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A NEW PROOF OF THE FUNDAMENTAL THEOREM OF
ALGEBRA.

RAJAH IYER

Abstract. We introduce a method, which we use to analyse the fac-
tors of polynomial functions P(x). We then establish criteria for when
the zeros of P(x) with real coefficients are real, then we go on to analyse
P(x) with complex coefficients by using the same method introduced.
Upon completion of our analysis we will have established that P(x)
with real or complex has at least one zero.

Introduction

This proof was first reviewed in the period 2001-2002 and stored in its
draft state at UP tech-ref India Madras. This proof was presented by my-
self as an acceptance of a challenge put forward for scholarship purposes
and asked students to attempt to develop some ideas or to provide insights
into this old theorem. I later obtained the full scholarship after providing
the proof presented herein. Only syntactical changes have been made from
the original version that I presented at the age of eighteen. I mention the
age as the version presented lacked a professional standard in English.

We credit the first ever proof of the Fundamental Theorem of Algebra
to Carl Fredrich Gauss who first proved it in 1799. This paper analyses
the criteria necessary for factors to exist, after which, it tests to see whether
the criteria can be mathematically met. Gauss proof shows that Zeros of
polynomials always exist, but this paper I believe offers a different proof,
which gives a different explanation as to why.

1. Notation.

P (x) = anx
n + an−1x

n−1 + ..+ c0 will denote a single determinate poly-
nomial with real/complex coefficients an ∈ C.
We will make use of [a, b, c, d, e] to denote the complex coefficients of arbi-
trary functions. r, q, indexed mn ∈ R and pn ∈ R will be used to denote
arbitrary real numbers where necessary, and x, λ ∈ C will denote arbitrary
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complex variables. Indexed αn ∈ R will denote radian measures where
appropriate.

2. The Analysis.

We wish to show that

(1) P (x) = anx
n + an−1x

n−1 + ..+ c0

can always be written in the form

(2) (x−m)(bn−1x
n−1 + ..+ c0)

The summation actually forms criteria necessary in order for [m] to exist.
To analyse the criteria more clearly, we set out the terms of the summation
individually; in the following tower:

bn−1x
n =needequal anx

n

(−m)bn−1x
n−1 + bn−2x

n−1 =needequal an−1x
n−1

...

(−m)c2 =needequal c1

(3)

In each of these rows we can divide by the common factors: xn, xn−1, xn−2, .., x
respectively, hence x as a variable need not fathom in our equations. If we
can prove that the above criteria can always be met, then any polynomial
function P (x) can be written as a product of its factor and a polynomial of
degree one less than P (x). Now to satisfy (eq.1 in 3) we choose bn−1 = an;
in the final equation; we can choose (−m) and c2 such that it equals c1, in
(eq.2 in 3) we let bn−2 = an−1 +mbn−1, and let bn−3 = an−2 +mbn−2, we
continue this process until we reach the semi final equation where we let
b1 = a2 +mb2. Now in the semifinal such equation we arrive at a problem
whereby we have run out of variables to alter, to satisfy this criterion, as
m, b1 and c2 have already been used to . To rectify this problem we refer
to equation’s (3), and notice that m can be made as small or as large as
desired and c2 can be chosen appropriately to keep (−m)c2 constant, i.e
equal to c1.

Proof. If (−m)c2 = c1 then c2 = c1/(−m) □

It is evident from this that the smaller we chose m to be, the larger c2
becomes to keep (−m)c2 constant. Bearing this in mind we refer back to
equations (3) and notice that variation of m and c2 can make (−m)b1 + c2
as large or as small as we desire. We wish to see if variations exist that
can be made to satisfy all the criteria simultaneously. We can do this in
two parts, where we perform the case for the real values of m then move
onto the complex, or proceed with the complex case alone. We opt for the
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latter. Before we move on; in order to observe the nature of the variations
possible by means of the real valued variable (m,λ) ∈ R; we let m = 1

λ
and let c1 =

c2
λ
.

The actual analysis is conducted in the following section with λ ∈ C.
We should also take note of the following. By means of simple backward
substitution; we may combine the first n − 1 equations of the tower of
requirement as stipulated, into a reciprocal function; and the final along
with the semi final into another quadratic function. By means of this we
can simply say that the requirements are met if a λ exists; that allows
us to equate both functions. The equations are as follows, in the real
case: (−1/λ)b1 + (c1(−λ)) = a1, which can be written as: Q(λ) = b1 =
−a1λ − c1λ

2 . Grouping of the first (n − 2) equations in (3); has the
following reciprocal form: I(λ) = b1 = c+ a/λ+ b/λ2 + ...+ d/λn−2

3. The Complex Analysis.

: In what may seem as a disconnect between the previous and current
sections, we provide this brief description for this section.
We have within the previous section derived two functions, which
if/when intersect provide a root for P . We extent the two func-
tions along with their characteristics along with some basic condi-
tioning to demonstrate that these, for complex coefficients, always
have points at which they intersect simultaneously in their real and
complex parts.

We make the following substitutions: λ = l = r(cos(q)+isin(q))1, setting
ak = mk(cos(αk) + isin(αk) and making use of de Moivre’s theorem, we
can express I(l) as follows:

(4)
n−2∑
k=1

mk(cos(αk) + isin(αk))

rk−1(cos((k − 1)q) + isin((k − 1)q))

With:

(5) ReI(l) = m1(cos(α1))+(m2/r
1)(cos(α2−q))+(m3/r

2)(cos(α3−2q))+

..+ (mn/r
n)(cos(αn − nq)).

(6)
ImI(l) = im1(sin(α1))+ (im2/r

1)(sin(α2− q))+ (im3/r
2)(sin(α3− 2q))+

..+ (imn/r
n)(sin(αn − nq))

1making both functions a variable of r and q
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Similarly for Q, we let bk = pk(cos(αk) + isin(αk)) which when following
the necessary substitutions results in: −p1r(cos(α1) + isin(α1))(cos(q) +
isin(q))− p2r

2(cos(α2) + isin(α2))(cos(2q) + isin(2q)).

In this complex case, we require that Re(L) = Re(Q) and Im(L) = Im(Q)
simultaneously, i.e. for a single pair r, q ∈ R.

Without loss of generality we can divide throughout by (i) in the imag-
inary cases of both imaginary portions of the functions derived and treat
them both as real functions.

Given the above, it remains to show that there always exist r and q values,
such that ReQ(l) equals ReI(l) and ImQ(l) equals ImI(l) simultaneously.

3.1. Some basic Differential Geometry. We will be using cylindrical
coordinates from now on, to visualize I(l) and Q(l).
We can see clearly that ReI(l) is a reciprocal type function in 3-dimensions.
i.e this function diverges to infinity at the Z-axis and converges while mov-
ing away from the Z-axis, because inReI(l) = m1(cos(α1))+(m2/r1)(cos(α2−
q))+(m3/r

2)(cos(α3−2q))+ ..+(mn/r
n−1)(cos(αn−nq)), where [m1..mn]

are constants, for any one particular q value the Limr→0ReI(l) = ∞ , and
for any one particular q value the Limr→∞ReI(l) = m1(cos(α1)).

The same can be done for ImI(l) to show that, ImI(l) is also a recip-
rocal type function in 3-dimensions, omitting without loss of generality i
from our functions.

Following this convention throughout the remainder of the article. Now
we take note of the general shapes of ReQ(l), and ImQ(l). ReQ(l) can
be written as:−p1r(cos(α1)cos(q)− sin(α1)sin(q)− p2r

2(cos(α1)cos(2q)−
sin(α1)sin(2q)). Let g = cos(α1) and h = sin(α1). for large values of r, i.e
large enough such that[−p1r(cos(α1)cos(q) − sin(α1)sin(q))] contributes
almost nothing to this function, the general shape of the graph will be
determined by [−p2r

2(gcos(2q)−hsin(2q))]. It is therefore evident that as
r increases, the z values of the function increase.
To analyse the shape of the function we take note of the following:

cos(2q + A) = cos(A)cos(2q)sin(A)sin(2q),(7)

cos(2q − A) = cos(A)cos(2q) + sin(A)sin(2q),(8)

sin(2q + A) = sin(A)cos(2q) + cos(A)sin(2q),(9)

sin(2q − A) = sin(A)cos(2q)cos(A)sin(2q)(10)
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The zeros of sin(2q) occur at 0, π/2, π, 3π/2, 2π, and sin(2q) is positive
in the following intervals :[0; π/2], [π; 3π/2], and negative in the remaining.
The zeros of cos(2q) occur at π/4, 3π/4, 5π/4, 6π/4 ,and cos(2q) is positive
in the following intervals : [6π4;π/4], [3π/4; 5π/4]. It is easy to see now
that ReQ(l) and ImQ(l) exist both above and below the (r, q) plane si-
multaneously, as sin(2q − α1), cos(2q − α1), sin(2q + α1) and cos(2q + α1)
have equal amounts of positive and negative intervals over which they ex-
ist(See Attached Figures). Dx[−p1r(cos(α1 + q)) − p2r

2(cos(α1 + 2q))] =
p1r(sin(α1 + q)) + 2p2r

2(sin(α1 +2q)), from this we can see that the func-
tion is smooth and continuous. Analysis of the derivative of ReQ(l), will
show us the general shape of the function. For our purpose we can choose
r to be large enough such that p1r(sin(a1+q)), contributes almost nothing
to DxReQ(l). Since (sin(α1 + 2q)) is positive and negative over certain
intervals we can see that the function clearly has two rises and two falls,
also, since cos(α1 + 2q) has zeros and is negative and positive over certain
intervals, we can see that the function has two hills and two valleys [in
the 0 < θ < 2π interval]. The valleys clearly go below the plane since
the zeros of cos(α1 + 2q) lie between the intervals over which it is positive
and negative and the zeros of (sin(α1 + 2q)) lie between pairs of zeros of
cos(α1+2q). The hills are above the plane for the same reasons. The same
process can be repeated to determine the general shape of ImQ(l), and you
will notice that here also the graph forms two hills and two valleys. There
will always be regions of the plane; where the graph lies below and other
regions where it lies above. This simply because the dominating terms
of Im[Q], and Re[Q] have regions over which they are positive and other
regions; negative. Since we are working in cylindrical co-ordinates the hills
and valleys rotate around the z-pole. Since ReI(l) converges as r increases
and ReQ(l) diverges as r increases, there necessarily exists an intersection
of ReQ(l) and ReI(l), regardless of whether ReI(l) exists below or above
the plane.
The intersection forms two U-like shapes that extend to Infinity, where
ReI(l), cuts either the two hills or the two valleys of ReQ(l). The same
applies to the case of ImI(l) and ImQ(l), i.e regardless of whether ImI(l)
exists above or below the plane, it intersects ImQ(l) forming two U-like
shapes. It is easy to see from the analysis that these intersections are
manifest; due precisely to the nature of both graphs.

3.2. Projections of the intersections on the (r, θ) Plane. One impor-
tant result is the following. Let K denote the the constant term in either
of the reciprocal type functions. Let R∞ denote the curve Limr→∞(r, θ)
for the variable θ; where 0 ≤ θ ≤ 2π. Let the intersection of the plane
Z = K with either quadratic function form the connected curves S :=
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{U1, U2, U3, U4}. We wish to show that the length of the distance be-
tween the points {x ∈ (Rt)}and{x ∈ (Ui ∈ S)}; approaches infinity
as r → ∞. Proof In order to prove this, we consider the curves Up
formed by the intersection of Z = 0 with either quadratic function. Since
Limr→∞rθ = ∞; we can conclude that the distance formed between the
points {x ∈ (R∞)}and{x ∈ (Up)} also approaches infinity. We now con-
sider the curves formed on Z = K. Let Φ := θ1, θ2, θ3, θ4, .., θ8 denote the
angels respectively, of the lines formed by the intersection of any of the
Quadratic functions with the Z = 0 Plane. Taking any θt close to either
of the θ’s we note that as r → ∞; Q(r, θt) intersects Z = K a finite r
away. In order to make Q(r, θt) intersect Z = K as r → ∞, we note that
as θt → θp ∈ Φr → ∞.

From the above we can see that as r → ∞; intersections of the projec-
tions of the curves formed by the intersections of ReQ; ReI and ImQ;
ImI on the (r, θ) plane are eminent, as the zeros of Sin(2θ+p) lie between
pairs of the zeros of Cos(2θ + p). As such; (r, θ) Pairs always exist that
satisfy the tower of equations.
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