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A multiple-hypotheses map matching method suitable for

weighted and box-shaped state estimation for localization

Fahed Abdallah, Ghalia Nassreddine and Thierry Denceux

Abstract—The goal of map-matching algorithms is to identify the road
taken by a vehicle and to compute an estimate of the vehicle pition on
that road using a digital map. In this paper, a map-matching dgorithm
based on interval analysis and belief function theory is prposed. The
method combines the outputs from existing bounded error estation
techniques with piecewise rectangular roads selected ugjnevidential
reasoning. A set of candidate roads is first defined at each tienstep using
the topology of the map and a similarity criterion, and a massfunction
on the set of candidate roads is computed. An overall estimatof the
vehicle position is then derived after the most probable cadidate road
has been selected. This method allows multiple road junctits hypotheses
to be handled efficiently, and can cope with missing data. Ats the
implementation of the method is quite simple as it is based ogeometrical
properties of boxes and rectangular road segments. Experients with
simulated and real data demonstrate the ability of this metlod to handle
junction situations and to compute an accurate estimate oftte vehicle
position.

Index Terms—Map-matching, Dempster-Shafer theory, Evidential rea-
soning, Multi-sensor fusion, Interval analysis, Bounded gor estimation,
Multiple Hypotheses technique.

|. INTRODUCTION

Many research and industrial applications require aceul@tal-
ization and/or tracking of moving vehicles [14][26][42] at8llite-
based navigation systems like the global positioning syt€PS)
are playing an important role in vehicle localization assuteof their
24-hour, all weather, free-of-charge availability. HoeevGPS by
itself is not always the ideal solution. It was originallysitgned with
an inherent error of at least 10 meters for non-military eyions.
Also, it suffers from line of sight issues that make it leseetive in
urban canyons. One possible solution for correcting GP& ésrthe
integration of GPS data with other sensor data such as dekoiiag

(DR) using a data fusion algorithm [48].

« Recursive Bayesian estimation, based on a probabilisticrge

tion of uncertainty;

« State bounding methods, based on a set-membership dascript

of uncertainty.

Methods in the first category assume the measurement noise an
state perturbations to be realizations of random variallgsknown
statistical properties. This is the mainstream approadie most
common approaches are the Extended Kalman filter (EKF) amd th
particle filter (PF). The EKF linearizes the state and measent
equations and then applies the Kalman filter to obtain sistienates
[8][21], assuming the process and observation noises toobmai.
The state posterior probability distribution is approxieth by a
Gaussian distribution that is propagated analyticallyotlgh the
linearized system equations. However, the linearizatoomherently
local and may fail to produce reliable estimates, espgciathen
the state model is highly non-linear. The statistical iptetation of
covariance matrices is also unclear in this approach, astétistical
properties of the perturbations though non-linear equoatits ill-
known.

Sequential Monte Carlo methods for recursive Bayesiarrifilie
often referred to as particle filters (PF), usually providerenaccurate
information about the state posterior probability digitibn than does
the EKF, especially if it has a multimodal shape or if the mois
distributions are non Gaussian [41]. The efficiency and myu
of the PF depends mainly on the number of particles and on the
propagation method used to re-allocate weights to thegelearat
each iteration. To cope with high measurement uncertamt@arge
number of particles has to be used, especially when the dimen
of the state vector is large; this may be an issue for real time

implementation of the PF. Several authors have tried tocovee

A critical issue when designing data fusion algorithms is ththese shortcomings by combining approaches (see [25] éa@dnees

representation of uncertainties that pervade both sensasunements therein) or by adapting the size of sample sets during thimason

and the state space model. Two main categories of data fusjmocess [19].

algorithms can be distinguished:

The classical data fusion algorithms mentioned above avegly
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affected by several types of measurement errors like bidsleft, or  vehicle position on the road segment. MHT involves keepiragkt
even by partial or total conflict between the sources of mfation of several positions of the vehicle simultaneously, andyassible,
[4][6][10]. Moreover, these methods critically rely on acate state selecting the best candidate. In this approach, probahifieory

space and observation noise models, which are rarely blaila is used for identifying candidate roads and for selecting liest

Methods in the second group, referred to siate boundingor ©one [27], [35].
bounded errormethods, assume all variables to belong to known In this paper, we propose an MM algorithm called Belief Map
compact sets and attempt to build simple sets, such as hgxasin- Matching (BMM), that combines bounded error state estiomatiith
teed to contain all state vectors consistent with given taims [29]. & rectangular road map representation and that managegplmult
These methods are deterministic approaches and handlénceyal hypotheses usingelief function theoryalso referred to aBempster-
information acquired from multiple sources. The intenalniework Shafer theory32], [39], [45], [51]. The rectangular road represen-
has been shown by several authors to be a good methodology tR§fon takes geometrical errors in the map and a priori infxtion

dealing with non-white and biased measurements [1][7[ZZ8]30]. ©On road width into account. This representation makes isiptesto

Recently, a relatively simple and fast method based on mainst combine map information with box state estimates in a caeven

propagation and interval analysis has been introduced 242 V&- A belief function on a set of candidate roads is computgdg
with an application to vehicle localization. The use of thexb 9eometrical and topological information provided by thepmahis

representation of the state is dictated by computationaverience: Method allows us to handle multiple hypotheses at junctinshen

the main advantage of this representation is that inteatseasily 02ds are parallel, and to cope with missing data.

be manipulated using interval analysis. The main interdsthe The paper is organized as follows. An overview of existingpma
bounded-error approach arises from the fact that it allowsaled Maiching algorithms is first presented in Section II. Sectld
validated computations.e., computations with guaranteed accuracifitroduces the background on basic tools used in this woek, i

taking into account all possible sources of error, from deigre- interval analysis and belief function theory. Our methodthigen

cision to rounding errors due to computer calculations. Tiegor introduced in Section IV. Experimental results with simeath and

drawback of this approach is the difficulty in determiningiseo real data are presented in Section V. Finally, Section VIrsanzes

bounds. If the bounds are too tight, the data may become sigtent and discusses the main contributions of the paper.
with the system equations, in which case the method failgduige
a solution, but if the bounds are overestimated, the estinatate Il REVIEW OF MAP-MATCHING ALGORITHMS

becomes very imprecise, and the method becomes overlygistisi The goal of map-matching (MM) algorithms is to identify the
Integrated GPS/DR systems using data fusion usually fail fgad taken by a vehicle and to compute an estimate of the leehic
provide the current vehicle position on a given road segmeR@Sition on that road using a digital map. In this section,present
[2][3][9][47]. The availability of an accurate digital rdanetwork &n overview of existing MM methods and we discuss their tithins
makes it possible to find the vehicle position on a road segriidnis 25 Well as the motivations of our work.
technique is referred to asap matchingMM). The general purpose
of an MM algorithm is to identify the correct road segment dnickh A Overview of Existing MM methods
the vehicle is travelling and to compute the vehicle positim that MM algorithms can be classified into three categories. Atgors
segment. A number of different algorithms have been prapdse in the first category consider only the geometric relatigrsbetween
MM in different applications [11][20][28][49][50]. In mdsexisting the estimated position of the vehicle and a digital map B[
MM algorithms, the parameters used to select a precise emdent Algorithms in the second category also consider the topofafgthe
are based on the proximity between the vehicle position haddad, road network and historical data regarding the estimatesitipn of
the degree of correlation between the vehicle trajectod/tae road the vehicle [24]. Finally, methods in the third categoryiereed to
centerline, and the topology of the map. In [28] and [35], @éhors as advanced methogsise sophisticated tools such as the Kalman
proposed a MM algorithm in which the multiple hypothese$itegue Filter (KF) [28], Bayesian networks [43], Dempster-Shafkeory

(MHT) is used in order to compute a more accurate estimatbef t(also known as Belief theory) [17] or fuzzy logics [46].
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The most common geometric MM approach is based on a sim@ls the KF, Demspter-Shafer theory, fuzzy logics and the MHT

search concept [36]. In this approach, the vehicle positianatched
to the nearest node or shape point in the digital map. Thisoagh
is known aspoint-to-point matching9]. It is easy to implement, but
is strongly affected by the way in which the network was dgid
[36]. Another geometric MM approach igoint-to-curve matching
[47][50]. In this approach, the vehicle position is matchedthe
nearest road (curve) in the road network. As each road is osetp
of several line segments, the distance between the vetusigéqgn and
each line segment is calculated. The line with the smallssamce
is judged to be the one on which the vehicle is travelling.sTh
approach is usually more efficient than point-to-point ritg but

it generates unstable results in dense urban networks (Bive

[17][31][35][46].

In [17], a road selection method based on multi-criteriaidis
using belief function theory is proposed. In this methodoafidence
region is used for selecting a set of candidate roads (CRs)irRity
and angular criteria are used in order to define a belief fonain a
set of CRs. The road with the highest degree of belief is tieéacted.
This method, however, can vyield inaccurate results in thee aaf

parallel roads, as it does not consider the topology of thd retwork

when selecting the set of CRs. Also, when GPS measuremests ar

inot available, the estimated position can be attributechéovtrong

road, as this method does not use the multiple hypothesksitee.

In [31], an MM method based on the KF and geometrical properti

to curve matchingonstitutes yet another geometric MM approachs hresented. In this method, the most plausible road iseshasing

In this approach, the candidate nodes are first selected psiimt-
to-point matching. Then, for each candidate node, pieeeliear
curves are constructed from the set of paths that origimata that
node. Also, a piecewise linear curve can be constructedyusia
vehicle trajectory. The distance between the trajectory the road
curve is then calculated. The road at the smallest distarma f
the vehicle trajectory is selected. Unfortunately, thiprapch is
quite sensitive to outliers and it sometimes yields unetqzb@nd

undesirable results [36].

the point-to-curve method. The orthogonal projected locabf the
position fix onto the link is used as the initial vehicle laoat Due
to the point-to-curve projection, the cross-track erroréduced, as
compared to the point-to-point method. However, the alwagk
error remains a key issue. A KF is then designed to re-esgtimat
the vehicle position with the objective of minimizing theag-track
error. As stated above, the point-to-curve method is ndicseft for
selecting the correct link, especially in dense urban roettvorks.

If the identification of the link is incorrect, then the inpubf the

In the second category of algorithms, in addition to geoimetrKF will also be inaccurate, which may result in further pimsitng

information, the result of the MM algorithm at time stép— 1 is
used for selecting candidate roads at time stepsing the topology
of the road network as a constraint [47]. These methods arallys
based on a weighted topological algorithm for selectingvitgicle’s
current road. Using the topology analysis of a road netwoik the

coordinates or the trajectory information of the vehidhés lgorithm

errors.

In [46], the authors describe a map matching algorithm based
a fuzzy model. This algorithm is composed of two main stegge T
first step, referred to as tHist fix mode is the initialization step. It
is based on a fuzzy inference system (FIS), which is usedetatify

the correct road of the vehicle. The FIS selects a set of lthias

can compute the weight of each candidate road. The actual rQge within a given region of the GPS/DR position fix. A link Fet

taken by the vehicle is judged to be the one with the largeggiwie
However, if the result given by the algorithm was wrong atetim
stepk — 1, then the result at time stépis also likely to be wrong,
especially after a junction or where there are close parediads.
This constitutes a major implementation problem and drawhat
this method.

identified based on the direction of the vehicle relativehedirection
of the links and the heading change from the gyroscope. Tdatitm
of the vehicle is then determined by an orthogonal projectibthe
position fixed onto that link. This step takes ab80tsec to identify
the first road. In the second step, called trecking mode another

FIS is used to find out whether the subsequent position fixedea

We may remark that most existing map matching algorithmsyappmatched to the link identified in the first fix mode. The inpute a

a simple perpendicular projection of the position fixes ottte
selected links, and ignore the numerous errors associaitbdtire

positioning sensors and the spatial road network data.

proximity, orientation and distance traveled by the vehialong the
link. If there are any outliers in the GPS/DR outputs, or ifuant

is detected, then the algorithm goes back to the first fix moties

Advanced MM methods are based on more elaborate tools sunkthod is not recommended in urban areas. Indeed, the thigori
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TABLE |
NEEDED INFORMATION FOR USEDMM METHODS

estimation.

Box or bounded representation of the state has proved to be

Used information || [36] | [17] | BMM | efficient in many applications, as shown in [1][30]. As a camsence,
Punctual state information || Yes | Yes No a new map matching method based on this type of state repatisen
Bayesian state representatign No | Yes | No is becoming increasingly necessary. This in fact is one@ptinciple

Bounded state representatiah No No Yes

motivations of the BMM method presented in the paper. Funtioge,
Geometrical information Yes | Yes Yes

using a state box representation seems to be more intuitiee deal-

Roads connectivity No No Yes
Similarity in orientation Yes | Yes | No ing with a rectangular road representation. The Multiplpdihesis
Roads width No | Yes | Yes assumption of the MM problem constitutes one of the advasta

the method. Depending on the estimation approach, critesad on

may have to use the first fix mode frequently, which induceslayde the proximity, historical navigation information and tfepology of

in the identification of the first correct link. Also this meth does the road network have to be adapted.

not take into account the error sources associated withatigation One major problem of some existing MM methods is that they do

sensors and the digital maps and hence the determinatioshaglg 1Ot consider exhaustively the map error and the road widtthén

location is not robust selection of the correct link and in the determination of tiedicle

In [35], a map matching algorithm using MHT is proposed. ThBOSition' In the proposed MM method, a rectangular reptesien

main contribution of this work is the use of MHT to solve the?f the roads is used to overcome the problem of existing MM
MM problem in some crucial situation such as junctions andipel Method by taking into account in a natural way map errors and
roads. MHT, which uses measurements from a validation regi road widths, which are quantities available in recent mapluses.
reformulated as a single target problem to develop the maphing Furthermore, the rectangular representation of the mawsalus to

method. Pseudo-measurements are generated for all linttgnwi [@ke into account several types of error on the availabléadigiap,

the validation region defined as the error ellipse from thes@m @S it is more exhaustive than other representations usedrite s

system. Pseudo-measurements (position and heading) fimectas existing works [28][18]. In addition, state boxes and regidar road

the projected points of the GPS/DR positions on the linkse THepresentations fulfil naturally the integrity requirertgestudied in

topological analysis of the road network (connectivityieotation, [37]. This is explained in more details in Section IV-E.

and road design parameters) together with the pseudo-nesasnts ~ Belief function theory will be used for road selection and to
are used to derive a set of hypotheses and their probabilite handle multiple hypotheses. As will be shown, the use ofebeli
each GPS/DR sensor output. Hypotheses with probabiliésaba functions makes it possible to detect missing map data (avzmm
certain threshold are rejected. The map matching is onljiegppo  Problem in MM) in a simple and efficient way. In contrast, this
the valid hypotheses and then a KF is executed to estimatetiile 1SSue requires more complex procedures in existing clalssiap
position on the CR corresponding to each hypothesis. Thimatgd Matching methods [11][28]. Furthermore, the managememuuifi-

position corresponding to the hypothesis with the highesbability ~Ple hypothesis cases (junction and parallel road situsticeguires a
is selected as the most plausible position of the vehicle. complicated implementation under the Bayesian framewedabse

of combinatorial problems [28]. As will be shown, the theasf
B. Motivations of this Work belief functions makes it possible to design a simple sofutd this
Map matching methods are based on combining an availatite staroblem, using the topology of the map and historical naitga
estimate with data extracted from a map database. Thesendsethnformation (link ID, vehicle location, vehicle headingcaspeed or
differ according to whether they are applied to probabdiser —elementary displacement).
bounded state estimates, to the subset of attributes used tfie Table | set out the information requirements of the différen
available map database, and to how these data are merged. methods to be implemented in this paper. This table cledrbws
Classical MM methods rely on a Bayesian representation ef tthat only our method is well adapted to bounded error apjhesmc

state uncertainty and are not suitable for handling boureledr Also, this method gathers simultaneously, and in a simplaneg
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different topological attributes of the map database. Nbg&t even £(x])
though the similarity in orientation criterion is not usedthe BMM

method, the flexibility of the belief function theory used rterge

information makes it easy to take into account this criterfor any

other criterion) in the BMM algorithm. [x]

Table 1l summarizes the ideas behind some MM algorithms that

are discussed in the paper. This table also shows the adesnéand L£1(Bd)

the limitations of the different algorithms.

Ill. BAsIic TooLs

In this section, the basic tools used in this paper are briefllz)'/g' 1. Images of a bokx] by a functionf, a pessimistic inclusion function

) o ) ) [f] and the minimal inclusion functioff]*.
introduced. Interval analysis is first presented in Sulisedtl-A, and
the necessary background on belief functions is recall&llrsection

111-B.

Different algorithms can be used in order to reduce the sfze o
boxes enclosind([x]). For the fusion problem considered here, we

) have chosen to use constraint propagation techniques h28guse
A. Interval Analysis
of the great redundancy of data and equations.

We briefly present interval analysis and we describe thetain 2) Constraint Satisfaction Problems (CSRJonsidern variables

propagation technique, also referred to as the consistemtmique

zi, i € {1,...,n} linked by m relations (or constraints) of the form
by some authors.

1) Basic Notions: Usually, interval analysis is used to model filws, . yan) =0, j=1,...,m. )
quantities that vary around a central value within certaiurigls. |f we denote byx the vector(z, o, - - - 7xn)T and byf the function
A real interval, denotedz], is defined as a closed and connectegihose coordinate functions are the: £ = (f1, fo, - - 7fm)T, we
subset ofR: can write thesen constraints in vector notation as

[z] = [z,7] = {zx eR/z <z <7}, f(x) = 0.

wherez andz are the lower and upper bounds [ef. A box [x] of Let us assume that vector is known to belong to some prior
R™ is defined as a Cartesian productrointervals: domain [x], and we want to compute the set of allin the prior
domain verifying the constraints. This defines a constigatisfaction
[x] = [21] X [w2] - - X [n].

problem (CSP), which can be denoted as
The set ofn-dimensional boxes will be denoted BR™.
All set-theoretic operations, e.gn),U, ... as well as the four H o (f(x) =0,x € [x]). (3)
elementary arithmetic operatiofs-, —, %, /} can be extended to the The solution set of{ is defined as:
interval context. In general, the image of a bpy € IR™ by a
_ S ={xe[x]|f(x) =0} (4)
function f may have any shape. It may be non-convex shape or even

multiply connected iff is discontinuous, as shown in Figure 1. AnNote thatS is not necessarily a box. Under the interval framework,

H H H H H ! /
interval function [f] from IR" to IR™ is said to be arinclusion S°Ving the CSP implies finding a bdx]" such thaiS C [x]" € [x].

functionfor £ if Figure 2 illustrates a simple CSP with two variables and glsin

constraint.
E() S (1], V] € IR @ Contracting?{ means replacingx] by a smaller domaitix]’ such
Inclusion functions may be very pessimistic, as shown byuieig thatS C [x]’ C [x]. A contractor for H is any operator that can be
1. The inclusion functiorf] is minimal if, for any [x], [f]([x]) is used to contracH.
the smallest box ofR™ containing f([x]). The minimal inclusion  There are different kinds of methods to develop contracteesh

function for f is unique and may be denotéf]*. of these methods may be particularly well suited to certgjres
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TABLE Il
MM METHODS COMPARISON

MM method H Idea, advantages and drawbacks or limitations

Geometrical approaches [9][47][50 simple search concept, easy to implement
generates unstable results in dense urban area

lack of map topology information

sensitive to map imprecision

Quddus et al. [36] geometric algorithm, relatively simple to implement

lack of road widths and connectivity
poor detection of missing data without adaptation

no Multiple Hypothsesis assumption

similarity in orientation

El Najjar and Bonnifait [17] multiple-criteria fusion using Belief function theory

proximity and similarity in orientation are used

no Multiple Hypothsesis assumption

lack of road connectivity

considers missing data

Syed and Cannon [46]

confidence regions are used for selecting the correct road
proximity and similarity in orientation are used
map error and navigation system error are not considered

not easy to implement and relatively complex

fuzzy logic theory is used

Pyo et al. [35]

multiple hypothesis technique is used

topology analysis is used for deriving a set of hypothesis

probability theory is used for managing multiple hypotkesi

road width is not used

map erro is not considered

BMM multi-criteria fusion using Belief function theory
use of similarity and topology criteria
adapted to bounded representation of the state

naturally adapted to detecting missing data

use of orientation criterion is possible but needs smalptaten

handles Multiple Hypothsesis case

relatively simple to implement

Fig. 2. A CSP inRZ2,

of CSP. The method used in this paper is the forward-backward

propagation technique, also referred to as\Wedtz contractor[29].

The Waltz contractor is based on the propagationpomitive
constraintsfor real variables. A primitive constraint is a constraint
involving a single operator (such as —, « or /) or a single function
(such ascos, sin or sinh). The method proceeds by contractiftg
with respect to each of the primitive constraints until cengence to
a minimal domain. The complete description of the Waltz athm

goes beyond the scope of this paper. It can be found in [2% pag



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMSOL. ..., NO. ..., 2011 7

77]. This algorithm was applied to state estimation in [233l §33]. resulting in the following discounted mass function [39]:

am(A) if ACQ,
i : “m(A4) =
B. Belief Function Theory l—a(l—m(Q) if A=Q

1) Basic Conceptsin recent decades, the theory of belief func- Two mass functionsn; and m. defined on the same frame of
tions, also known as Dempster-Shafer or Evidence theorg, hdiscernment) and induced by distinct sources of information can be
emerged as a flexible framework for handling imprecise am@tain  combined by theconjunctive rule[44] defined as:

information [39][45][51]. Belief functions can be used t&ptace the
[39][45][51] &p (mi@m2)(A) = > mi(B)ma(C), VACQ.  (7)

probability-based representation of uncertainty adojtedlassical BNC=A

MM and MHT methods. The theory of belief functions makes if "€ quantity(mi@ms2)(9) is called thedegree of conflicbetween

possible to model various states of knowledge ranging fromtete the information sources. Under the so-caltgzen-world assumption

ignorance to probabilistic uncertainty [51]. A belief fuion may [44], @ high degree of conflict may sometimes be interpreted a

be viewed both as a generalized set [15] and as a generalii@ﬁ”'ting from the non exhaustivity of the frame of disceemt) i.e.,

probability measure: DS theory thus encompasses set-lsseall (e existence of a hypothesis not includedn

as probabilistic formalisms. Let m be a mass function of? after combining all available items

In this section, we introduce the main concepts of Belietfiom of evidence. Assume that we have to select an elemefit &everal

theory. Let®2 denote a finite set of mutually exclusive and exhaustiAeCision rules have been proposed. The most common onesstcons

hypotheses, called the frame of discernmentmAss functionn is in selecting the element with the highest plausibility [E12], or

a mapping from2® to [0, 1], satisfying: the element with the highegignistic probability[45]. Given a mass

function m such thatm(@) < 1, the pignistic probability function

Z m(A) = 1. betp is defined as:
ACQ
; . . . m(A)
Each quantitym(A) represents a mass of belief that is committed betp(w) = Y A= m@)A] Vw € €, (8)
[ACQ|weA}

to A, and cannot be assigned to any strict subsetl pbased on a o o .
where |A| denotes the cardinality ofl. The pignistic probability

given piece of evidence. Every subsétof Q such thatm(A) > 0 . . . o
function is thus obtained fromm by distributing equally each

is called afocal setof m. If m (@) = 0 thenm is said to be normal. )
normalized massn(A)/(1 — m(0)) among the elements of.

. . . - . . S)
Thebelief functioninduced bym is the functiorbel : 2°° — [0, 1] 2) Image of a Mass Function by a Multi-valued Mappinget us

satisfying: now consider the case where we have two varialesndY” defined
bel(A) = Z m(B) for all A C Q. (5) on frames of discernmeiit and©. Assume thafX' andY” are linked

0#BCA by a multi-valued mapping : Q — 2°, such that ifX = w, then

A categorical belief function is a belief function that sfitsm(A) = e know thaty e ©(w). This mapping can be extended 28 as

1 for someA C Q. The belief function orf2 which hasm(2) =1  fgliows:
is the vacuous belief function. Uoeao(w), it ACQAZ£D,
The plausibility function denotedpl, quantifies the maximum p(A) = 0 A0 ©)
if A=70.
amount of potential specific support that could be giventta Q. It
. . . . . Let furth that h functi Q
is obtained by adding all the masses given to focal Betbat satisfy ot us further assume that we have a mass functigh on

representing our state of knowledge abofit A mass functionm®
BNA#(D: P 9 9

on © can be built by transferring each mass’(A) to o(A) [13].
pl(A)= Y m(B)=1bel(Q) — bel(A), (6)  Formally, m® is then defined as follows:
BNA#D
m®(B) = > m(A), VBCO.
{ACQ|p(A)=B}
Assume that a source of information provides a mass funetion This may also be written

where A denotes the complement gf.

and that we have a degree of confidence [0, 1] in the reliability o o
m- (B) = E My,(B,A)ym™*(A), VB CO, (10)
of that source. Theny can bediscountedwith discount ratel — «, ACO
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with je
. Shape segm
TREE S R S
0 otherwise. Node point OlA3 A7 o
NN
IV. BELIEF MAP MATCHING METHOD O -eeee Aﬁl ) Shape point
In this section, we present a belief function-based MM metho \\C)

(BMM) based on bounded error estimation techniques as veell a

geometrical and topological information. The method kmiidmass Fi9- 3 Road representation in the planar model. Empty asreepresent

. ) . shape point§ A2, A3, A%) and filled circles represent node poirtd*, A%).
function on a set of candidate roads (CRs) extracted fronxstireg

local map, which makes it possible to provide a more accurate

estimation of the vehicle position and to handle multiplpdtheses

as well as missing data.

First, under the interval framework, and using a state spaugel,

sensor data is integrated with GPS measurements via a sealsior
fusion algorithm in order to compute an estimated positibnen,

from a rectangular road representation of a two-dimensigea- . '
Fig. 4. Rectangular roaft] constructed using map data, geometrical errors

graphical information system (GIS), a set of CRs is deteedhinased nq the road width. The roadis represented by two node poirtd!, A2).

on the proximity between the vehicle position and rectasgrdads. Two circles of radiud characterize the positional errak3 characterizes the

An estimate of the vehicle position on each CR is then contpute®ape error and is the road width.

Finally, the CR with the highest pignistic probability idegted. Note

that the estimated positions on all CRs are computed, bt il shape error of is thus represented by an angig3. As a result, road

one corresponding to the best CR is considered as the mosila " can be considered to lie anywhere within a rectarfglas shown

vehicle position in Figure 4. The rectangular road representafigrof roadr can be

In the following, we first present the geometry of the avddab constructed by adjusting the width @ using the predefined road

rectangular road map in Section IV-A. The state space maglel vyidth w. Figure 5 shows an example of a road representation where

introduced in Section IV-B, and the construction of the nfasstion shape points are involved in the construction. In this figuoad:

is characterized by a shape point and two node pointsA’ and
A3,

on the set of CRs is described in Section IV-C. An overviewhaf t
BMM method is then presented in Section IV-D, and the intggf

the method is discussed in Section IV-E. The rectangular representation of roads allows us to takeao-
count several types of errors on digital map data, as it iereshaus-

A. Road Map Representation tive than other representations used in some existing wWaaqg18].

Digital maps are usually based on a single line road netwotowever, in some situations (inclined roads), combininga state
representation. Each road is characterized by a finite sequef With a rectangular road may increase the error on the stéitaat®on
points and is thus represented by a set of lines linking thesets and  result. This error is caused by therapping effectwhich is a well

representing the centerlines of the road. Figure 3 showsampe of

a road modeled by four segments connecting five poirts .., A°. Shape point
Points A' and A® are the end points of the road and are referred to
asnodes while A%, A*> and A" are referred tshape points Node poin A> e ode point

In order to take into account road width and geometrical rerro
of the map, a piecewise rectangular representation of a caacbe 1
defined as illustrated in Figure 4.

By considering the positional error, we assume that the poifes  Fig. 5. Piecewise rectangular representation rgf = (A!, A2 A3)
of roadr can be anywhere within a circle of radiug34], [37]. The constructed using geometrical error of the map data andahe width.
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Fig. 6. Definition of the frames. [r4]
known issue when using interval methods. It can be reducied) as
contractor such as thé/altz contractor (cf. Section IlI-A). [rl]——l o —] -|
Time stepk + 1
B. Dynamic State Space Model [rQ]—-| o . |._[r3]
Consider a car-like vehicle with front-wheel drive. The iah bl
position is represented by the Cartesian coordinétesyy) of the
point M corresponding to the center of the rear axle as shown in |
Figure 6. The heading angle is denoted fy. The statex, = _T_4
(zx,yr, 0)T is calculated at each time stdpusing the following .
discrete representation: Fig. 7. State box and rectangular roads at time stefeop) andk + 1
Thp1 = @k + O cos(Or + 25E) (bottom)
Yre1 = Y + S sin(Ox + 255) 1y

In the simulations presented below, we have followed common
Ok+1 = Ok + ok,
practice in state bounding estimation [1][22] and have ehas= 3.

where s, is the elementary linear displacement afid, is the o )
This is justified by the well known fact that, under Gaussian a

measure of the elementary rotation given by an ABS sensoraand . . .
sumptions, the corresponding interval contains the trueevaf the

gyrometer, respectively. The observation of the positibtinae step . . ) -
quantity of interest with99.87% probability. (From Tchebychev’s

k, zr = , , IS given by a GPS sensor. The longitude and . . -
2, = (@ars, yers). 1S 9 y g inequality, this probability cannot be smaller th&n9, whatever

latitude estimated by the GPS are converted to a Cartesiahflame o . . .
the error distribution, if the measurement is unbiasedpdexental

and standard deviations, and o, on both coordinates are obtained . .
results have shown that a smaller value such as2 might still pro-

from the NMEA GPGST (Pseudorange Noise Statistics) seatenc . . .
vide acceptable results. However, the state bounding appreelies
[23].

on the concept of guaranteed estimation; consequentlymethod

A box is built aroundds  and dp . using standard deviations . I . L
Sk ok 9 must be provided with intervals containing unknown quéegitvith

s and estimated from specific static test®s x| = [dsr — .
7 70 P Bis.x] [9s.x probability close to one.

K- 0s,05.k + K - 0] and [, = [0pp — K 09,00k + K - 00, » . .
Sk ] [3a.1] [Bo.s 9200k o] Note that the value ok has a critical influence on the preci-

wherex is a constant. In the same way, we build a box around GP o ) )
" Y S|Son and reliability of the BMM method. lfx is overestimated,

measurementy: [zx] = ([z , T where [z = o S
e [ze] = ([ercps] [ynars)) [ok.gps] pessimistic state boxes are produced, resulting in impeestate

Tk,GPS — K" Oa, Tk,GPS + K- 0z aNd [yr+1,aprs| = [Yr,aPs — K- . . . . . .
[ = g [yt =l estimates. Conversely, ifis underestimated, inconsistencies between

Oy, Yk+1,GPS + K - Oyl .
v v] measurements, state predictions and map data may occur.

1GPS receiver communication is defined within the specificatiiven by
the National Marine Electronics Association (NMEA). Thigesification was C. Mass Function Construction
first set up in order to define the interface between varioesgsi of marine
electronic equipment. Most computer programs that prokedétime position Given a state boxx,] and a rectangular road map, a det of

information understand and expect data to be in the NMEA &rm CRs can be selected in such a way that any rectangular [rdad
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Ry, satisfies:[x] N [r] # (0. The associated mass function at time
stepk, m®*, can be computed using topology and similarity criteria.

This is done as follows:

« Topology criterion: Using the topology of the map and mass
function m®, a mass functior’mf""*1 on Rj.1 can be com-
puted as shown by the following example.

Consider the case of Figure 7, where rodds linked to roads

3

r3 and r?

2 and 2. The vehicle

and roadr! is parallel tor -

positions at time stepk andk + 1 are represented by two solid
rectangles[xy] and [x;+1]. Based on[xy], the set of CRs at
time stepk is Ry = {r',r*}. The available mass function at
time stepk is m™™* with focal setd), {r'}, {r*}, {r*,7*}. Note
thatm ® ({r*,r7}) represents the mass of belief assigned to the

hypothesis that the vehicle is on roador 7 at time stepk, and

m™* (()) represents the mass of belief assigned to the hypothesis

that the vehicle is moving on a road that is not included in the
map database at time stép
Based on[xy1], four possible positions of the vehicle o,

2 3

r?, r® or r

may occur and thusRy . = {rt,r% 3 r*}.
Consequently, from the fact thaf is linked to {r*®,+}, and
given thatr' has no intersections with any other roads, the
locations of the vehicle at time stefgsand k£ + 1 are linked

by the following multi-valued functionp : Ry, — 2%k+1:

{r'}, (12)
{r?, %'}, (13)

S
N
-

.
NI
I

S
~

3
(%)
-

Il

where p(r) denotes the possible positions at tifne- 1, given

that the vehicle was on roadat timek. As explained in Section
l1-B2, ¢ can be extended @7+ using (9), and a mass function
mf”k“ can be built onR; 1 using (10). Here, the computation

R .
of m;™*** from m®* can be detailed as follows:

— mf(0) is transferred ton, ™+ (0);

to
— mP({r'}) is transferred ton; *** ({r'});
— mPE({r?}) is transferred ton, *** ({2, 7%, r*}) asr? is
linked tor® andr*;
D.

— mB({r', r2}) is transferred ton. "+ ({r",r2,r3,r*}).
In general, matrix)/, (hereafter referred to as theansition

matrix) to be used in (10) is computed from the topology of th

road network, and we have
3.

., 2011 10

g. 8. State update using. 1] and two rectangular roads’] and [r7].

o Similarity criterion: Using a measure of similarity betwethe
rectangular roads iRx+1 and the state boxxx41], a mass
function m?k“ on Ry is calculated. This similarity is char-
acterized by the area of the intersection betwiean ;] and the
rectangular roads. For geometrical convenience it is tzted
as the area of the minimal box containing this intersectiast.
i |[X}ic+1]|
|[xka]l”

where [x},_ ] is the minimal box containing the intersection

between the rectangular rodd’] and [xxy1] as shown in
Figure 8. L% can be seen as a geometrical likelihood of the
road given a state bojky+1]. Using L?, a mass functionn;

can be computed as follows [5]:

mi({r'}) = 0

mi({ri}) = a;(1 - L% (15)
mi(Ri1) = 1—a;(1—LY)

where {ri} is the complement ofr‘} in Ryi1 and«; is a
coefficient associated with road. The mass functionrn, **+*
is the combination of allm; using the conjunctive rule of
combination (7):
my "t = @mi. (16)
The mass functionmf’“*1 andmf’“*1 are then combined in order

computem++1 as

R R
mBrt1 — my T @my T a7

Overview of the BMM Method

1) Initialization: At time stepk = 0, an initial state box is con-

gtructed using the GPS measurement and the standard desiati

ando, estimated in real time by the GPS receiVet;] = [xo,cprs —

0s, To,6Ps +3-0z] and[yo] = [yo,crs — 30y, yo,crs +3-0y].

R 3
my T (B) = Y Mg(B,Aym™*(A), VB C Ryy1. Note that the heading anglé is not directly observed, and is

ACRy,

(14) initialized as[fo] = [0, +27]. From [xo] and the rectangular road
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map, a setRo of CRs is selected as explained in Section IV-C. As [x1]

there is no prior information on the vehicle position at tistep [rl]_.|- H

k=0, mf'“ should be initialized as a vacuous mass functionpn .
Time stepk
The mass functionm§O is calculated using (15) and (16). The final

mass functionn”™ is thus the result of the combination of® and

m4° according to (17). As the vehicle should be on a rdad)] is

replaced by{[x}]},"" as shown in Figure 8.

2) Prediction: In this step, state boxef§x ]}, associated with .

all CRs are updated usings,x], [0s,x] together with the evolution ]
equation (11) via the application of the interval tools tksthin

Section 1lI-A [23], [29]. Note that, as inclusion functiomse used,

. n . 1 I.- --I
we may obtairsuboptimalpredicted state boxe§x, ,]},-F at time "] hd - '|
Time stepk + 1
stepk + 1. p [Xiﬂ i+ﬂ
2
3) GPS correction: The GPS measurement bdx,11] is used [r ]H|‘ )

[Xi-u']"' !

in order to adjust state boxes. The intersection betweeata bbx
([h1], [yira])" and the GPS bofay+1]: [I'] = [xj41] N [Zk4],
characterizes the proximity between the prediction and rtea-

surement. This intersection is used to contréet, ] using the
Waltz algorithm (see Section 1lI-A) according to the coasits of
system (11) [1] [29]. Note that CRs associated with the ptedi Fig. 9. Possible scenarios when managing multiple hypethedue to
state boxes that have no intersection with, 1] are eliminated from junctions. The bold black boxes represent the state aftér @®frection.
Ryt
4) GIS correction: After the GPS correction, the piecewise rect- The mass functiom§k+1 resulting from the similarity criterion
angular representation of CRs is used to adjust the stateslamd to is computed using (15) and (16). By combiningfk“ and m§k+1
compute a state estimate of the vehicle. Figure 9 shows an@ga using (17), the final mass function*+1 is then obtained.
where, starting from road", there is no possible transition to another Note that, if there is no intersection between state boxelsaany
road, whereas there is a possibility of transition frefnto ° or 7. road in R4, then the resulting state boxdéxi ]}, should
Regarding junction situations, two cases should be coreide e retained, as the vehicle may be moving on a road that is not
« If the distance between the center[#f] and any node or shape included in the map. In this case, we update the set of CRdlaw/fo
point of roadr is less than the elementary displacemént,  Rr+1 = R UT, whereT includes all roads linked to any € Ry.
given by the rear wheel ABS sensors, then it is possible tieat tThis rule is introduced as an attempt to match the estimatsiign
vehicle is leaving road. For this reason, at time stép+ 1, of the vehicle on a road in case of failure of the algorithmthi
the setR, of CRs must be replaced by a g&t.;. This is done solution is not adequate, an initialization of the algaritis needed.
as follows. LetS? be the set of all roads directly linked t¢  In the other case, i.e., if at least one rodds matched, each available
(r* € §%) and that have an intersection witk:]. The setRy, box [x}.1] is replaced by the minimal bo{xiﬂ] containing the
is then updated as?x41=Ry U S°. intersection betweefx],_ ;] and the rectangular roda’].
Using a transition matrix\/,, calculated from the topology of 5) Overall Estimation:In the final step of the algorithm, the CR
the map, the mass fun(:ti(mf”k+l is then calculated fronm™  with the highest pignistic probability (8) is selected, aihe state
from (14). box intersecting the selected road is chosen. In the caseewsbeeral
« If the distance between the center of state ok and each boxex intersect the selected road, the state box is takdreasinimal
node and shape point of road is greater thanss, then box enclosing all boxes associated with the road. The paifnate

Rik4+1 = Ry. of the vehicle position is defined as the center of the finabdtax.
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The confidence in the estimated coordinateand y is then defined
as the width of the box along the corresponding dimension.
The BMM algorithm is summarized in Appendix A. The integrity

issue is briefly discussed in the following subsection.

E. Integrity of the BMM Method 600

1000 2000 3000 40{)0 5000 6000 7000 8000
x(m)

The integrity of a map-matching algorithm is the measurehef t
Fig. 10. Simulated road map and vehicle trajectory (bluel bioles).
confidence that can be placed in the correctness of the qusiti 9 P : v ( )
delivered by the system [37]. It is related to the ability lo€ tsystem .
proposed in [37].
to correctly identify a link and to accurately determine thehicle
location on the link. In [37], the authors propose an intggmeasure V. EXPERIMENTS

based on three criteria: In this section, we first illustrate the behavior of the BMM timad

» Distance residuals: This criterion quantifies the proynte- ysing simulated data and show comparative results in StibsasA.
tween the vehicle position fi¥* and the corresponding map-Results with real data are then presented in Subsection V-B.
matched position/ on a link. Let D(P, M) be the distance
betweenP and M and R be a constant computed based on thA. Simulated Results
noise of the navigation system and the road width. The iittegr The performances of the BMM algorithm were studied using-sim
of the map is high ifD(P, M) — R is less than or close to zero. ulation data. The vehicle position, heading, elementaspldcement

» Heading residuals: This criterion quantifies the proxiniiig- and elementary rotation were generated using the MatlalulBikn
tween the vehicle and the road heading. Bebe the vehicle toolbox. Uniform GPS measurement noise was used, with ound
heading,3 the road heading andl E a constant computed based—7m, +7m| and [-9m, +9m] on x andy respectively. The noise
on the map error and the navigation system error. The ityegrin the input data (elementary movement and rotation) was als
of the map is high if¢ — 3| — HE is less than or close to zero.assumed to be uniform with on the interyal0.25m, 4-0.25m] and

« Confidence of the map matched position: This criterion itas [—0.002 deg, +0.002 deg]. The positional errot and the road width
on the proximity between the map matched positidnand the w were assumed to be equal to 1 and 6 meters, respectively. This
real vehicle positiorV/. Let D(M, V') be the distance betweenleads to a rectangular road width equal to 8 meters+(2 * [).

M andV. The confidence of the map matched position is higRigure 10 shows the simulated map and the vehicle trajectdty
if D(M,V) < ry wherer; is a constant computed from thedistances in the following figures are in meters.

map error, sensor error and road width. Figure 11 shows how several hypotheses can be managed with th

The BMM method has the advantage of naturally meeting tf8MM method when approaching a junction.
integrity criteria mentioned above. The map matched pmsitif the ~ Figure 11 illustrates the management of multiple hypothésethe
vehicle is included in the intersection of the bounded estiom box BMM method after time step = 182. As can be seen, at time steps
and the rectangular representation of the roads. As the mapand & = 182 andk = 183, there are four CR®;, = {r',r*,r°, r*}. At

road width are taken into account when constructing thearggetlar  time stepk = 184, there is only one CR left, = {r*}, as the other

2

roads of the map, and the noise sensors are integrated itimeléd three{r',r> 7%} are eliminated by the similarity criterion.

estimation of the vehicle position, it is clear tha{( P, M) — R and 1) Performance comparisor©ur method was compared with two
|6 — 8| — HE are usually less than or close to zero. Since the reggcent MM algorithms proposed by Quddus et al. [36] and by El
vehicle position is included in the box provided by the GP®/DNajjar and Bonnifait [17], [18]. We first give a short destigm of
system with probability close to on&)(V, M) is usually small and is these two algorithms:

less than or equal t§ +1, wherew is the road width andrepresents  « The algorithm developed by Quddus et al. [36] is a relatively
the geometrical error of the map. We may therefore concltwdé¢ t simple geometric algorithm. The MM matching process is

the BMM method naturally complies with the integrity rearitents initiated with point-to-point matching to identify a linknaong
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Fig. 11. Simulation results at a junction startingkat= 182. Rectangular roads are represented by solid rectanglesteBhand GPS positions are represented
by (W) and () points, respectively. Dashed blue rectangles represenbdht state associated to CRs where the associated estipmgiins are plotted
by (V) points. The state box corresponding to the selected roatbiteg as a bold red rectangle and the overall estimatedipusiare represented Ky)
points.

TABLE Il
MEAN SQUARED ERRORS ONc AND y FOR THEGP S, THE TWO

the links connected with the closest node to the position fix.

Based on various similarity criteria between the derivesitunm REFERENCE METHODS AND THEBMM ALGORITHM.

fixes and the network topology, a weighting system is used to

select the correct link. The criteria used in the algoritme the H GPS‘ (36] ‘ [17] ‘ BMM ‘
similarity in orientation, proximity of the point to the knand MSE ona(m?) 253141 120 107
2
the position of the fix relative to the link. MSE ony(m”) 278|176 146 123
one step running time (Ms| - 81 93 98

o The advanced MM algorithm introduced by El Najjar and
Bonnifait in [17], [18] is based on Kalman filtering and bélie
functions. The EKF first combines the GPS and ABS sensestimation and road representation. Table Il also gives rifean
measurements to produce an approximation of the vehicle posf the execution time of one step for each algorithm using &3G
tion, which is used to select the most likely road segmenhén t Pentium 4 and a Matlab implementation. It is clear that theMBM
database. The selection strategy uses several critereal mas method satisfies real time constraints despite the use efvait
distance, direction and velocity measurements, each ss@de arithmetic programs under Matlab and without code optitiora We
as a mass function and pooled using the conjunctive rule péte that the other methods have a small advantage over thd BM
combination. A new observation is then built using the geliéc method inasmuch as the BMM method handles the case of naultipl
segment, and the estimated position is adjusted in a secdnothesis and also in general takes into account moréuaties of
Kalman filter stage. the map database.

2) Result with Missing Map Dataln this section, we demonstrate

These three methods were applied to the simulated map tire behavior of the BMM method when some roads are missing fro

Figure 10. Mean squared errors (MSE) enand y are reported the map. Figure 12 illustrates such a situation. As can be see

in Table Il (results with the GPS alone are also included fdfigure 12-b, after time step = 66 the vehicle leaves road" and
comparison). As can be seen, the advanced method develgpedptoceeds to travel along a road that is not included in the. rAap

El Najjar and Bonnifait outperforms the simple geometrictimoel time stepk = 88, the vehicle is once again travelling on an existing
developed by Quddus et al., and the BMM algorithm bringshiert road, r°.

improvement. We remark that the latter two methods use theryh  Figure 13-a shows the zoomed result at time steps 66 and

of belief functions to combine the road selection critefiae main k& = 67. As can be seen, at time stdp = 66 there is only
difference between the two methods resides in the fact thiiaffar one CR and thusk, = {r*} and m™* ({r*}) = 1. At time step
and Bonnifait use a Bayesian approach for state estimatibareas k = 67 there is no intersection between the state box and the CR.

the BMM method uses a bounded error approach for both stdtethis case, it is assumed that the vehicle is travelling amad
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Fig. 12. Simulated map and trajectory in the case of missiag oata. Figur€a) shows the vehicle trajectory represented by bold blue likégure (b)
shows the vehicle trajectory (represented by dashed linghigsing road between time steps= 66 and k = 88.
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Fig. 13. Missing map data case given in the Figure 12-b. GRSRipos are represented by black) points and estimated positions are representedopy (
points. Roads and estimated state boxes are representealidbyrsd bold rectangles, respectively. Figuee shows time stepgc = 66 where Ry, = {r*}
andm®fk ({r1}) = 1, and time stepc = 67 where R;, = {r*, 7% 6} andm®* (¢) = 1. Figure (b) shows time stepc = 87 where R, = {r*,r® 6}

andm®x (¢) = 1, and time stepk = 88 where R, = {r®} andmBr ({r°}) = 1.

that is not included in the database. Consequently, the fs€lRs B. Results on Real Data

: _ 4.5 .6 ; ; ; 2
is updated toR; = {r",r”,r"} as explained in Section IV-D4, |~ section, results with the BMM method applied to real

R _ . B . i .
and m™(f) = 1. At ime stepk = 88 (Figure 13-b), there is data are reported. The test trajectory was carried out inpl&gne,

an intersection between the rectangular representatioroad » France with the experimental vehicle of the Heudiasyc lat f

and the state box. Consequently, the vehicle is considesebet The measurement of the positidncps, yers) was provided by

: 5 Ry (f.51Y _ :
travelling onr” andm™* ({r"}) = 1. Figure 14 shows the results of ; ~pg (acaiver, The elementary rotation and displacemenieba

applying the BMM and reference methods to the trajectoryiaieg two samples were obtained with good precision using a fib&c op

in Figure 12. Globally, both methods perform well as theyedet gyrometer and two rear wheel ABS sensors. In this applioatioe

the incompleteness of the map for the most part of the trajgct positional errorl was assumed to be equal to one meter, and the road

However, the BMM algorithm detects earlier that the vehltds left width w was equal to 6 meters. The map is shown in Figure 15.

the main road X = 67, 68), and the reference method tends to select Figure 16-a displays the BMM estimated positions near a road

the nearest road on the map too early at time 87. junction (time stepk:). Figures 16-b and ¢ show the estimated

positions corresponding to all CRs at time stdgsand k; + 1.

2We thank Philippe Bonnifait and his group for providing anibwing us

to use these data.
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Fig. 14. Comparison between the BMM algorithm and the mett®aloped

by El Najjar and Bonnifait (reference method) in the case issing map data.
The true positions of the vehicle are plotted (by points. Estimated positions

computed using the BMM and reference methods are plotteth apoints

and (+) points, respectively.
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3 Fig. 16. Experimental results at a junction. BMM results &S positions
are plotted as(o) and () points, respectively (a). In sub-figures (b) and
2 (c), the estimated positions on CRs, overall estimatedtiposi and GPS
’S\ measurements are represented () points, (o) points and(x) points,
=1 respectively. The dashed and bold rectangles represeiiothstates of CRs
and the box states corresponding to the selected road cteshe
o \ TABLE IV
A COMPARISON OFBMM, QUDDUS METHOD AND REFERENCE METHODS
-1

O R P e | @e1 | u71 | Bum |
Correct link Identification %) || 89.2| 96.8| 99.2 |

Fig. 15. Test trajectory and digital map. Bold lines repneésthe vehicle

position estimated by the GPS.

also shown for comparison. As can be seen, the advanced danetho
As can be seen, at time stép, there are three CRs and the BMMdeveloped El Najjar and Bonnifait significantly outperfarnthe
method provides an estimate of the position on each CR. Ag tingeometric reference method, while the BMM algorithm brifigsher
stepk; + 1, only two CRs remain (see Figure 16-c), as the third ongprovement. The scale of the digital map is of no importaincee

has been eliminated by the BMM algorithm. evaluation of the algorithm, since only the percentage déated

As the exact trajectory of the vehicle is not known in thigoad is given.
application, positioning errors cannot be computed likeytkvere
in the simulation Section. However, the performances ofBMM V1. ConcLusion
method can be assessed quantitatively by computing theidinac In this paper, a new method for map matching and state esdimat
of time the correct link was selected. The correct link atheadas been presented. This method combines the outputs frigtingx
time step is known here thanks to a camera that was fixed on theunded error estimation techniques with piecewise rgctan roads
vehicle during the experiment. A data player makes it pdssib selected using evidential reasoning. The basic idea ofvtioik is
visualize the road scenes together with the sensor datavaddritify the selection of a set of CRs at each time step using the tgypolo
the true trajectory on the map. Table IV reports the fracti@f of the map and a similarity criterion. Then, a mass functiontiee
time (out of 1500 samples) when the correct link was idemntifig  set of CRs is calculated using a multiple criteria fusionogltym.

the BMM algorithms. Results obtained with the methods dgvedl In this method two criteria are used: map topology and shityla
by Quddus et al. [36] and El Najjar and Bonnifait [17], [18]ear After selecting CRs and computing the associated massifuman
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overall estimate of the vehicle position is calculated gsairdecision « IF the distance between the center[ef] and a node
rule from belief function theory. This method enables us andie or a shape point of road’ is less thands i, then:
multiple hypotheses efficiently at road junctions, and tpecavith — Let S(r*) be the set of all roads directly linked té
missing map data. In addition, its implementation is quitepde as including*. Letn, be the number of roads included
it is based on geometrical properties of boxes and rectango&ds. in S(r%). Initialize S* =
Results on simulated and real data have demonstrated tlity abi — Forj=1:n,
the method to handle ambiguous situations (such as jursctionlose — if [r] N [x4] is not empty then
parallel roads) and to compute an accurate and reliableatsoin of + S =51 U{rl}
the vehicle position. N [Xiﬂ] = [xiaa] O[]
APPENDIXA ~ ENDFORj
— Repr = Ries1 U S and mi* ' = Moni*+,

SUMMARY OF THE BMM ALGORITHM
where M is the transition matrix computed in such

1) Initialization way thatm, ™+ ({r'}) is transferred ton] *** (S*)

a) Setk = 0 and create a state bdxo] using the GPS . ELSE Ry., and mfkﬂ remain unchanged and:

measurement i i i
[XIL€+1] = [X§c+1] N

« ENDIF
o IF {[xi] N [r'] = 0}, then

b) For each road’ included in the local map, construct the
associated rectangular roae]

c) From all rectangular roads’] and [x], construct a set ; nh
= {[xk1]}i= are kept

— Riy1 = R UT, T includes all roads linked to’
in Ry,

Ry, of CRs such thafr’] N [xx] # 0. Let ng, be the
number of roads included iR,.

d) State updatefx}] = [xx]N[r'],i=1,...,nr,. ) o o
R — If this solution is not adequate, then an initialization
e) Construct a mass functiam,* using (15) and (16) on ]
n step is needed
Ry. Setm™ = my*
R « ENDIF
2) SetRyi1 = Ry andm ™' = m® n
b) Construct a mass functiom, ™ on R, using (15
3) Fori=1:ng, ) 2 k1 g (15)

. d (16
4) Prediction: and (16)
o Input boxes:[ds,x] = [0s,x — 3 - 05,056 — 3 - 0] and 7) ENDFOR: R R
8) Computem+1 = m*+? k1
[00.k] = [00,k — 300,00,k — 3 - Tg) ) P My Om,

; . 9) O Il estimation:

« Calculate[x}, ] using [0s,k], [de,x] and (11) ) Overall estimation
5) GPS correction: a) Select the road with the highest pignistic probability
computed fromm+1

a) Using the GPS data, build a measurement hax; 1] = . )
b) The state box is the smallest box enclosing all boxes

([Trt1,6ps)s [Yk+1,6ps])s [Tht1,6ps]) = [Trt1,6Ps — )
associated to the best road

3.0z, Trt1,6rs+3-0z] and(yk+1,ars] = [Yk+1,apPs — ) )
c) The state estimate is the center of the state box

3.0y, Ykt+1,6Ps + 3 0y
10) k =k + 1. Go to 2 untilk = kena

b) The innovation is given byil’] = [x} 1] N [Zk41]
c) IF [I] is not empty then REFERENCES
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