:

Λ mn,∞ n = {i ∈ Λ n ; ρ({i}, ∂Λ n ) ≥ m n,∞ } and I mn,∞ n = {1 ≤ k ≤ |Λ n | ; ϕ(k) ∈ Λ mn,∞ n },
and the function

Ψ from R Z d to R such that Ψ(∆) = ∆ 2 0 + i∈V 1 0 ∩Wn 2∆ 0 ∆ i where W n = {-m n,∞ + 1, ..., m n,∞ -1} d . For 1 ≤ k ≤ |Λ n |, we set D (n) k = η -b 2β+1 n Ψ • T ϕ(k) (∆)
. By definition of Ψ and of the set I mn,∞ n , we have for any

k in I mn,∞ n Ψ • T ϕ(k) (∆) = ∆ 2 ϕ(k) + 2∆ ϕ(k) (S ϕ(k-1) (∆) -S mn,∞ ϕ(k) (∆)). Therefore for k in I mn,∞ n D (n) k |Λ n | = η |Λ n | -Γ 2 ϕ(k) -2Γ ϕ(k) (S ϕ(k-1) (Γ) -S mn,∞ ϕ(k) (Γ)).
Using (1), we know that

lim n→+∞ |Λ n | -1 |I mn,∞ n | = 1. So, it remains to consider F 1 = E   1 |Λ n | |Λn| k=1 h ′′ k-1,k+1 D (n) k   .
Applying Lemma 3 and Lemma 1, we obtain

F 1 ≤ E   b 2β+1 n |Λ n | |Λn| k=1 h ′′ k-1,k+1 (∆ 2 ϕ(k) -E(∆ 2 0 ))   + |η -b 2β+1 n E(∆ 2 0 )| + 2b 2β+1 n j∈V 1 0 ∩Wn E|∆ 0 ∆ j | ≤ E   b 2β+1 n |Λ n | |Λn| k=1 h ′′ k-1,k+1 (∆ 2 ϕ(k) -E(∆ 2 0 ))   + o(1).
So, it suffices to prove that

F 2 = E   b 2β+1 n |Λ n | |Λn| k=1 h ′′ k-1,k+1 (∆ 2 ϕ(k) -E(∆ 2 0 ))  
goes to zero as n goes to infinity. Let C > 0 be fixed. We have

F 2 ≤ F ′ 2 + F ′′ 2
where

F ′ 2 = E   b 2β+1 n |Λ n | |Λn| k=1 h ′′ k-1,k+1 ∆ 2 ϕ(k) -E C ∆ 2 ϕ(k)   and 
F ′′ 2 = E   b 2β+1 n |Λ n | |Λn| k=1 h ′′ k-1,k+1 E C ∆ 2 ϕ(k) -E(∆ 2 0 )  
where we recall the notation

E C ∆ 2 ϕ(k) = E ∆ 2 ϕ(k) |F V C ϕ(k) .
The following result is a Serfling type inequality which can be found in [START_REF] Mcleish | A maximal inequality and dependent strong laws[END_REF].

Lemma 4 Let U and V be two σ-algebras and let X be a random variable measurable with respect to U.

If 1 ≤ p ≤ r ≤ ∞ then E(X|V) -E(X) p ≤ 2(2 1/p + 1) (α(U, V)) 1 p -1 r X r .
Applying Lemma 4 and keeping in mind that |∆ 0 | is bounded by κb -β-1 n , we derive

F ′′ 2 ≤ b 2β+1 n E C ∆ 2 0 -E(∆ 2 0 ) 1 ≤ κb -1 n α 1,∞ (C)
In the other part,

F ′ 2 ≤ b 2β+1 n |Λ n | |Λn| k=1 J 1 k (C) + J 2 k (C)
where

J 1 k (C) = E h ′′ C k-1,k+1 • T -ϕ(k) ∆ 2 0 -E C ∆ 2 0 = 0 since h ′′ C k-1,k+1 • T -ϕ(k) is F V C 0 -measurable and b 2β+1 n J 2 k (C) = b 2β+1 n E h ′′ k-1,k+1 • T -ϕ(k) -h ′′ C k-1,k+1 • T -ϕ(k) ∆ 2 0 -E C ∆ 2 0 ≤ b 2β+1 n E     2 ∧ |i|<C b β+ 1 2 n |∆ i | |Λ n | 1/2   ∆ 2 0   ≤ κb 2β+1 n E(∆ 2 0 ) (|Λ n |b n ) 1/2 + κb 2β+ 1 2 n |Λ n | 1/2 |i|<C i =0 E|∆ 0 ∆ i | since |∆ 0 | ≤ κb -β-1 n a.s. ≤ κ 1 (|Λ n |b n ) 1/2 + C d √ b n |Λ n | 1/2
(by Lemma 3)

So, putting C = b -1 2d-1 n
and keeping in mind that m≥0 m 2d-1 α 1,∞ (m) < +∞, we derive

F 2 = O C 2d-1 α 1,∞ (C) + O   1 + b d-1 2d-1 n (|Λ n |b n ) 1/2   = o(1).
The proof of Theorem 1 is complete.

Proof of Theorem 2

The proof follows the same lines as in the proof of Theorem 1. We consider the sequence

(m n ) n≥1 defined by m n = max      v n ,      1 b 3 n |i|>vn |i| 5d 2 δ i   1 3d    + 1      (16) 
where v n = b For any z in R, we denote

G n (z, i) = g n z -Y i b n and G n (z, i) = E (G n (z, i)|F n,i ) (17) 
where

F n,i = σ (ε i-s ; |s| ≤ m n ). Denoting M n = 2m n + 1, (G n (z, i)) i∈Z d is an M n -
dependent random field (i.e. G n (z, i) and G n (z, j) are independent as soon as |i -j| ≥ M n ). For any x in R and any integer n ≥ 1, we denote

f n (x) = 1 |Λ n |b n i∈Λn G n (x, i).
The proof of the following lemma is done in the appendix.

Lemma 6 For any p ≥ 2, any x in R, any positive integer n and any

(a i ) i∈Z d in R Z d , i∈Λn a i G n (x, i) -G n (x, i) p ≤ κm d n b 1+β n p i∈Λn a 2 i 1/2 |i|>mn δ i,p .
Let x = y be fixed and let λ 1 and λ 2 be two constants such that λ 2 1 + λ 2 2 = 1. We have

λ 1 (|Λ n |b 2β+1 n ) 1/2 ( fn (x) -E fn (x)) + λ 2 (|Λ n |b 2β+1 n ) 1/2 ( fn (y) -E fn (y)) = i∈Λn b β+ 1 2 n ∆ i |Λ n | 1/2 λ 1 (|Λ n |b 2β+1 n ) 1/2 (f n (x) -Ef n (x)) + λ 2 (|Λ n |b 2β+1 n ) 1/2 (f n (y) -Ef n (y)) = i∈Λn b β+ 1 2 n ∆ i |Λ n | 1/2
where

∆ i = λ 1 Z i (x) + λ 2 Z i (y) and ∆ i = λ 1 Z i (x) + λ 2 Z i (y)
and for any z in R,

Z i (z) = 1 b n (G n (z, i) -EG n (z, i)) and Z i (z) = 1 b n G n (z, i) -EG n (z, i)
where G n (z, i) and G n (z, i) are defined by [START_REF] Rugh | Nonlinear system theory[END_REF]. Applying Lemma 5 and Lemma 6, we know that b

β+ 1 2 n |Λ n | 1/2 i∈Λn ∆ i -∆ i 2 ≤ κ(|λ 1 | + |λ 2 |) (m d n b n ) 3/2 |i|>mn |i| 5d 2 δ i = o(1). (18) 
So, it suffices to prove the asymptotic normality of b

β+ 1 2 n |Λ n | -1/2 i∈Λn ∆ i n≥1
. Let η be defined by [START_REF] Masry | Strong consistency and rates for deconvolution of multivariate densities of stationary processes[END_REF]. The proof of the following lemma is also postponed to the appendix.

Lemma 7 b 2β+1 n E(∆ 2 
0 ) converges to η as n goes to infinity. Moreover, if (8) holds then

sup i∈Z d \{0} E|∆ 0 ∆ i | = o(m -d n b -2β-1 n ).
As in the proof of Theorem 1, in order to describe the set Λ n , we consider the one to one map ϕ from [1, |Λ n |] ∩ N * to Λ n by: ϕ is the unique function such that ϕ(k) < lex ϕ(l)

for 1 ≤ k < l ≤ |Λ n |
where < lex denotes the lexicographic order on Z d and we consider a field (τ i ) i∈Z d of i.i.d. random variables independent of (∆ i ) i∈Z d such that τ 0 has the standard normal law N (0, 1). We introduce the fields Γ and γ defined for any i in Z d by

Γ i = b β+ 1 2 n ∆ i |Λ n | 1/2 and γ i = τ i √ η |Λ n | 1/2 .
Note that Γ is an M n -dependent random field where M n = 2m n + 1 and m n is defined by [START_REF] Rosenblatt | A central limit theorem and a strong mixing condition[END_REF]. Keeping in mind the notations introduced in the proof of Theorem 1, it suffices to prove that for any function h in B 4 1 (R),

E h S ϕ(|Λn|) (Γ) -----→ n→+∞ E (h (τ 0 √ η)) .
Applying Lindeberg's decomposition, we have

E h S ϕ(|Λn|) (Γ) -h (τ 0 √ η) = |Λn| k=1 E (h k,k+1 -h k-1,k ) . Now, h k,k+1 -h k-1,k = h k,k+1 -h k-1,k+1 + h k-1,k+1 -h k-1,k .
By Taylor's formula we get

h k,k+1 -h k-1,k+1 = Γ ϕ(k) h ′ k-1,k+1 + 1 2 Γ 2 ϕ(k) h ′′ k-1,k+1 + R k and h k-1,k+1 -h k-1,k = -γ ϕ(k) h ′ k-1,k+1 - 1 2 γ 2 ϕ(k) h ′′ k-1,k+1 + r k where |R k | ≤ Γ 2 ϕ(k) (1 ∧ |Γ ϕ(k) |) and |r k | ≤ γ 2 ϕ(k) (1 ∧ |γ ϕ(k) |). Since (Γ, τ i ) i =ϕ(k) is inde- pendent of τ ϕ(k) , it follows that E γ ϕ(k) h ′ k-1,k+1 = 0 and E γ 2 ϕ(k) h ′′ k-1,k+1 = E η |Λ n | h ′′ k-1,k+1
Hence, we obtain

E h(S ϕ(|Λn|) (Γ)) -h (τ 0 √ η) = |Λn| k=1 E(Γ ϕ(k) h ′ k-1,k+1 ) + |Λn| k=1 E Γ 2 ϕ(k) - η |Λ n | h ′′ k-1,k+1 2 + |Λn| k=1 E (R k + r k ) . Let 1 ≤ k ≤ |Λ n | be fixed. Noting that |∆ 0 | is bounded by κb -β-1
n and applying Lemma 7, we derive

E|R k | ≤ b 3β+ 3 2 n E|∆ 0 | 3 |Λ n | 3/2 = O 1 (|Λ n | 3 b n ) 1/2 and E|r k | ≤ E|γ 0 | 3 |Λ n | 3/2 ≤ η 3/2 E|τ 0 | 3 |Λ n | 3/2 = O 1 |Λ n | 3/2 .

Consequently, we obtain

|Λn| k=1 E (|R k | + |r k |) = O 1 (|Λ n |b n ) 1/2 + 1 |Λ n | 1/2 = o(1). Now, it is sufficient to show lim n→+∞ |Λn| k=1 E(Γ ϕ(k) h ′ k-1,k+1 ) + E Γ 2 ϕ(k) - η |Λ n | h ′′ k-1,k+1 2 = 0. ( 19 
)
We focus on

|Λn| k=1 E Γ ϕ(k) h ′ k-1,k+1
. Recall that the sets {V k i ; i ∈ Z d , k ∈ N * } are defined as follows:

V 1 i = {j ∈ Z d ; j < lex i} and for k ≥ 2, V k i = V 1 i ∩ {j ∈ Z d ; |i -j| ≥ k}.
For all n in N * and all integer k in [1, |Λ n |], we define

E Mn k = ϕ([1, k] ∩ N * ) ∩ V Mn ϕ(k)
and

S Mn ϕ(k) (Γ) = i∈E Mn k Γ i
where M n = 2m n +1. For any function Ψ from R to R, we define

Ψ Mn k-1,l = Ψ(S Mn ϕ(k) (Γ)+ S c ϕ(l) (γ)). Our aim is to show that lim n→+∞ |Λn| k=1 E Γ ϕ(k) h ′ k-1,k+1 -Γ ϕ(k) S ϕ(k-1) (Γ) -S Mn ϕ(k) (Γ) h ′′ k-1,k+1 = 0. (20) 
First, we note that

Γ ϕ(k) h ′ k-1,k+1 = Γ ϕ(k) h ′ Mn k-1,k+1 + Γ ϕ(k) h ′ k-1,k+1 -h ′ Mn k-1,k+1 .
Applying again Taylor's formula,

Γ ϕ(k) (h ′ k-1,k+1 -h ′ Mn k-1,k+1 ) = Γ ϕ(k) (S ϕ(k-1) (Γ) -S Mn ϕ(k) (Γ))h ′′ k-1,k+1 + R ′ k ,
where

|R ′ k | ≤ 2|Γ ϕ(k) (S ϕ(k-1) (Γ) -S Mn ϕ(k) (Γ))(1 ∧ |S ϕ(k-1) (Γ) -S Mn ϕ(k) (Γ)|)|. Since (Γ i ) i∈Z d is M n -dependent, we have E Γ ϕ(k) h ′ Mn k-1,k+1 = 0 and consequently (20) holds if and only if lim n→+∞ |Λn| k=1 E|R ′ k | = 0. In fact, denoting W n = {-M n + 1, ..., M n -1} d and W * n = W n \{0}, it follows that |Λn| k=1 E|R ′ k | ≤ 2b 2β+1 n E |∆ 0 | i∈Wn |∆ i | 1 ∧ b β+ 1 2 n |Λ n | 1/2 i∈Wn |∆ i | = 2b 2β+1 n E     ∆ 2 0 + i∈W * n |∆ 0 ∆ i |   1 ∧ b β+ 1 2 n |Λ n | 1/2 i∈Wn |∆ i |   ≤ 2b 3β+ 3 2 n |Λ n | 1/2 i∈Wn E(∆ 2 0 |∆ i |) + 2b 2β+1 n i∈W * n E|∆ 0 ∆ i |. Since |∆ 0 | is bounded by κb -β-1 n , we derive |Λn| k=1 E|R ′ k | ≤ κb 2β+ 1 2 n |Λ n | 1/2 i∈Wn E(|∆ 0 ∆ i |) + 2b 2β+1 n i∈W * n E|∆ 0 ∆ i | ≤ κb 2β+1 n E(∆ 2 0 ) (|Λ n |b n ) 1/2 + κb 2β+1 n 1 + 1 (|Λ n |b n ) 1/2 m d n sup i∈Z d \{0} E(|∆ 0 ∆ i |)
= o(1) (by Lemma 7 and Assumption (A5)).

In order to obtain [START_REF] Tran | Kernel density estimation on random fields[END_REF] it remains to control

F 0 = E   |Λn| k=1 h ′′ k-1,k+1 Γ 2 ϕ(k) 2 + Γ ϕ(k) S ϕ(k-1) (Γ) -S Mn ϕ(k) (Γ) - η 2|Λ n |   .
Denote by B the Borel σ-algebra of R. Without loss of generality, one can suppose that (Ω,

F , P) = (R Z d , B Z d , µ) and ∆ k = π 0 • T k where µ is the law of the stationary real random field (∆ k ) k∈Z d , π 0 is the projection from R Z d to R defined by π 0 (ω) = ω 0 and (T k ) k∈Z d is the family of translation operators from R Z d to R Z d defined by (T k (ω)) i = ω i+k for any k ∈ Z d and any ω in R Z d .
Recall also the metric ρ defined for any finite subsets B 1 and B 2 of Z d by ρ(B 1 , 2 2 ) = min{|i -j| ; i ∈ B 1 , j ∈ B 2 } and |i -j| = max 1≤k≤d |i kj k | for any i = (i 1 , ..., i d ) and j = (j 1 , ..., j d ) in Z d . We consider the following sets:

Λ Mn n = {i ∈ Λ n ; ρ({i}, ∂Λ n ) ≥ M n } and I Mn n = {1 ≤ k ≤ |Λ n | ; ϕ(k) ∈ Λ Mn n },
and the function Ψ from R Z d to R such that

Ψ(∆) = ∆ 2 0 + i∈V 1 0 ∩Wn 2∆ 0 ∆ i . For 1 ≤ k ≤ |Λ n |, we set D (n) k = η -b 2β+1 n Ψ • T ϕ(k) (∆)
. By definition of Ψ and of the set I Mn n , we have for any

k in I Mn n , Ψ • T ϕ(k) (∆) = ∆ 2 ϕ(k) + 2∆ ϕ(k) (S ϕ(k-1) (∆) -S Mn ϕ(k) (∆)). Therefore for k in I Mn n , D (n) k |Λ n | = η |Λ n | -Γ 2 ϕ(k) -2Γ ϕ(k) (S ϕ(k-1) (Γ) -S Mn ϕ(k) (Γ)).
Since (1) holds, we have

lim n→+∞ |Λ n | -1 |I Mn n | = 1.
So, it remains to consider

F 1 = E   1 |Λ n | |Λn| k=1 h ′′ k-1,k+1 D (n) k   .
Applying Lemma 7, we have

F 1 ≤ E   b 2β+1 n |Λ n | |Λn| k=1 h ′′ k-1,k+1 (∆ 2 ϕ(k) -E(∆ 2 0 ))   + |η -b 2β+1 n E(∆ 2 0 )| + 2b 2β+1 n j∈V 1 0 ∩Wn E|∆ 0 ∆ j | ≤ E   b 2β+1 n |Λ n | |Λn| k=1 h ′′ k-1,k+1 (∆ 2 ϕ(k) -E(∆ 2 0 ))   + o(1).
So, it suffices to prove that

F 2 = E   b 2β+1 n |Λ n | |Λn| k=1 h ′′ k-1,k+1 (∆ 2 ϕ(k) -E(∆ 2 0 ))  
goes to zero as n goes to infinity. In fact,

F 2 ≤ b 2β+1 n |Λn| |Λn| k=1 J 1 k (n) + J 2 k (n) where J 1 k (n) = E h ′′ Mn k-1,k+1 ∆ 2 ϕ(k) -E ∆ 2 0 = 0 since h ′′ Mn k-1,k+1 is σ ∆ i ; i ∈ V Mn ϕ(k) - measurable and the conditional expectation of ∆ 2 ϕ(k) with respect to σ ∆ i ; i ∈ V Mn ϕ(k) is null (cf. (∆ i ) i∈Z d is an M n -dependent random field). b 2β+1 n J 2 k (n) = b 2β+1 n E h ′′ k-1,k+1 -h ′′ Mn k-1,k+1 ∆ 2 ϕ(k) -E ∆ 2 0 ≤ b 2β+1 n E     2 ∧ |i|<Mn b β+ 1 2 n |∆ i | |Λ n | 1/2   ∆ 2 0   ≤ κb 2β+1 n E(∆ 2 0 ) (|Λ n |b n ) 1/2 + κb 2β+ 1 2 n |Λ n | 1/2 |i|<Mn i =0 E|∆ 0 ∆ i | since |∆ 0 | ≤ κb -β-1 n a.s. ≤ κ b 2β+1 n E(∆ 2 0 ) + b 2β+1 n m d n sup i∈Z d \{0} E(|∆ 0 ∆ i |) (|Λ n |b n ) 1/2 = o(1) (by Lemma 7 and Assumption (A5)).
The proof of Theorem 2 is complete.

Appendix

Proof of Lemma 1. Let τ be fixed in N * ∪ {∞} and let m n,τ be defined by equation Since m≥1 m 2d-1 α 1,τ (m) < ∞, we have r(m) converges to zero as m goes to infinity. Moreover,

m d n,τ b n ≤ max b n , κ r (v n ) + b n -----→ n→+∞ 0
We have also

m d n,τ ≥ 1 b n r (v n ) ≥ 1 b n r (m n,τ ) since v n ≤ m n,τ .
Finally, we obtain

1 m d n,τ b n |i|>mn,τ |i| d α 1,τ (|i|) ≤ r(m n,τ ) -----→ n→+∞ 0.
The proof of Lemma 1 is complete.

Proof of Lemma 2. Using Assumption (A3), for any t in R, there exists a sequence (r n (t)) n≥1 going to 1 as n goes to infinity such that

φ θ (t/b n ) = Br n (t)b β n /|t| β . Conse- quently, R g 2 n (u)du = R 1 2π R e -itu φ K (t) φ θ (t/b n ) dt 2 du = R 1 2π R e -itu |t| β φ K (t) Br n (t)b β n dt 2 du = 1 B 2 b 2β n R |t| 2β φ 2 K (t) r 2 n (t)
dt (By Plancherel's theorem) So, we obtain

lim n→∞ b 2β n R g 2 n (u)du = 1 B 2 R |t| 2β φ 2 K (t)dt (21) 
Similarly,

lim n→∞ b β n R |g n (u)|du = 1 B R |t| β |φ K (t)|dt (22) 
For any z in R and any i in Z d , we recall that G n (z, i) := g n z-Y i bn

. Using (22) and keeping in mind Assumption (A1), we have

b β-1 n E |G n (z, i)| = b β n R |g n (u)|f Y (z -ub n )du -----→ n→+∞ f Y (z) B R |t| β |φ K (t)|dt. (23)
Similarly, using [START_REF] Wu | Asymptotic theory for stationary processes[END_REF], we derive

b 2β-1 n EG 2 n (z, i) = b 2β n R g 2 n (u)f Y (z -ub n )du -----→ n→+∞ f Y (z) B 2 R |t| 2β φ 2 K (t)dt. (24) 
In the other part, for any s in R,

b 2β+1 n E(Z 2 0 (s)) = b 2β-1 n EG 2 n (s, 0) -(EG n (s, 0)) 2 . ( 25 
)
Combining ( 23), ( 24) and (25), we derive for any s in R,

lim n→∞ b 2β+1 n E(Z 2 0 (s)) = f Y (s) B 2 R |t| 2β φ 2 K (t)dt. (26) 
Now, let s and t be fixed in R and let i be fixed in

Z d \{0}. Then, b 2 n E|Z 0 (s)Z i (t)| ≤ E |G n (s, 0)G n (t, i)| + 3E |G n (s, 0)| E |G n (t, 0)| (27) 
and

E |G n (s, 0)G n (t, i)| ≤ b 2 n |g n (u)g n (v)|f Y (s -ub n ) f i|0 (s -ub n , t -vb n ) -f Y (t -vb n ) dudv + b 2 n |g n (u)|f Y (s -ub n )du |g n (v)|f Y (t -vb n )dv
where f i|0 is the conditional density of Y i given Y 0 . Using (23) and Assumption (A2),

we obtain sup

i∈Z d \{0} E |G n (s, 0)G n (t, i)| ≤ κb 2-2β n . (28) 
Combining (23), ( 27) and (28), we derive

sup i∈Z d \{0} E|Z 0 (s)Z i (t)| = O(b -2β n )
The proof of Lemma 2 is complete.

Proof of Lemma 3. For any z in R and any i in

Z d , recall that G n (z, i) = g n z-Y i bn . We have E(∆ 2 0 ) = λ 2 1 E(Z 2 0 (x)) + λ 2 2 E(Z 2 0 (y)) + 2λ 1 λ 2 E(Z 0 (x)Z 0 (y)) (29) and b 2 n E(Z 0 (x)Z 0 (y)) = E (G n (x, 0)G n (y, 0)) -E (G n (x, 0)) E (G n (y, 0)) . (30) 
Moreover,

E (G n (x, 0)G n (y, 0)) = b n R g n (u)g n u + y -x b n f Y (x -ub n )du.
Keeping in mind Assumption (A4) and x = y, we have

g n u + y -x b n ≤ 1 2π |u + (y -x)/b n | R Φ K t u+(y-x)/bn Φ θ t y-x+ubn dt = O(b n ).
So, using (23), we derive

|E (G n (x, 0)G n (y, 0)) | ≤ κb 2 n R |g n (u)|f Y (x -ub n )du = O(b 2-β n ). (31) 
Combining ( 23), ( 30) and (31) and applying Lemma 1, we derive

|E(Z 0 (x)Z 0 (y))| = O(b -2β n ). (32) 
Combining ( 26), (29) and (32), we obtain

lim n→+∞ b 2β+1 n E(∆ 2 0 ) = η. Let i in Z d \{0} be fixed. Noting that E|∆ 0 ∆ i | ≤ λ 2 1 E|Z 0 (x)Z i (x)| + 2λ 1 λ 2 E|Z 0 (x)Z i (y)| + λ 2 2 E|Z 0 (y)Z i (y)|
and applying the second part of Lemma 2, we obtain

sup i∈Z d \{0} E|∆ 0 ∆ i | = O(b -2β n )
. The proof of Lemma 3 is complete.

Proof of Lemma 6. We follow the proof of Proposition 1 in [START_REF] Machkouri | A central limit theorem for stationary random fields[END_REF]. For any i in Z d and any x in R, we denote R i = G n (x, i) -G n (x, i). Since there exists a measurable function H such that R i = H(ε i-s ; s ∈ Z d ), we are able to define the physical dependence measure coefficients (δ

(n) i,p ) i∈Z d associated to the random field (R i ) i∈Z d . We recall that δ (n) i,p = R i -R * i p where R * i = H(ε * i-s ; s ∈ Z d ) and ε * j = ε j 1 1 {j =0} + ε ′ 0 1 1 {j=0} for any j in Z d .
In other words, we obtain R * i from R i by just replacing ε 0 by its copy ε ′ 0 . Let τ : Z → Z d be a bijection. For any l ∈ Z, for any i ∈ Z d , we denote

P l R i = E(R i |F l ) -E(R i |F l-1 ) (33) 
where F l = σ ε τ (s) ; s ≤ l .

Lemma 8 For any l in Z and any i in Z d , we have

P l R i p ≤ δ (n) i-τ (l),p .
Proof of Lemma 8. Let l in Z and i in Z d be fixed.

P l R i p = E(R i |F l ) -E(R i |F l-1 ) p = E(R 0 |T i F l ) -E(R 0 |T i F l-1 ) p where T i F l = σ ε τ (s)-i ; s ≤ l . P l R i p = E H ((ε -s ) s∈Z d ) |T i F l -E H (ε -s ) s∈Z d \{i-τ (l)} ; ε ′ τ (l)-i |T i F l p ≤ H ((ε -s ) s∈Z d ) -H (ε -s ) s∈Z d \{i-τ (l)} ; ε ′ τ (l)-i p = H (ε i-τ (l)-s ) s∈Z d -H (ε i-τ (l)-s ) s∈Z d \{i-τ (l)} ; ε ′ 0 p = R i-τ (l) -R * i-τ (l) p = δ (n) i-τ (l),p . The proof of Lemma 8 is complete. For all i in Z d , R i = l∈Z P l R i . Consequently, i∈Λn a i R i p = l∈Z i∈Λn a i P l R i p .
Applying the Burkholder inequality (cf. [START_REF] Hall | Martingale limit theory and its application[END_REF], page ??) for the martingale difference sequence i∈Λn a i P l R i l∈Z , we obtain

i∈Λn a i R i p ≤   2p l∈Z i∈Λn a i P l R i 2 p   1 2 ≤   2p l∈Z i∈Λn |a i | P l R i p 2   1 2
By the Cauchy-Schwarz inequality, we have

i∈Λn |a i | P l R i p 2 ≤ i∈Λn a 2 i P l R i p × i∈Λn P l R i p
and by Lemma 8,

i∈Z d P l R i p ≤ j∈Z d δ (n) j,p . So, we derive i∈Λn a i R i p ≤   2p j∈Z d δ (n) j,p i∈Λn a 2 i l∈Z P l R i p   1 2 
.

Applying again Lemma 

a i R i p ≤ 2p i∈Λn a 2 i 1 2 i∈Z d δ (n) i,p . Since G * n (x, i) = E G * n (x, i) F * n,i where F * n,i = σ ε * i-s ; |s| ≤ m n and G n (x, i) -G n (x, i) * = G * n (x, i) -G * n (x, i), we derive δ (n) i,p ≤ 2 G n (x, i) -G * n (x, i) p . Moreover, for any s and t in R, |g n (s) -g n (t)| ≤ κb -β n |s -t|. So, we obtain δ (n) i,p ≤ κb -1-β n δ i,p (34) 
where δ i,p = X i -X * i p .

Lemma 9 For any p ≥ 2, any positive integer n and any x in R,

G n (x, 0) -G n (x, 0) p ≤ κ √ p b 1+β n |j|>mn δ j,p .
Proof of Lemma 9 . We consider the sequence (B n ) n≥0 of finite subsets of Z d defined by B 0 = {(0, ..., 0)} and for any

n in N * , B n = {i ∈ Z d ; |i| = n}. The cardinality of the set B n is |B n | = 2d(2n + 1) d-1 for n ≥ 1.
Let τ : N * → Z d be the bijection defined by τ (1) = (0, ..., 0) and

• for any n in N * , if l ∈ ]a n-1 , a n ] then τ (l) ∈ B n ,
• for any n in N * , if (p, q) ∈ ]a n-1 , a n ] 2 and p < q then τ (p) < lex τ (q)

where a n = n j=0 |B j | goes to infinity as n goes to infinity. Let (m n ) n≥1 be the sequence of positive integers defined by [START_REF] Rosenblatt | A central limit theorem and a strong mixing condition[END_REF]. For any n in N * , we recall that F n,0 = σ (ε -s ; |s| ≤ m n ) and we consider also the σ-algebra The proof of Lemma 6 is complete.

Proof of Lemma 7. Let s and t be fixed in R. We have 

E G n (s, 0)G n (t, 0) -E (G n (s, 0)G n (t, 0)) ≤ G n (s, 0) 2 G n (t, 0) -G n (t, 0) 2 + G n (t, 0) 2 G n (s, 0) -G n (s, 0) 2 .
In the other part, we have ). The proof of Lemma 7 is complete.

E(∆ 2 

For

  any finite subset B of Z d , denote |B| the number of elements in B and ∂B its boundary defined by ∂B = {i ∈ B ; ∃j / ∈ B |i -j| = 1} where |s| = max 1≤k≤d |s k | for any s = (s 1 , ..., s d ) in Z d . In the sequel, we assume that we observe (X i ) i∈Z d on a sequence (Λ n ) n≥1 of finite subsets of Z d which satisfies lim n→∞ |Λ n | = ∞ and lim n→∞ |∂Λ n | |Λ n | = 0.

(

  A1) The marginal probability distribution of each Y k is absolutely continuous with continuous positive density function f Y . (A2) There exists κ > 0 such that sup (x,y)∈R 2 f i|j (y|x) ≤ κ where f i|j is the conditional density function of Y i given Y j for any i and j in Z d . (A3) There exists β > 0 and B > 0 such that |t| β |φ θ (t)| -----→ t→+∞ B. (A4) The characteristic function φ K of the kernel K vanishes outside [-1, 1]. (A5) The bandwidth b n converges to zero and |Λ n |b n goes to infinity.

( 5 )

 5 does not dependent on the bandwith parameter b n .

n

  and [ . ] denotes the integer part function. The following technical lemma is a spatial version of a result by Bosq, Merlevède and Peligrad ([1], pages 88-89).

nLemma 5

 5 and [ . ] denotes the integer part function. As in the proof of Theorem 1, the sequence (m n ) n≥1 satisfies the following lemma which the proof is left to the reader. If i∈Z d |i| 5d 2 δ i < +∞ holds then m n → ∞, m d n b n → 0 and

( 1 )

 1 . Since b n goes to zero and m n,τ ≥ v n = [b -1 2d n ] where [ . ] is the integer part function, we obtain m n,τ goes to infinity as n goes to infinity. For any positive integer m, we consider r(m) = |i|>m |i| d α 1,τ (|i|).

nFX 2 ≤

 2 G n := σ ε τ (p) ; 1 ≤ p ≤ n . By the definition of the bijection τ , for any n in N, 1 ≤ p ≤ a n if and only if |τ (p)| ≤ n.So, we haveG am n = F n,0 . Consequently, G n (x, 0) -G n (x, 0) = l>am n D l with D l = E (G n (x, 0)|G l ) -E (G n (x, 0)|G l-1) for any l in Z. Let p ≥ 2 be fixed. Since (D l ) l∈Z is a martingale-difference sequence, applying Burkholder's inequality (cf.[START_REF] Hall | Martingale limit theory and its application[END_REF], page ??), we deriveG n (x, 0) -G n (x, 0) p ≤ (x, 0) = g n b -1 n x -F (ε -s ) s∈Z d \{-τ (l)} ; ε ′ τ (l)θ 0 , we obtain D l p = E (G n (x, 0)|G l ) -E(G ′ n (x, 0)|G l ) p ≤ G n (x, 0) -G ′ n (x, 0) p . Keeping in mind that |g n (s)g n (t)| ≤ κb -βn |s -t| for any s and t in R, we deriveD l p ≤ κb -1-β n F ((ε -s ) s∈Z d ) -F (ε -s ) s∈Z d \{-τ (l)} ; ε ′ τ (l) p = κb -1-β n (ε -τ (l)-s ) s∈Z d -F (ε -τ (l)-s ) s∈Z d \{-τ (l)} ; ε -τ (l) -X * -τ (l) p = κb -1-β n δ -τ (l),pand finallyG n (x, 0) -G n (x, 0) p ≤ κb -1-β n κb -1-β n √ p |j|>mn δ j,p .The proof of Lemma 9 is complete.Noting that δ (n) i,p ≤ 2 G n (x, 0) -G n (x, 0) p and applying Lemma 9, we derive δ

Using ( 24 )b 2 n

 242 and applying Lemma 9, we deriveE G n (s, 0)G n (t, 0) -E (G n (s, 0)G n (t, 0)) |E(Z 0 (s)Z 0 (t)) -E(Z 0 (s)Z 0 (t)| = |E (G n (s, 0)G n (t, 0)) -E G n (s, 0)G n (t, 0) |, we obtain m d n b 2β+1 n |E(Z 0 (s)Z 0 (t)) -E(Z 0 (s)Z 0 (t)| ≤ κ (m d n b n ) ), (36) and Lemma 5, for any z in R, we obtain (32), (36) and Lemma 5, we derive |E(Z 0 (x)Z 0 (y))| = o(m -d n b -2β-1 n).

0 ) = λ 2 1 E(Z 2 0 2 0(∆ 2 0 1 nEd n b 2β- 1 n

 222211 (x)) + λ 2 2 E(Z (y)) + 2λ 1 λ 2 E(Z 0 (x)Z 0 (y)).(39)Combining (37), (38) and (39), we obtain the convergence of b 2β+1 n E) to η as n goes to infinity.Let i = 0 be fixed in Z d and let s and t be fixed in R. We havem d n b 2β+1 n E|Z 0 (s)Z i (t)| ≤ m d n b 2β-G n (s, 0)G n (t, i) + 3E G n (s, 0) E G n (t, 0) . (40) Since ||α| -|β|| ≤ |α -β| for any (α, β) in R 2 and applying the Cauchy-Schwarz inequality, we obtainE|G n (s, 0)G n (t, i)| -E|G n (s, 0)G n (t, i)| ≤ G n (s, 0) 2 G n (t, 0) -G n (t, 0) 2 + G n (t, 0) 2 G n (s, 0) -G n (s, 0) 2Using again (24) and applying Lemma 9, we derivem E|G n (s, 0)G n (t, i)| -E|G n (s, 0)G n (t, i)| ≤ κ (m d n b n ) 3/2 |j|>mn |j| 5d 2 δ j .(41)Combining (28), (41) and Lemma 5, we obtainsup i∈Z d \{0} E|G n (s, 0)G n (t, i)| = o(m -d n b(23) and applying again Lemma 5, we haveE G n (s, 0) E G n (t, 0) = o(m -d n b -2β+1 n ).(43)Combining (40), (42) and (43), we derivesup i∈Z d \{0} E|Z 0 (s)Z i (t)| = o(m -d n b -2β-1 n ). Since E|∆ 0 ∆ i | ≤ λ 2 1 E|Z 0 (x)Z i (x)| + 2λ 1 λ 2 E|Z 0 (x)Z i (y)| + λ2 2 E|Z 0 (y)Z i (y)|, we have also sup i∈Z d \{0} E|∆ 0 ∆ i | = o(m -d n b -2β-1 n

  8, we have l∈Z P l R i p ≤ j∈Z d δ

	(n) j,p for any i in Z d and
	finally, we derive
	i∈Λn