Hélène Charrière 
  
ZEROS OF THE ZETA FUNCTION AND MELLIN TRANSFORM, SOME FORMULAS

   

Zeros of the zeta function and Mellin transform, some formulas

If f is holomorphic on a neighborhood of the half-band -1 2 ≤ (s) ≤ 1 2 , (s) ≤ 0 , if

1 2 + ib k k∈Z-{0}
is the sequence of the zeros of the zeta function having real part 1 2 , if (c k + id k ) k∈Z-{0} is the sequence of the remaining non-trivial zeros (with the following conventions:

b k , d k > 0 if k > 0, 0 < c k < 1, c k = 1 2 , b -k = -b k , c -k + id -k = 1 -(c k + id k ) if k ∈ Z -{0}
), and if n and A are two real numbers such that n > 0, n / ∈ {b k , d k , k > 0} and A > [START_REF] Charrière | Opérateurs linéaires analytiques. Transformée de Fourier. Produit de convolution. Applications[END_REF] 2 , then we have:

2π 0<b k <n f (-ib k ) + 2π 0<d k <n f 1 2 -c k -id k = ln(π) i -in 0 f (s) ds - 1 2i -in 0 f (s) Ψ 1 4 - s 2 + Ψ 1 4 + s 2 ds - 1 i R * n,A f (s) ζ ζ 1 2 + s ds + R * n,-A f (s) ζ ζ 1 2 -s ds , ( 1 
)
where Ψ is the digamma function, ζ is the Riemann zeta function ,

-in 0 refers to the integral along the oriented segment [0, -in] and where the path of integration R * n,A (resp. R * n,-A ) is the portion of the rectangle in U successively joining the points 0, A (resp. -A), A -in (resp.

-A -in), -in (with a small semicircle below 1 2 (resp. -1 2 ) .

Remark.

a. If A < 0 (and if we avoid the poles of zeta), the rst member of the formula (1) is changed into its opposite.

b. The path of integration R * n,A (resp. R * n,-A ) can be replaced by any homotopic path in U ∩ C -{poles of zeta}. c. The formula (1) can be expressed using ζ only, through the equality:

ln(π) - 1 2 Ψ 1 4 - s 2 + Ψ 1 4 + s 2 - ζ ζ 1 2 + s - ζ ζ 1 2 -s = 0.
(2)

Corollary 1. Under the additional assumptions that f is holomorphic on a neighborhood of the half-plane { (s) ≤ 0} and that f (±s) 2 s is integrable up to +∞, the formula (1) becomes:

2π 0<b k <n f (-ib k ) + 2π 0<d k <n f 1 2 -c k -id k = ln(π) i -in 0 f (s) ds - 1 2i -in 0 f (s) Ψ 1 4 - s 2 + Ψ 1 4 + s 2 ds - 1 i d -n,r f (s) ζ ζ 1 2 + s ds - d 0 -,r f (s) ζ ζ 1 2 + s ds - 1 i d -n,l f (s) ζ ζ 1 2 -s ds - d 0 -,l f (s) ζ ζ 1 2 -s ds , ( 3 
)
where Ψ is the digamma function, ζ is the Riemann zeta function,

-in 0 means the integral along the oriented segment [0, -in] and where the paths of integration d -n,r (respectively d 0 -,r , d -n,l , d 0 -,l ) are the horizontal half-lines starting from +∞ -in (respectively +∞, -∞ -in, -∞) up to -in (respectively 0), with a small semicircle below 1 2 (resp.

-1 2 ) for d 0 -,r (resp. d 0 -,l ).
Proof of the corollary 1. We make A tend to innity in equality (1).

We also nd the known result : Corollary 2. If N (n) is the number of zeros of the zeta function whose imaginary part is between 0 and n, then we have:

N (n) = 1 + 1 π arg π -in/2 Γ 1 4 + in 2 + 1 π arg ζ 1 2 + in . (4) 
Proof of the corollary 2. Applying the formula (3) to the constant function f = 1, we obtain:

2πN (n) = -n ln(π) + 2 ln Γ 1 4 + in 2 + 2 ln ζ 1 2 + in -2 ln ζ 1 2 + i0 + .
(5) and the result follows, through the equality

ln ζ 1 2 + i0 + = -π.
Corollary 3. If there exists a unique zero 1 2 + ib k(n) of multiplicity 1 (respectively, if there is no zero) such that n < b k(n) < n + 1, the value of b k(n) (resp. 0) is given by:

b k(n) = - 1 2π n + 1 2 ln(π) + -i(n+1) -in sΨ 1 4 + s 2 ds - 1 π R * n+1,A -R * n,A s ζ ζ 1 2 + s ds . (6) 
Proof of the corollary 3. We apply the formula (3) to the function f (s) = -is.

We give two proofs of the theorem. The second, using the Mellin transform, is longer and the result is weaker (it must be assumed that the function f is entire), but this proof is more natural since it provides the formula.

I.

First proof of the theorem If we apply the residue formula to the integral -in

0 f (s) ln(π) -1 2 Ψ 1 4 -s 2 + Ψ 1 4 + s 2 ds,
then formula (??) can be written:

2π 0<b k <n f (-ib k ) + 2π 0<d k <n f 1 2 -c k -id k = 1 i R * n,A 1 f (s) ln(π) - 1 2 Ψ 1 4 - s 2 + Ψ 1 4 + s 2 ds - 1 i R * n,A f (s) ζ ζ 1 2 + s ds + R * n,-A f (s) ζ ζ 1 2 -s ds , (7) 
where

1 2 < A 1 < 5 2 .
We use the formula (2), and the previous formula becomes:

2π 0<b k <n f (-ib k ) + 2π 0<d k <n f 1 2 -c k -id k = 1 i R * n,A 1 f (s) ζ ζ 1 2 + s + ζ ζ 1 2 -s ds - 1 i R * n,A f (s) ζ ζ 1 2 + s ds + R * n,-A f (s) ζ ζ 1 2 -s ds = 1 i R * n,A 1 -R * n,A f (s) ζ ζ 1 2 + s ds + 1 i R * n,A 1 -R * n,-A f (s) ζ ζ 1 2 -s ds, (8) 
which completes the proof of Lemma I.0, since, through the residue formula, we obtain:

1 i R * n,A 1 -R * n,A f (s) ζ ζ 1 2 + s ds = 0 (9) 
and

2π 0<b k <n f (-ib k ) + 2π 0<d k <n f 1 2 -c k -id k = 1 i R * n,A 1 -R * n,-A f (s) ζ ζ 1 2 -s ds. ( 10 
)
II.

Second proof of the theorem

We need two lemmas.

Lemma II.1. If u and n are two positive real numbers, if 1 2 + ib k k∈Z-{0} is the sequence of the zeros of the zeta function having real part 1 2 , if (c k + id k ) k∈Z-{0} is the sequence of the remaining non-trivial zeros, then we have: 

2π 0<b k <n u -ib k + 2π 0<d k <n u 1 2 -c k -id k = ln(π) i -in 0 u s ds - 1 2i -in 0 u s Ψ 5 4 - s 2 + Ψ 5 4 + s 2 ds + M -1 d ζ ζ + 1 s -1 - 1 i -in 0 u s t s+ 1 2 + t -s+ 1 2 ds , (11) 
k , d k > 0 if k > 0, 0 < c k < 1, c k = 1 2 , b -k = -b k , c -k + id -k = 1 -(c k + id k ) if k ∈ Z -{0}.
Proof of the lemma II.1. We start from the known formula:

k∈Z-{0} 1 s -1 2 + ib k + k∈Z-{0} 1 s -(c k + id k ) = -c + 1 s -1 + 1 2 γ + Ψ 1 + s 2 + ζ ζ (s), (12) 
where c = γ+ln(π)

2

, γ is the Euler's constant and where the innite sums have to be understood in the sense of the limits of symmetric partial sums.

By inverse Mellin transform "turning right"(see appendix), we obtain the formula:

k∈Z-{0} [t -1 2 -ib k 1 ]←,1] ] + k∈Z-{0} [t -c k -id k 1 ]←,1] ] = -cδ 1 + T + [t -1 1 ]←,1] ] - k∈N-{0} Λ(k)δ 1 k , (13) 
where the notation [t a 1 ]←,1] ] denotes the inverse Mellin transform "turning right" of the operator 1 s+a , δ a is the Dirac distribution at the point a, T is the operator dened by

T (φ) = - 1 0 t φ(t)-φ(1)
1-t 2 dt (inverse "turning right" of the operator

1 2 (γ + Ψ(1 + s 2 )))
and

-k∈N-{0} Λ(k)δ 1
k (where Λ is the von Mangoldt function) is the inverse Mellin transform "turning right" of the operator ζ ζ .

We now consider the function

φ n,u (t) = √ t(1 + (δ1 t )h u ( 1-t -in i ln(t) )
, where √ t is the operator of multiplication by

√ t, δ1 t is dened by (δ 1 t (φ))(t) = φ( 1 t
), u and n are positive real numbers and h u is the homothety operator of ratio u, dened by (h u (φ))(t) = φ(ut).

Let A be a positive real number. By using the following equality:

1 -t -in i ln(t) = - 1 i -in 0 t s ds = - 1 i R n,A t s ds = - 1 i R n,-A t s ds, (14) 
where R n,A (resp. R n,-A ) is the portion of the rectangle successively joining the points 0, A (resp. -A), A -in (resp. -A -in), -in, we obtain:

φ n,u (t) = - 1 i √ t -in 0 u s t s + t -s ds = - 1 i √ t R n,A u s t s + t -s ds = - 1 i √ t R n,-A u s t s + t -s ds. ( 15 
)
We calculate the image of φ n,u by each operator of the formula (13).

If k > 0:

t -c k -id k 1 ]←,1] (φ n,u ) = - 1 i R n,A u s [t -c k -id k 1 ]←,1] ] t s+ 1 2 ds - 1 i R n,-A u s [t -c k -id k 1 ]←,1] ] t -s+ 1 2 ds = - 1 i R n,A u s M [t -c k -id k 1 ]←,1] ] s + 1 2 ds - 1 i R n,-A u s M [t -c k -id k 1 ]←,1] ] -s + 1 2 ds = - 1 i R n,A u s 1 s + 1 2 -c k -id k ds - 1 i R n,-A u s 1 -s + 1 2 -c k -id k ds (16) 
and

[t -c -k -id -k 1 ]←,1] ](φ n,u ) = - 1 i R n,A u s 1 s + 1 2 -c -k -id -k ds - 1 i R n,-A u s 1 -s + 1 2 -c -k -id -k ds = - 1 i R n,A u s 1 s -1 2 + c k + id k ds - 1 i R n,-A u s 1 -s -1 2 + c k + id k ds, (17) 
therefore:

[t -c k -id k 1 ]←,1] ] + [t -c -k -id -k 1 ]←,1] ] (φ n,u ) = - 1 i R n,A u s 1 s + 1 2 -c k -id k ds + 1 i R n,-A u s 1 s + 1 2 -c k -id k ds - 1 i R n,A u s 1 s -1 2 + c k + id k ds + 1 i R n,-A u s 1 s -1 2 + c k + id k ds = 2π 0<d k <n u 1 2 -c k -id k , (18) 
if A > 1 2 . By making c k = 1 2 and d k = b k in formula (18), we obtain:

[t -1 2 -ib k 1 ]←,1] ] + [t -1 2 -ib -k 1 ]←,1] ] (φ n,u ) = 2π 0<b k <n u -ib k . ( 19 
)
On the other hand:

-cδ 1 (φ n,u ) = 2c i -in 0 u s ds = -2c 1 -u -in i ln(u) , (20) 
and

T (φ n,u ) = - 1 i -in 0 u s M (T ) s + 1 2 + M (T ) -s + 1 2 ds = - 1 2i -in 0 u s 2γ + Ψ 5 4 + s 2 + Ψ 5 4 - s 2 ds. (21) 
So, by using the equality -γ + 2c = ln(π), we obtain:

2π 0<b k <n u -ib k + 2π 0<d k <n u 1 2 -c k -id k = ln(π) i -in 0 u s ds - 1 2i -in 0 u s Ψ 5 4 - s 2 + Ψ 5 4 + s 2 ds + M -1 d ζ ζ + 1 s -1 - 1 i -in 0 u s t s+ 1 2 + t -s+ 1 2 ds , (22) 
which completes the proof of Lemma II.1.

Proof of the lemma II.1.

Lemma II.2. If u, n and A are positive real numbers, if 1 2 + ib k k∈Z-{0} is the sequence of the zeros of the zeta function having real part 1 2 , we have:

2π 0<b k <n u -ib k + 2π 0<d k <n u 1 2 -c k -id k = ln(π) i -in 0 u s ds - 1 2i -in 0 u s Ψ 1 4 - s 2 + Ψ 1 4 + s 2 ds - 1 i R * n,A u s ζ ζ s + 1 2 ds - 1 i R * n,-A u s ζ ζ -s + 1 2 ds, (23) 
where the path of integration R * n,A (resp. R * n,-A ) is the portion of the rectangle successively joining the points 0, A (resp. -A), A -in (resp. -A -in), -in (with a small semicircle below 1 2 (resp.

-1 2 ) if A > 1 2
) and with the following conventions:

b k > 0 if k > 0, b -k = -b k if k ∈ Z -{0}.
Proof of the lemma II.2.

M -1 d ζ ζ (s) + 1 s -1 - 1 i -in 0 u s t s+ 1 2 + t -s+ 1 2 ds = M -1 d ζ ζ (s) + 1 s -1 - 1 i R n,A u s t s+ 1 2 ds - 1 i R n,-A u s t -s+ 1 2 ds = - 1 i R n,A u s ζ ζ s + 1 2 + 1 s -1 2 ds - 1 i R n,-A u s ζ ζ -s + 1 2 - 1 s + 1 2 ds. (24) 
We modify (if A > 1

2 ) the integration path R n,A (resp. R n,-A ), avoiding the point 1 2 (resp.

-

2 ) by a small semicircle below, and we call R * n,A (resp. R * n,-A ) the new path resulting. We have:

M -1 d ζ ζ (s) + 1 s -1 - 1 i -in 0 u s t s+ 1 2 + t -s+ 1 2 ds = - 1 i R * n,A u s ζ ζ s + 1 2 + 1 s -1 2 ds - 1 i R * n,-A u s ζ ζ -s + 1 2 - 1 s + 1 2 ds = - 1 i R * n,A u s ζ ζ s + 1 2 ds - 1 i R * n,-A u s ζ ζ -s + 1 2 ds + 1 i -in 0 u s 1 -s + 1 2 + 1 s + 1 2 ds, (25) 
and, by using Lemmas II.1, ??, and the following equality:

- 1 2i -in 0 u s Ψ 5 4 + s 2 + Ψ 5 4 - s 2 ds = - 1 2i -in 0 u s Ψ 1 4 + s 2 + Ψ 1 4 - s 2 ds - 1 i -in 0 u s 1 s + 1 2 + 1 -s + 1 2 ds, (26) 
we obtain:

2π 0<b k <n u -ib k = ln(π) i -in 0 u s ds - 1 2i -in 0 u s Ψ 1 4 - s 2 + Ψ 1 4 + s 2 ds - 1 i R * n,A u s ζ ζ s + 1 2 ds - 1 i R * n,-A u s ζ ζ -s + 1 2 ds, (27) 
which completes the proof of Lemma II.2.

End of the proof of the theorem. We make the additional assumption that f is an entire function. We set f (s) = +∞ l=0 f l s l and θ = u d du .

By applying the derivation of order l (l ∈ N) θ l in formula (13), we obtain:

2π 0<b k <n (-ib k ) l u -ib k + 2π 0<d k <n ( 1 2 -c k -id k ) l u 1 2 -c k -id k = ln(π) i -in 0 s l u s ds - 1 2i -in 0 s l u s Ψ 1 4 - s 2 + Ψ 1 4 + s 2 ds - 1 i R * n,A s l u s ζ ζ s + 1 2 ds - 1 i R * n,-A s l u s ζ ζ -s + 1 2 ds. ( 28 
)
Summing over l the relation (23) multiplied by f l , we have:

2π 0<b k <n f (-ib k ) u -ib k = ln(π) i -in 0 f (s) u s ds - 1 2i -in 0 f (s) u s Ψ 1 4 - s 2 + Ψ 1 4 + s 2 ds - 1 i R * n,A f (s) u s ζ ζ s + 1 2 ds - 1 i R * n,-A f (s) u s ζ ζ -s + 1 2 ds, (29) 
and, by making u = 1:

2π 0<b k <n f (-ib k ) = ln(π) i -in 0 f (s) ds - 1 2i -in 0 f (s) Ψ 1 4 - s 2 + Ψ 1 4 + s 2 ds - 1 i R * n,A f (s) ζ ζ s + 1 2 ds - 1 i R * n,-A f (s) ζ ζ -s + 1 2 ds, (30) 
which completes the second proof of the theorem.

Remark. If we use the inverse "turning left" M -1 g , we obtain the formula with A < 0.

In particular, if T is a linear operator with values in the constant functions (i.e. a distribution), M (T ) is the function (of s) T (t s ) (i.e. the operator of multiplication by T (t s )).

Examples. M (δ a ) = a s , M ([g]) (s) = +∞ 0 g(t) t s dt t . We also dene two convolution products: if Q and R are linear operators:

((Q * R) (φ)) (s) = Q (u → R (v → φ(u + v)) (s -u)) (s), (34) 
and

Q * θ R (φ) (t) = Q u → R (v → φ(uv)) t u (t). (35) 
Examples.

δ 0 * Q = Q * δ 0 = Q, δ 1 * θ Q = Q * θ δ 1 = Q,
and, if f and g are functions:

f * g = f g(0), f * θ g = f g(1), (f Q) * R = f (Q * R), (f Q) * θ R = f Q * θ R , (Q * f ) (s) = Q (u → f (s -u)) (s), Q * θ f (t) = Q u → f ( t u ) (t).
A.3 Some general formulas

M Q * θ R = M (R) • M (Q) M (Q • R) = M (R) * M (Q) M (θ (Q)) = M (Q) • (-s) θ Q * θ R = θ (Q) * θ R = Q * θ θ (R) + (θ • Q) * θ R A.4 A list of Mellin transforms M (t a ) = δ -a M (t a δ 1 ) = τ a
where τ a is the translation operator: Thanks to Renée Charrière for her decisive help.

φ(s) → φ(s -a) M (δ a ) = a s M (h λ ) = λ s δ 0 M (δ t a ) = h 1-a M ([g]) (s) = +∞ 0 g(t) t s dt t M [t -a 1 [0,1] ] (s) = 1 s-a for (s) > (a) [t -a 1 [0,1] ] is also denoted by M -1 d 1 s-a , M -1 d is the inverse "turning right" M [t -a 1 [1,+∞[ ] (s) = -1 s-a for (s) < (a) [t -a 1 [1,+∞[ ] is also denoted by M -1 g -1 s-a , M -1 g is the inverse "turning left" M I k = 1 s k δ 0

  where -in 0 refers to the integral along the oriented segment [0, -in], M -1 d ( ζ ζ + 1 s-1 ) denotes the inverse Mellin transform "turning right" of the operator ζ ζ + 1 s-1 and with the following conventions: b

M Ĩk = 1 s k δ 0 M δ 1 +∞ k=1 a k- 1 I k = 1 s-a for |s| > |a| and (s) > 0 δ 1 +∞ k=1 a k- 1 I 1 s 1 d 1 s 1 g 1 s

 101111111111 for (s) > 0where I is the operator: φ → t 0 φ(u) du u for (s) < 0 where Ĩ is the operator:φ → t +∞ φ(u) du u M θ k = (s) k δ 0 k is also denoted by -a ) if a > 0 (resp. a < 0) M d k dt k = s(s-1)...(s-k+1)δ k M (T )(s) = 1 2 (γ + Ψ(1 + s 2 )) for (s) > -2where T is the operator: φ → -) -φ(1) 1 -t 2 dt M -k∈N-{0} Λ(k)δ 1 k (s) = ζ ζ (s) for (s) > 1where Λ is the von Mangoldt function A.5 Analytic continuation of an operator "in t"Example. The operator ("in t") [t -a 1 [0,1] ] (resp. [t -a 1 [1,+∞[ ] ) extends analytically to an operator denoted [t -a 1 ]←,1] ] or M --a (resp. [t -a 1 [1,→[ ] or M --a) (inverse "turning right" (resp. "turning left") of 1 s-a ), for s belonging to the universal cover of C -{a}, by local inversion.

Appendix

Some concepts used here were developed in [1].

A.1 Some notations

In the following, we always identify a function q with the operator of multiplication by q: φ → qφ.

The variable t will always belong to the universal cover of C -{0} and the variable s generally to the set C of the complex numbers.

We say that a linear operator is "in t" (resp. "in s") if it is dened on, and takes values in sets of functions of the variable t (resp. s). An example of operator "in t" is the operator Q (locally) dened by:

where Q = Q (k,j) (k,j)∈N×N is an innite matrix with complex coecients satisfying Q (k,j) = 0 for k -j ≤ 0 (with suitable assumptions on the coecients Q (k,j) and φ j to ensure the convergence of the series).

If g is a function, δ g is the operator dened by: δ g (φ) = φ • g.

The notation [g] denotes the operator (distribution) associated with the function g by the formula:

The derivative θ (Q) of the linear operator Q is dened by the Lie bracket:

M (Q) is the Mellin transform of the linear operator Q.

A.2 Some denitions

The Mellin transform of a linear operator "in t" is a linear operator "in s".

If q(t) = +∞ j=0 q j (ln(t)) j and φ(s) = +∞ j=0 φ j (s) j the Mellin transform of the operator q is (locally) dened by: M (q)(φ) = +∞ j=0 (-1) j j!q j φ j .

(32)

Example. M (t a ) = δ -a .

More generally, if Q is a linear operator:

(33)