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Abstract

In multi-label classification, each instance in the training set is associated
with a set of labels, and the task is to output a label set whose size is
unknown a priori for each unseen instance. The most commonly-used ap-
proach for multi-label classification is where a binary classifier is learned
independently for each possible class. However, multi-labeled data gener-
ally exhibit relationships between labels, and this approach fails to take such
relationships into account. In this paper, we describe an original method
for multi-label classification problems derived from a Bayesian version of the
k-Nearest Neighbor (k-NN) rule. The method developed here is an improve-
ment on an existing method for multi-label classification, namely multi-label
k-NN, which takes into account the dependencies between labels. Exper-
iments on simulated and benchmark datasets show the usefulness and the
efficiency of the proposed approach as compared to other existing methods.
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1. Introduction

Traditional single-label classification assigns an object to exactly one
class, from a set of Q disjoint classes. Multi-label classification is the task
of assigning an instance simultaneously to one or multiple classes. In other
words, the target classes are not exclusive: an object may belong to an un-
restricted set of classes, rather than to exactly one class. For multi-labeled
data, an instance may belong to more than one class not because of ambiguity
(fuzzy membership), but because of multiplicity (full membership) [1]. Note
that traditional supervised learning problems (binary or multi-class) can be
regarded as special cases of the problem of multi-label learning, where in-
stances are restricted to belonging to a single class.

Recently, multi-label classification methods have been increasingly re-
quired by modern applications where it is quite natural for some instances to
belong to several classes at once. Typical examples of multi-label problems
are text categorization, functional genomics and scene classification. In text
categorization, each document may belong to multiple topics, such as arts

and humanities [11] [17] [6] [8]; in gene functional analysis, each gene may be
associated with a set of functional classes, such as energy, metabolism and
cellular biogenesis [7]; in natural scene classification, each image may belong
to several image types at the same time, such as sea and sunset [1].

A common approach to a multi-label learning problem is to transform
it into one or more single-label problems. The best known transformation
method is the binary relevance (BR) approach [21]. This approach trans-
forms a multi-label classification problem with Q possible classes into Q
single-label classification problems. The qth single-label classification prob-
lem (q ∈ {1, . . . , Q}) consists in separating the instances belonging to class
ωq from the others. This problem is solved by training a binary classifier (0/1
decision) where each instance in the training set is considered to be positive

if it belongs to ωq, and negative otherwise. The output of the multi-label
classifier is determined by combining the decisions provided by the different
binary classifiers. The BR approach tacitly assumes that labels can be as-
signed independently: when one label provides information about another,
the binary classifier fails to capture this effect. For example, if a news article
belongs to a ”music” category, it is very likely that it also belongs to an
”entertainment” category. Although the BR approach is generally criticized
for its assumption of label independencies [15][2], it is a simple, intuitive
approach that has the advantage of having low computational complexity.
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In [29], the authors present a Bayesian multi-label k-nearest neighbor
(MLkNN) approach where, in order to assign a set of labels to a new instance,
a decision is made separately for each label by taking into account the number
of neighbors containing the label to be assigned. This method therefore fails
to take into account the dependency between labels.

In this paper, we present a generalization of the MLkNN-based approach
to multi-label classification problems where the dependencies between classes
are considered. We call this method DMLkNN, for Dependent Multi-Label k-
Nearest Neighbor. The principle of the method is as follows. For each unseen
instance, we identify its k-NNs in the training set. According to the class
membership of neighboring instances, a global maximum a posteriori (MAP)
principle is used in order to assign a set of labels to the new unseen instance.
Note that unlike MLkNN, in order to decide whether a particular label should
be included among the unseen instance’s labels, the global MAP rule takes
into account the numbers of different labels in the neighborhood, instead of
considering only the number of neighbors having the label in question.

Note that this paper is an extension of a previously published conference
paper [27]. Here, the method is more thoroughly interpreted and discussed.
Extensive comparisons on several real world datasets and with some state-
of-the-art methods are added in the experimental section. In addition, we
provide an illustrative example on a simulated dataset, where we explain step
by step the principle of our algorithm.

The remainder of the paper is organized as follows. Section 2 presents
related work. Section 3 describes the principle of multi-label classification
and the notion of label dependencies. Section 4 introduces the DMLkNN
method and its implementation. Section 5 presents some experiments and
discusses the results. Finally, Section 6 summarizes this work and makes
concluding remarks.

2. Related work

Several methods have been proposed in the literature for multi-label learn-
ing. These methods can be categorized into two groups. A first group con-
tains the indirect methods that transform a multi-label classification problem
into binary classification problems (a binary classifier for each class or pair-
wise classifiers) [2] [1] or into multi-class classification problem (each subset
of classes is considered as a new class) [21]. A second group consists in ex-
tending common learning algorithms and making them able to manipulate
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multi-label data directly [26]. Some multi-label classification methods are
briefly described below.

In [28], an adaptation of the traditional radial basis function (RBF) neu-
ral network for multi-label learning is presented. It consists of two layers of
neurons: a first layer of hidden neurons representing basis functions associ-
ated with prototype vectors, and a second layer of output neurons related to
all possible classes. The proposed method, named MLRBF, first performs a
clustering of the instances corresponding to each possible class; the proto-
type vectors of the first-layer basis functions are then set to the centroids of
the clustered groups. In a second step, the weights of the second-layer are
fixed by minimizing a sum-of-squares error function. The output neuron of
each class is connected to all input neurons corresponding to the prototype
vectors of the different possible classes. Therefore, information encoded in
the prototype vectors of all classes is fully exploited when optimizing the
connection weights and predicting the label sets for unseen instances.

In [7], a multi-label ranking approach based on support vector machines
(SVM) is presented. The authors define a cost function and a special multi-
label margin and then propose an algorithm named RankSVM based on
a ranking system combined with a label set size predictor. The set size
predictor is computed from a threshold value that separates the relevant
from the irrelevant labels. The value is chosen by solving a learning problem.
The goal is to minimize a ranking loss function while having a large margin.
RankSVM uses kernels rather than linear dot products, and the optimization
problem is solved via its dual transformation.

In [26], an evidence-theoretic k-NN rule for multi-label classification is
presented. This rule is based on an evidential formalism for representing un-
certainties in the classification of multi-labeled data and handling imprecise
labels, described in detail in [4]. The formalism extends all the notions of
Dempster-Shafer theory [19] to the multi-label case, with only a moderate
increase in complexity as compared to the classical case. Under this formal-
ism, each piece of evidence about an instance to be classified is represented
by a pair of sets: a set of classes that surely apply to the unseen instance,
and a set of classes that surely do not apply to this instance.

A distinction should be made between multi-label and multiple-label learn-
ing problems. Multiple-label learning [9] is a semi-supervised learning prob-
lem for single-label classification where each instance is associated with a set
of labels, but where only one of the candidate labels is the true label for the
given instance. For example, this situation occurs when the training data is
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labeled by several experts and, owing to conflicts and disagreements between
the experts, a set of labels, rather than exactly one label, is assigned to some
instances. The set of labels of an instance contains the decision (the assigned
label) made by each expert about this instance. This means that there is an
ambiguity in the class labels of the training instances.

Another learning problem is multi-instance multi-label learning, where
each object is described by a bag of instances and is assigned a set of labels
[18]. Different real-world applications can be handled under this framework.
For example, in text categorization, each document can be represented by a
bag of instances, with each instance representing a section of the document
in question, while the document may deal with several topics at the same
time, such as culture and society.

In [20], dynamic conditional random fields (DCRFs) are presented for
representing and handling complex interaction between labels in sequence
modeling, such as when performing multiple, cascaded labeling tasks on the
same sequence. DCRFs are a generalization of conditional random fields.
Inference in DCRFs can be done using approximate methods, and training
can be done by maximum a posteriori estimation.

3. Multi-label classification

3.1. Principle

Let X = R
d denote the domain of instances and let Y = {ω1, ω2, . . . , ωQ}

be the finite set of labels. The multi-label classification problem can be for-
mulated as follows. Given a set D = {(x1, Y1), (x2, Y2), . . . , (xn, Yn)} of n
training examples, independently drawn from X × 2Y , and identically dis-
tributed, where xi ∈ X and Yi ⊆ Y , the goal of the learning system is to build
a multi-label classifier H : X −→ 2Y in order to assign a label set to each
unseen instance. As for standard classification problems, we can associate
with the multi-label classifier H a scoring function f : X × Y −→ R, which
assigns a real number to each instance/label combination (x, ω) ∈ X × Y .
The score f(x, ω) corresponds to the probability that instance x belongs to
class ω. Given any instance x with its known set of labels Y ⊆ Y , the scoring
function f is assumed to give larger scores for labels in Y than it does for
those not in Y . In other words, f(x, ωq) > f(x, ωr) for any ωq ∈ Y and
ωr 6∈ Y . The scoring function f allows us to rank the different labels accord-
ing to their scores. For an instance x, the higher the rank of a label ω, the
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larger the value of the corresponding score f(x, ω). Note that the multi-label
classifier H(·) can be derived from the function f(·, ·) via thresholding:

H(x) = {ω ∈ Y|f(x, ω) ≥ t}.

where t is a threshold value.

3.2. Label dependencies in multi-label applications

In multi-label classification, the assignment of class ω to an instance x

may provide information about that instance’s membership of other classes.
Label dependencies exist when the probability of an instance belonging to a
class depends on its membership of other classes. For example, a document
with the topic politics is unlikely to be labeled as entertainment, but the
probability that the document belongs to the class economic is high.

In general, relationships between labels are high-order or even full-order,
i.e., there is a relation between a label and all remaining labels, but these
relations are more difficult to represent than second-order relations, that is
to say relations that exist between pairs of labels. The dependencies be-
tween labels can be represented in the form of a contingency matrix mat
that allows us to express only second-order relations between labels. Let
Hq

1 denote the hypothesis that instance x belongs to class ωq ∈ Y . Given a
multi-labeled dataset D with Q possible labels, mat[q][r] = Pr(Hq

1|H
r
1), where

q and r ∈ {1, . . . , Q} with q 6= r, indicates the second-order relationship be-
tween labels ωq and ωr. Pr(Hq

1|H
r
1) represents the proportion of data in D

belonging to ωr to which the label ωq is also assigned. mat[q][q] = Pr(Hq
1)

indicates the frequency of label ωq in the dataset D. Figures 1 show the
contingency matrices for the emotion dataset (Q = 6) used in the experi-
ments in Section 5. In this dataset, each instance represents a song and is
labeled by the emotions evoked by this song. We can see in Figure 1 that
mat[1][4] = Pr(H1

1|H
4
1) = 0, meaning that labels ω1 and ω4 cannot occur to-

gether. This is easily interpretable, as ω1 corresponds to “amazed-surprised”
while ω4 corresponds to “quiet-still”, and these two emotions are clearly op-
posite. We can also see that mat[5][4] = Pr(H5

1|H
4
1) = 0.6 , which means

that ω5, representing “sad-lonely”, frequently coexists in the label sets with
ω4. We can see from these examples that labels in multi-labeled datasets are
often mutually dependent, and exploiting relationships between labels will
be very helpful in improving classification performance.
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Figure 1: Contingency matrix for the emotion dataset

4. The DMLkNN method for multi-label classification

We use the same notation as in [29] in order to facilitate comparison
with the MLkNN method. Given an instance x and its associated label set
Y ⊆ Y , let N k

x
denote the set of the k closest training examples of x in the

training dataset D according to a distance function d(., .), and let yx be the
Q-dimensional category vector of x whose qth component indicates whether
x belongs to class ωq:

yx(q) =

{
1 if ωq ∈ Y

0 otherwise
∀ q ∈ {1, . . . , Q}. (1)

Let us represent by cx the Q-dimensional membership counting vector of
x, the qth component of which indicates how many examples amongst the
k-NNs of x belong to class ωq:

cx(q) =
∑

xi∈N k
x

yxi
(q), ∀ q ∈ {1, . . . , Q}. (2)
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4.1. MAP principle

Let x now denote an instance to be classified. Like in all k-NN based
methods, when classifying a test instance x, the set N k

x
of its k nearest

neighbors should first be identified. Under the multi-label assumption, the
counting vector cx is computed. As mentioned before, let Hq

1 denote the
hypothesis that x belongs to class ωq, and Hq

0 the hypothesis that x should
not be assigned to ωq. Let Eq

j (j ∈ {0, 1, . . . , k}) denote the event that there

are exactly j instances in N k
x

belonging to class ωq. To determine the qth
component of the category vector yx for instance x, the MLkNN algorithm
uses the following MAP [29]:

ŷ′
x
(q) = arg max

b∈{0,1}

Pr(Hq
b|E

q

cx(q)), (3)

while for the DMLkNN algorithm, the following MAP is used:

ŷx(q) = arg max
b∈{0,1}

Pr(Hq
b|

∧

ωl∈Y

El
cx(l))

= arg max
b∈{0,1}

Pr(Hq
b|E

q

cx(q),
∧

ωl∈Y\{ωq}

El
cx(l)). (4)

In contrast to decision rule (3), we can see from Equation (4) that the assign-
ment of label ωq to the test instance x depends not only on the event that
there are exactly cx(q) instances having label ωq in N k

x
, i.e., Eq

cx(q), but also

on
∧

ωl∈Y\{ωq}

El
cx(l), which is the event that there are exactly cx(l) instances

having label ωl in N k
x
, for each ωl ∈ Y\{ωq}. Thus, it is clear that label cor-

relation is taken into account in (4), since all the components of the counting
vector cx are involved in the assignment or not of label ωq to x, which is not
the case in Equation (3).

4.2. Posterior probability estimation

Regarding the counting vector cx, the number of possible events
∧

ωl∈Y

El
cx(l)

is upper bounded by (k+1)Q. This means that, in addition to the complexity
problem, the estimation of (4) from a relatively small training set will not be
accurate. To overcome this difficulty, we will adopt a fuzzy approximation
for (4). This approximation is based on the event Fl

j, j ∈ {0, 1, . . . , k}, which
is the event that there are approximately j instances in N k

x
belonging to class
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ωl, i.e., Fl
j, denotes the event that the number of instances in N k

x
that are

assigned label ωl is in the interval [j − δ; j + δ], where δ ∈ {0, . . . , k} is a
fuzziness parameter. As a consequence, we can derive a fuzzy MAP rule:

ŷx(q) = arg max
b∈{0,1}

Pr(Hq
b|

∧

ωl∈Y

Fl
cx(l)). (5)

To remain closer to the initial formulation and for comparison with MLkNN,
(5) will be replaced by the following rule:

ŷx(q) = arg max
b∈{0,1}

Pr(Hq
b|E

q

cx(q),
∧

ωl∈Y\{ωq}

Fl
cx(l)). (6)

For large values of δ, the results of our method will be similar to those of
MLkNN. In fact, for δ = k, the MLkNN algorithm is a particular case of the
DMLkNN algorithm, where

∧
ωl∈Y\{ωq}

Fl
cx(l) will be certain, because for each

ωl ∈ Y\{ωq}, the number of instances in N k
x

belonging to class ωl will surely
be in the interval [j−k; j+k]. For small values of δ, the assignment or not of
label ωq to test instance x will not only depend on the number of instances
in N k

x
that belong to label ωq, but also on the number of instances in N k

x

belonging to the remaining labels.
Using Bayes’ rule, Equations (3) and (6) can be written as follows:

ŷ′
x
(q) = arg max

b∈{0,1}

Pr(Hq
b)Pr(Eq

cx(q)|H
q
b)

Pr(Eq

cx(q))

= arg max
b∈{0,1}

Pr(Hq
b)Pr(Eq

cx(q)|H
q
b). (7)

ŷx(q) = arg max
b∈{0,1}

Pr(Hq
b)Pr(Eq

cx(q),
∧

ωl∈Y\{ωq}

Fl
cx(l)|H

q
b)

Pr(Eq

cx(q),
∧

ωl∈Y\{ωq}

Fl
cx(l))

= arg max
b∈{0,1}

Pr(Hq
b)Pr(Eq

cx(q),
∧

ωl∈Y\{ωq}

Fl
cx(l)|H

q
b). (8)

To rank labels in Y , a Q-dimensional real-valued vector rx can be cal-
culated. The qth component of rx is defined as the posterior probabil-
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ity Pr(Hq
1|E

q

cx(q),
∧

ωl∈Y\{ωq}

Fl
cx(l)):

rx(q) = Pr(Hq
1|E

q

cx(q),
∧

ωl∈Y\{ωq}

Fl
cx(l))

=

Pr(Hq
1)Pr(Eq

cx(q),
∧

ωl∈Y\{ωq}

Fl
cx(l)|H

q
1)

Pr(Eq

cx(q),
∧

ωl∈Y\{ωq}

Fl
cx(l))

=

Pr(Hq
1)Pr(Eq

cx(q),
∧

ωl∈Y\{ωq}

Fl
cx(l)|H

q
1)

∑
b∈{0,1} Pr(Hq

b)Pr(Eq

cx(q),
∧

ωl∈Y\{ωq}

Fl
cx(l)|H

q
b)

. (9)

For comparison, the real-valued vector r′
x

for MLkNN has the following ex-
pression:

r′
x
(q) = Pr(Hq

1|E
q

cx(q))

=
Pr(Hq

1)Pr(Eq

cx(q)|H
q
1)

Pr(Eq

cx(q))

=
Pr(Hq

1)Pr(Eq

cx(q)|H
q
1)∑

b∈{0,1} Pr(Hq
b)Pr(Eq

cx(q)|H
q
b)

. (10)

In order to determine the category vector ŷx and the real-valued vector
rx of instance x, we need to determine the prior probabilities Pr(Hl

b) and
the likelihoods Pr(Eq

cx(q),
∧

ωl∈Y\{ωq}

Fl
cx(l)|H

q
b), for each q ∈ {1 · · ·Q}, and b ∈

{0, 1}. These probabilities are estimated from a training dataset D.
Given an instance x to be classified, the output of the DMLkNN method

for multi-classification is determined as follows:

H(x) = {ωq ∈ Y| ŷx(q) = 1},

and
f(x, ωq) = rx(q), for each ωq ∈ Y .

Figure 2 shows the pseudo code of the DMLkNN algorithm. The value
of δ may be selected through cross-validation and provided as input to the
algorithm. The prior probabilities Pr(Hq

b), b = {0, 1}, for each class ωq are

10



[yx, rx] = DMLkNN(D, x, k, s, δ)

%Computing the prior probabilities and the number of instances belonging to each class

1. For q = 1 · · ·Q

2. Pr(Hq

1) = (
∑

m
i=1 yxi

(q))/(n); Pr(Hq

0) = 1 − Pr(Hq

1);

3. u(q) =
∑

n

i=1 yxi
(q); u′(q) = n − u(q);

EndFor

%For each test instance x

4. Identify N(x) and cx

%Counting the training instances whose membership counting vectors satisfy the constraints (13)

5. For q = 1 · · ·Q

6. v(q) = 0; v′(q) = 0

EndFor

7. For i = 1 · · ·n

8. Identify N(xi) and cxi

9. If cx(q) − δ ≤ cxi
(q) ≤ cx(q) + δ, ∀ q ∈ Y Then

10. For q = 1 · · ·Q

11. If cxi
(q) == cx(q) Then

12. If yxi
(q) == 1 Then v(q) = v(q) + 1;

Else v′(q) = v′(q) + 1;
EndFor

EndFor

%Computing yx and rx

13. For q = 1 · · ·Q

14. Pr(Eq

cx(q)
,

∧
ωl∈Y\{ωq}

Fl
cx(l)|H

q
1) = (s + v(q))/(s × Q + u(q));

15. Pr(Eq

cx(q)
,

∧
ωl∈Y\{ωq}

Fl
cx(l)|H

q

0) = (s + v′(q))/(s × Q + u′(q));

16. yx(q) = arg max
b∈{0,1}

Pr(Hq

b
)Pr(Eq

cx(q)
,

∧
ωl∈Y\{ωq}

Fl
cx(l)|H

q

b
)

17. rx(q) =

Pr(H
q
1)Pr(E

q

cx(q)
,

∧

ωl∈Y\{ωq}
Fl
cx(l)

|H
q
1)

∑
b∈{0,1} Pr(H

q
b
)Pr(E

q

cx(q)
,

∧

ωl∈Y\{ωq}
Fl
cx(l)

|H
q
b
)

EndFor

Figure 2: DMLkNN algorithm.
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first calculated and the instances belonging to each label are counted (steps
1 to 3): {

Pr(Hq
1) = 1

n

∑
n

i=1 yxi
(q)

Pr(Hq
0) = 1 − Pr(Hq

1).
(11)

Recall that n is the number of training instances. u(q) is the number of
instances belonging to class ωq, and u′(q) indicates the number of instances
not having ωq in their label sets:

{
u(q) =

∑
n

i=1 yxi
(q)

u′(q) = n − u(q).
(12)

For test instance x, the k-NNs are identified and the membership counting
vector cx is determined (step 4). To decide whether or not to assign the label
ωq to x, we must determine the likelihoods Pr(Eq

cx(q),
∧

ωl∈Y\{ωq}

Fl
cx(l)|H

q
b), b ∈

{0, 1}, using the training instances such that their corresponding membership
counting vectors satisfy the following constraints:

{
cxi

(q) = cx(q)
cx(l) − δ ≤ cxi

(l) ≤ cx(l) + δ, for each ωl ∈ Y\{ωq}.
(13)

This is illustrated in steps 5 to 12. The number of instances from the train-
ing set satisfying these constraints and belonging to class ωq is stored in
v(q). The number of remaining instances satisfying the previous constraints
and not having ωq in their sets of labels is stored in v′(q). The likelihoods
Pr(Eq

cx(q),
∧

ωl∈Y\{ωq}

Fl
cx(l)|H

q
b), b ∈ {0, 1}, are then computed:






Pr(Eq

cx(q),
∧

ωl∈Y\{ωq}

Fl
cx(l)|H

q
1) = s+v(l)

s×Q+u(l)

Pr(Eq

cx(q),
∧

ωl∈Y\{ωq}

Fl
cx(l)|H

q
0) = s+v

′(l)
s×Q+u′(l)

,
(14)

where s is a smoothing parameter [13]. Smoothing is commonly used to
avoid zero probability estimates. When s = 1, it is called Laplace smoothing.
Finally, the category vector yx and the real-valued vector rx to rank labels
in Y are calculated using equations (8) and (10), respectively (steps 13 to
17).

Note that, in the MLkNN algorithm, only the first constraint in (13) is
considered when computing the likelihoods Pr(Eq

cx(q)|H
q
b), b ∈ {0, 1}. As a
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result, the number of examples in the learning set satisfying this constraint is
larger than the number of examples satisfying (13). MLkNN and DMLkNN
should therefore not necessarily be compared using the same smoothing pa-
rameter.

4.3. Illustration on a simulated dataset

In this section, we illustrate the behavior of the DMLkNN and MLkNN
methods using simulated data.

The simulated dataset contains 1019 instances in R
2 belonging to three

possible classes, Y = {ω1, ω2, ω3}. The data were generated from seven
Gaussian distributions with means (0,0), (1,0), (0.5,0), (0.5,1), (0.25,0.6),

(0.75,0.6), (0.5,0.5) , respectively, and equal covariance matrix

(
1 0
0 1

)
.

The number of instances in each class is chosen arbitrarily (see Table 1).
Taking into account the geometric distribution of the Gaussian data, the in-
stances of each set were respectively assigned to label(s) {ω1}, {ω2}, {ω1, ω2},
{ω3}, {ω1, ω3}, {ω2, ω3}, {ω1, ω2, ω3}.

Table 1: Summary of the simulated data set.
Label set Number of instances

{ω1} 150
{ω2} 162

{ω1, ω2} 304
{ω3} 262

{ω1, ω3} 43
{ω2, ω3} 78

{ω1, ω2, ω3} 20

Figure 3 shows the neighboring training instances and the estimated label
set for a test instance x using DMLkNN and MLkNN. For both methods,
k was set to 8, and Laplace smoothing (s = 1) was used. For DMLkNN,
δ was set to 1. Below we describe the different steps in the estimation of
the label set of x using the DMLkNN and MLkNN algorithms applied to
the test data. For the sake of clarity we recall some definitions of events
already given above. The membership counting vector of the test instance
is cx = (7, 3, 2). Using the DMLkNN method, in order to estimate the label
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Figure 3: Estimated label set (in bold) for a test instance using the DMLkNN (top) and
MLkNN (bottom) methods.

set of x, the following probabilities need to be computed from Equation (8):

ŷx(1) = arg max
b∈{0,1}

Pr(H1
b)Pr(E1

7, F
2
3, F

3
2|H

1
b)

ŷx(2) = arg max
b∈{0,1}

Pr(H2
b)Pr(E2

3, F
1
7, F

3
2|H

2
b)

ŷx(3) = arg max
b∈{0,1}

Pr(H3
b)Pr(E3

2, F
1
7, F

2
3|H

3
b).
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We recall that E1
7 is the event that there are seven instances in N k

x
which have

label ω1, and F2
3 is the event that the number of instances in N k

x
belonging

to label ω2 is in the interval [3− δ; 3 + δ] = [2, 4]. In contrast, for estimating
the label set of the unseen instance using the MLkNN method, the following
probabilities must be computed from Equation (7):

ŷ′
x
(1) = arg max

b∈{0,1}

Pr(H1
b)Pr(E1

7|H
1
b)

ŷ′
x
(2) = arg max

b∈{0,1}

Pr(H2
b)Pr(E2

3|H
2
b)

ŷ′
x
(3) = arg max

b∈{0,1}

Pr(H3
b)Pr(E3

2|H
3
b).

First, the prior probabilities are computed from the training set according to
Equation (11):

Pr(H1
1) = 0.4527 Pr(H1

0) = 0.5473

Pr(H2
1) = 0.5038 Pr(H2

0) = 0.4962

Pr(H3
1) = 0.4396 Pr(H3

0) = 0.5604.

Secondly, the posterior probabilities for the DMLkNN and MLkNN algo-
rithms are calculated 1 using the training set:

Pr(E1
7, F

2
3, F

3
2|H

1
1) = 0.0478 Pr(E1

7, F
2
3, F

3
2|H

1
0) = 0.0139

Pr(E2
3, F

1
7, F

3
2|H

2
1) = 0.0237 Pr(E2

3, F
1
7, F

3
2|H

2
0) = 0.0218

Pr(E3
2, F

1
7, F

2
3|H

3
1) = 0.0394 Pr(E3

2, F
1
7, F

2
3|H

3
0) = 0.1161

Pr(E1
7|H

1
1) = 0.1108 Pr(E1

7|H
1
0) = 0.0431

Pr(E2
3|H

2
1) = 0.1231 Pr(E2

3|H
2
0) = 0.1746

Pr(E3
2|H

3
1) = 0.0655 Pr(E3

2|H
3
0) = 0.0593.

Using the prior and the posterior probabilities, the category vectors associ-
ated to the test instance by the DMLkNN and MLkNN algorithms can be
calculated:

ŷx(1) = 1 ŷ′
x
(1) = 1

ŷx(2) = 1 ŷ′
x
(2) = 0

ŷx(3) = 0 ŷ′
x
(3) = 0.

1Using the DMLkNN method, this is done according to steps 7 to 15, as shown in
Figure 2 and explained in Subsection 4.2.
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Thus, the estimated label set for test instance x given by the DMLkNN
method is Ŷ = {ω1, ω2}, while that given by MLkNN is Ŷ ′ = {ω1}. The true
label set for x is Y = {ω1, ω2}. Here we can see that no error has occurred
when estimating the label set of x using the DMLkNN method, while for
MLkNN the estimated label set is not identical to the ground truth label
set. Seven training instances in N k

x
have class ω1 in their label sets, while

only three instances belong to ω2. In fact, the existence of class ω1 in the
neighborhood of x gives some information about the existence or not of class
ω2 in the label set of x. If we take a look at the training dataset, we remark
that 14,7% of instances belong to ω1, 15.9% to ω2, and 29.8% to ω1 and
ω2 simultaneously. Thus, the probability that an instance belongs to both
classes ω1 and ω2 is approximately twice the probability that it belongs to
only one of the two classes. DMLkNN is able to capture the relationship
between classes ω1 and ω2, while MLkNN is not able to capture this relation.
This example shows that the DMLkNN method, which takes into account
the dependencies between labels, may improve the classification performance,
and estimate the label sets of test instances with greater accuracy.

5. Experiments

In this section, we report a comparative study between DMLkNN and
some state-of-the-art methods on several datasets collected from real world
applications, and using different evaluation metrics.

5.1. Evaluation metrics

There exist a number of evaluation criteria that evaluate the performance
of a multi-label learning system, given a set D = {(x1, Y1), . . . , (xn, Yn)}
of n test examples. We now describe some of the main evaluation crite-
ria used in the literature to evaluate a multi-label learning system [17][21].
The evaluation metrics can be divided into two groups: prediction-based and
ranking-based metrics. Prediction-based metrics assess the correctness of the
label sets predicted by the multi-label classifier H, while ranking-based met-
rics evaluate the label ranking quality depending on the scoring function f .
Since not all multi-label classification methods compute a scoring function,
prediction-based metrics are of more general use.
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5.1.1. Prediction-based metrics

Accuracy. The accuracy metric is an average degree of similarity between
the predicted and the ground truth label sets of all test examples:

Acc(H,D) =
1

n

n∑

i=1

|Yi ∩ Ŷi|

|Yi ∪ Ŷi|
.

where Ŷi = H(xi) denotes the predicted label set of instance xi.

F1-measure. The F1-measure is defined as the harmonic mean of two other
metrics known as Precision (Prec) and Recall (Rec) [24]. The former com-
putes the proportion of correct positive predictions while the latter calculates
the proportion of true labels that have been predicted as positives. These
metrics are defined as follows:

Prec(H,D) =
1

n

n∑

i=1

|Yi ∩ Ŷi|

|Ŷi|
,

Rec(H,D) =
1

n

n∑

i=1

|Yi ∩ Ŷi|

|Yi|
,

and,

F1(H,D) =
2 · Prec · Rec

Prec + Rec
=

1

n

n∑

i=1

2|Yi ∩ Ŷi|

|Yi| + |Ŷi|
.

Hamming loss. This metric counts prediction errors (an incorrect label is
predicted) and missing errors (a true label is not predicted):

HLoss(H,D) =
1

n

n∑

i=1

1

Q
|Yi∆Ŷi|,

where ∆ stands for the symmetric difference between two sets.
Note that the values of the prediction-based evaluation criteria are in the

interval [0, 1]. Larger values of the first four metrics correspond to higher
classification quality, while for the Hamming loss metric, the smaller the
symmetric difference between predicted and true label sets, the better the
performance [21][24].
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5.1.2. Ranking-based metrics

As stated before, this group of criteria is based on the scoring function
f(., .) and evaluates the ranking quality of the different possible labels [7][29].
Let rankf (., .) be the ranking function derived from f and taking values in
{1, . . . , Q}. For each instance xi, the label with the highest scoring value has
rank 1, and if f(xi, ωq) > f(xi, ωr), then rankf (xi, ωq) < rankf (xi, ωr).

One-error. The one-error metric evaluates how many times the top-ranked
label, i.e. the label with the highest score, is not in the true set of labels of
the instance:

OErr(f,D) =
1

n

n∑

i=1

〈[arg max
ω∈Y

f(xi, ω)] /∈ Yi〉,

where for any proposition H, 〈H〉 equals to 1 if H holds and 0 otherwise.
Note that, for single-label classification problems, the one-error is identical
to ordinary classification error.

Coverage. The coverage measure is defined as the average number of steps
needed to move down the ranked label list in order to cover all the labels
assigned to a test instance:

Cov(f,D) =
1

n

n∑

i=1

max
ω∈Yi

rankf (xi, ω) − 1.

Ranking loss. This metric calculates the average fraction of label pairs that
are reversely ordered for an instance:

RLoss(f,D) =
1

n

n∑

i=1

1

|Yi||Y i|
|{(ωq, ωr) ∈ Yi × Y i | f(xi, ωq) ≤ f(xi, ωr)}|

where Y i denotes the complement of Yi in Y .

Average precision. This criterion was first used in information retrieval and
was then adapted to multi-label learning problems in order to evaluate the
effectiveness of label ranking. This metric measures the average fraction of
labels ranked above a particular label y ∈ Yi which actually are in Yi:

AvPrec(f,D) =
1

n

n∑

i=1

1

|Yi|

∑

ωq∈Yi

|{ωr ∈ Yi | rankf (xi, ωr) ≤ rankf (xi, ωq)}|

rankf (xi, ωq)
.
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For the ranking-based metrics, smaller values of the first three metrics
correspond to better label ranking quality, while AvPrec(f,D) = 1 means
that the labels are perfectly ranked for all test examples [7].

5.2. Benchmark datasets

Given a multi-labeled dataset D = {(xi, Yi), i = 1, . . . , n} with xi ∈ X

and Yi ⊆ Y , the following measures give some statistics about the “label
multiplicity” of the dataset D [21]:

• The label cardinality of D, denoted by LCard(D), indicates the average
number of labels per instance:

LCard(D) =
1

n

n∑

i=1

|Yi|

• The label density of D, denoted by LDen(D), is defined as the average
number of labels per instance divided by the number of possible labels
Q:

LDen(D) =
LCard(D)

Q

• DL(D) counts the number of distinct label sets appeared in the dataset
D:

DL(D) = |{Yi ⊆ Y|∃ xi ∈ X : (xi, Yi) ∈ D}|

Several real datasets2 were used in our experiments. The datasets used
are from different application domains, namely text categorization, bioinfor-
matics and multimedia applications (music and image).

• The emotion dataset, presented in [10], consists of 593 songs annotated
by experts according to the emotions they generate. The emotions are:
amazed-surprise, happy-pleased, relaxing-calm, quiet-still, sad-lonely
and angry-fearful. Each emotion corresponds to a class. Consequently
there are 6 classes, and each song was labeled as belonging to one or
several classes. Each song was also described by 8 rhythmic features
and 64 timbre features, resulting in a total of 72 features. The number
of distinct label sets is equal to 27, the label cardinality is 1.868, and
the label density is 0.311.

2These datasets can be downloaded from http://mlkd.csd.auth.gr/multilabel.html.
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• The scene dataset consists of 2407 images of natural scenery. For each
image, spatial color moments are used as features. Images are divided
into 49 blocks using a 7 × 7 grid. The mean and variance of each
band are computed corresponding to a low-resolution image and to
computationally inexpensive texture features, respectively [1]. Each
image is then transformed into a 49× 3× 2 = 294-dimensional feature
vector. A label set is manually assigned to each image. There are
6 different semantic types: beach, sunset, field, fall-foliage, urban and
mountain. The average number of labels per instance is 1.074, thus the
label density is 0.179. The number of distinct sets of labels is equal to
15.

• The yeast dataset contains data regarding the gene functional classes
of the yeast Saccharomyces cerevisiae [7]. It includes 2417 genes, each
of which is represented by 103 features. A gene is described by the
concatenation of micro-array expression data and a phylogenetic pro-
file, and is associated with a set of functional classes. There are 14
possible classes and there exist 198 distinct label combinations. The
label cardinality is 4.237, and the label density is 0.303.

• The medical dataset consists of 978 examples, each example represented
by 1449 features. This dataset was provided by the Computational

Medicine Center as part of a challenge task involving the automated
processing of free clinical text, and is the dataset used in [15]. The
average cardinality is 1.245, and the label density is 0.028 with 94
distinct label sets.

• The Enron email dataset consists of 1702 examples, each represented by
1001 features. It comprises email messages belonging to users, mostly
senior management of the Enron Corp. This dataset was used in [15].
753 distinct label combinations exist in the dataset. The label cardi-
nality is 3.378 and the label density is 0.064.

Table 2 summarizes the characteristics of the emotion, scene, yeast,
medical and Enron datasets.

• The webpage categorization dataset was investigated in [22][29]. The
data were collected from the “yahoo.com” domain. Eleven different
webpage categorization subproblems are considered, corresponding to
11 different categories: Arts and Humanities, Business and Economy,
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Table 2: Characteristics of datasets
Dataset Domain Number of Feature vector Number of Label Label Distinct

instances dimension labels cardinality density label sets

emotion music 593 72 6 1.868 0.311 27
scene image 2407 294 6 1.074 0.179 15
yeast biology 2417 103 14 4.237 0.303 198

medical text 978 1449 45 1.245 0.028 94
enron text 1702 1001 53 3.378 0.064 753

Table 3: Characteristics of the webpage categorization dataset
Number of Feature vector Number of Label Label Distinct
instances dimension labels cardinality density label sets

Arts&Humanities 5000 462 26 1.636 0.063 462
Business&Economy 5000 438 30 1.588 0.053 161
Computers&Internet 5000 681 33 1.508 0.046 253

Education 5000 550 33 1.461 0.044 308
Entertainment 5000 640 21 1.420 0.068 232

Health 5000 612 32 1.662 0.052 257
Recreation&Sports 5000 606 22 1.423 0.065 322

Reference 5000 793 33 1.169 0.035 217
Science 5000 743 40 1.451 0.036 398

Social&Science 5000 1047 39 1.283 0.033 226
Society&Culture 5000 636 27 1.692 0.063 582

Computers and Internet, Education, Entertainment, Health, Recre-
ation and Sports, Reference, Science, Social and Science, and Society
and Culture. Each subproblem consists of 5000 documents. Over the
11 subproblems, the number of categories varies from 21 to 40 and the
instance dimensionality varies from 438 to 1,047. Table 3 shows the
statistics of the different subproblems within the webpage dataset.

5.3. Experimental Results

The DMLkNN method was compared to two other binary relevance-
based approaches, namely, MLkNN and BRkNN. The model parameters for
DMLkNN are the number of neighbors k, the fuzziness parameter δ, and the
smoothing parameter s. Parameter tuning can be done via cross-validation.
For fair comparison, k was set to 10 for the three methods, and s was set
to 1, as in [29]. Note that as stated in Section 4.2, the parameter δ should
be set to a small value. When k is set to 10, extensive experiments have
shown that the value δ = 2 generally gives good classification performances
for DMLkNN.

In addition to the two k-NN based algorithms, our method was compared
to two other state-of-the-art multi-label classification methods that have been
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shown to have good performances: MLRBF [28], derived from radial basis
function neural networks, and RankSVM [7], based on the traditional support
vector machine. As used in [28], the fraction parameter for MLRBF was set
to 0.01 and the scaling factor to 1. For RankSVM, polynomial kernel was
used as reported in [7].

For all k-NN based algorithms, the Euclidean distance was used. Note
that usually, when feature variables are numeric and are not of compara-
ble units and scales, i.e., there are large differences in the ranges of values
encountered (such as in the emotion dataset), the distance metric implicitly
assigns greater weight to features with wide ranges than to those with narrow
ranges. This may affect the nearest neighbors search. In such cases, feature
normalization is recommended to approximately equalize the ranges of fea-
tures so that they will have the same effect on distance computation [5]. In
addition, we may remark that in the cases of the medical and Enron datasets,
the dimensions of feature vectors are very large as compared to the number
of training instances (see Table 2). We applied the χ2 statistic approach for
feature selection on these two datasets, and we retained 20% of the most
relevant features [25].

Five iterations of ten-fold cross-validation were performed on each dataset.
Tables 4 through 8 report the detailed results in terms of the different evalu-
ation metrics for the emotion, scene, yeast, medical and Enron datasets, re-
spectively. On the webpage dataset, ten-fold cross validation was performed
on each subproblem, and Table 9 reports the average results.

For each method, the mean values of the different evaluation criteria, as
well as the standard deviations (std) are given in the tables. A two-tailed
paired t-test at 5% significance level was performed in order to determine the
statistical significance of the obtained results in comparison with the best
performances indicated in bold. In addition, for each dataset, the methods
were ranked in decreasing order of performance. The average ranks over the
different evaluation criteria are reported in the tables.

To give some idea about the computational complexity of the different al-
gorithms, Table 10 provides the corresponding runtime statistics (in seconds)
on the different datasets, using train/test experiments. All the algorithms
were implemented in Matlab 7.4 and executed on the same computer (Intel
Core Duo 2.13 GHz, 2 Go RAM).

Using the Sign test, a statistical comparison between the classifiers was
made over the different datasets cited above. Table 11 reports the average
ranking on each evaluation metric.
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From the experimental results presented, the following observations can
be made:

• DMLkNN performs better than MLkNN with respect to all evaluation
metrics and on all datasets. In addition, DMLkNN performs better
than BRkNN and is very competitive with the remaining methods that
are based on more sophisticated classifiers (SVM and RBF). When the
results obtained on the different datasets are averaged, DMLkNN gives
the best performances with respect to all evaluation metrics apart from
One-error and Average-precision. The next best results are obtained
from MLRBF.

• The experimental results show that, generally, DMLkNN performs bet-
ter with respect to predicted-based metrics than with respect to ranking-
based metrics, as for example on the emotion and scene datasets. In
fact, for each instance to be classified, the output of DMLkNN is de-
termined by combining binary decisions made about that instance’s
membership of the different classes. Thus, this method is concerned
more with the pertinence of the predicted sets of labels than with the
ranking of all labels. A ranking-based method, such as RankSVM, on
the other hand, will normally tend to be more competitive with other
methods as regards ranking-based metrics. This may be explained by
the fact that ranking-based methods operate by ranking the labels ac-
cording to their relevance to a given instance to be classified, and then
splitting the ordered set of labels into subsets of relevant and irrelevant
labels for that instance.

• DMLkNN has good performances and is more competitive with the
other algorithms on datasets with high label-density, such on the emo-
tion and yeast datasets. The proposed method is intended primarily
to take into account the dependencies between labels, and DMLkNN
tends to perform better on datasets with high label multiplicity, in
which labels may be potentially more interdependent.

• MLkNN is computationally faster than DMLkNN. In fact, in the MLkNN
method, the likelihoods Pr(Eq

cx(q)|H
q
b), b ∈ {0, 1}, are calculated from

the training set, stored, and then used only when predicting the la-
bel set of each query instance. In contrast, when DMLkNN is used,
the number of likelihoods Pr(Eq

cx(q),
∧

ωl∈Y\{ωq}

Fl
cx(l)|H

q
b), b ∈ {0, 1}, is
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far greater; consequently, unlike MLkNN, it is impractical to calculate
these probabilities in advance and then store them. There is therefore
not a training process for DMLkNN. The probabilities are computed
locally for each instance to be classified. Regarding the different meth-
ods, BRkNN is the fastest algorithm. Apart from the number of pos-
sible labels, the computing time of BRkNN depends primarily on the
computing time of the nearest neighbors search. There are no prior
and posterior probabilities to compute for BRkNN, as there are for
DMLkNN and MLkNN. The RankSVM method requires the greatest
computing time. For RankSVM, the resolution of the quadratic prob-
lem and the choice of the support vectors is known to be very hard [14].
The complexity of MLRBF depends primarily on the complexity of the
K-means algorithm used for clustering the instances belonging to each
possible class. MLRBF therefore has a linear complexity with respect
to the number of classes, the number of clusters, the number of in-
stances, and the dimensionality of the corresponding features vectors.

6. Conclusion

In this paper, we proposed an original multi-label learning algorithm de-
rived from the k-NN rule, where the dependencies between labels are taken
into account. Our method is based on the binary relevance approach, that
is frequently criticized for ignoring possible correlations between labels [15],
but here, this disadvantage is overcome. The classification of an instance
is accomplished through the use of local information given by the k near-
est neighbors, and by using the maximum a posteriori rule. This method,
referred to as DMLkNN, generalizes the MLkNN algorithm presented in [29].

The proposed method is particularly useful in practical situations where
data are significantly multi-labeled. Using a variety of benchmark datasets
and different evaluation criteria, the experimental results clearly demonstrate
this, and confirm the usefulness and the effectiveness of DMLkNN as com-
pared to other state-of-the-art multi-label classification methods.

Note that, when the number of classes grows, more data are required
in order to compute the posterior probabilities for DMLkNN. On limited
datasets, it will be hard to capture relationships between labels. In addition,
the performances of the proposed method depend on the distance computa-
tion metric used to determine the nearest neighbors.
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Table 4: Experimental results (mean±std) on the emotion dataset
DMLkNN MLkNN BRkNN MLRBF RankSVM

Acc+ 0.562±0.029 0.536±0.032• 0.551±0.030• 0.548±0.029• 0.476±0.027•
Prec+ 0.691±0.032 0.674±0.033• 0.689±0.033◦ 0.686±0.037◦ 0.601±0.031•
Rec+ 0.653±0.030 0.622±0.041• 0.637±0.031• 0.639±0.032• 0.589±0.032•
F1+

0.671±0.028 0.648±0.033• 0.663±0.029• 0.662±0.031• 0.592±0.027•
HLoss− 0.189±0.015 0.197±0.015• 0.190±0.016◦ 0.191±0.015◦ 0.221±0.016•
OErr− 0.266±0.033• 0.285±0.035• 0.261±0.036• 0.255±0.045 0.313±0.039•
Cov−

1.762±0.111 1.803±0.115• 1.789±0.125• 1.765±0.120◦ 1.875±0.117•
RLoss− 0.161±0.019• 0.167±0.021• 0.190±0.017• 0.159±0.021 0.181±0.021•
AvPrec+ 0.804±0.019◦ 0.794±0.022• 0.798±0.020• 0.809±0.024 0.779±0.020•

Av Rank 1.4 4 2.5 2.1 5

+(-): the higher (smaller) the value, the better the performance.
•(◦): statistically significant (non-significant) difference of performance as compared to the best result in

bold, based on two-tailed paired t-test at 5% significance.

Table 5: Experimental results (mean±std) on the scene dataset
DMLkNN MLkNN BRkNN MLRBF RankSVM

Acc+ 0.676±0.015 0.668±0.020• 0.658±0.018• 0.631±0.016• 0.521±0.016•
Prec+ 0.704±0.017 0.695±0.021• 0.684±0.019• 0.652±0.017• 0.505±0.019•
Rec+ 0.677±0.015 0.669±0.022◦ 0.661±0.018• 0.644±0.018• 0.660±0.017•
F1+

0.692±0.016 0.683±0.023• 0.672±0.019• 0.649±0.017• 0.526±0.017•
HLoss− 0.084±0.004 0.087±0.003◦ 0.092±0.005• 0.086±0.003◦ 0.135±0.004•
OErr− 0.219±0.017• 0.228±0.016• 0.245±0.018• 0.206±0.015 0.279±0.017•
Cov− 0.461±0.035◦ 0.476±0.035• 0.558±0.042• 0.451±0.041 0.939±0.041•

RLoss− 0.071±0.007 0.077±0.009◦ 0.110±0.009• 0.072±0.008◦ 0.118±0.009•
AvPrec+ 0.869±0.010◦ 0.865±0.009• 0.843±0.011• 0.876±0.009 0.801±0.011•

Av Rank 1.3 2.5 3.5 2.5 5

+(-): the higher (smaller) the value, the better the performance.
•(◦): statistically significant (non-significant) difference of performance as compared to the best result in

bold, based on two-tailed paired t-test at 5% significance.
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Table 6: Experimental results (mean±std) on the yeast dataset
DMLkNN MLkNN BRkNN MLRBF RankSVM

Acc+ 0.511±0.011 0.508±0.014◦ 0.510±0.010◦ 0.510±0.011• 0.492±0.014•
Prec+ 0.726±0.014 0.714±0.015• 0.693±0.014• 0.703±0.013• 0.585±0.021•
Rec+ 0.586±0.012◦ 0.578±0.017• 0.599±0.014 0.594±0.012◦ 0.547±0.019•
F1+

0.623±0.011 0.612±0.014• 0.615±0.014• 0.616±0.011• 0.556±0.015•
HLoss− 0.192±0.005 0.194±0.005◦ 0.199±0.005• 0.197±0.005• 0.202±0.008•
OErr− 0.226±0.021 0.230±0.017◦ 0.243±0.019• 0.239±0.019• 0.240±0.023•
Cov−

6.240±0.104 6.275±0.100• 6.631±0.152• 6.489±0.136• 6.997±0.368•
RLoss− 0.165±0.007 0.167±0.006◦ 0.210±0.009• 0.175±0.008• 0.183±0.011•
AvPrec+ 0.770±0.010 0.765±0.010• 0.754±0.011• 0.758±0.011• 0.753±0.014•

Av Rank 1.2 2.4 3.5 2.6 4.8

+(-): the higher (smaller) the value, the better the performance.
•(◦): statistically significant (non-significant) difference of performance as compared to the best result in

bold, based on two-tailed paired t-test at 5% significance.

Table 7: Experimental results (mean±std) on the medical dataset
DMLkNN MLkNN BRkNN MLRBF RankSVM

Acc+ 0.634±0.039• 0.609±0.052• 0.565±0.049• 0.689±0.029 0.501±0.041•
Prec+ 0.692±0.037• 0.667±0.048• 0.628±0.048• 0.709±0.031 0.522±0.040•
Rec+ 0.724±0.041 0.628±0.053• 0.574±0.048• 0.701±0.025• 0.556±0.038•
F1+

0.708±0.037 0.646±0.050• 0.599±0.051• 0.703±0.027◦ 0.531±0.036•
HLoss− 0.015±0.001• 0.015±0.002• 0.016±0.002• 0.011±0.002 0.019±0.002•
OErr− 0.212±0.044• 0.220±0.052• 0.271±0.048• 0.153±0.048 0.215±0.028•
Cov− 2.454±0.567• 2.514±0.538• 3.218±0.763• 1.449±0.296 3.310±0.781•

RLoss− 0.035±0.010• 0.037±0.009• 0.099±0.028• 0.022±0.009 0.049±0.019•
AvPrec+ 0.831±0.026• 0.826±0.033• 0.799±0.029• 0.898±0.038 0.791±0.028•

Av Rank 1.7 3 4.2 1.3 4.7

+(-): the higher (smaller) the value, the better the performance.
•(◦): statistically significant (non-significant) difference of performance as compared to the best result in

bold, based on two-tailed paired t-test at 5% significance.

Table 8: Experimental results (mean±std) on the Enron dataset
DMLkNN MLkNN BRkNN MLRBF RankSVM

Acc+ 0.348±0.033 0.305±0.035• 0.346±0.025◦ 0.340±0.031◦ 0.298±0.041•
Prec+ 0.646±0.041 0.572±0.043• 0.602±0.020• 0.587±0.039• 0.525±0.033•
Rec+ 0.378±0.029◦ 0.343±0.034• 0.382±0.028◦ 0.386±0.038 0.342±0.041•
F1+

0.477±0.034 0.428±0.038• 0.470±0.027◦ 0.464±0.040 ◦ 0.418±0.030•
HLoss− 0.051±0.001 0.052±0.001◦ 0.053±0.002◦ 0.052±0.001◦ 0.062±0.006•
OErr− 0.270±0.017 0.271±0.018◦ 0.304±0.019• 0.281±0.028◦ 0.324±0.026•
Cov−

13.571±0.308 13.507±0.342◦ 19.838±0.467• 16.318±0.689• 18.133±0.671•
RLoss− 0.095±0.004 0.097±0.004◦ 0.228±0.014• 0.113±0.009• 0.178±0.012•
AvPrec+ 0.638±0.008◦ 0.635±0.009◦ 0.598±0.015• 0.642±0.018 0.586±0.019•

Av Rank 1.3 3 3.1 2.4 4.7

+(-): the higher (smaller) the value, the better the performance.
•(◦): statistically significant (non-significant) difference of performance as compared to the best result in

bold, based on two-tailed paired t-test at 5% significance.
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Table 9: Experimental results (mean±std) on the webpage dataset
DMLkNN MLkNN BRkNN MLRBF RankSVM

Acc+ 0.296±0.204• 0.285±0.184• 0.286±0.179• 0.398±0.146 0.234±0.171•
Prec+ 0.351±0.257• 0.340±0.227• 0.341±0.211• 0.462±0.171 0.228±0.212•
Rec+ 0.308±0.205• 0.291±0.189• 0.296±0.195• 0.407±0.153 0.276±0.186•
F1+ 0.319±0.219• 0.304±0.198• 0.317±0.203• 0.421±0.156 0.249±0.195•

HLoss− 0.041±0.014• 0.043±0.015• 0.052±0.021• 0.039±0.013 0.043±0.014•
OErr− 0.466±0.165• 0.474±0.157• 0.565±0.184• 0.375±0.120 0.440±0.143•
Cov−

4.069±1.255 4.097±1.237◦ 8.455±1.887• 4.689±1.403◦ 7.508±2.396•
RLoss− 0.099±0.046 0.102±0.045◦ 0.312±0.101• 0.107±0.039◦ 0.193±0.065•
AvPrec+ 0.630±0.120◦ 0.625±0.116◦ 0.522±0.151• 0.688±0.092 0.601±0.117•

Av Rank 2 3.4 4.1 1.2 4.1

+(-): the higher (smaller) the value, the better the performance.
•(◦): statistically significant (non-significant) difference of performance as compared to the best result in

bold, based on two-tailed paired t-test at 5% significance.

Table 10: Run time of the compared algorithms on the different datasets in seconds
DMLkNN MLkNN BRkNN MLRBF RankSVM

Emotion 0.506 0.268 0.126 0.696 3.635
Scene 9.984 5.963 3.067 3.851 22.319
Yeast 11.966 4.096 1.696 12.224 248.532

Medical 3.674 2.216 1.275 4.519 233.549
Enron 20.009 11.422 4.173 28.193 1781.644

Table 11: Comparisons of the classifiers over the different datasets
Acc+ DMLkNN ≻ MLRBF > BRkNN ≻ MLkNN > RankSVM
Prec+ DMLkNN ≻ MLRBF > MLkNN ≻ BRkNN > RankSVM
Rec+ DMLkNN ≻ MLRBF > BRkNN ≻ MLkNN > RankSVM
F1+ DMLkNN ≻ MLRBF > BRkNN ≻ MLkNN > RankSVM

HLoss− DMLkNN ≻ MLRBF ≻ MLkNN ≻ BRkNN > RankSVM
OErr− MLRBF ≻ DMLkNN > MLkNN ≻ BRkNN > RankSVM
Cov− DMLkNN ≻ MLkNN > MLRBF ≻ BRkNN > RankSVM

RLoss− DMLkNN ≻ MLRBF > MLkNN > BRkNN > RankSVM
AvPrec+ MLRBF ≻ DMLkNN > MLkNN > BRkNN > RankSVM

>: statistically significant difference of performance based on Sign test;
≻: non-significant difference of performance.
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