Off-line robot dynamic identification methods are based on the use of the Inverse Dynamic Identification Model (IDIM), which calculates the joint forces/torques that are linear in relation to the dynamic parameters, and on the use of linear least squares technique to calculate the parameters (IDIM-LS technique). The joint forces/torques are calculated as the product of the known control signal (the current reference) by the joint drive gains. Then it is essential to get accurate values of joint drive gains to get accurate identification of inertial parameters. In the previous works, it was proposed to identify each gain separately. This does not allow taking into account the dynamic coupling between the robot axes. In this paper the global joint drive gains parameters of all joints are calculated simultaneously. The method is based on the total least squares solution of an over-determined linear system obtained with the inverse dynamic model calculated with available current reference and position sampled data while the robot is tracking one reference trajectory without load on the robot and one trajectory with a known payload fixed on the robot. The method is experimentally validated on an industrial Stäubli TX-40 robot.

I. INTRODUCTION

EVERAL schemes have been proposed in the literature to identify the dynamic parameters of robots [START_REF] De | Parameters identification of robots manipulators via sequential hybrid estimation algorithms[END_REF]- [START_REF] Lu | Experimental determination of dynamic parameters of robotic arms[END_REF]. Most of the dynamic identification methods have the following common features: -the use of an Inverse Dynamic Identification Model (IDIM) which calculates the joint force/torque linear in relation to the dynamic parameters, -the construction of an over-determined linear system of equations obtained by sampling IDIM while the robot is tracking some trajectories in closed-loop control, -the estimation of the parameter values using least squares techniques (LS). This procedure is called the IDIM-LS technique. The experimental works have been carried out either on prototypes in laboratories or on industrial robots and have shown the benefits in terms of accuracy in many cases. Good results can be obtained provided two main conditions are satisfied: -a well-tuned derivative band-pass filtering of joint position is used to calculate the joint velocities and Manuscript received September 15, 2011. M. Gautier is with the University of Nantes and the Institut de Recherche en Communications et Cybernétique de Nantes (IRCCyN) 44321 Nantes France (phone: +33240376960; fax: +33240376930; e-mail: Maxime.Gautier@irccyn.ec-nantes.fr).

S. Briot is with the CNRS and IRCCyN, 44321 Nantes France (e-mail: Sebastien.Briot@irccyn.ec-nantes.fr). accelerations, -the accurate values of joint drive gains g  are known to calculate the joint force/torque as the product of the known control signal calculated by the numerical controller of the robot (the current references) by the joint drive gains [START_REF] Restrepo | Calibration of drive chain of robot joints[END_REF]. This needs to calibrate the drive train constituted by a current source amplifier with gain i G which supplies a permanent magnet DC or a brushless motor with torque constant t K coupled to the link through direct or gear train with gear ratio N .

Because of large values of the gear ratio for industrial robots, ( N >50), joint drive gain,

i t g NG K  
, is very sensitive to errors in i G and t K which must be accurately measured from special, time consuming , heavy tests, on the drive chain [START_REF] Restrepo | Calibration of drive chain of robot joints[END_REF] [START_REF] Corke | In situ measurement robot motor electrical constants[END_REF].

Several papers on the topic of the joint drive gains identification have been published in the past [START_REF] Restrepo | Calibration of drive chain of robot joints[END_REF]- [START_REF] Gautier | New Method for Global Identification of the Joint Drive Gains of Robots using a Known Payload Mass[END_REF], but all of them propose to identify each gain separately. This does not allow taking into account the dynamic coupling between the robot axes.

In this paper it is proposed a new method for the global identification of the joint drive gains, using current reference and position sampled data while the robot is tracking one reference trajectory without load fixed on the robot and one trajectory with a known payload fixed on the robot whose inertial parameters are measured. Contrary to the previous works, all drive gains are calculated in the same solving loop by the total LS solution of an over-determined system in order to take into account the coupling between the robot axes.

The method is experimentally validated on an industrial Stäubli TX-40 robot.

The paper is organized as follows: section 2 recalls the dynamic modelling and identification procedures. Section 3 deals with the new modelling and identification method for the robot drive gains parameters. Section 4 presents the experimental validations. Finally, section 5 gives the conclusion.

II. USUAL INVERSE DYNAMIC MODELS AND IDENTIFICATION

A. Inverse Dynamic Identification Model (IDIM)

It is known that the dynamic model of any manipulator can be linearly written in term of a   q,q,q, q,q,q

        
(1) where: idm  is the   ...
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q,q,q   are the vectors of the joint positions, velocities and accelerations, respectively.

For rigid robots, there are 14 standard parameters by link and joint. For the joint and link j, these parameters can be regrouped into the (14×1) vector j st  [START_REF] Khalil | Modeling, identification and control of robots[END_REF]:
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where:
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XX , XY , XZ , YY , YZ , ZZ are the 6 components of the inertia matrix of link j at the origin of frame j . The identifiable parameters are the base parameters which are the minimum number of dynamic parameters from which the dynamic model can be calculated. They are obtained from the standard inertial parameters by regrouping some of them by means of linear relations [START_REF] Mayeda | Base parameters of manipulator dynamic models[END_REF], which can be determined for the serial robots using simple closed-form rules [START_REF] Gautier | Direct calculation of minimum set of inertial parameters of serial robots[END_REF], [START_REF] Khalil | Modeling, identification and control of robots[END_REF], or by numerical method based on the QR decomposition [START_REF] Gautier | Numerical calculation of the base inertial parameters[END_REF].

The minimal dynamic model can be written using the b n base dynamic parameters  as follows:

( ) idm q,q,q       (3) 
where  is obtained from st  by eliminating the columns corresponding to the non identifiable parameters. Because of perturbations due to noise measurement and modelling errors, the actual force/torque  differs from idm τ by an error, e , such that: ( )

idm τ e q,q,q e          (4 
) where:

1 1 0 0 0 0 0 0 n n v g v g v g                                (5) v  is the ( ) n n
 matrix of the actual current references of the current amplifiers ( j v  corresponds to actuator j) and g  is the ( 1) n  vector of the joint drive gains ( j g  corresponds to actuator j). Equation ( 4) represents the IDIM.

B. Least Squares Identification of the Dynamic Parameters (IDIM-LS)

The off-line identification of the base dynamic parameters  is considered, given measured or estimated off-line data for τ and   q, q, q   , collected while the robot is tracking some planned trajectories. The model ( 4) is sampled and low pass filtered in order to get an over-determined linear system of ( ) n r  equations and b n unknowns:

    ˆŶ τ W q,q,q χ ρ     (6) 
where ( ) ˆq, q, q   are an estimation of ( ) q, q, q   , obtained by band-pass filtering and sampling the measure of q [START_REF] Gautier | Dynamic identification of robots with power model[END_REF].

ρ is the ( 1) r  vector of errors,   ˆŴ q, q, q   is the ( ) b r n  observation matrix.
Using the base parameters and tracking "exciting" reference trajectories, a well conditioned matrix W is obtained. The LS solution χ of ( 6) is given by:

    1 T T χ W W W Y W Y     (7) 
It is computed using the QR factorization of W . Standard deviations i   , are estimated assuming that W is a deterministic matrix and  , is a zero-mean additive independent Gaussian noise, with a covariance matrix C  , such that:

T 2 ( ) r C E ρρ I      (8) 
E is the expectation operator and I r , the ( ) r r  identity matrix. An unbiased estimation of the standard deviation

  is: 2 2 ( ) Ŷ -W r b      (9) 
The covariance matrix of the estimation error is given by:

T 2 T 1 [( )( ) ] ( ) ˆˆĈ E χ χ χ χ W W         . ( ) i 2 ˆĈ i,i      is the i th diagonal coefficient of ˆĈ  ( 10 
)
The relative standard deviation ri %   is given by:

100 ri i ˆˆi %       , for i  ≠ 0 (11) 
The ordinary LS can be improved by taking into account different standard deviations on joint j equations errors [START_REF] Gautier | Dynamic identification of robots with power model[END_REF]. Data in Y and W of ( 6) are sorted and weighted with the inverse of the standard deviation of the error calculated from OLS solution of the equations of joint j [START_REF] Gautier | Dynamic identification of robots with power model[END_REF].

This weighting operation normalises the errors in ( 6) and gives the weighted LS estimation of the parameters (IDIM-WLS).

III. GLOBAL IDENTIFICATION OF THE JOINT DRIVE GAINS

A. IDIM Including a Payload and Drive Gains

The payload is considered as a link 1 n  fixed to the link n of the robot. Only L n of its parameters are considered known. The model (4) becomes:
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where:

kL  is the ( 1)
L n  vector of the known inertial parameters of the payload; 

B. Total Least Squares Identification of the Drive Gains (IDIM-TLS)

Details on the TLS identification method can be found in [START_REF] Van Huffel | The Total Least Squares Problem: Computational Aspects and Analysis[END_REF] and many papers of the same authors. This method has been applied in [START_REF] Gautier | Identification of inertial and drive gain parameters of robots[END_REF] for the identification of the drive gains and the dynamic parameters on a two degrees of freedom robot (dof) but gives arguable results due to the lack of an accurate scale factor. In this paper we propose a major improvement with the scaling of parameters using the accurate value of an additional payload mass.

In order to identify the payload parameters, it is necessary that the robot carried out two trajectories: (a) without the payload and (b) with the payload fixed to the end-effector [START_REF] Khalil | Identification of the payload inertial parameters of industrial manipulators[END_REF]. The sampling and filtering of the model IDIM ( 12) can be then written as: 0
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where:

a V  is the matrix of v  samples in the unloaded case, b V  is the matrix of v  samples in the loaded case, 1 1 2 2 0 0 0 0 0 0 j i, i j i, j i i i j n i,r / n i v V v V V ,V v V                                               , with i =a, b (14) j i,k
v  is the k-th sample of current reference for actuator j, a W is the observation matrix of the robot in the unloaded case, b W is the observation matrix of the robot in the loaded case, uL W is the observation matrix of the robot corresponding to the unknown payload inertial parameters, kL W is the observation matrix of the robot corresponding to the known payload inertial parameters. Eq. ( 13) becomes:

tot tot W    (15) where 0 0 a a tot b b u L k L W V W W V W W            is a ( ) tot tot r r  matrix,
and

T T T T T tot uL kL g           is a ( + +10) b n n vector.
Without perturbation, 0

  and tot W should be rank deficient to get the solutions tot 0   depending on a scale coefficient  . However because of the measurement perturbations, tot W is a full rank matrix. Therefore, the system ( 15) is replaced by the compatible system closest to [START_REF] Mayeda | Base parameters of manipulator dynamic models[END_REF] with respect to the Frobenius norm:
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)
where tot Ŵ is the rank deficient matrix, with the same dimension as tot W , which minimizes the Frobenius norm

tot tot F Ŵ W  .
tot  is the solution of the compatible system closest to [START_REF] Mayeda | Base parameters of manipulator dynamic models[END_REF].

tot

Ŵ can be computed thanks to the Singular Value Decomposition (SVD) of tot W [START_REF] Golub | Matrix computation[END_REF]:
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)
where U and V are ( ) The optimal scale factor  can be calculated as the LS solution of :

tot
T tot tot n n n n n n Ŵ W U V       , (18) 
1 kL kL kL       (19) 

C. Discussion on the A Priori Knowledge of the Payload Parameters

The accuracy of  depends on the accuracy of kL  , depending on the knowledge of the payload parameters, and on the accuracy of 1 kL  in [START_REF] Van Huffel | The Total Least Squares Problem: Computational Aspects and Analysis[END_REF].

The most accurate payload parameter is the mass value L M that can be accurately measured using a weighing machine.

Then in the next section we shall compare 2 solutions:

1 1 k L k L ˆ     ( 20 
)
where 1  is the LS solution of ( 19) calculated with all known payload parameters, and:

1 2 L L ˆM M   (21)
where

1 L M is the identified value of L M in 1 tot  .
It will be shown in the next section, that the experimental results confirm the efficiency of the approach that uses the mass only.

IV. CASE STUDY

A. Description of the TX 40 Kinematics

The Stäubli TX-40 robot (Fig. 1) has a serial structure with six rotational joints. Its kinematics is defined using the modified Denavit and Hartenberg notation (MDH) [START_REF] Khalil | A new geometric notation for open and closed loop robots[END_REF]. In this notation, the link j fixed frame is defined such that the j z axis is taken along joint j axis and the j x axis is along the common normal between j z and j 1 z  (Fig. 1). The geometric parameters defining the robot frames are given in Table 1. The payload is denoted as the link 7. The parameter 0 j   , means that joint j is rotational, j  and j d parameterize the angle and distance between j 1 z  and j z along j 1 x  , respectively, whereas j  and j r parameterize the angle and distance between j 1 x  and j x along j z , respectively. For link 7, 2 j   means that the link 7 is fixed on the link 6. Since all the joints are rotational then the MDH position j  is equal to the joint position j q given by the CS8C controller of the TX-40 robot, except for joints 2 and 3 where the MDH notation differs the Staübli variables, 2

2 2 q /      2 3 3 q /    
. The TX40 robot is characterized by a coupling between the joints 5 and 6 such that:
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where j qr  is the velocity of the rotor of motor j, j q  is the velocity of joint j, K5 is the transmission gain ratio of axis 5 and K6 is the transmission gain ratio of axis 6, τ cj is the motor torque of joint j, taking into account the coupling effect, τ rj is the electro-magnetic torque of the rotor of motor j. With the coupling between joints 5 and 6, ( 5) and ( 14) becomes:
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and
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The coupling between joints 5 and 6 also adds the effect of the inertia of rotor 6 and new viscous and Coulomb friction parameters fv m6 and fc m6 , to both τ c5 and τ c6 .

We can write: sign( )

5 c 5 6 6 6 6 6 6 Ia q fvm q fcm q          and   sign( + ) sign( ) 6 c 6 6 5 6 5 6 5 6 6 Ia q fvm q fcm q q q             .
where τ 5 , τ 6 already contain the terms j j j j j j ( Ia q fv q fc sign( q ))  

  

, for j=5 and 6 respectively, Ia K Ja  (25) Ja j is the moment of inertia of rotor j .

The TX40 has N s =86 standard dynamic parameters given by the 14×6 usual standard parameters, plus fv m6 and fc m6 .

B. Identification of the Drive Gains

The proposed method is validated using a calibrated payload (Fig. 2). 

 j  j d j  j r j 1 0 0 0 q 1 0 2 0  0 q 2  0 3 0 0 d 3 = 0.225 (m) q 3  rl 3 = 0.035 (m) 4 0  0 q 4 rl 4 = 0.225 (m) 5 0  0 q 5 0 6 0  0 q 6 0 7 2 0 0 0 0 5 z 4 5 6
, , x x x 2. Their values are accurate due to the simplicity of the payload shape (Fig. 2).

Three different identifications of the payload inertia parameters are achieved: -Case 1: the payload parameters are identified using the manufacturer's drive gains -Case 2: the drive gains are first identified with the base parameters with IDIM-TLS using ( 20) calculated with all known payload parameters. They are then used in order to reidentifiy the payload parameters and the robot dynamic parameters with IDIM-WLS. -Case 3: the drive gains are first identified with the base parameters with IDIM-TLS using (21) calculated with only the mass of the payload. They are then used in order to reidentifiy the payload parameters and the robot dynamic parameters with IDIM-WLS. The a priori drive gains (Case 1) and the identified ones (Cases 2 and 3) are given in table 3. For each joints, the identified values are close for the manufacturer's values, but the mean error is about 11%. The maximal error grows up to 21%!

The identified values of the payload inertial parameters are presented in table 2. Moreover, the quality of identification is detailed at table 4. It appears that the identified gains lead to the best results. Moreover, the best model identification is achieved with the use of the TLS with only the mass. This result is really appealing for industrial applications and show the efficiency and the simplicity of the method.

Finally, in order to validate the new drive gain values a new payload is identified (Table 5). The parameters are very close to the a priori ones in all cases but the best identification is still obtained with the gains of Case 3. The torques calculated with the model ( 12) identified with the gains of Case 3 are presented in Fig. 3. It is possible to conclude that the drive gains have been well identified with the IDIM-TLS.

V. CONCLUSION

This paper has presented a new method for the global identification of the total drive gains for robot joints. This method is easy to implement and does not need any special test or measurement on elements inside the joint drive train. It is based on a IDIM-TLS technique using current reference and position sampled data while the robot is tracking one reference trajectory without load fixed on the robot and one trajectory with a known payload fixed on the robot, whose inertial parameters are measured or calculated by a CAD model. The method has been experimentally validated on an industrial Stäubli TX-40 robot. Using the identified drive gains, the identification of the total dynamic model has been improved and another payload has been accurately  is given by (9). 

  , MZ are the 3 components of the first moment of link j , j M is the mass of link j , j Ia is a total inertia moment for rotor and gears of actuator j .

  uL  is the ((10 ) 1) L n   vector of the unknown inertial parameters of the payload, kL  is the ( ) L n n  jacobian matrix of idm  , with respect to the vector kL  , idm  , with respect to the vector uL  .

W

  sorted in decreasing order. The solution of (16) is given by: b b b

V

   , resp.) the column of U (V, resp.) corresponding to by taking into account the known values kL  of the payload parameters and their corresponding identified values 1 kL  .

Fig. 1 .

 1 Fig. 1. Link frames of the TX-40 robot

Fig. 3 .

 3 Fig. 3. Measured and reconstructed torques of the TX-40.
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TABLE I GEOMETRIC

 I PARAMETERS OF THE TX-40 ROBOT WITH THE PAYLOAD j

TABLE 2

 2 

			IDENTIFICATION OF THE PAYLOAD DYNAMIC PARAMETERS.				
	Parameter	A priori value	Case 1 Identified values	2   i 		ri % 	Case 2 Identified values	2   i 		ri % 	Case 3 Identified values	2   i 		ri % 
	XX L	0.64e-1	1.12e-1	1.99e-3 1.8	9.02e-2	1.54e-3 1.7	9.24e-2	1.45e-3 1.6
	XY L	-1.80e-2	-1.83e-2	7.21e-4 3.9	-1.34e-2	6.65e-4 5.0	-1.45e-2	6.75e-4 4.7
	XZ L	2.60e-2	2.93e-2	8.88e-4 3.0	1.96e-2	5.91e-4 3.0	1.93e-2	5.90e-4 3.1
	YY L	0.64e-1	1.15e-1	1.80e-3 1.6	9.12e-2	1.41e-3 1.5	8.77e-2	1.44e-3 1.6
	YZ L	2.60e-2	4.15e-2	6.32e-4 1.5	3.59e-2	4.93e-4 1.4	3.75e-2	6.45e-4 1.7
	ZZ L	4.40e-2	7.02e-2	5.78e-4 0.8	6.00e-2	4.68e-4 0.8	6.01e-2	4.69e-4 0.8
	MX L	-2.90e-1	-3.02e-1	2.47e-3 0.8	-2.82e-1	2.35e-3 0.8	-2.83e-1	2.35e-3 0.8
	MY L	-2.90e-1	-3.20e-1	2.55e-3 0.8	-2.82e-1	1.84e-3 0.7	-2.81e-1	1.83e-3 0.7
	MZ L	4.10e-1	5.18e-1	4.38e-3 0.8	4.42e-1	3.41e-3 0.8	4.44e-1	3.39e-3 0.8
	M L	4.59	4.48	3.02e-2 0.7	4.58	2.73e-2 0.6	4.58	2.72e-2 0.6

i   is the standard deviation and ri %   its relative value

Fig. 2. The 4.59 Kg payload

TABLE 4 QUALITY

 4 OF IDENTIFICATION. Error norm  Relative Error norm ˆ/ Y 

	ˆ 

TABLE 3 IDENTIFIED

 3 DRIVE GAINS.  Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6

	A priori val.

j g



  32.96 32.96 25.65 -11.5218.48 7.68 

	Case 2	j g 		35.22 32.02 23.92 -9.05 15.49 6.55
		2 		i	0.540 0.483 0.372 0.015 0.252 0.011
			ri % 	1.53	1.51	1.56	1.67 1.63 1.63
	Case 3					

j g  35.

24 32.04 23.94 -9.05 15.50 6.56 2

  

			i	0.540 0.484 0.372 0.015 0.252 0.011
		ri % 	1.53	1.51	1.56	1.67 1.63 1.64
	identified. This shows the effectiveness of the method.					

TABLE 5 IDENTIFICATION

 5 OF THE NEW PAYLOAD DYNAMIC PARAMETERS.

	Case 1	Case 2	Case 3
	Parameter A priori value Identified values