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A multiple-hypotheses map matching method suitable for

weighted and box-shaped state estimation for localization
Fahed Abdallah, Ghalia Nassreddine and Thierry Denœux

Abstract—The goal of map-matching algorithms is to identify the road

taken by a vehicle and to compute an estimate of the vehicle position on

that road using a digital map. In this paper, a map-matching algorithm

based on interval analysis and belief function theory is proposed. The

method combines the outputs from existing bounded error estimation

techniques with piecewise rectangular roads selected using evidential

reasoning. A set of candidate roads is first defined at each time step using

the topology of the map and a similarity criterion, and a massfunction

on the set of candidate roads is computed. An overall estimate of the

vehicle position is then derived after the most probable candidate road

has been selected. This method allows multiple road junctions hypotheses

to be handled efficiently, and can cope with missing data. Also, the

implementation of the method is quite simple as it is based ongeometrical

properties of boxes and rectangular road segments. Experiments with

simulated and real data demonstrate the ability of this method to handle

junction situations and to compute an accurate estimate of the vehicle

position.

Index Terms—Map-matching, Dempster-Shafer theory, Evidential rea-

soning, Multi-sensor fusion, Interval analysis, Bounded error estimation,

Multiple Hypotheses technique.

I. I NTRODUCTION

Many research and industrial applications require accurate local-

ization and/or tracking of moving vehicles [14][26][42]. Satellite-

based navigation systems like the global positioning system (GPS)

are playing an important role in vehicle localization as a result of their

24-hour, all weather, free-of-charge availability. However, GPS by

itself is not always the ideal solution. It was originally designed with

an inherent error of at least 10 meters for non-military applications.

Also, it suffers from line of sight issues that make it less effective in

urban canyons. One possible solution for correcting GPS error is the

integration of GPS data with other sensor data such as dead reckoning

(DR) using a data fusion algorithm [48].

A critical issue when designing data fusion algorithms is the

representation of uncertainties that pervade both sensor measurements

and the state space model. Two main categories of data fusion

algorithms can be distinguished:

• Recursive Bayesian estimation, based on a probabilistic descrip-

tion of uncertainty;

• State bounding methods, based on a set-membership description

of uncertainty.

Methods in the first category assume the measurement noise and

state perturbations to be realizations of random variableswith known

statistical properties. This is the mainstream approach. The most

common approaches are the Extended Kalman filter (EKF) and the

particle filter (PF). The EKF linearizes the state and measurement

equations and then applies the Kalman filter to obtain state estimates

[8][21], assuming the process and observation noises to be normal.

The state posterior probability distribution is approximated by a

Gaussian distribution that is propagated analytically through the

linearized system equations. However, the linearization is inherently

local and may fail to produce reliable estimates, especially when

the state model is highly non-linear. The statistical interpretation of

covariance matrices is also unclear in this approach, as thestatistical

properties of the perturbations though non-linear equations is ill-

known.

Sequential Monte Carlo methods for recursive Bayesian filtering,

often referred to as particle filters (PF), usually provide more accurate

information about the state posterior probability distribution than does

the EKF, especially if it has a multimodal shape or if the noise

distributions are non Gaussian [41]. The efficiency and accuracy

of the PF depends mainly on the number of particles and on the

propagation method used to re-allocate weights to these particles at

each iteration. To cope with high measurement uncertainty,a large

number of particles has to be used, especially when the dimension

of the state vector is large; this may be an issue for real time

implementation of the PF. Several authors have tried to overcome

these shortcomings by combining approaches (see [25] and references

therein) or by adapting the size of sample sets during the estimation

process [19].

The classical data fusion algorithms mentioned above are strongly
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affected by several types of measurement errors like bias and drift, or

even by partial or total conflict between the sources of information

[4][6][10]. Moreover, these methods critically rely on accurate state

space and observation noise models, which are rarely available.

Methods in the second group, referred to asstate boundingor

bounded errormethods, assume all variables to belong to known

compact sets and attempt to build simple sets, such as boxes,guaran-

teed to contain all state vectors consistent with given constraints [29].

These methods are deterministic approaches and handle onlyinterval

information acquired from multiple sources. The interval framework

has been shown by several authors to be a good methodology for

dealing with non-white and biased measurements [1][7][23][29][30].

Recently, a relatively simple and fast method based on constraint

propagation and interval analysis has been introduced in [22][23]

with an application to vehicle localization. The use of the box

representation of the state is dictated by computational convenience:

the main advantage of this representation is that intervalscan easily

be manipulated using interval analysis. The main interest of the

bounded-error approach arises from the fact that it allows so-called

validated computations, i.e., computations with guaranteed accuracy

taking into account all possible sources of error, from dataimpre-

cision to rounding errors due to computer calculations. Themajor

drawback of this approach is the difficulty in determining noise

bounds. If the bounds are too tight, the data may become inconsistent

with the system equations, in which case the method fails to provide

a solution, but if the bounds are overestimated, the estimated state

becomes very imprecise, and the method becomes overly pessimistic.

Integrated GPS/DR systems using data fusion usually fail to

provide the current vehicle position on a given road segment

[2][3][9][47]. The availability of an accurate digital road network

makes it possible to find the vehicle position on a road segment. This

technique is referred to asmap matching(MM). The general purpose

of an MM algorithm is to identify the correct road segment on which

the vehicle is travelling and to compute the vehicle position on that

segment. A number of different algorithms have been proposed for

MM in different applications [11][20][28][49][50]. In most existing

MM algorithms, the parameters used to select a precise road segment

are based on the proximity between the vehicle position and the road,

the degree of correlation between the vehicle trajectory and the road

centerline, and the topology of the map. In [28] and [35], theauthors

proposed a MM algorithm in which the multiple hypotheses technique

(MHT) is used in order to compute a more accurate estimate of the

vehicle position on the road segment. MHT involves keeping track

of several positions of the vehicle simultaneously, and, ifpossible,

selecting the best candidate. In this approach, probability theory

is used for identifying candidate roads and for selecting the best

one [27], [35].

In this paper, we propose an MM algorithm called Belief Map

Matching (BMM), that combines bounded error state estimation with

a rectangular road map representation and that manages multiple

hypotheses usingbelief function theory, also referred to asDempster-

Shafer theory[32], [39], [45], [51]. The rectangular road represen-

tation takes geometrical errors in the map and a priori information

on road width into account. This representation makes it possible to

combine map information with box state estimates in a convenient

way. A belief function on a set of candidate roads is computedusing

geometrical and topological information provided by the map. This

method allows us to handle multiple hypotheses at junctionsor when

roads are parallel, and to cope with missing data.

The paper is organized as follows. An overview of existing map-

matching algorithms is first presented in Section II. Section III

introduces the background on basic tools used in this work, i.e.,

interval analysis and belief function theory. Our method isthen

introduced in Section IV. Experimental results with simulated and

real data are presented in Section V. Finally, Section VI summarizes

and discusses the main contributions of the paper.

II. REVIEW OF MAP-MATCHING ALGORITHMS

The goal of map-matching (MM) algorithms is to identify the

road taken by a vehicle and to compute an estimate of the vehicle

position on that road using a digital map. In this section, wepresent

an overview of existing MM methods and we discuss their limitations

as well as the motivations of our work.

A. Overview of Existing MM methods

MM algorithms can be classified into three categories. Algorithms

in the first category consider only the geometric relationships between

the estimated position of the vehicle and a digital map [47][50].

Algorithms in the second category also consider the topology of the

road network and historical data regarding the estimated position of

the vehicle [24]. Finally, methods in the third category, referred to

as advanced methods, use sophisticated tools such as the Kalman

Filter (KF) [28], Bayesian networks [43], Dempster-Shafertheory

(also known as Belief theory) [17] or fuzzy logics [46].
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The most common geometric MM approach is based on a simple

search concept [36]. In this approach, the vehicle positionis matched

to the nearest node or shape point in the digital map. This approach

is known aspoint-to-point matching[9]. It is easy to implement, but

is strongly affected by the way in which the network was digitized

[36]. Another geometric MM approach ispoint-to-curve matching

[47][50]. In this approach, the vehicle position is matchedto the

nearest road (curve) in the road network. As each road is composed

of several line segments, the distance between the vehicle position and

each line segment is calculated. The line with the smallest distance

is judged to be the one on which the vehicle is travelling. This

approach is usually more efficient than point-to-point matching but

it generates unstable results in dense urban networks [36].Curve

to curve matchingconstitutes yet another geometric MM approach.

In this approach, the candidate nodes are first selected using point-

to-point matching. Then, for each candidate node, piecewise linear

curves are constructed from the set of paths that originate from that

node. Also, a piecewise linear curve can be constructed using the

vehicle trajectory. The distance between the trajectory and the road

curve is then calculated. The road at the smallest distance from

the vehicle trajectory is selected. Unfortunately, this approach is

quite sensitive to outliers and it sometimes yields unexpected and

undesirable results [36].

In the second category of algorithms, in addition to geometric

information, the result of the MM algorithm at time stepk − 1 is

used for selecting candidate roads at time stepk using the topology

of the road network as a constraint [47]. These methods are usually

based on a weighted topological algorithm for selecting thevehicle’s

current road. Using the topology analysis of a road network and the

coordinates or the trajectory information of the vehicle, this algorithm

can compute the weight of each candidate road. The actual road

taken by the vehicle is judged to be the one with the largest weight.

However, if the result given by the algorithm was wrong at time

stepk − 1, then the result at time stepk is also likely to be wrong,

especially after a junction or where there are close parallel roads.

This constitutes a major implementation problem and drawback of

this method.

We may remark that most existing map matching algorithms apply

a simple perpendicular projection of the position fixes ontothe

selected links, and ignore the numerous errors associated with the

positioning sensors and the spatial road network data.

Advanced MM methods are based on more elaborate tools such

as the KF, Demspter-Shafer theory, fuzzy logics and the MHT

[17][31][35][46].

In [17], a road selection method based on multi-criteria fusion

using belief function theory is proposed. In this method, a confidence

region is used for selecting a set of candidate roads (CRs). Proximity

and angular criteria are used in order to define a belief function on a

set of CRs. The road with the highest degree of belief is then selected.

This method, however, can yield inaccurate results in the case of

parallel roads, as it does not consider the topology of the road network

when selecting the set of CRs. Also, when GPS measurements are

not available, the estimated position can be attributed to the wrong

road, as this method does not use the multiple hypotheses technique.

In [31], an MM method based on the KF and geometrical properties

is presented. In this method, the most plausible road is chosen using

the point-to-curve method. The orthogonal projected location of the

position fix onto the link is used as the initial vehicle location. Due

to the point-to-curve projection, the cross-track error isreduced, as

compared to the point-to-point method. However, the along-track

error remains a key issue. A KF is then designed to re-estimate

the vehicle position with the objective of minimizing the along-track

error. As stated above, the point-to-curve method is not sufficient for

selecting the correct link, especially in dense urban road networks.

If the identification of the link is incorrect, then the inputs of the

KF will also be inaccurate, which may result in further positioning

errors.

In [46], the authors describe a map matching algorithm basedon

a fuzzy model. This algorithm is composed of two main steps. The

first step, referred to as thefirst fix mode, is the initialization step. It

is based on a fuzzy inference system (FIS), which is used to identify

the correct road of the vehicle. The FIS selects a set of linksthat

are within a given region of the GPS/DR position fix. A link is then

identified based on the direction of the vehicle relative to the direction

of the links and the heading change from the gyroscope. The location

of the vehicle is then determined by an orthogonal projection of the

position fixed onto that link. This step takes about30 sec to identify

the first road. In the second step, called thetracking mode, another

FIS is used to find out whether the subsequent position fixes can be

matched to the link identified in the first fix mode. The inputs are

proximity, orientation and distance traveled by the vehicle along the

link. If there are any outliers in the GPS/DR outputs, or if a turn

is detected, then the algorithm goes back to the first fix mode.This

method is not recommended in urban areas. Indeed, the algorithm
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TABLE I

NEEDED INFORMATION FOR USEDMM METHODS

Used information [36] [17] BMM

Punctual state information Yes Yes No

Bayesian state representation No Yes No

Bounded state representation No No Yes

Geometrical information Yes Yes Yes

Roads connectivity No No Yes

Similarity in orientation Yes Yes No

Roads width No Yes Yes

may have to use the first fix mode frequently, which induces a delay

in the identification of the first correct link. Also this method does

not take into account the error sources associated with the navigation

sensors and the digital maps and hence the determination of vehicle

location is not robust.

In [35], a map matching algorithm using MHT is proposed. The

main contribution of this work is the use of MHT to solve the

MM problem in some crucial situation such as junctions and parallel

roads. MHT, which uses measurements from a validation region, is

reformulated as a single target problem to develop the map matching

method. Pseudo-measurements are generated for all links within

the validation region defined as the error ellipse from the GPS/DR

system. Pseudo-measurements (position and heading) are defined as

the projected points of the GPS/DR positions on the links. The

topological analysis of the road network (connectivity, orientation,

and road design parameters) together with the pseudo-measurements

are used to derive a set of hypotheses and their probabilities for

each GPS/DR sensor output. Hypotheses with probabilities below a

certain threshold are rejected. The map matching is only applied to

the valid hypotheses and then a KF is executed to estimate thevehicle

position on the CR corresponding to each hypothesis. The estimated

position corresponding to the hypothesis with the highest probability

is selected as the most plausible position of the vehicle.

B. Motivations of this Work

Map matching methods are based on combining an available state

estimate with data extracted from a map database. These methods

differ according to whether they are applied to probabilistic or

bounded state estimates, to the subset of attributes used from the

available map database, and to how these data are merged.

Classical MM methods rely on a Bayesian representation of the

state uncertainty and are not suitable for handling boundederror

estimation.

Box or bounded representation of the state has proved to be

efficient in many applications, as shown in [1][30]. As a consequence,

a new map matching method based on this type of state representation

is becoming increasingly necessary. This in fact is one of the principle

motivations of the BMM method presented in the paper. Furthermore,

using a state box representation seems to be more intuitive when deal-

ing with a rectangular road representation. The Multiple hypothesis

assumption of the MM problem constitutes one of the advantages of

the method. Depending on the estimation approach, criteriabased on

the proximity, historical navigation information and the topology of

the road network have to be adapted.

One major problem of some existing MM methods is that they do

not consider exhaustively the map error and the road width inthe

selection of the correct link and in the determination of thevehicle

position. In the proposed MM method, a rectangular representation

of the roads is used to overcome the problem of existing MM

method by taking into account in a natural way map errors and

road widths, which are quantities available in recent map databases.

Furthermore, the rectangular representation of the map allows us to

take into account several types of error on the available digital map,

as it is more exhaustive than other representations used in some

existing works [28][18]. In addition, state boxes and rectangular road

representations fulfil naturally the integrity requirements studied in

[37]. This is explained in more details in Section IV-E.

Belief function theory will be used for road selection and to

handle multiple hypotheses. As will be shown, the use of belief

functions makes it possible to detect missing map data (a common

problem in MM) in a simple and efficient way. In contrast, this

issue requires more complex procedures in existing classical map

matching methods [11][28]. Furthermore, the management ofmulti-

ple hypothesis cases (junction and parallel road situations) requires a

complicated implementation under the Bayesian framework because

of combinatorial problems [28]. As will be shown, the theoryof

belief functions makes it possible to design a simple solution to this

problem, using the topology of the map and historical navigation

information (link ID, vehicle location, vehicle heading and speed or

elementary displacement).

Table I set out the information requirements of the different

methods to be implemented in this paper. This table clearly shows

that only our method is well adapted to bounded error approaches.

Also, this method gathers simultaneously, and in a simple manner,
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different topological attributes of the map database. Notethat even

though the similarity in orientation criterion is not used in the BMM

method, the flexibility of the belief function theory used tomerge

information makes it easy to take into account this criterion (or any

other criterion) in the BMM algorithm.

Table II summarizes the ideas behind some MM algorithms that

are discussed in the paper. This table also shows the advantages and

the limitations of the different algorithms.

III. B ASIC TOOLS

In this section, the basic tools used in this paper are briefly

introduced. Interval analysis is first presented in Subsection III-A, and

the necessary background on belief functions is recalled inSubsection

III-B.

A. Interval Analysis

We briefly present interval analysis and we describe the constraint

propagation technique, also referred to as the consistencetechnique

by some authors.

1) Basic Notions: Usually, interval analysis is used to model

quantities that vary around a central value within certain bounds.

A real interval, denoted[x], is defined as a closed and connected

subset ofR:

[x] = [x, x] = {x ∈ R/x ≤ x ≤ x},

wherex andx are the lower and upper bounds of[x]. A box [x] of

R
n is defined as a Cartesian product ofn intervals:

[x] = [x1]× [x2] · · · × [xn].

The set ofn-dimensional boxes will be denoted byIRn.

All set-theoretic operations, e.g.,∩,∪, . . . as well as the four

elementary arithmetic operations{+,−, ∗, /} can be extended to the

interval context. In general, the image of a box[x] ∈ IR
n by a

function f may have any shape. It may be non-convex shape or even

multiply connected iff is discontinuous, as shown in Figure 1. An

interval function [f ] from IR
n to IR

m is said to be aninclusion

function for f if

f([x]) ⊆ [f ]([x]), ∀[x] ∈ IR
n. (1)

Inclusion functions may be very pessimistic, as shown by Figure

1. The inclusion function[f ] is minimal if, for any [x], [f ]([x]) is

the smallest box ofRm containing f([x]). The minimal inclusion

function for f is unique and may be denoted[f ]∗.

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx

f([x])

[x]

[f ]∗([x])

[f ]([x])

Fig. 1. Images of a box[x] by a functionf , a pessimistic inclusion function

[f ] and the minimal inclusion function[f ]∗.

Different algorithms can be used in order to reduce the size of

boxes enclosingf([x]). For the fusion problem considered here, we

have chosen to use constraint propagation techniques [29],because

of the great redundancy of data and equations.

2) Constraint Satisfaction Problems (CSP):Considern variables

xi, i ∈ {1, . . . , n} linked bym relations (or constraints) of the form

fj(x1, . . . , xn) = 0, j = 1, . . . ,m. (2)

If we denote byx the vector(x1, x2, · · · , xn)
T and byf the function

whose coordinate functions are thefj : f = (f1, f2, · · · , fm)T , we

can write thesem constraints in vector notation as

f(x) = 0.

Let us assume that vectorx is known to belong to some prior

domain [x], and we want to compute the set of allx in the prior

domain verifying the constraints. This defines a constraintsatisfaction

problem (CSP), which can be denoted as

H : (f(x) = 0,x ∈ [x]). (3)

The solution set ofH is defined as:

S = {x ∈ [x] | f(x) = 0}. (4)

Note thatS is not necessarily a box. Under the interval framework,

solving the CSP implies finding a box[x]′ such thatS ⊆ [x]′ ⊆ [x].

Figure 2 illustrates a simple CSP with two variables and a single

constraint.

ContractingH means replacing[x] by a smaller domain[x]′ such

thatS ⊆ [x]′ ⊆ [x]. A contractor for H is any operator that can be

used to contractH.

There are different kinds of methods to develop contractors. Each

of these methods may be particularly well suited to certain types
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TABLE II

MM METHODS COMPARISON

MM method Idea, advantages and drawbacks or limitations

Geometrical approaches [9][47][50] simple search concept, easy to implement

generates unstable results in dense urban area

lack of map topology information

sensitive to map imprecision

Quddus et al. [36] geometric algorithm, relatively simple to implement

similarity in orientation

lack of road widths and connectivity

poor detection of missing data without adaptation

no Multiple Hypothsesis assumption

El Najjar and Bonnifait [17] multiple-criteria fusion using Belief function theory

proximity and similarity in orientation are used

lack of road connectivity

considers missing data

no Multiple Hypothsesis assumption

Syed and Cannon [46] fuzzy logic theory is used

confidence regions are used for selecting the correct road

proximity and similarity in orientation are used

map error and navigation system error are not considered

not easy to implement and relatively complex

Pyo et al. [35] multiple hypothesis technique is used

topology analysis is used for deriving a set of hypothesis

road width is not used

probability theory is used for managing multiple hypothesis

map erro is not considered

BMM multi-criteria fusion using Belief function theory

use of similarity and topology criteria

adapted to bounded representation of the state

naturally adapted to detecting missing data

handles Multiple Hypothsesis case

relatively simple to implement

use of orientation criterion is possible but needs small adaptation

x1 x1x′
1

x′
2

x1

x2

x2

x2

f(x1, x2) = 0

Fig. 2. A CSP inR2.

of CSP. The method used in this paper is the forward-backward

propagation technique, also referred to as theWaltz contractor[29].

The Waltz contractor is based on the propagation ofprimitive

constraintsfor real variables. A primitive constraint is a constraint

involving a single operator (such as+,−, ∗ or /) or a single function

(such ascos, sin or sinh). The method proceeds by contractingH

with respect to each of the primitive constraints until convergence to

a minimal domain. The complete description of the Waltz algorithm

goes beyond the scope of this paper. It can be found in [29, page
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77]. This algorithm was applied to state estimation in [23] and [33].

B. Belief Function Theory

1) Basic Concepts:In recent decades, the theory of belief func-

tions, also known as Dempster-Shafer or Evidence theory, has

emerged as a flexible framework for handling imprecise and uncertain

information [39][45][51]. Belief functions can be used to replace the

probability-based representation of uncertainty adoptedin classical

MM and MHT methods. The theory of belief functions makes it

possible to model various states of knowledge ranging from complete

ignorance to probabilistic uncertainty [51]. A belief function may

be viewed both as a generalized set [15] and as a generalized

probability measure: DS theory thus encompasses set-basedas well

as probabilistic formalisms.

In this section, we introduce the main concepts of Belief function

theory. LetΩ denote a finite set of mutually exclusive and exhaustive

hypotheses, called the frame of discernment. Amass functionm is

a mapping from2Ω to [0, 1], satisfying:

∑

A⊆Ω

m(A) = 1.

Each quantitym(A) represents a mass of belief that is committed

to A, and cannot be assigned to any strict subset ofA, based on a

given piece of evidence. Every subsetA of Ω such thatm(A) > 0

is called afocal setof m. If m(∅) = 0 thenm is said to be normal.

Thebelief functioninduced bym is the functionbel : 2Ω 7−→ [0, 1]

satisfying:

bel(A) =
∑

∅6=B⊆A

m(B) for all A ⊆ Ω. (5)

A categorical belief function is a belief function that satisfiesm(A) =

1 for someA ⊂ Ω. The belief function onΩ which hasm(Ω) = 1

is the vacuous belief function.

The plausibility function, denotedpl, quantifies the maximum

amount of potential specific support that could be given toA ⊆ Ω. It

is obtained by adding all the masses given to focal setsB that satisfy

B ∩A 6= ∅:

pl(A) =
∑

B∩A6=∅

m(B) = bel(Ω)− bel(A), (6)

whereA denotes the complement ofA.

Assume that a source of information provides a mass functionm,

and that we have a degree of confidenceα ∈ [0, 1] in the reliability

of that source. Then,m can bediscountedwith discount rate1−α,

resulting in the following discounted mass function [39]:

αm(A) =











α m(A) if A ⊂ Ω,

1− α(1−m(Ω)) if A = Ω.

Two mass functionsm1 and m2 defined on the same frame of

discernmentΩ and induced by distinct sources of information can be

combined by theconjunctive rule[44] defined as:

(m1 ∩©m2)(A) =
∑

B∩C=A

m1(B)m2(C), ∀A ⊆ Ω. (7)

The quantity(m1 ∩©m2)(∅) is called thedegree of conflictbetween

the information sources. Under the so-calledopen-world assumption

[44], a high degree of conflict may sometimes be interpreted as

resulting from the non exhaustivity of the frame of discernment, i.e.,

the existence of a hypothesis not included inΩ.

Let m be a mass function onΩ after combining all available items

of evidence. Assume that we have to select an element ofΩ. Several

decision rules have been proposed. The most common ones consist

in selecting the element with the highest plausibility [5],[12], or

the element with the highestpignistic probability[45]. Given a mass

function m such thatm(∅) < 1, the pignistic probability function

betp is defined as:

betp(ω) =
∑

{A⊆Ω|ω∈A}

m(A)

(1−m(∅))|A|
, ∀ω ∈ Ω, (8)

where |A| denotes the cardinality ofA. The pignistic probability

function is thus obtained fromm by distributing equally each

normalized massm(A)/(1−m(∅)) among the elements ofA.

2) Image of a Mass Function by a Multi-valued Mapping :Let us

now consider the case where we have two variablesX andY defined

on frames of discernmentΩ andΘ. Assume thatX andY are linked

by a multi-valued mappingϕ : Ω → 2Θ, such that ifX = ω, then

we know thatY ∈ ϕ(ω). This mapping can be extended to2Ω as

follows:

ϕ(A) =











⋃

ω∈A ϕ(ω), if A ⊆ Ω, A 6= ∅,

∅ if A = ∅.

(9)

Let us further assume that we have a mass functionmΩ on Ω

representing our state of knowledge aboutX. A mass functionmΘ

on Θ can be built by transferring each massmΩ(A) to ϕ(A) [13].

Formally,mΘ is then defined as follows:

mΘ(B) =
∑

{A⊆Ω|ϕ(A)=B}

mΩ(A), ∀B ⊆ Θ.

This may also be written

mΘ(B) =
∑

A⊆Ω

Mϕ(B,A)mΩ(A), ∀B ⊆ Θ, (10)
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with

Mϕ(B,A) =











1 if B = ϕ(A),

0 otherwise.

IV. B ELIEF MAP MATCHING METHOD

In this section, we present a belief function-based MM method

(BMM) based on bounded error estimation techniques as well as

geometrical and topological information. The method builds a mass

function on a set of candidate roads (CRs) extracted from an existing

local map, which makes it possible to provide a more accurate

estimation of the vehicle position and to handle multiple hypotheses

as well as missing data.

First, under the interval framework, and using a state spacemodel,

sensor data is integrated with GPS measurements via a multi-sensor

fusion algorithm in order to compute an estimated position.Then,

from a rectangular road representation of a two-dimensional geo-

graphical information system (GIS), a set of CRs is determined based

on the proximity between the vehicle position and rectangular roads.

An estimate of the vehicle position on each CR is then computed.

Finally, the CR with the highest pignistic probability is selected. Note

that the estimated positions on all CRs are computed, but only the

one corresponding to the best CR is considered as the most plausible

vehicle position.

In the following, we first present the geometry of the available

rectangular road map in Section IV-A. The state space model is

introduced in Section IV-B, and the construction of the massfunction

on the set of CRs is described in Section IV-C. An overview of the

BMM method is then presented in Section IV-D, and the integrity of

the method is discussed in Section IV-E.

A. Road Map Representation

Digital maps are usually based on a single line road network

representation. Each road is characterized by a finite sequence of

points and is thus represented by a set of lines linking thesepoints and

representing the centerlines of the road. Figure 3 shows an example of

a road modeled by four segments connecting five pointsA1, . . . , A5.

PointsA1 andA5 are the end points of the road and are referred to

asnodes, while A2, A3 andA4 are referred toshape points.

In order to take into account road width and geometrical errors

of the map, a piecewise rectangular representation of a roadcan be

defined as illustrated in Figure 4.

By considering the positional error, we assume that the nodepoints

of roadr can be anywhere within a circle of radiusl [34], [37]. The

Node point

Shape point

Shape segment

A1

A2

A3

A4

A5

Fig. 3. Road representation in the planar model. Empty circles represent

shape points(A2, A3, A4) and filled circles represent node points(A1, A5).

A1
A2

a

l

b

∆β

r

R

[r]

w
2

w
2

Fig. 4. Rectangular road[r] constructed using map data, geometrical errors

and the road width. The roadr is represented by two node points(A1, A2).

Two circles of radiusl characterize the positional error.∆β characterizes the

shape error andw is the road width.

shape error ofr is thus represented by an angle∆β. As a result, road

r can be considered to lie anywhere within a rectangleR as shown

in Figure 4. The rectangular road representation[r] of roadr can be

constructed by adjusting the width ofR using the predefined road

width w. Figure 5 shows an example of a road representation where

shape points are involved in the construction. In this figure, roadr1

is characterized by a shape pointA2 and two node pointsA1 and

A3.

The rectangular representation of roads allows us to take into ac-

count several types of errors on digital map data, as it is more exhaus-

tive than other representations used in some existing works[28][18].

However, in some situations (inclined roads), combining a box state

with a rectangular road may increase the error on the state estimation

result. This error is caused by thewrapping effect, which is a well

A1

A2
A3

r1

Node pointNode point

Shape point

Fig. 5. Piecewise rectangular representation ofr1 = (A1, A2, A3)

constructed using geometrical error of the map data and the road width.
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x

y

xk

yk M
θk

δθ,k

Fig. 6. Definition of the frames.

known issue when using interval methods. It can be reduced using a

contractor such as theWaltzcontractor (cf. Section III-A).

B. Dynamic State Space Model

Consider a car-like vehicle with front-wheel drive. The vehicle

position is represented by the Cartesian coordinates(xk, yk) of the

point M corresponding to the center of the rear axle as shown in

Figure 6. The heading angle is denoted byθk. The statexk =

(xk, yk, θk)
T is calculated at each time stepk using the following

discrete representation:


















xk+1 = xk + δS,k cos(θk +
δθ,k
2

)

yk+1 = yk + δS,k sin(θk +
δθ,k
2

)

θk+1 = θk + δθ,k,

(11)

where δS,k is the elementary linear displacement andδθ,k is the

measure of the elementary rotation given by an ABS sensor anda

gyrometer, respectively. The observation of the position at time step

k, zk = (xGPS, yGPS), is given by a GPS sensor. The longitude and

latitude estimated by the GPS are converted to a Cartesian local frame

and standard deviationsσx andσy on both coordinates are obtained

from the NMEA GPGST (Pseudorange Noise Statistics) sentence1

[23].

A box is built aroundδS,k and δθ,k using standard deviations

σs and σθ estimated from specific static tests:[δS,k] = [δS,k −

κ · σs, δS,k + κ · σs] and [δθ,k] = [δθ,k − κ · σθ, δθ,k + κ · σθ],

whereκ is a constant. In the same way, we build a box around GPS

measurementzk: [zk] = ([xk,GPS], [yk,GPS ])
T where [xk,GPS ] =

[xk,GPS − κ ·σx, xk,GPS + κ · σx] and [yk+1,GPS ] = [yk,GPS −κ ·

σy, yk+1,GPS + κ · σy].

1GPS receiver communication is defined within the specification given by

the National Marine Electronics Association (NMEA). This specification was

first set up in order to define the interface between various pieces of marine

electronic equipment. Most computer programs that providereal time position

information understand and expect data to be in the NMEA format.

[xk]

[xk+1]

[r1]

[r1]

[r2]

[r2] [r3]

[r3]

[r4]

[r4]

Time stepk

Time stepk + 1

Fig. 7. State box and rectangular roads at time stepsk (top) andk + 1

(bottom).

In the simulations presented below, we have followed common

practice in state bounding estimation [1][22] and have chosenκ = 3.

This is justified by the well known fact that, under Gaussian as-

sumptions, the corresponding interval contains the true value of the

quantity of interest with99.87% probability. (From Tchebychev’s

inequality, this probability cannot be smaller than8/9, whatever

the error distribution, if the measurement is unbiased). Experimental

results have shown that a smaller value such asκ = 2 might still pro-

vide acceptable results. However, the state bounding approach relies

on the concept of guaranteed estimation; consequently, themethod

must be provided with intervals containing unknown quantities with

probability close to one.

Note that the value ofκ has a critical influence on the preci-

sion and reliability of the BMM method. Ifκ is overestimated,

pessimistic state boxes are produced, resulting in imprecise state

estimates. Conversely, ifκ is underestimated, inconsistencies between

measurements, state predictions and map data may occur.

C. Mass Function Construction

Given a state box[xk] and a rectangular road map, a setRk of

CRs can be selected in such a way that any rectangular road[r] in
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Rk satisfies:[xk] ∩ [r] 6= ∅. The associated mass function at time

stepk, mRk , can be computed using topology and similarity criteria.

This is done as follows:

• Topology criterion: Using the topology of the map and mass

function mRk , a mass functionm
Rk+1
1 on Rk+1 can be com-

puted as shown by the following example.

Consider the case of Figure 7, where roadr2 is linked to roads

r3 and r4 and roadr1 is parallel tor2 and r3. The vehicle

positions at time stepsk andk+1 are represented by two solid

rectangles[xk] and [xk+1]. Based on[xk], the set of CRs at

time stepk is Rk = {r1, r2}. The available mass function at

time stepk is mRk with focal sets∅, {r1}, {r2}, {r1, r2}. Note

thatmRk({ri, rj}) represents the mass of belief assigned to the

hypothesis that the vehicle is on roadri or rj at time stepk, and

mRk(∅) represents the mass of belief assigned to the hypothesis

that the vehicle is moving on a road that is not included in the

map database at time stepk.

Based on[xk+1], four possible positions of the vehicle onr1,

r2, r3 or r4 may occur and thusRk+1 = {r1, r2, r3, r4}.

Consequently, from the fact thatr2 is linked to {r3, r4}, and

given that r1 has no intersections with any other roads, the

locations of the vehicle at time stepsk and k + 1 are linked

by the following multi-valued functionϕ : Rk → 2Rk+1 :

ϕ(r1) = {r1}, (12)

ϕ(r2) = {r2, r3, r4}, (13)

whereϕ(r) denotes the possible positions at timek + 1, given

that the vehicle was on roadr at timek. As explained in Section

III-B2, ϕ can be extended to2Rk using (9), and a mass function

m
Rk+1
1 can be built onRk+1 using (10). Here, the computation

of m
Rk+1

1 from mRk can be detailed as follows:

– mRk(∅) is transferred tom
Rk+1

1 (∅);

– mRk({r1}) is transferred tom
Rk+1
1 ({r1});

– mRk({r2}) is transferred tom
Rk+1

1 ({r2, r3, r4}) asr2 is

linked to r3 andr4;

– mRk({r1, r2}) is transferred tom
Rk+1
1 ({r1, r2, r3, r4}).

In general, matrixMϕ (hereafter referred to as thetransition

matrix) to be used in (10) is computed from the topology of the

road network, and we have

m
Rk+1

1 (B) =
∑

A⊆Rk

Mϕ(B,A)mRk(A), ∀B ⊆ Rk+1.

(14)

xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx

xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx

[xk+1]

[ri]

[rj ]

[xj
k+1]

[xi
k+1]

Fig. 8. State update using[xk+1] and two rectangular roads[ri] and [rj ].

• Similarity criterion: Using a measure of similarity between the

rectangular roads inRk+1 and the state box[xk+1], a mass

functionm
Rk+1
2 on Rk+1 is calculated. This similarity is char-

acterized by the area of the intersection between[xk+1] and the

rectangular roads. For geometrical convenience it is calculated

as the area of the minimal box containing this intersection.Let

Li =
|[xi

k+1]|

|[xk+1]|
,

where [xi
k+1] is the minimal box containing the intersection

between the rectangular road[ri] and [xk+1] as shown in

Figure 8.Li can be seen as a geometrical likelihood of the

road given a state box[xk+1]. Using Li, a mass functionmi

can be computed as follows [5]:


















mi({r
i}) = 0

mi({ri}) = αi(1− Li)

mi(Rk+1) = 1− αi(1− Li)

(15)

where {ri} is the complement of{ri} in Rk+1 and αi is a

coefficient associated with roadri. The mass functionm
Rk+1

2

is the combination of allmi using the conjunctive rule of

combination (7):

m
Rk+1
2 = ∩©imi. (16)

The mass functionsm
Rk+1
1 andm

Rk+1
2 are then combined in order

to computemRk+1 as

mRk+1 = m
Rk+1
1 ∩©m

Rk+1
2 . (17)

D. Overview of the BMM Method

1) Initialization: At time stepk = 0, an initial state box is con-

structed using the GPS measurement and the standard deviationsσx

andσy estimated in real time by the GPS receiver:[x0] = [x0,GPS−

3 ·σx, x0,GPS +3 ·σx] and[y0] = [y0,GPS −3 ·σy , y0,GPS +3 ·σy ].

Note that the heading angleθ is not directly observed, and is

initialized as [θ0] = [0,+2π]. From [x0] and the rectangular road
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map, a setR0 of CRs is selected as explained in Section IV-C. As

there is no prior information on the vehicle position at timestep

k = 0, mR0
1 should be initialized as a vacuous mass function onR0.

The mass functionmR0
2 is calculated using (15) and (16). The final

mass functionmR0 is thus the result of the combination ofmR0
1 and

mR0
2 according to (17). As the vehicle should be on a road,[x0] is

replaced by{[xi
0]}

nR0
i=1 as shown in Figure 8.

2) Prediction: In this step, state boxes{[xi
k]}

nRk
i=1 associated with

all CRs are updated using[δS,k], [δθ,k] together with the evolution

equation (11) via the application of the interval tools recalled in

Section III-A [23], [29]. Note that, as inclusion functionsare used,

we may obtainsuboptimalpredicted state boxes{[xi
k+1]}

nRk
i=1 at time

stepk + 1.

3) GPS correction: The GPS measurement box[zk+1] is used

in order to adjust state boxes. The intersection between a state box

([xi
k+1], [y

i
k+1])

T and the GPS box[zk+1]: [Ii] = [xi
k+1] ∩ [zk+1],

characterizes the proximity between the prediction and themea-

surement. This intersection is used to contract[xi
k+1] using the

Waltz algorithm (see Section III-A) according to the constraints of

system (11) [1] [29]. Note that CRs associated with the predicted

state boxes that have no intersection with[zk+1] are eliminated from

Rk+1.

4) GIS correction: After the GPS correction, the piecewise rect-

angular representation of CRs is used to adjust the state boxes and to

compute a state estimate of the vehicle. Figure 9 shows an example

where, starting from roadr1, there is no possible transition to another

road, whereas there is a possibility of transition fromr2 to r3 or r4.

Regarding junction situations, two cases should be considered:

• If the distance between the center of[xi
k] and any node or shape

point of roadri is less than the elementary displacementδS,k

given by the rear wheel ABS sensors, then it is possible that the

vehicle is leaving roadri. For this reason, at time stepk + 1,

the setRk of CRs must be replaced by a setRk+1. This is done

as follows. LetSi be the set of all roads directly linked tori

(ri ∈ Si) and that have an intersection with[xi
k]. The setRk+1

is then updated as:Rk+1=Rk ∪ Si.

Using a transition matrixMϕ calculated from the topology of

the map, the mass functionm
Rk+1
1 is then calculated frommRk

from (14).

• If the distance between the center of state box[xi
k] and each

node and shape point of roadri is greater thanδS,k, then

Rk+1 = Rk.

[x1
k]

[x2
k]

[xk]

[x1
k+1]

[x2
k+1] [x3

k+1]

[x4
k+1]

[r1]

[r1]

[r2]

[r2] [r3]

[r3]

[r4]

[r4]

Time stepk

Time stepk + 1

Fig. 9. Possible scenarios when managing multiple hypotheses due to

junctions. The bold black boxes represent the state after GIS correction.

The mass functionm
Rk+1

2 resulting from the similarity criterion

is computed using (15) and (16). By combiningm
Rk+1
1 andm

Rk+1
2

using (17), the final mass functionmRk+1 is then obtained.

Note that, if there is no intersection between state boxes and any

road in Rk+1, then the resulting state boxes{[xi
k+1]}

nRk
i=1 should

be retained, as the vehicle may be moving on a road that is not

included in the map. In this case, we update the set of CRs as follows:

Rk+1 = Rk ∪ T , whereT includes all roads linked to anyri ∈ Rk.

This rule is introduced as an attempt to match the estimated position

of the vehicle on a road in case of failure of the algorithm. Ifthis

solution is not adequate, an initialization of the algorithm is needed.

In the other case, i.e., if at least one roadrj is matched, each available

box [xi
k+1] is replaced by the minimal box[xj

k+1] containing the

intersection between[xi
k+1] and the rectangular road[rj ].

5) Overall Estimation:In the final step of the algorithm, the CR

with the highest pignistic probability (8) is selected, andthe state

box intersecting the selected road is chosen. In the case where several

boxex intersect the selected road, the state box is taken as the minimal

box enclosing all boxes associated with the road. The point estimate

of the vehicle position is defined as the center of the final state box.
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The confidence in the estimated coordinatesx andy is then defined

as the width of the box along the corresponding dimension.

The BMM algorithm is summarized in Appendix A. The integrity

issue is briefly discussed in the following subsection.

E. Integrity of the BMM Method

The integrity of a map-matching algorithm is the measure of the

confidence that can be placed in the correctness of the positions

delivered by the system [37]. It is related to the ability of the system

to correctly identify a link and to accurately determine thevehicle

location on the link. In [37], the authors propose an integrity measure

based on three criteria:

• Distance residuals: This criterion quantifies the proximity be-

tween the vehicle position fixP and the corresponding map-

matched positionM on a link. LetD(P,M) be the distance

betweenP andM andR be a constant computed based on the

noise of the navigation system and the road width. The integrity

of the map is high ifD(P,M)−R is less than or close to zero.

• Heading residuals: This criterion quantifies the proximitybe-

tween the vehicle and the road heading. Letθ be the vehicle

heading,β the road heading andHE a constant computed based

on the map error and the navigation system error. The integrity

of the map is high if|θ−β|−HE is less than or close to zero.

• Confidence of the map matched position: This criterion is based

on the proximity between the map matched positionM and the

real vehicle positionV . Let D(M,V ) be the distance between

M andV . The confidence of the map matched position is high

if D(M,V ) ≤ rf where rf is a constant computed from the

map error, sensor error and road width.

The BMM method has the advantage of naturally meeting the

integrity criteria mentioned above. The map matched position of the

vehicle is included in the intersection of the bounded estimation box

and the rectangular representation of the roads. As the map error and

road width are taken into account when constructing the rectangular

roads of the map, and the noise sensors are integrated in the bounded

estimation of the vehicle position, it is clear thatD(P,M)−R and

|θ − β| −HE are usually less than or close to zero. Since the real

vehicle position is included in the box provided by the GPS/DR

system with probability close to one,D(V,M) is usually small and is

less than or equal tow
2
+l, wherew is the road width andl represents

the geometrical error of the map. We may therefore conclude that

the BMM method naturally complies with the integrity requirements

x(m)

y
(
m

)
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Fig. 10. Simulated road map and vehicle trajectory (blue bold lines).

proposed in [37].

V. EXPERIMENTS

In this section, we first illustrate the behavior of the BMM method

using simulated data and show comparative results in Subsection V-A.

Results with real data are then presented in Subsection V-B.

A. Simulated Results

The performances of the BMM algorithm were studied using sim-

ulation data. The vehicle position, heading, elementary displacement

and elementary rotation were generated using the Matlab Simulink

toolbox. Uniform GPS measurement noise was used, with bounds

[−7m,+7m] and [−9m,+9m] on x and y respectively. The noise

in the input data (elementary movement and rotation) was also

assumed to be uniform with on the interval[−0.25m,+0.25m] and

[−0.002 deg,+0.002 deg]. The positional errorl and the road width

w were assumed to be equal to 1 and 6 meters, respectively. This

leads to a rectangular road width equal to 8 meters (w + 2 ∗ l).

Figure 10 shows the simulated map and the vehicle trajectory. All

distances in the following figures are in meters.

Figure 11 shows how several hypotheses can be managed with the

BMM method when approaching a junction.

Figure 11 illustrates the management of multiple hypotheses by the

BMM method after time stepk = 182. As can be seen, at time steps

k = 182 andk = 183, there are four CRsRk = {r1, r2, r3, r4}. At

time stepk = 184, there is only one CR leftrk = {r4}, as the other

three{r1, r2, r3} are eliminated by the similarity criterion.

1) Performance comparison:Our method was compared with two

recent MM algorithms proposed by Quddus et al. [36] and by El

Najjar and Bonnifait [17], [18]. We first give a short description of

these two algorithms:

• The algorithm developed by Quddus et al. [36] is a relatively

simple geometric algorithm. The MM matching process is

initiated with point-to-point matching to identify a link among
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Fig. 11. Simulation results at a junction starting atk = 182. Rectangular roads are represented by solid rectangles. The real and GPS positions are represented

by (�) and (∗) points, respectively. Dashed blue rectangles represent the box state associated to CRs where the associated estimatedpositions are plotted

by (∇) points. The state box corresponding to the selected road is plotted as a bold red rectangle and the overall estimated positions are represented by(o)

points.

the links connected with the closest node to the position fix.

Based on various similarity criteria between the derived position

fixes and the network topology, a weighting system is used to

select the correct link. The criteria used in the algorithm are the

similarity in orientation, proximity of the point to the link and

the position of the fix relative to the link.

• The advanced MM algorithm introduced by El Najjar and

Bonnifait in [17], [18] is based on Kalman filtering and belief

functions. The EKF first combines the GPS and ABS sensor

measurements to produce an approximation of the vehicle posi-

tion, which is used to select the most likely road segment in the

database. The selection strategy uses several criteria based on

distance, direction and velocity measurements, each expressed

as a mass function and pooled using the conjunctive rule of

combination. A new observation is then built using the selected

segment, and the estimated position is adjusted in a second

Kalman filter stage.

These three methods were applied to the simulated map in

Figure 10. Mean squared errors (MSE) onx and y are reported

in Table III (results with the GPS alone are also included for

comparison). As can be seen, the advanced method developed by

El Najjar and Bonnifait outperforms the simple geometric method

developed by Quddus et al., and the BMM algorithm brings further

improvement. We remark that the latter two methods use the theory

of belief functions to combine the road selection criteria.The main

difference between the two methods resides in the fact that El Najjar

and Bonnifait use a Bayesian approach for state estimation,whereas

the BMM method uses a bounded error approach for both state

TABLE III

MEAN SQUARED ERRORS ONx AND y FOR THEGPS,THE TWO

REFERENCE METHODS AND THEBMM ALGORITHM .

GPS [36] [17] BMM

MSE onx(m2) 25.3 14.1 12.0 10.7

MSE ony(m2) 27.8 17.6 14.6 12.3

one step running time (ms) - 81 93 98

estimation and road representation. Table III also gives the mean

of the execution time of one step for each algorithm using a 3GHz

Pentium 4 and a Matlab implementation. It is clear that the BMM

method satisfies real time constraints despite the use of interval

arithmetic programs under Matlab and without code optimization. We

note that the other methods have a small advantage over the BMM

method inasmuch as the BMM method handles the case of multiple-

hypothesis and also in general takes into account more attributes of

the map database.

2) Result with Missing Map Data:In this section, we demonstrate

the behavior of the BMM method when some roads are missing from

the map. Figure 12 illustrates such a situation. As can be seen in

Figure 12-b, after time stepk = 66 the vehicle leaves roadr4 and

proceeds to travel along a road that is not included in the map. At

time stepk = 88, the vehicle is once again travelling on an existing

road,r5.

Figure 13-a shows the zoomed result at time stepsk = 66 and

k = 67. As can be seen, at time stepk = 66 there is only

one CR and thusRk = {r4} and mRk({r4}) = 1. At time step

k = 67 there is no intersection between the state box and the CR.

In this case, it is assumed that the vehicle is travelling on aroad
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Fig. 12. Simulated map and trajectory in the case of missing map data. Figure(a) shows the vehicle trajectory represented by bold blue lines. Figure (b)

shows the vehicle trajectory (represented by dashed line) on missing road between time stepsk = 66 andk = 88.
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Fig. 13. Missing map data case given in the Figure 12-b. GPS positions are represented by black (∗) points and estimated positions are represented by (o)

points. Roads and estimated state boxes are represented by solid and bold rectangles, respectively. Figure(a) shows time stepk = 66 whereRk = {r4}

andmRk ({r4}) = 1, and time stepk = 67 whereRk = {r4, r5, r6} andmRk (φ) = 1. Figure (b) shows time stepk = 87 whereRk = {r4, r5, r6}

andmRk (φ) = 1, and time stepk = 88 whereRk = {r5} andmRk ({r5}) = 1.

that is not included in the database. Consequently, the set of CRs

is updated toRk = {r4, r5, r6} as explained in Section IV-D4,

and mRk(∅) = 1. At time stepk = 88 (Figure 13-b), there is

an intersection between the rectangular representation ofroad r5

and the state box. Consequently, the vehicle is considered to be

travelling onr5 andmRk({r5}) = 1. Figure 14 shows the results of

applying the BMM and reference methods to the trajectory depicted

in Figure 12. Globally, both methods perform well as they detect

the incompleteness of the map for the most part of the trajectory.

However, the BMM algorithm detects earlier that the vehiclehas left

the main road (k = 67, 68), and the reference method tends to select

the nearest road on the map too early at timek = 87.

B. Results on Real Data

In this section, results with the BMM method applied to real

data are reported. The test trajectory was carried out in Compiègne,

France with the experimental vehicle of the Heudiasyc laboratory2.

The measurement of the position(xGPS, yGPS) was provided by

a GPS receiver. The elementary rotation and displacement between

two samples were obtained with good precision using a fiber optic

gyrometer and two rear wheel ABS sensors. In this application, the

positional errorl was assumed to be equal to one meter, and the road

width w was equal to 6 meters. The map is shown in Figure 15.

Figure 16-a displays the BMM estimated positions near a road

junction (time stepk1). Figures 16-b and c show the estimated

positions corresponding to all CRs at time stepsk1 and k1 + 1.

2We thank Philippe Bonnifait and his group for providing and allowing us

to use these data.
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Fig. 14. Comparison between the BMM algorithm and the methoddeveloped

by El Najjar and Bonnifait (reference method) in the case of missing map data.

The true positions of the vehicle are plotted by(.) points. Estimated positions

computed using the BMM and reference methods are plotted as(o) points

and (+) points, respectively.
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Fig. 15. Test trajectory and digital map. Bold lines represent the vehicle

position estimated by the GPS.

As can be seen, at time stepk1, there are three CRs and the BMM

method provides an estimate of the position on each CR. At time

stepk1 +1, only two CRs remain (see Figure 16-c), as the third one

has been eliminated by the BMM algorithm.

As the exact trajectory of the vehicle is not known in this

application, positioning errors cannot be computed like they were

in the simulation Section. However, the performances of theBMM

method can be assessed quantitatively by computing the fraction

of time the correct link was selected. The correct link at each

time step is known here thanks to a camera that was fixed on the

vehicle during the experiment. A data player makes it possible to

visualize the road scenes together with the sensor data and to identify

the true trajectory on the map. Table IV reports the fractions of

time (out of 1500 samples) when the correct link was identified by

the BMM algorithms. Results obtained with the methods developed

by Quddus et al. [36] and El Najjar and Bonnifait [17], [18] are
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Fig. 16. Experimental results at a junction. BMM results andGPS positions

are plotted as(o) and (∗) points, respectively (a). In sub-figures (b) and

(c), the estimated positions on CRs, overall estimated positions and GPS

measurements are represented by(∇) points, (o) points and(∗) points,

respectively. The dashed and bold rectangles represent thebox states of CRs

and the box states corresponding to the selected road, respectively.

TABLE IV

COMPARISON OFBMM, QUDDUS METHOD AND REFERENCE METHODS

[36] [17] BMM

Correct link Identification (%) 89.2 96.8 99.2

also shown for comparison. As can be seen, the advanced method

developed El Najjar and Bonnifait significantly outperforms the

geometric reference method, while the BMM algorithm bringsfurther

improvement. The scale of the digital map is of no importancein the

evaluation of the algorithm, since only the percentage of detected

road is given.

VI. CONCLUSION

In this paper, a new method for map matching and state estimation

has been presented. This method combines the outputs from existing

bounded error estimation techniques with piecewise rectangular roads

selected using evidential reasoning. The basic idea of thiswork is

the selection of a set of CRs at each time step using the topology

of the map and a similarity criterion. Then, a mass function on the

set of CRs is calculated using a multiple criteria fusion algorithm.

In this method two criteria are used: map topology and similarity.

After selecting CRs and computing the associated mass function, an
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overall estimate of the vehicle position is calculated using a decision

rule from belief function theory. This method enables us to handle

multiple hypotheses efficiently at road junctions, and to cope with

missing map data. In addition, its implementation is quite simple as

it is based on geometrical properties of boxes and rectangular roads.

Results on simulated and real data have demonstrated the ability of

the method to handle ambiguous situations (such as junctions or close

parallel roads) and to compute an accurate and reliable estimation of

the vehicle position.

APPENDIX A

SUMMARY OF THE BMM ALGORITHM

1) Initialization

a) Setk = 0 and create a state box[x0] using the GPS

measurement

b) For each roadri included in the local map, construct the

associated rectangular road[ri]

c) From all rectangular roads[ri] and [xk], construct a set

Rk of CRs such that[ri] ∩ [xk] 6= ∅. Let nRk
be the

number of roads included inRk.

d) State update:[xi
k] = [xk] ∩ [ri], i = 1, . . . , nRk

.

e) Construct a mass functionmRk
2 using (15) and (16) on

Rk. SetmRk = m
Rk
2

2) SetRk+1 = Rk andm
Rk+1
1 = mRk

3) For i = 1 : nRk

4) Prediction:

• Input boxes:[δS,k] = [δS,k − 3 · σs, δS,k − 3 · σs] and

[δθ,k] = [δθ,k − 3 · σθ, δθ,k − 3 · σθ]

• Calculate[xi
k+1] using [δS,k], [δθ,k] and (11)

5) GPS correction:

a) Using the GPS data, build a measurement box:[zk+1] =

([xk+1,GPS], [yk+1,GPS ])
′, [xk+1,GPS] = [xk+1,GPS −

3 ·σx, xk+1,GPS+3 ·σx] and[yk+1,GPS ] = [yk+1,GPS−

3 · σy, yk+1,GPS + 3 · σy]

b) The innovation is given by:[Ii] = [xi
k+1] ∩ [zk+1]

c) IF [Ii] is not empty then

• Contract[xi
k+1] using [Ii] and by applying the Waltz

algorithm according to system (11)

d) ELSE [xi
k+1] is eliminated

6) GIS correction:

a) UpdateRk+1 andm
Rk+1
1 :

• IF the distance between the center of[xi
k] and a node

or a shape point of roadri is less thanδS,k, then:

– Let S(ri) be the set of all roads directly linked tori

includingri. Letns be the number of roads included

in S(ri). Initialize Si = ∅

– For j = 1 : ns

– if [rj ] ∩ [xi
k] is not empty then

∗ Si = Si ∪ {rj}

∗ [xj
k+1] = [xi

k+1] ∩ [rj ]

– ENDFORj

– Rk+1 = Rk+1 ∪ Si and m
Rk+1
1 = M.m

Rk+1
1 ,

whereM is the transition matrix computed in such

way thatm
Rk+1
1 ({ri}) is transferred tom

Rk+1
1 (Si)

• ELSE Rk+1 and m
Rk+1

1 remain unchanged and:

[xi
k+1] = [xi

k+1] ∩ [ri]

• ENDIF

• IF {[xi
k] ∩ [ri] = ∅}

nRk
i=1 then

– {[xi
k+1]}

nRk
i=1 are kept

– Rk+1 = Rk ∪ T , T includes all roads linked tori

in Rk

– If this solution is not adequate, then an initialization

step is needed

• ENDIF

b) Construct a mass functionm
Rk+1
2 on Rk+1 using (15)

and (16)

7) ENDFORi

8) ComputemRk+1 = m
Rk+1

1 ∩©m
Rk+1

2

9) Overall estimation:

a) Select the road with the highest pignistic probability

computed frommRk+1

b) The state box is the smallest box enclosing all boxes

associated to the best road

c) The state estimate is the center of the state box

10) k = k + 1. Go to 2 untilk = kend
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His current research interests involve state estimation
for dynamic models based on multisensor fusion,

statistical estimation and decision theories, pattern recognition, and belief-
function theory.

PLACE
PHOTO
HERE

Ghalia Nassreddinewas born in Makenh, Lebanon,
in 1984. She received the Diploma in engineering
from the Lebanese University, Tripoli, Lebanon, in
2005 and the M.S. degree and Ph.D. degree in com-
puter science from the Université de Technologie
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