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Abstract— Off-line robot dynamic identification methods are 
based on the use of the Inverse Dynamic Identification Model 
(IDIM), which calculates the joint forces/torques that are linear 
in relation to the dynamic parameters, and on the use of linear 
least squares technique to calculate the parameters (IDIM-LS 
technique). The joint forces/torques are calculated as the 
product of the known control signal (the current reference) by 
the joint drive gains. Then it is essential to get accurate values 
of joint drive gains to get accurate identification of inertial 
parameters. In the previous works, it was proposed to identify 
each gain separately. This does not allow taking into account 
the dynamic coupling between the robot axes. In this paper the 
global joint drive gains parameters of all joints are calculated 
simultaneously.  The method is based on the total least squares 
solution of an over-determined linear system obtained with the 
inverse dynamic model calculated with available current 
reference and position sampled data while the robot is tracking 
one reference trajectory without load on the robot and one 
trajectory with a known payload fixed on the robot. The 
method is experimentally validated on an industrial Stäubli 
TX-40 robot. 

I. INTRODUCTION 

EVERAL schemes have been proposed in the literature to 
identify the dynamic parameters of robots [1]–[7]. Most 
of the dynamic identification methods have the 

following common features: 
- the use of an Inverse Dynamic Identification Model 

(IDIM) which calculates the joint force/torque linear in 
relation to the dynamic parameters, 

- the construction of an over-determined linear system of 
equations obtained by sampling IDIM while the robot is 
tracking some trajectories in closed-loop control, 

- the estimation of the parameter values using least 
squares techniques (LS). This procedure is called the 
IDIM-LS technique. 

The experimental works have been carried out either on 
prototypes in laboratories or on industrial robots and have 
shown the benefits in terms of accuracy in many cases. 
Good results can be obtained provided two main conditions 
are satisfied: 
- a well-tuned derivative band-pass filtering of joint 

position is used to calculate the joint velocities and 
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accelerations, 
- the accurate values of joint drive gains g  are known to 

calculate the joint force/torque as the product of the 
known control signal calculated by the numerical 
controller of the robot (the current references) by the 
joint drive gains [8].  

This needs to calibrate the drive train constituted by a 
current source amplifier with gain iG  which supplies a 

permanent magnet DC or a brushless motor with torque 
constant tK  coupled to the link through direct or gear train 

with gear ratio N .  
Because of large values of the gear ratio for industrial 

robots, ( N >50), joint drive gain, i tg NG K  , is very 

sensitive to errors in iG and tK  which must be accurately 

measured from special, time consuming , heavy tests, on the 
drive chain [8][9]. 

Several papers on the topic of the joint drive gains 
identification have been published in the past [8]–[11], but 
all of them propose to identify each gain separately. This 
does not allow taking into account the dynamic coupling 
between the robot axes. 

In this paper it is proposed a new method for the global 
identification of the joint drive gains, using current reference 
and position sampled data while the robot is tracking one 
reference trajectory without load fixed on the robot and one 
trajectory with a known payload fixed on the robot whose 
inertial parameters are measured. Contrary to the previous 
works, all drive gains are calculated in the same solving 
loop by the total LS solution of an over-determined system 
in order to take into account the coupling between the robot 
axes.  

The method is experimentally validated on an industrial 
Stäubli TX-40 robot. 

The paper is organized as follows: section 2 recalls the 
dynamic modelling and identification procedures. Section 3 
deals with the new modelling and identification method for 
the robot drive gains parameters. Section 4 presents the 
experimental validations. Finally, section 5 gives the 
conclusion. 

II. USUAL INVERSE DYNAMIC MODELS AND IDENTIFICATION  

A. Inverse Dynamic Identification Model (IDIM) 

It is known that the dynamic model of any manipulator 
can be linearly written in term of a  1n  vector of standard 
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parameters st  [2], [4], [5], [11]. The modified Denavit and 

Hartenberg notation allows obtaining a dynamic model that 
is linear in relation to a set of standard dynamic parameters, 

stχ : 

( ) ( )idm st st stq,q,q, q,q,q        (1)   

where: 

idm  is the  1n  vector of the input efforts 

st  is the  stn n jacobian matrix of idmτ , with respect to 

the  1stn   vector stχ  of the standard parameters given 

by 1 2  ... 
TT T nT

st st st st        

q,q,q   are the vectors of the joint positions, velocities and 

accelerations, respectively. 
For rigid robots, there are 14 standard parameters by link 

and joint. For the joint and link j, these parameters can be 

regrouped into the (14×1) vector j
st  [5]: 

j

j T
st j j j j j j j j j j j j j off XX XY XZ YY YZ ZZ MX MY MZ M Ia Fv Fc       (2) 

where: 

     j j j j j jXX , XY , XZ , YY , YZ , ZZ  are the 6 components of 

the inertia matrix of link j  at the origin of frame j . 

  j j jMX , MY , MZ   are the 3 components of the first 

moment of link j , jM  is the mass of link j , jIa  is a total 

inertia moment for rotor and gears of actuator j . 

jFv , jFc  are the visquous and Coulomb friction 

coefficients of the transmission chain, respectively, 

j j joff offFS off     is an offset parameter which regroups 

the amplifier offset 
joff and the asymmetrical Coulomb 

friction coefficient 
joffFS . 

The identifiable parameters are the base parameters which 
are the minimum number of dynamic parameters from which 
the dynamic model can be calculated. They are obtained 
from the standard inertial parameters by regrouping some of 
them by means of linear relations [15], which can be 
determined for the serial robots using simple closed-form 
rules [3], [5], or by numerical method based on the QR 
decomposition [14].  

The minimal dynamic model can be written using the bn  

base dynamic parameters   as follows: 

( )idm q,q,q      (3)  

where  is obtained from st  by eliminating the columns 

corresponding to the non identifiable parameters. 
Because of perturbations due to noise measurement and 

modelling errors, the actual force/torque   differs from idmτ  

by an error, e , such that: 
( )idmτ e q,q,q e        (4) 

where: 

1 10 0

0 0

0 0 n n

v g

v g

v g

 

 

 


   
   

     
   
   

   (5) 

v  is the ( )n n  matrix of the actual current references  

of the current amplifiers ( jv  corresponds to actuator j) and 

g  is the ( 1)n  vector of the joint drive gains ( jg  

corresponds to actuator j). Equation (4) represents the IDIM.   

B. Least Squares Identification of the Dynamic Parameters 
(IDIM-LS) 

The off-line identification of the base dynamic parameters 
  is considered, given measured or estimated off-line data 

for τ and   q, q, q  , collected while the robot is tracking 

some planned trajectories. The model (4) is sampled and low 
pass filtered in order to get an over-determined linear system 
of ( )n r  equations and bn

 
unknowns: 

   ˆ ˆˆY τ W q,q,q χ ρ    (6)  

where 

(   )ˆ ˆq̂, q, q   are an estimation of (   )q, q, q  , obtained by 

band-pass filtering and sampling the measure of q [16].  
ρ is the ( 1)r  vector of errors, 

  ˆ ˆˆW q, q, q   is the ( )br n  observation matrix. 

Using the base parameters and tracking “exciting” 
reference trajectories, a well conditioned matrix W is 
obtained. The LS solution χ̂  of (6) is given by: 

  1T Tχ̂ W W W Y W Y
    (7) 

It is computed using the QR factorization of W . 
Standard deviations 

î
 , are estimated assuming that W  

is a deterministic matrix  and  , is a zero-mean additive 

independent Gaussian noise, with a covariance matrix C , 

such that: 
T 2( ) rC E ρρ I    (8) 

E is the expectation operator and Ir, the ( )r r  identity 

matrix.  An unbiased estimation of the standard deviation 

  is: 
22 ( )ˆˆ Y -W r b    (9) 

The covariance matrix of the estimation error is given by: 
T 2 T 1[( )( ) ] ( )ˆ ˆ ˆˆ ˆC E χ χ χ χ W W 

    . 

( )
i

2
ˆ ˆ ˆC i,i    is the ith diagonal coefficient of ˆ ˆC  (10) 

The relative standard deviation 
riˆ%   is given by: 

100
ri iˆ ˆ i

ˆ%     , for î ≠ 0 (11) 

The ordinary LS can be improved by taking into account 
different standard deviations on joint j  equations errors 

[16]. Data in Y  and W  of (6) are sorted and weighted with 



  

the inverse of the standard deviation of the error calculated 
from OLS solution of the equations of joint j  [16]. 

This weighting operation normalises the errors in (6) and 
gives the weighted LS estimation of the parameters (IDIM-
WLS). 

III. GLOBAL IDENTIFICATION OF THE JOINT DRIVE GAINS 

A. IDIM Including a Payload and Drive Gains 

The payload is considered as a link 1n 
 
fixed to the link 

n  of the robot. Only Ln  of its parameters are considered 

known. The model (4) becomes: 
TT T T

uL kL uL kLv g e               (12) 

where: 

kL  is the ( 1)Ln   vector of the known inertial 

parameters of the payload;  

uL  is the ((10 ) 1)Ln   vector of the unknown inertial 

parameters of the payload, 

kL  is the ( )Ln n  jacobian matrix of idm , with respect 

to the vector kL , 

uL  is the ( (10 ))Ln n   jacobian matrix of idm , with 

respect to the vector uL . 

B. Total Least Squares Identification of the Drive Gains 
(IDIM-TLS) 

Details on the TLS identification method can be found in 
[19] and many papers of the same authors. This method has 
been applied in [18] for the identification of the drive gains 
and the dynamic parameters on a two degrees of freedom 
robot (dof) but gives arguable results due to the lack of an 
accurate scale factor. In this paper we propose a major 
improvement with the scaling of parameters using the 
accurate value of an additional payload mass. 

In order to identify the payload parameters, it is necessary 
that the robot carried out two trajectories: (a) without the 
payload and (b) with the payload fixed to the end-effector 
[17]. The sampling and filtering of the model IDIM (12) can 
be then written as: 

0 Ta a T T T
uL kL

b b uL kL

V W 0
Y g

V W W W





   
               

  (13) 

where: 

aV  is the matrix of  v  samples in the unloaded case, 

bV  is the matrix of  v  samples in the loaded case, 
1
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, with i =a, b  (14) 

j
i ,kv  is the k-th sample of current reference for actuator j, 

aW  is the observation matrix of the robot in the unloaded 

case, 

bW  is the observation matrix of the robot in the loaded 

case, 

uLW  is the observation matrix of the robot corresponding 

to the unknown payload inertial parameters, 

kLW  is the observation matrix of the robot corresponding 

to the known payload inertial parameters. Eq. (13) becomes: 

tot totW    (15) 

where 
0 0a a

tot
b b uL kL

W V
W

W V W W

 
     

is a ( )tot totr r matrix, 

and 
TT T T T

tot uL kLg       is a ( + +10)bn n  vector. 

Without perturbation, 0   and totW should be rank 

deficient to get the solutions  tot 0   depending on a scale 

coefficient  . However because of the measurement 
perturbations,  totW  is a full rank matrix. Therefore, the 

system (15) is replaced by the compatible system closest to 
(15) with respect to the Frobenius norm: 

0tot tot
ˆ ˆW   , 

TT T T T
tot uL kL

ˆ ˆ ˆ ˆˆ,g , ,         (16) 

where totŴ  is the rank deficient matrix, with the same 

dimension as totW , which minimizes the Frobenius norm 

tot tot
F

ˆW W . 

tot̂  is the solution of the compatible system closest to (15). 

totŴ can be computed thanks to the Singular Value 

Decomposition (SVD) of totW  [20]: 

i T
tot

diag( )
W U V

0

 
  

 
,  (17) 

where U  and V are ( )tot totr r  and (( + +10) ( + +10))b bn n n n  

orthonormal matrices, respectively, and idiag( )  is a 

(( + +10) ( + +10))b bn n n n  diagonal matrix with singular 

values i  of totW  sorted in decreasing order. The solution of 

(16) is given by: 

b b b

T
tot tot n n n n n nŴ W U V     ,  (18) 

where 
bn n   is the smallest singular value of totW  and 

bn nU   

(
bn nV  , resp.) the column of U (V, resp.) corresponding to 

bn n  . Then, the normalized optimal solution 1
tot̂  

( 11
tot̂  ) is given by the last column of V, 

b

1
tot n n

ˆ V  [18]. 

There are infinity of vectors 1
tot tot

ˆ ˆ   that can be 

obtained by a scale factor  . A unique solution * 1
tot tot

ˆˆ ˆ   

can be found by taking into account the known values kL  

of the payload parameters and their corresponding identified 

values 1
kL̂ . The optimal scale factor ̂  can be calculated as 

the LS solution of : 
1

kL kL kL
ˆ      (19) 



  

C. Discussion on the A Priori Knowledge of the Payload 
Parameters 

The accuracy of ̂  depends on the accuracy of kL , 

depending on the knowledge of the payload parameters, and  

on the accuracy of 1
kL̂  in (19). 

The most accurate payload parameter is the mass value 

LM  that can be accurately measured using a weighing 

machine.  
Then in the next section we shall compare 2 solutions: 

1
1 kL kL

ˆ ˆ    (20) 

where 1̂ is the LS solution of (19) calculated with all 

known payload parameters, and: 

 1
2 L L

ˆ ˆM M   (21) 

where 1
LM̂  is the identified value of LM  in 1

tot̂ . 

It will be shown in the next section, that the experimental 
results confirm the efficiency of the approach that uses the 
mass only. 

IV. CASE STUDY 

A. Description of the TX 40 Kinematics  

The Stäubli TX-40 robot (Fig. 1) has a serial structure 
with six rotational joints. Its kinematics is defined using the 
modified Denavit and Hartenberg notation (MDH) [12]. In 
this notation, the link j  fixed frame is defined such that the 

jz  axis is taken along joint j   axis and the jx  axis is along 

the common normal between jz  and j 1z   (Fig. 1). The 

geometric parameters defining the robot frames are given in 
Table 1. The payload is denoted as the link 7. The parameter 

0j  , means that joint j  is rotational, j
 

and jd
 

parameterize the angle and distance between j 1z   and jz  

along j 1x  , respectively, whereas j  and jr  parameterize 

the angle and distance between j 1x   
and jx  along jz , 

respectively. For link 7, 2j 
 
means that the link 7 is 

fixed on the link 6. Since all the joints are rotational then the 
MDH position j  is equal to the joint position jq given by 

the CS8C controller of the TX-40 robot, except for joints 2 
and 3 where the MDH notation differs the Staübli variables, 

22 2q /    23 3q /   .  

The TX40 robot is characterized by a coupling between 
the joints 5 and 6 such that: 

 

5 5

6 6

qr qK5 0

qr qK6 K6

    
    
    

 
  , 5 5

6 6

c r

c r

K5 K6

0 K6

 

 

    
    
       

 (22) 

 
where jqr is the velocity of the rotor of motor j, jq is the 

velocity of joint j, K5 is the transmission gain ratio of axis 5 
and K6 is the transmission gain ratio of axis 6, τcj is the 

motor torque of joint j, taking into account the coupling 
effect, τrj is the electro-magnetic torque of the rotor of motor 
j. With the coupling between joints 5 and 6, (5) and (14) 
becomes: 

1 10 0

0 0

0 0 0

5 6 5

6 6

v g

v g
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, (23) 

and 

1 0 0

0 0

0 0 0

i

i 5 6
i i
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i
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 (24) 

 
The coupling between joints 5 and 6 also adds the effect 

of the inertia of rotor 6 and new viscous and Coulomb 
friction parameters fvm6 and fcm6 , to both τc5 and τc6.  

We can write:  
  sign( )

5c 5 6 6 6 6 6 6Ia  q fvm  q fcm  q        and 

    sign( + ) sign( )
6c 6 6 5 6 5 6 5 6 6Ia  q fvm  q fcm q q q            .  

where τ5, τ6 already contain the terms 
  j j j j j j( Ia q fv q  fc sign( q ))    , for j=5 and 6 respectively, 

  2 2
5 5 5 6 6Ia K Ja K Ja   and 2

6 6 6Ia K Ja  (25) 

Jaj is the moment of inertia of rotor j . 
The TX40 has Ns=86 standard dynamic parameters given 

by the 14×6 usual standard parameters, plus  fvm6 and fcm6.   

B. Identification of the Drive Gains 

The proposed method is validated using a calibrated 
payload (Fig. 2).  

TABLE I 
GEOMETRIC PARAMETERS OF THE TX-40 ROBOT WITH THE PAYLOAD 

j j j dj j rj

1 0 0 0 q1 0 
2 0  0 q2 0 
3 0 0 d3 = 0.225 (m) q3 rl3 = 0.035 (m) 
4 0  0 q4 rl4 = 0.225 (m) 
5 0  0 q5 0 
6 0  0 q6 0 
7 2 0 0 0 0 

 

5z  

4 5 6, ,x x x

4r l  

4 6,z z  

3z  

3x  

3d  

2z  

3r l  

0 1,z z  

0 1 2, ,x x x  

   
Fig. 1. Link frames of the TX-40 robot 



  

 
Its mass has been measured with a weighing machine 

( LM  = 4.59 Kg± 0.05 Kg). The other parameters have been 

calculated using CAD software. They are given in table 2. 
Their values are accurate due to the simplicity of the 
payload shape (Fig. 2).  

Three different identifications of the payload inertia 
parameters are achieved: 
- Case 1: the payload parameters are identified using the 

manufacturer’s drive gains 
- Case 2: the drive gains are first identified with the base 

parameters with IDIM-TLS using (20) calculated with 
all known payload parameters. They are then used in 
order to reidentifiy the payload parameters and the robot 
dynamic parameters with IDIM-WLS. 

- Case 3: the drive gains are first identified with the base 
parameters with IDIM-TLS using (21) calculated with 
only the mass of the payload. They are then used in 
order to reidentifiy the payload parameters and the robot 
dynamic parameters with IDIM-WLS. 

The a priori drive gains (Case 1) and the identified ones   
(Cases 2 and 3) are given in table 3. For each joints, the 
identified values are close for the manufacturer’s values, but 
the mean error is about 11%. The maximal error grows up to 
21%! 

The identified values of the payload inertial parameters 
are presented in table 2. Moreover, the quality of 
identification is detailed at table 4. It appears that the 
identified gains lead to the best results. Moreover, the best 
model identification is achieved with the use of the TLS 
with only the mass. This result is really appealing for 
industrial applications and show the efficiency and the 

simplicity of the method. 
Finally, in order to validate the new drive gain values a 

new payload is identified (Table 5). The parameters are very 
close to the a priori ones in all cases but the best 
identification is still obtained with the gains of Case 3. The 
torques calculated with the model (12) identified with the  
gains of Case 3 are presented in Fig. 3. It is possible to 
conclude that the drive gains have been well identified with 
the IDIM-TLS. 

V. CONCLUSION 

This paper has presented a new method for the global 
identification of the total drive gains for robot joints. This 
method is easy to implement and does not need any special 
test or measurement on elements inside the joint drive train. 
It is based on a IDIM-TLS technique using current reference 
and position sampled data while the robot is tracking one 
reference trajectory without load fixed on the robot and one 
trajectory with a known payload fixed on the robot, whose 
inertial parameters are measured or calculated by a CAD 
model. The method has been experimentally validated on an 
industrial Stäubli TX-40 robot. Using the identified drive 
gains, the identification of the total dynamic model has been 
improved and another payload has been accurately 

TABLE 2 
IDENTIFICATION OF THE PAYLOAD DYNAMIC PARAMETERS. 

  Case 1 Case 2 Case 3 

Parameter A priori value Identified values 2
î

 
ri

ˆ%  Identified values 2
î

 
ri

ˆ%  Identified values 2
î

 
ri

ˆ% 

XXL 0.64e-1 1.12e-1 1.99e-3 1.8 9.02e-2 1.54e-3 1.7 9.24e-2 1.45e-3 1.6 
XYL -1.80e-2 -1.83e-2 7.21e-4 3.9 -1.34e-2 6.65e-4 5.0 -1.45e-2 6.75e-4 4.7 
XZL 2.60e-2 2.93e-2 8.88e-4 3.0 1.96e-2 5.91e-4 3.0 1.93e-2 5.90e-4 3.1 
YYL 0.64e-1 1.15e-1 1.80e-3 1.6 9.12e-2 1.41e-3 1.5 8.77e-2 1.44e-3 1.6 
YZL 2.60e-2 4.15e-2 6.32e-4 1.5 3.59e-2 4.93e-4 1.4 3.75e-2 6.45e-4 1.7 
ZZL 4.40e-2 7.02e-2 5.78e-4 0.8 6.00e-2 4.68e-4 0.8 6.01e-2 4.69e-4 0.8 
MXL -2.90e-1 -3.02e-1 2.47e-3 0.8 -2.82e-1 2.35e-3 0.8 -2.83e-1 2.35e-3 0.8 
MYL -2.90e-1 -3.20e-1 2.55e-3 0.8 -2.82e-1 1.84e-3 0.7 -2.81e-1 1.83e-3 0.7 
MZL 4.10e-1 5.18e-1 4.38e-3 0.8 4.42e-1 3.41e-3 0.8 4.44e-1 3.39e-3 0.8 
ML 4.59 4.48 3.02e-2 0.7 4.58 2.73e-2 0.6 4.58 2.72e-2 0.6 

î
 is the standard deviation and 

ri
ˆ%  its relative value  

               
Fig. 2. The 4.59 Kg payload 

TABLE 4 
QUALITY OF IDENTIFICATION. 

 Error norm ̂ Relative Error norm ˆ / Y ˆ   

Case 1 33.8366 0.043245 0.495164 
Case 2 31.6252 0.0403937 0.462829 
Case 3 31.4783 0.0402846 0.46068 

ˆ ˆY W    is the minimal norm of error, ˆ  is given by (9). 

TABLE 3 
IDENTIFIED DRIVE GAINS. 

  Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6

A priori val. jg  32.96 32.96 25.65 -11.52 18.48 7.68 

Case 2 jg  35.22 32.02 23.92 -9.05 15.49 6.55 

 2
î

 0.540 0.483 0.372 0.015 0.252 0.011 

 ri
ˆ%  1.53 1.51 1.56 1.67 1.63 1.63 

Case 3 jg  35.24 32.04 23.94 -9.05 15.50 6.56 

 2
î

 0.540 0.484 0.372 0.015 0.252 0.011 

 ri
ˆ%  1.53 1.51 1.56 1.67 1.63 1.64 



  

identified. This shows the effectiveness of the method. 
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TABLE 5 
IDENTIFICATION OF THE NEW PAYLOAD DYNAMIC PARAMETERS. 

  Case 1 Case 2 Case 3 

Parameter A priori value Identified values 2
î

 
ri

ˆ%  Identified values 2
î

 
ri

ˆ%  Identified values 2
î

 
ri

ˆ% 

XXL 1.51e-2 1.57e-2 8.75e-4 5.6 1.35e-2 7.64e-4 5.7 1.15e-2 8.29e-4 7.2 
XYL -9.06e-4 -2.41e-3 3.16e-4 13.1 -1.60e-3 3.47e-4 21.7 -1.71e-3 3.52e-4 20.6 
XZL 3.61e-3 4.21e-3 3.34e-4 7.9 4.04e-3 2.91e-4 7.2 3.95e-3 3.84e-4 9.7 
YYL 1.51e-2 1.40e-2 8.95e-4 6.4 1.24e-2 7.78e-4 6.3 1.06e-2 7.71e-4 7.3 
YZL 3.61e-3 1.93e-3 3.00e-4 15.5 1.05e-3 2.63e-4 25.1 1.59e-3 2.63e-4 16.5 
ZZL 3.44e-3 3.88e-3 2.88e-4 7.4 1.26e-3 2.85e-4 22.7 3.26e-3 2.55e-4 7.8 
MXL -4.00e-2 -2.37e-2 1.59e-3 4.7 -2.58e-2 1.29e-3 5.0 -2.73e-2 1.31e-3 4.8 
MYL -3.99e-2 -4.18e-2 1.41e-3 3.4 -3.52e-2 1.17e-3 3.3 -3.49e-2 1.18e-3 3.4 
MZL 0.15 0.192 2.51e-3 1.3 0.161 2.24e-3 1.4 0.161 2.26e-3 1.4 
ML 1.686 1.66 1.74e-2 1.0 1.67 1.74e-2 1.0 1.68 1.76e-2 1.0 

î
 is the standard deviation and 

ri
ˆ%  its relative value  
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Fig. 3. Measured and reconstructed torques of the TX-40. 


