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ZEROS OF THE ZETA FUNCTION AND MELLIN

TRANSFORM, SOME FORMULAS

Hélène Charrière

Abstract

In this paper, we prove a formula, expressing, in terms of the psi function and of the

Riemann zeta function, the non-trivial zeros of the Riemann zeta function, and, more

generally, any analytic function of these zeros. Two methods are used, one of them using

the Mellin transform.

Theorem.

If f is holomorphic on a neighborhood of the half-band
{
−1

2
≤ <(s) ≤ 1

2
,=(s) ≤ 0

}
, if(

1
2

+ ibk
)
k∈Z−{0} is the sequence of the zeros of the zeta function having real part 1

2
, if

(ck + idk)k∈Z−{0} is the sequence of the remaining non-trivial zeros (with the following con-

ventions: bk, dk > 0 if k > 0, 0 < ck < 1, ck 6= 1
2
, b−k = −bk, c−k + id−k = 1 − (ck + idk) if

k ∈ Z − {0}), and if n and A are two real numbers such that n > 0, n /∈ {bk, dk, k > 0} and
A > 1

2
, then we have:

2π
∑

0<bk<n

f(−ibk) + 2π
∑

0<dk<n

f

(
1

2
− ck − idk

)
=

ln(π)

i

∫ −in
0

f(s) ds− 1

2i

∫ −in
0

f(s)

(
Ψ

(
1

4
− s

2

)
+ Ψ

(
1

4
+
s

2

))
ds

− 1

i

(∫
R∗n,A

f(s)
ζ ′

ζ

(
1

2
+ s

)
ds+

∫
R∗n,−A

f(s)
ζ ′

ζ

(
1

2
− s
)

ds

)
,

(1)

where Ψ is the digamma function, ζ is the Riemann zeta function ,
∫ −in
0

refers to the integral
along the oriented segment [0,−in] and where the path of integration R∗n,A (resp. R∗n,−A) is the
portion of the rectangle in U successively joining the points 0, A (resp. −A), A − in (resp.
−A− in), −in (with a small semicircle below 1

2
(resp. −1

2
) .

Remark.

a. If A < 0 (and if we avoid the poles of zeta), the �rst member of the formula (1) is changed
into its opposite.

b. The path of integration R∗n,A (resp. R∗n,−A) can be replaced by any homotopic path in
U ∩ C− {poles of zeta}.

c. The formula (1) can be expressed using ζ only, through the equality:

ln(π)− 1

2

(
Ψ

(
1

4
− s

2

)
+ Ψ

(
1

4
+
s

2

))
− ζ ′

ζ

(
1

2
+ s

)
− ζ ′

ζ

(
1

2
− s
)

= 0. (2)
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Corollary 1. Under the additional assumptions that f is holomorphic on a neighborhood of
the half-plane {=(s) ≤ 0} and that f(±s)

2s
is integrable up to +∞, the formula (1) becomes:

2π
∑

0<bk<n

f(−ibk) + 2π
∑

0<dk<n

f

(
1

2
− ck − idk

)
=

ln(π)

i

∫ −in
0

f(s) ds− 1

2i

∫ −in
0

f(s)

(
Ψ

(
1

4
− s

2

)
+ Ψ

(
1

4
+
s

2

))
ds

− 1

i

(∫
d−n,r

f(s)
ζ ′

ζ

(
1

2
+ s

)
ds−

∫
d0−,r

f(s)
ζ ′

ζ

(
1

2
+ s

)
ds

)

− 1

i

(∫
d−n,l

f(s)
ζ ′

ζ

(
1

2
− s
)

ds−
∫
d0−,l

f(s)
ζ ′

ζ

(
1

2
− s
)

ds

)
,

(3)

where Ψ is the digamma function, ζ is the Riemann zeta function,
∫ −in
0

means the in-
tegral along the oriented segment [0,−in] and where the paths of integration d−n,r (re-
spectively d0−,r, d−n,l, d0−,l) are the horizontal half-lines starting from +∞ − in (respectively
+∞,−∞− in,−∞) up to −in (respectively 0), with a small semicircle below 1

2
(resp. −1

2
) for

d0−,r (resp. d0−,l).

Proof of the corollary 1. We make A tend to in�nity in equality (1).

We also �nd the known result :

Corollary 2. If N(n) is the number of zeros of the zeta function whose imaginary part is
between 0 and n, then we have:

N(n) = 1 +
1

π
arg

(
π−in/2Γ

(
1

4
+
in

2

))
+

1

π
arg

(
ζ

(
1

2
+ in

))
. (4)

Proof of the corollary 2. Applying the formula (3) to the constant function f = 1, we obtain:

2πN(n) = −n ln(π) + 2=
(

ln

(
Γ

(
1

4
+
in

2

)))
+ 2=

(
ln

(
ζ

(
1

2
+ in

)))
− 2=

(
ln

(
ζ

(
1

2
+ i0+

)))
.

(5)

and the result follows, through the equality =
(
ln
(
ζ
(
1
2

+ i0+

)))
= −π.

Corollary 3. If there exists a unique zero 1
2

+ ibk(n) of multiplicity 1 (respectively, if there is
no zero) such that n < bk(n) < n+ 1, the value of bk(n) (resp. 0) is given by:

bk(n) = − 1

2π

((
n+

1

2

)
ln(π) + <

(∫ −i(n+1)

−in
sΨ

(
1

4
+
s

2

)
ds

))

− 1

π
<

(∫
R∗n+1,A−R

∗
n,A

s
ζ ′

ζ

(
1

2
+ s

)
ds

)
.

(6)
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Proof of the corollary 3. We apply the formula (3) to the function f(s) = −is.

We give two proofs of the theorem. The second, using the Mellin transform, is longer and
the result is weaker (it must be assumed that the function f is entire), but this proof is more
natural since it provides the formula.

I. First proof of the theorem

If we apply the residue formula to the integral
∫ −in
0

f(s)
(
ln(π)− 1

2

(
Ψ
(
1
4
− s

2

)
+ Ψ

(
1
4

+ s
2

)))
ds,

then formula (??) can be written:

2π
∑

0<bk<n

f(−ibk) + 2π
∑

0<dk<n

f

(
1

2
− ck − idk

)
=

1

i

∫
R∗n,A1

f(s)

(
ln(π)− 1

2

(
Ψ

(
1

4
− s

2

)
+ Ψ

(
1

4
+
s

2

)))
ds

− 1

i

(∫
R∗n,A

f(s)
ζ ′

ζ

(
1

2
+ s

)
ds+

∫
R∗n,−A

f(s)
ζ ′

ζ

(
1

2
− s
)

ds

)
,

(7)

where 1
2
< A1 <

5
2
. We use the formula (2), and the previous formula becomes:

2π
∑

0<bk<n

f(−ibk) + 2π
∑

0<dk<n

f

(
1

2
− ck − idk

)
=

1

i

∫
R∗n,A1

f(s)

(
ζ ′

ζ

(
1

2
+ s

)
+
ζ ′

ζ

(
1

2
− s
))

ds

− 1

i

(∫
R∗n,A

f(s)
ζ ′

ζ

(
1

2
+ s

)
ds+

∫
R∗n,−A

f(s)
ζ ′

ζ

(
1

2
− s
)

ds

)

=
1

i

∫
R∗n,A1

−R∗n,A

f(s)
ζ ′

ζ

(
1

2
+ s

)
ds+

1

i

∫
R∗n,A1

−R∗n,−A

f(s)
ζ ′

ζ

(
1

2
− s
)

ds,

(8)

which completes the proof of Lemma I.0, since, through the residue formula, we obtain:

1

i

∫
R∗n,A1

−R∗n,A

f(s)
ζ ′

ζ

(
1

2
+ s

)
ds = 0 (9)

and

2π
∑

0<bk<n

f(−ibk) + 2π
∑

0<dk<n

f

(
1

2
− ck − idk

)
=

1

i

∫
R∗n,A1

−R∗n,−A

f(s)
ζ ′

ζ

(
1

2
− s
)

ds. (10)
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II. Second proof of the theorem

We need two lemmas.

Lemma II.1. If u and n are two positive real numbers, if
(
1
2

+ ibk
)
k∈Z−{0} is the sequence

of the zeros of the zeta function having real part 1
2
, if (ck + idk)k∈Z−{0} is the sequence of the

remaining non-trivial zeros, then we have:

2π
∑

0<bk<n

u−ibk + 2π
∑

0<dk<n

u
1
2
−ck−idk =

ln(π)

i

∫ −in
0

usds− 1

2i

∫ −in
0

us
(

Ψ

(
5

4
− s

2

)
+ Ψ

(
5

4
+
s

2

))
ds

+M−1
d

(
ζ ′

ζ
+

1

s− 1

)(
−1

i

∫ −in
0

us
(
ts+

1
2 + t−s+

1
2

)
ds

)
,

(11)

where
∫ −in
0

refers to the integral along the oriented segment [0,−in], M−1
d ( ζ

′

ζ
+ 1

s−1) denotes

the inverse Mellin transform "turning right" of the operator ζ′

ζ
+ 1

s−1 and with the following

conventions: bk, dk > 0 if k > 0, 0 < ck < 1, ck 6= 1
2
, b−k = −bk, c−k + id−k = 1− (ck + idk) if

k ∈ Z− {0}.

Proof of the lemma II.1. We start from the known formula:∑
k∈Z−{0}

1

s−
(
1
2

+ ibk
)+

∑
k∈Z−{0}

1

s− (ck + idk)
= −c+

1

s− 1
+

1

2

(
γ + Ψ

(
1 +

s

2

))
+
ζ ′

ζ
(s), (12)

where c = γ+ln(π)
2

, γ is the Euler's constant and where the in�nite sums have to be understood
in the sense of the limits of symmetric partial sums.

By inverse Mellin transform "turning right"(see appendix), we obtain the formula:∑
k∈Z−{0}

[t−
1
2
−ibk1]←,1]] +

∑
k∈Z−{0}

[t−ck−idk1]←,1]] = −cδ1 + T + [t−11]←,1]]−
∑

k∈N−{0}

Λ(k)δ 1
k
, (13)

where the notation [ta1]←,1]] denotes the inverse Mellin transform "turning right" of the
operator 1

s+a
, δa is the Dirac distribution at the point a, T is the operator de�ned by

T (φ) = −
∫ 1

0
tφ(t)−φ(1)

1−t2 dt (inverse "turning right" of the operator 1
2
(γ + Ψ(1 + s

2
))) and

−
∑

k∈N−{0} Λ(k)δ 1
k
(where Λ is the von Mangoldt function) is the inverse Mellin transform

"turning right" of the operator ζ′

ζ
.

We now consider the function φn,u(t) =
√
t(1 + (δ 1

t
)hu(

1−t−in

i ln(t)
), where

√
t is the operator of

multiplication by
√
t, δ 1

t
is de�ned by (δ 1

t
(φ))(t) = φ(1

t
), u and n are positive real numbers

and hu is the homothety operator of ratio u, de�ned by (hu(φ))(t) = φ(ut).

Let A be a positive real number. By using the following equality:

1− t−in

i ln(t)
= −1

i

∫ −in
0

tsds = −1

i

∫
Rn,A

tsds = −1

i

∫
Rn,−A

tsds, (14)
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where Rn,A (resp. Rn,−A) is the portion of the rectangle successively joining the points 0, A
(resp. −A), A− in (resp. −A− in), −in, we obtain:

φn,u(t) =

− 1

i

√
t

∫ −in
0

us
(
ts + t−s

)
ds = −1

i

√
t

∫
Rn,A

us
(
ts + t−s

)
ds = −1

i

√
t

∫
Rn,−A

us
(
ts + t−s

)
ds.

(15)

We calculate the image of φn,u by each operator of the formula (13).

If k > 0: [
t−ck−idk1]←,1]

]
(φn,u)

= − 1

i

∫
Rn,A

us[t−ck−idk1]←,1]]
(
ts+

1
2

)
ds− 1

i

∫
Rn,−A

us[t−ck−idk1]←,1]]
(
t−s+

1
2

)
ds

= − 1

i

∫
Rn,A

us
(
M
(
[t−ck−idk1]←,1]]

)(
s+

1

2

))
ds

− 1

i

∫
Rn,−A

us
(
M
(
[t−ck−idk1]←,1]]

)(
−s+

1

2

))
ds

= − 1

i

∫
Rn,A

us
(

1

s+ 1
2
− ck − idk

)
ds− 1

i

∫
Rn,−A

us
(

1

−s+ 1
2
− ck − idk

)
ds

(16)

and

[t−c−k−id−k1]←,1]](φn,u)

= − 1

i

∫
Rn,A

us
(

1

s+ 1
2
− c−k − id−k

)
ds− 1

i

∫
Rn,−A

us
(

1

−s+ 1
2
− c−k − id−k

)
ds

= − 1

i

∫
Rn,A

us
(

1

s− 1
2

+ ck + idk

)
ds− 1

i

∫
Rn,−A

us
(

1

−s− 1
2

+ ck + idk

)
ds,

(17)

therefore: (
[t−ck−idk1]←,1]] + [t−c−k−id−k1]←,1]]

)
(φn,u)

= − 1

i

∫
Rn,A

us
(

1

s+ 1
2
− ck − idk

)
ds+

1

i

∫
Rn,−A

us
(

1

s+ 1
2
− ck − idk

)
ds

− 1

i

∫
Rn,A

us
(

1

s− 1
2

+ ck + idk

)
ds+

1

i

∫
Rn,−A

us
(

1

s− 1
2

+ ck + idk

)
ds

= 2π
∑

0<dk<n

u
1
2
−ck−idk ,

(18)

if A > 1
2
.

By making ck = 1
2
and dk = bk in formula (18), we obtain:(

[t−
1
2
−ibk1]←,1]] + [t−

1
2
−ib−k1]←,1]]

)
(φn,u) = 2π

∑
0<bk<n

u−ibk . (19)

On the other hand:

−cδ1(φn,u) =
2c

i

∫ −in
0

usds = −2c
1− u−in

i ln(u)
, (20)
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and

T (φn,u)

= − 1

i

∫ −in
0

us
(
M (T )

(
s+

1

2

)
+M (T )

(
−s+

1

2

))
ds

= − 1

2i

∫ −in
0

us
(

2γ + Ψ

(
5

4
+
s

2

)
+ Ψ

(
5

4
− s

2

))
ds.

(21)

So, by using the equality −γ + 2c = ln(π), we obtain:

2π
∑

0<bk<n

u−ibk + 2π
∑

0<dk<n

u
1
2
−ck−idk =

ln(π)

i

∫ −in
0

usds− 1

2i

∫ −in
0

us
(

Ψ

(
5

4
− s

2

)
+ Ψ

(
5

4
+
s

2

))
ds

+M−1
d

(
ζ ′

ζ
+

1

s− 1

)(
−1

i

∫ −in
0

us
(
ts+

1
2 + t−s+

1
2

)
ds

)
,

(22)

which completes the proof of Lemma II.1.

Proof of the lemma II.1.

Lemma II.2. If u, n and A are positive real numbers, if
(
1
2

+ ibk
)
k∈Z−{0} is the sequence of

the zeros of the zeta function having real part 1
2
, we have:

2π
∑

0<bk<n

u−ibk + 2π
∑

0<dk<n

u
1
2
−ck−idk =

ln(π)

i

∫ −in
0

usds− 1

2i

∫ −in
0

us
(

Ψ

(
1

4
− s

2

)
+ Ψ

(
1

4
+
s

2

))
ds

− 1

i

∫
R∗n,A

us
ζ ′

ζ

(
s+

1

2

)
ds− 1

i

∫
R∗n,−A

us
ζ ′

ζ

(
−s+

1

2

)
ds,

(23)

where the path of integration R∗n,A (resp. R∗n,−A) is the portion of the rectangle successively
joining the points 0, A (resp. −A), A − in (resp. −A − in), −in (with a small semicircle
below 1

2
(resp. −1

2
) if A > 1

2
) and with the following conventions: bk > 0 if k > 0, b−k = −bk if

k ∈ Z− {0}.

Proof of the lemma II.2.

M−1
d

(
ζ ′

ζ
(s) +

1

s− 1

)(
−1

i

∫ −in
0

us
(
ts+

1
2 + t−s+

1
2

)
ds

)
= M−1

d

(
ζ ′

ζ
(s) +

1

s− 1

)(
−1

i

∫
Rn,A

usts+
1
2 ds− 1

i

∫
Rn,−A

ust−s+
1
2 ds

)

= − 1

i

∫
Rn,A

us
(
ζ ′

ζ

(
s+

1

2

)
+

1

s− 1
2

)
ds− 1

i

∫
Rn,−A

us
(
ζ ′

ζ

(
−s+

1

2

)
− 1

s+ 1
2

)
ds.

(24)
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We modify (if A > 1
2
) the integration path Rn,A (resp. Rn,−A), avoiding the point 1

2
(resp.

−1
2
) by a small semicircle below, and we call R∗n,A (resp. R∗n,−A ) the new path resulting. We

have:

M−1
d

(
ζ ′

ζ
(s) +

1

s− 1

)(
−1

i

∫ −in
0

us
(
ts+

1
2 + t−s+

1
2

)
ds

)
= − 1

i

∫
R∗n,A

us
(
ζ ′

ζ

(
s+

1

2

)
+

1

s− 1
2

)
ds− 1

i

∫
R∗n,−A

us
(
ζ ′

ζ

(
−s+

1

2

)
− 1

s+ 1
2

)
ds

= − 1

i

∫
R∗n,A

us
ζ ′

ζ

(
s+

1

2

)
ds− 1

i

∫
R∗n,−A

us
ζ ′

ζ

(
−s+

1

2

)
ds+

1

i

∫ −in
0

us
(

1

−s+ 1
2

+
1

s+ 1
2

)
ds,

(25)

and, by using Lemmas II.1, ??, and the following equality:

− 1

2i

∫ −in
0

us
(

Ψ

(
5

4
+
s

2

)
+ Ψ

(
5

4
− s

2

))
ds =

− 1

2i

∫ −in
0

us
(

Ψ

(
1

4
+
s

2

)
+ Ψ

(
1

4
− s

2

))
ds− 1

i

∫ −in
0

us
(

1

s+ 1
2

+
1

−s+ 1
2

)
ds,

(26)

we obtain:

2π
∑

0<bk<n

u−ibk =

ln(π)

i

∫ −in
0

usds− 1

2i

∫ −in
0

us
(

Ψ

(
1

4
− s

2

)
+ Ψ

(
1

4
+
s

2

))
ds

− 1

i

∫
R∗n,A

us
ζ ′

ζ

(
s+

1

2

)
ds− 1

i

∫
R∗n,−A

us
ζ ′

ζ

(
−s+

1

2

)
ds,

(27)

which completes the proof of Lemma II.2.

End of the proof of the theorem. We make the additional assumption that f is an entire
function. We set f(s) =

∑+∞
l=0 fls

l and θ = u d
du
.

By applying the derivation of order l (l ∈ N) θl in formula (13), we obtain:

2π
∑

0<bk<n

(−ibk)lu−ibk + 2π
∑

0<dk<n

(
1

2
− ck − idk)lu

1
2
−ck−idk =

ln(π)

i

∫ −in
0

slusds− 1

2i

∫ −in
0

slus
(

Ψ

(
1

4
− s

2

)
+ Ψ

(
1

4
+
s

2

))
ds

− 1

i

∫
R∗n,A

slus
ζ ′

ζ

(
s+

1

2

)
ds− 1

i

∫
R∗n,−A

slus
ζ ′

ζ

(
−s+

1

2

)
ds.

(28)

Summing over l the relation (23) multiplied by fl, we have:

2π
∑

0<bk<n

f(−ibk)u−ibk =

ln(π)

i

∫ −in
0

f(s)usds− 1

2i

∫ −in
0

f(s)us
(

Ψ

(
1

4
− s

2

)
+ Ψ

(
1

4
+
s

2

))
ds

− 1

i

∫
R∗n,A

f(s)us
ζ ′

ζ

(
s+

1

2

)
ds− 1

i

∫
R∗n,−A

f(s)us
ζ ′

ζ

(
−s+

1

2

)
ds,

(29)
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and, by making u = 1:

2π
∑

0<bk<n

f(−ibk) =

ln(π)

i

∫ −in
0

f(s) ds− 1

2i

∫ −in
0

f(s)

(
Ψ

(
1

4
− s

2

)
+ Ψ

(
1

4
+
s

2

))
ds

− 1

i

∫
R∗n,A

f(s)
ζ ′

ζ

(
s+

1

2

)
ds− 1

i

∫
R∗n,−A

f(s)
ζ ′

ζ

(
−s+

1

2

)
ds,

(30)

which completes the second proof of the theorem.

Remark. If we use the inverse "turning left" M−1
g , we obtain the formula with A < 0.
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Appendix

Some concepts used here were developed in [1].

A.1 Some notations

In the following, we always identify a function q with the operator of multiplication by q:
φ→ qφ.

The variable t will always belong to the universal cover of C−{0} and the variable s generally
to the set C of the complex numbers.

We say that a linear operator is "in t" (resp. "in s") if it is de�ned on, and takes values in
sets of functions of the variable t (resp. s). An example of operator "in t" is the operator Q
(locally) de�ned by:

Q

(
+∞∑
j=0

φj (ln(t))j
)

=
∑
k≥j

Q(k,j)φj (ln(t))k , (31)

where Q =
(
Q(k,j)

)
(k,j)∈N×N is an in�nite matrix with complex coe�cients satisfying Q(k,j) = 0

for k − j ≤ 0 (with suitable assumptions on the coe�cients Q(k,j) and φj to ensure the
convergence of the series).

hλ(λ ∈ C) is the homothety operator: φ(t)→ φ(λt).

If g is a function, δg is the operator de�ned by: δg (φ) = φ ◦ g.

The notation [g] denotes the operator (distribution) associated with the function g by the
formula: [g](φ) =

∫ +∞
0

g(t)φ(t)dt
t
.

1[a,b] is the indicator function of the interval [a, b].

θ is the derivation t d
dt
.

The derivative θ (Q) of the linear operator Q is de�ned by the Lie bracket: θ (Q) = [θ,Q].

M(Q) is the Mellin transform of the linear operator Q.

A.2 Some de�nitions

The Mellin transform of a linear operator "in t" is a linear operator "in s".
If q(t) =

∑+∞
j=0 qj (ln(t))j and φ(s) =

∑+∞
j=0 φj (s)j the Mellin transform of the operator q is

(locally) de�ned by:

M(q)(φ) =
+∞∑
j=0

(−1)jj!qjφj. (32)

Example. M(ta) = δ−a.

More generally, if Q is a linear operator:

(M(Q)(φ)) (s) = M (Q (t→ ts)) (σ → φ(σ + s)) . (33)
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In particular, if T is a linear operator with values in the constant functions (i.e. a distribution),
M(T ) is the function (of s) T (ts) (i.e. the operator of multiplication by T (ts)).

Examples. M(δa) = as, M ([g]) (s) =
∫ +∞
0

g(t) ts dt
t
.

We also de�ne two convolution products: if Q and R are linear operators:

((Q ∗R) (φ)) (s) = Q (u→ R (v → φ(u+ v)) (s− u)) (s), (34)

and ((
Q ∗θ R

)
(φ)
)

(t) = Q

(
u→ R (v → φ(uv))

(
t

u

))
(t). (35)

Examples. δ0 ∗ Q = Q ∗ δ0 = Q, δ1 ∗θ Q = Q ∗θ δ1 = Q, and, if f and g are functions:
f ∗ g = fg(0), f ∗θ g = fg(1), (fQ) ∗ R = f (Q ∗R), (fQ) ∗θ R = f

(
Q ∗θ R

)
, (Q ∗ f) (s) =

Q (u→ f(s− u)) (s),
(
Q ∗θ f

)
(t) = Q

(
u→ f( t

u
)
)

(t).

A.3 Some general formulas

M
(
Q ∗θ R

)
= M (R) ◦M (Q)

M (Q ◦R) = M (R) ∗M (Q)
M (θ (Q)) = M (Q) ◦ (−s)
θ
(
Q ∗θ R

)
= θ (Q) ∗θ R = Q ∗θ θ (R) + (θ ◦Q) ∗θ R

A.4 A list of Mellin transforms

M(ta) = δ−a

M(taδ1) = τa where τa is the translation operator:
φ(s)→ φ(s− a)

M(δa) = as

M(hλ) = λsδ0

M (δta) = h1−a

M ([g]) (s) =
∫ +∞
0

g(t) ts dt
t

M
(
[t−a1[0,1]]

)
(s) = 1

s−a for <(s) > <(a) [t−a1[0,1]] is also denoted byM−1
d

(
1
s−a

)
,

M−1
d is the inverse "turning right"

M
(
[t−a1[1,+∞[]

)
(s) = − 1

s−a for <(s) < <(a) [t−a1[1,+∞[] is also denoted by
M−1

g

(
− 1
s−a

)
, M−1

g is the inverse
"turning left"

M
(
Ik
)

=
(
1
s

)k
δ0 for <(s) > 0 where I is the operator: φ→

∫ t
0
φ(u)du

u

M
(
Ĩk
)

=
(
1
s

)k
δ0 for <(s) < 0 where Ĩ is the operator: φ →∫ t

+∞ φ(u)du
u

M
(
θk
)

= (s)k δ0
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M
(
δ1
∑+∞

k=1 a
k−1Ik

)
= 1

s−a for |s| > |a| and
<(s) > 0

δ1
∑+∞

k=1 a
k−1Ik is also denoted by

M−1
d

(
1
s−a

)
M
(
δ1
∑+∞

k=1 a
k−1Ĩk

)
= 1

s−a for |s| > |a| and
<(s) < 0

δ1
∑+∞

k=1 a
k−1Ĩk is also denoted by

M−1
g

(
1
s−a

)
M
(
−δ1

∑+∞
k=0

(
1
a

)k+1
θk
)

= 1
s−a for |s| < |a| and

a 6= 0
−δ1

∑+∞
k=0

(
1
a

)k+1
θk is also denoted by

M−1
g

(
1
s−a

)
(resp. M−1

d

(
1
s−a

)
) if a > 0

(resp. a < 0)

M
(

dk

dtk

)
= s(s−1)...(s−k+1)δk

M(T )(s) = 1
2
(γ + Ψ(1 + s

2
)) for <(s) > −2 where T is the operator: φ →

−
∫ 1

0
t
φ(t)− φ(1)

1− t2
dt

M
(
−
∑

k∈N−{0}Λ(k)δ 1
k

)
(s)= ζ′

ζ
(s) for <(s) > 1 where Λ is the von Mangoldt function

A.5 Analytic continuation of an operator "in t"

Example. The operator ("in t") [t−a1[0,1]] (resp. [t−a1[1,+∞[] ) extends analytically to an
operator denoted [t−a1]←,1]] or M−1

d

(
1
s−a

)
(resp. [t−a1[1,→[] or M−1

g

(
1
s−a

)
) (inverse "turning

right" (resp. "turning left") of 1
s−a), for s belonging to the universal cover of C− {a}, by local

inversion.

Thanks to Renée Charrière for her decisive help.
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