N

HAL

open science

F-boxes for filtering

Olivier Strauss, Sébastien Destercke

» To cite this version:

Olivier Strauss, Sébastien Destercke. F-boxes for filtering. EUSFLAT-LFA, European Society for
Fuzzy Logic and Technology, Jul 2011, Aix-les-Bains, France. pp.935-942, 10.2991/eusflat.2011.108 .

hal-00655596

HAL Id: hal-00655596
https://hal.science/hal-00655596
Submitted on 31 Dec 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00655596
https://hal.archives-ouvertes.fr

F-boxes for filtering

Olivier Strauss' Sebastien Destercke'

I IRMM (CNRS & Univ. Montpellier II), 161 rue Ada, F-34392 Montpellier cedex 5, France
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Abstract

Selecting a particular summative kernel (i.e., formally
equivalent to a probability distribution) when filtering
a digital signal can be a difficult task. An obvious so-
lution to this problem is to filter with multiple kernels
rather than with a single one, but the computing cost of
such a solution can quickly become prohibitive (espe-
cially in real-time applications). Another alternative, the
one studied in this paper, is to consider kernels modeled
by imprecise probabilistic representations. Considering
such representations makes the use of numerical tools
coming from imprecise probability theory possible, such
as the Choquet integral, and allows one to work with
multiple kernels without multiplying too much the num-
ber of required computations. In this paper, we propose
to use the well-known p-box representation to filter a
digital signal. We show that the use p-boxes allows mak-
ing more precise inferences than those obtained with
possibility distributions and clouds. We then discuss the
practical aspect of computing a filtered signal with p-
boxes, and finish by some experiments.

Keywords: Possibility measures, maxitive kernels, p-
boxes, clouds, signal filtering.

1. Introduction

Reconstructing a continuous signal from a set of sam-
pled and possibly corrupted observations is a common
problem in both digital analysis and signal process-
ing [1]]. In this context, kernel-based methods can be
used for different purposes: reconstruction, impulse re-
sponse modelling, interpolation, linear and non-linear
transformations, stochastic or band-pass filtering, etc.
Most of the kernels used in signal processing are sum-
mative kernels, or linear combination of summative ker-
nels. A summative kernel is a positive function with an
integral equal to one. A summative kernel can there-
fore be associated to a particular probability distribution.
However, how to choose a particular kernel and its pa-
rameters to filter a given signal is often a tricky question.
In this paper, we focus more particularly on symmetric
and unimodal kernels, as they are often used in practice.
One solution to overcome this difficulty is to use im-
precise probabilistic models to model in a single rep-
resentation a whole set of possible kernels. This can
be done thanks to the correspondence between sets of
summative kernels and sets of probabilities. Existing
propositions [2] have explored the use of representations
such as possibility distributions [3} 4] or clouds [S]] to de-
rive respectively so-called maxitive and cloudy kernels.

These representations have the important advantage of
being computationally tractable and are particularly in-
teresting when the kernels to model all share a common
modal value.

This paper is focused on another kernel based on an
imprecise probabilistic representation, namely p-boxes.
Indeed, the interest of using p-boxes for filtering pur-
poses have not been investigated yet, despite the fact that
they present the same advantages as clouds and possi-
bility distributions (simplicity and tractability). P-boxes
consist in pairs of cumulative distributions, and have the
same computational advantages as clouds or possibil-
ity distributions. We will show in this paper that they
can also provide more precise results than maxitive or
cloudy kernels.

Filtering with such representations require to use im-
precise extensions of expectation operators, which result
in an an interval-valued filtered signal rather than a clas-
sical single-valued one. This signal corresponds to the
lower and upper envelopes of filtered signals that would
have been obtained by filtering with every single sum-
mative kernel contained in the imprecise probabilistic
representation. Using such representations is therefore
particularly interesting to achieve a robustness analysis
in one operation.

Section [2] presents the material concerning summa-
tive kernels and imprecise probabilistic representations
needed in this paper. The capacity of p-boxes to model
symmetric kernels and their relation with other represen-
tations is studied in Section[3l Section (] deals with the
computational aspects of p-box based filtering. Finally,
Section[5]presents some basic experiments on simulated
noisy signals.

2. Summative and imprecise kernels

In this section, we recall the basics about summative
kernels, before introducing kernels based on imprecise
probabilistic representations. We restrict ourselves to
representations defined on the real line R and its dis-
cretization 2.

2.1. Summative kernels and probability sets

A summative kernel x is formally equivalent to a
Lebesgue-measurable probability distribution x : R —
R™ and can be interpreted as such. The associated prob-
ability measure Py : & — [0, 1] defined on the real Borel
agebra 4 is such that, for any measurable subset A C R
(also called an event), Pc(A) = [, k(x)dx. Some typical
summative kernels are recalled and represented in Ta-

ble[1l



Name K Shape
Epanechnikov K(x) = i%(] — (%
by

0

Triangular Ka(x) = (1 _ |i|)IA
N
0

Uniform Ka(x) = i Ix N
0

Table 1: Some classical summative kernels

As said in the introduction, the choice of a particular
summative kernel to filter a given signal can be tricky.
This is why kernels based on imprecise probability rep-
resentations can help in filtering with sets of kernels at
once.

We call imprecise kernel a convex set & of summa-
tive kernels. Since summative kernels are equivalent to
probability distributions, &7 is equivalent to a convex set
of probability distributions. Similarly to the probability
measure of a summative kernel, to any event A C R can
be associated two measures, i.e., the lower and upper
probability measures induced by &, which are such that

P(A) = inf P(A) and P(A) = sup P(A).
ke NS

These two measures are dual, in the sense that P(A) =
1 —P(A°), with A the complement of A. Hence it is suf-
ficient in practice to work with only one of them spec-
ified over all events. Handling a generic imprecise ker-
nel & can be a difficult task, however simpler imprecise
probabilistic representations that satisfy some properties
can make this handling much easier. We introduce such
easy-to-use representations in the next sections.

2.2. Possibility distributions and maxitive kernels

A maxitive kernel 7 is defined as a possibility distribu-
tion [3]], that is a mapping 7 : R — [0, 1] with at least one
x € R such that 7(x) = 1. It induces two (lower and up-
per) confidence measures, respectively called necessity
and possibility measures. They are such that, for any
event A C R, we have:

I1(A) = r}{lea}n(x) N(A) =1-T11(A°). (1)
A maxitive kernel 7z induces an imprecise ker-
nel #; including all summative kernels domi-
nated by the possibility measure II, ie., Pp =
{k € Pr|VA CR,P(A) <TI(A)}, with Py the set of all
summative kernels over R. If a summative kernel k is
in 5, we say by a small abuse of language that 7 in-
cludes k. This interpretation makes maxitive kernels in-
strumental tools to filter signals when the identification
of a single summative kernel is difficult.

2.3. Clouds and cloudy kernels

Maxitive kernels are very simple imprecise kernels,
since they consist in a single mapping over elements
x € R. While this makes them very easy to build and
to compute with, it also limits their expressiveness. For
instance, they cannot model sets of summative kernels
whose bandwidth is both lower- and upper-bounded.

Clouds [5] are a slightly more complex representation
with increased expressiveness, but they remain simple
enough so that computing with them remains tractable.
A cloudy kernel or cloud is defined as a pair of mappings
[,n] from R to the unit interval [0, 1] such that n < 7
and there is at least one element x € R such that 7 (x) = 1
and one element y € R such that n(y) =0.

A cloudy kernel [7,7n] induces an imprecise kernel
Pz such that

'@[ﬂ,n] ={Kk €Pr|Pc(Ne) <1 - < Pe(7g)}, (2)

where 1y = {x|n(x) > o} and ng = {x|n(x) > a}.
Maxitive kernels are special kinds of cloudy kernels, as a
maxitive kernel 7 is equivalent to a cloudy kernel [, 7]
where 7 = 0. Also note that, mathematically speaking,
clouds are equivalent to interval-valued fuzzy sets hav-
ing boundary conditions (i.e., £(x) = 1 and n(y) = 0 for
some (x,y) € R?). A family of clouds that will be of
particular interest here are the comonotonic clouds [6]].
They are defined as follows:

Definition 1. A cloud is comonotonic if Vx,y € R,
m(x) < m(y) = nx) <n(y)

Indeed, such clouds possess the properties [6] that
makes cloudy kernels tractable representations.

2.4. P-boxes and f-boxes

Let us now introduce the imprecise kernels based on p-
boxes, that we call f-boxes (for filter boxes).

A f-box [F, F] is formally equivalent to a p-box [[7,[8]],
and is defined as a pair of cumulative distributions, a
lower one F : R — [0, 1] and an upper one F : R — [0, 1],
such that F < F and there is at least one element x € R



with F(x) =
kernel @

F(x) = 1. A f-box induces an imprecise
;) defined as follows

Ppr={k € PrVx € R, F(x) < Pe([—o0,x]) < F(x)}.

A f-box encompasses every summative kernel whose cu-
mulative distribution lies between F and F'.

3. Modeling symmetric kernels with imprecise
kernels

As said in the introduction, in this paper we are mainly
concerned by imprecise kernels modeling sets of kernels
that are symmetric and unimodal. We assume that the
shape of the kernels to model is known and parametrised
by a bandwidth (i.e., the support of the corresponding
probability). We also assume that this bandwidth is ill-
known, and that it is only lower and upper bounded.

We therefore assume from now one that x belongs to
a family of symmetric kernel centered around zero (i.e.,
K(x) = k(—x)). A basic symmetric kernel k has [—1, 1]
for support. From this basic kernel it is easy to derive
a summative kernel ks with bandwidth A and support
[~A,A] using the transformation ka(x) = Xk(%) (see
Table [I] for illustrations).

3.1. Maxitive and cloudy kernels modeling: a
reminder

First, recall that the cumulative distribution F, :
[—A,A] — [0,1] of ka is such that Fi, (0) = 1/2 and
F(x)+F(—x)=1.

Let us now briefly remind how a set of kernels xx
whose bandwidth is only known to lie in the interval
[A] := [Aint, Asup] can be modeled by maxitive or cloudy
kernels. We will denote by ki, this set of kernels.

There are many ways to build a maxitive kernel in-
cluding the set kj4] [9], but the most specific solution is
given by the Dubois-Prade transformation [10]. For k],
this transformation gives the distribution 75| such that

ifx<0
if x > 0.

2% Fpg, (%)
i (x) = { 2% (1 —AFASUP (x))

We will denote by 7r[ A

3

, [ A the following functions

ifx<0

_ _ ﬂ[A] (x) if x < 0 + _ 1 <
Ty ¥) = { 1 ifxs0 MW= i (x) if x> 0.

C))
The induced imprecise kernel gzﬂw includes, among
others, all summative kernels ky with A’ € [0,Aqp] [9].
This means that maxitive kernels alone cannot take ac-
count of the lower bound Aj,¢, and include for example
the Dirac function. This can be a problem, for instance
in those cases where it is desirable to smoothen a sig-
nal or where the interval-valued signal resulting from an
imprecise filtering should not envelope the initial noisy
signal.
By supplementing the (upper) distribution 7 with a
(lower) distribution 1, cloudy kernels can solve this in-
sufficiency. In [11], we proposed the following cloudy

X
x
_ 0
---- F= max{FAsuWFAinf} Ainf
—  F= min{FAsup,FAi“f} Asup
Figure 2: Example of f-box
kernel [7(5), M(5)] to approximate KjJ:
2xFp  (x) ifx<0
mw={ .0 | ©
A\ 2x(1 FAsup(x)) ifx>0
_ 2% Fy (%) ifx<0
Mg () = { 2x(1-Fy (x) ifx>0 ©

Similarly to maxitive kernels, we denote by n[X] , 17[2] the
functions such that

_ x) ifx<0 1 ifx<0

iy () :{ n[A]l( ) ifxs0 Ma® :{ Ma(x)  if x> 0.
N
A cloudy kernel corresponding to a family of triangu-
lar kernel « is pictured in Figure [T] (the corresponding
maxitive kernel is obtained by suppressing 717). It can
be shown that the cloudy kernel [7jy], 1j5)] includes ker-
nels k5 with A € [A] (including Ky, , and KAyp)s and no
kernels xx such that A & [A]. Cloudy kernels therefore
allow to solve some issues related to maxitive kernels
(but have problems of their own, as we shall see in Sec-

tion[3)).

3.2. F-box kernels

As illustrated by Figure[T} both maxitive and cloudy ker-
nels are symmetric and are built around the modal value
(here, 0). Rather than considering this modal value as
a central point, the f-box approach focuses on events of
the kind [—eo,x]. Such a view suggests different approx-
imations of the set K, that we explore here.

Given the set of kernels k], the most specific f-box
(F[a], F[a)) one can build that encompasses this set is

Fia(x)
Fiy(x) =

= max{Fa, (x), Fa,,(x)}, (8)
min{FAsup ()C) ) FAinf (x)}ﬂ (9)

as shows the next theorem:



Theorem 1. (F [A],f[A]) is the most specific f-box in-
cluding the set of kernels K5, and does not include any
kernel kp with A & [A].

Proof. (Sketch) Consider a kernel ky with A € [A]. Tt is
included in (F |5}, F ), as

min{FAsup,FAmf} S FA < IIIEIX{FASUP,FAmf}7

meaning that both K, and Ka, are in the kernel. To
show that it is the most specific, assume ex absurdo

that there is a more specific f-box (F/,F’) including
Ka)- This means that Jx such that F'(x) > Fy(x) or
F(x) < Fia(x) , implying that either Fy,, Z (Fpa) Fia))
or Fp, & (Eja], F|a)), Which is a contradiction since both
KAcup and kp, ; are in Ka)- To show that no kernel xx
with A & [A] is in (F[x),F|s), simply takes the same
argument (there is an x for which Fa(x) < Fy(x) or
Fa(x) > Fp)(x)). O

Figure [2] shows a f-box given by Eq. (8) and (©) for
triangular kernels. We can see in this picture that, al-
though there is some symmetry in the representation, it
is not symmetric around the O coordinate axis.

The next theorem shows that f-boxes modeling sym-
metric unimodal kernels are more specific than maxi-
tive or cloudy kernels given by Eq. (3) and (6), and will
therefore provide more precise results when filtering.

Theorem 2. (F ,fw) is strictly more specific than the
maxitive kernel | or the cloudy kernel [T, M|5)], in
the sense that ﬁ< Fla Fiy) - y[ 1€ @ﬂw, with the

A Ma]
inclusion being usually strict.

Proof. (Sketch) In the case of symmetric unimodal ker-
nels around 0, imprecise kernels induced by maxitive
kernel 7y and cloudy kernel [7[4],7(a]] correspond to
sets of summative kernels that satisfy lower and upper
probabilistic contraints induced by 7y and [7j), 1]
around events [—x,x] (see [3]] and [12] for details).

To show that (F ), F5]) is more precise than both of
them, it is then sufficient to show that lower and upper
probabilities induced by (F 4], F[a]) over events [—x,x]
are tighter or coincide with the one induced by 7] and
[7a], Mja] -

Using Eq. ) and (6), we get that Bnm([—x,x]) =

Pl ) ([725x]) = 1= 2F 5, () = Fagy() = Fap(—)
and P[E[A]-,U[A]]([_x’x]) = 1 = 2Fp(x) = Faggn) —
Fp,¢(—x) (the upper probability bound for 7, on such
events is one).

Figure [3| shows that the lower probability P F Fia)
has Fpup(x) = Faup(—x) for upper bound (in fact, this is
the exact value). The same reasoning can be done for
the upper probability.

To see that the inclusion is usually strict, remark that
the kernel which has function ”[Z] for cumulative dis-

tribution is not in (Fs),F[s)), while it is in 7 and
[Ta) Mpa))- O
Finally, we can show that any kernel whose cumula-

tive distributions lies in (Fy,F[s]) has a bandwidth in
(Al

Figure 3: Lower probability on event [—x, x|

Theorem 3. Any summative kernel kK € @(
a bandwidth in [A].

) has

LNR

Proof. (Sketch) First consider the minimal bandwidth
Ains. Since for all x € [7Ainf,Ainf}, 0< E[A] (X) <
Fp(x) < 1, no cumulative distribution in (Fs), F[a])
can have a bandwidth lower than Ajys.

Consider now Agyp. As f[A] (x) =0 for any x < —Agyp
and Fy(x) = 1 for any x > Agp, no cumulative distri-
bution in (Fy), F (a]) can have a bandwidth higher than
Agup. O

4. Practical computations

We can now discuss how filtering can actually be
achieved with f-boxes while maintaining a low computa-
tional complexity. This can be done by extending classi-
cal expectation operators (equivalent to filter with sum-
mative kernels) through the use of Choquet integrals.
We first recall what is a Choquet integral [13} 14] and
its links with expectation operators, summative kernels
and maxitive kernels. We then propose an efficient al-
gorithm allowing to compute this Choquet integral for
f-boxes. To make notations shorter, we will from now
on denote Fy),F[x by F and F, assuming that a kernel
family as well as maximal and minimal bandwidth have
been specified.

Since computations are achieved on a discretised
space, we consider in this section that we are working
on a finite domain 2~ of N elements. In our case, this
space corresponds to a finite sampling of the (continu-
ous) signal.

4.1. Expectation operator and Choquet integral

Let 2" = {xi,...,xy} be the discretized domain, where
x1 corresponds to the last sampled time and xy is the
sampled item with time horizon N. Consider a real-
valued function f (here, the sampled values of the sig-
nal) on 2", together with a discretized summative kernel
Ki,i=1,...,N, where k; = k(x;).

Classical causal convolution between the kernel k and
the sampled signal f is equivalent to apply an expecta-
tion operator, i.e. to compute E(f) such that

M=

Ex(f) = Kif(xi)

i=1

Now, when working with a set &2 of kernels defined
on 2, expectation operator E becomes imprecise, and



its result when applied to f is an interval-valued expec-

tation [E(f),E(f)] such that

E(f) = sup Ec(f)  (10)

E(f) = inf Ex(f)

ke KkeP
In general, these bounds are not easy to compute. How-
ever in some specific cases practical tools exists that
makes them computable. In particular, if there is no
loss of information when considering the set of sum-
mative kernels dominated by the lower probability of
& on events alone, and if the lower probability P sat-
isfies a property of 2-monotinicity, that is if for any pair
{A,B} C 2 we have P(ANB)+P(AUB) > P(A) +
P(B), then Eq. (T0) can be solved by using the Choquet
integral.

Consider a positive bounded functionﬂ fon Z . If we
denote by () a reordering of elements of 2" such that
f(xqy) < ... < f(x@)), Choquet Integrals giving lower
and upper expectations are given by

=

Il
—

Cp(f)=E(f) =

(f (xiy) = f(xi—1))P(Agi))

Cp(f) =E(f) =

=

Il
-

(f(xiy) = f(x—1))P(Ag)),

with f(x)) =0 and A(;y = {x(;),---,X)}. The main
difficulty then becomes to compute the lower and upper
confidence measures for the N sets A;.

4.2. Imprecise expectations with f-boxes

Since p-boxes, or equivalently f-boxes induce lower
confidence measures that are co-monotone [8]] (an even
more restrictive property than 2-monotonicity), Cho-
quet integral can be used to compute their expectation
bounds. Let us now see how the lower confidence mea-
sure value on various events can be computed efficiently
(upper confidence measure values can then be computed
by duality).

In the continuous case, when a f-box is defined by two
continuous fucntions F and F over R, the lower proba-
bility P([x,y]) of an interval C = [x,y] is given by the
following formula

P(C) = max{0,F(y) - F(x)},

and the lower probability of the union A of any set of n
disjoint intervals C; = [x;,y;], i = 1,...,n is given by

n

PA=JC)=

i=1 [

P(C). (11

-

1

Note that any event A can be written in this form.

In the discretised case where 2" = {xi,...,xn}, an
interval C = [x,y] becomes a set C = [x;,x;] where C =
{x]i <k < j} contains every discretised elements x;

! Assuming positivity is not constraining here, since if ¢ is a con-
stant E(f + ¢) = E(f) + ¢ and the same holds for E. Therefore any
bounded function can be made positive by a simple translation.

between x; and x;. In this case, the lower probability
of C becomes

P(C) = max{0,F (x}) ~ F(xi-1)},

and Eq. remains the same, and again any event A
can be written as the union of disjoint intervals (two in-
tervals [x;,x;], [xx,x;] are considered disjoint if j+1 < k,
otherwise if k = j+ 1 their union is no longer disjoint).

Algorithm [I] describes how to compute lower con-
fidence measures and the incremental summation giv-
ing the lower expectation, while Example || provides an
illustration of the process. At each step, the disjoint
intervals of the form Ci,...,Cy, forming A, are ex-
tracted and the corresponding lower confidence measure
is computed. The value of the Choquet integral is then
incremented. Note that two orderings and indexing are
used in the algorithm: the one where elements are or-
dered by values of f, denoted by (), and the other where
elements are ordered w.r.t. to their sampling time (f(x;)
being the first sampled value and f(xy) the last one).

1 F(xg)

0 X1 X2 X3 X4 X5 X6 X7 X8

Figure 4: Discretisation of a f-filter with 8 sampled values

Algorithm 1: Algorithm for lower expectations: ba-
sic ideas

Input: f,[F,F], N (number of discretized points)
Output: Lower/upper expectations

E=0;

fori=1,....Ndo

Compute f(x()) — f(xi_1) :

Extract intervals Cy,...,Cy; such that
A(,-) =CU...UCy; ;

With CJ' = [xl,xﬂ )

Compute

P(A) =L} max(0, F(x;) = F(xj-1)) ;
E=E+ (f(x@) — f(xi-1)) x P(A@)

Example 1. Consider the situation pictured in Fig.[d] For
each sampled item x and associated sampled value f(x),
we consider that the corresponding distribution values
are [F(x),F(x)] (More conservative discretizations can
be adopted, but do not change the problem). The values
of discretized f,F and F are summarized in Table 2}

If we now apply Algorithm[I] with the lower probabil-

ity, we get the following steps:

Loi=l, f(xp) = fx1) =2,A0 = 2, P(Ap) =1
—E=2

2,122, flxg) — flxg-n) = 3, Ay = C =

{x2,..,x8}, P(Ay)) = max{0,F(xs) — F(x1)} =
0.936 — E = 4.808



4. i=4, f(X(i)) — f(x@,l)) =2, A(,') =ClUG =
{2, x4} U{xg,x8}, P(A(;)) = max{0,F(x4) —

X1 X2 X3 X4 X5 X6 X7 X8

F 0064 0255 0569 0837 0977 1 1 1

F 0031 0.125 0281 05 0719 0875 0969 1

f 2 9 8 10 5 6 12 13

0 Xy Xe) Y X X Xe) KXo Xe)

Table 2: Values for example/I]
3.i=3, flxp) — fGuny) = 1, Ap = C U g o .

o T —rEen) Pag) = E w0  zoomed window
max{0,F (x4) — F (x1) } + max{0, F (xg) —F (xs5) } = & wl :
0.469 — E =5.277 = |
°" signal l
|
|
I

F(x1)} + max{0,F(xg) — F(x¢)} =0.436 - E =
5.277+2 x0.436 = 6.149

5. i=5, f(JC(i)) _f(x(i—l)) =1, A(i) =ClUCUCs =
{:cz} U{xa} U {x7,x3}, B@(i)) = max{0,F (x;) —
Fxt)} + max{0, F(xg) — F (x3)} -+ max{0, F (xs) —
F(x6)} =0.061 - E=6.21

6. i=0, f(x(,-)) 7f(X(i_1)) =1, A(,') = CLU G =
{xay Ul x8 ), P(A(i)) = max{0, F(xg) = F (x3) } +
max{0,F(xg) —m(xg)} =0 =>E =6.21

7. i=7, stop, since P(A(;_1)) =0

The lower expectation is finally 6.21.

5. Experiments

This section aims at illustrating the behaviours of the
different imprecise kernels presented in Section 2] when
filtering a noisy signal. We compare four approaches:
the conventional precise method (using only one sum-
mative kernel) and the imprecise filtering method per-
formed with maxitive, cloudy and f-box kernels.

5.1. Experiment description

The comparison is achieved on the signal shown in Fig-
ure[5] This signal is made of 10 sine signals whose fre-
quencies were randomly chosen (in a manner that sub-
sequent sampling would respect the Shannon sampling
theorem [15]), with each signal weighted by a randomly
chosen weighting factor. Finally, the signal has been
quantized and altered by a Poisson noise (so that the
noise is neither ergodic nor time invariant). Figure 3]
gives the plot of the noisy signal s (in cyan) and of the
original signal f (in black).

Assume that the practitioner has decided that the ap-
propriate kernel shape was of the form

Ka(x) = ed )
but that he could only "guess" that the appropriate band-
width A would lie somewhere in the interval [A] =
[Ainf, Asup] = [0.045,0.050]. The two extreme kernels

|
|
originai
|
|
|
|
|
|
|

2 . . 25
time 1n sec.

Figure 5: Original signal (black) superimposed on the
noisy signal (cyan).

o
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o
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0.2 \
0.02 0.03 0.04 0.05
time in sec.

/

0 / . . . .
-0.06 -0.04 -0.03 -0.02 -0.01 0

0.01

Figure 6: The upper (blue) and lower (red) impulse re-
sponses used to define the three capacities.

Ko.0s (with bandwidth 0.05, in blue) and xpg45 (With
bandwidth 0.045, in red) are given in Figure|[]

The maxitive kernel chosen for this experiment is the
most specific that dominates K os. It is built after Eq. (3]
(see [2] for a more generic procedure using the same
arguments).

The cloudy kernel is built after Eq. (5) and (@), as
explained in [[11]. The lower distribution 1] is built using
K0.045, While the upper distribution 7 is built using Ky os-

We finally compute a f-box kernel according to
the method described in this paper. Using Eq.(8)
and (9), we define F and F as follows. Vx €
R, let Fyos(x) = [*. Kooss(u)du and Fposo(x) =
ffmﬁ)'(ﬁo(u)du, then E(x) = min(F0'045(x),F0.050(x))
and F(x) = max(Fo,045 ()C),F(),()50 ()C))
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Figure 7: Ten summative-based filtered signals (cyan)
superimposed with the maxitive-based filtered signal
(dotted blue and red), the cloud-based filtered signal
(plain blue and red) and the original signal (black).

5.2. Discussion on experiment results.

The use of imprecise filtering (with maxitive, cloudy or
f-box kernels) is recommended in those cases where the
practitioner does not know the exact shape of the im-
pulse response of the filter. When the practitioner ap-
proximately knows the shape of the filter but can only
give its upper bandwidth, then the most appropriate rep-
resentation is the maxitive kernel. When the practitioner
can also give a lower bandwidth, then the cloudy ker-
nel is an appropriate and more specific representation
that leads to a more specific interval-valued filtered out-
put. However, the cloudy representation has some the-
oretical and practical limitations. First, like the maxi-
tive representation, it is built around a modal value and
its extension to other situations often provide unsatisfy-
ing results. Second, experimental practice shows that it
can lead to very chaotic bounds, even if a smoothing fil-
ter has been chosen initially by the practitioner. As we
shall see here, the f-box representation seems to over-
come these problems and leads to a more specific and
less chaotic imprecise valued filtered signal. This can be
explained by the better properties, in terms of approxi-
mation of the set KiaJ> of f-box kernels.

Figures [7] [§] and [9] display a zoomed window of the
resulting filtered output of the different filter. Each Fig-
ure presents two imprecise valued filtered signals (blue
upper and red lower), the original signal (in black) and
the output of 50 summative (conventional) based precise
filtered signals involving a kernel of the form k, with
A €]0.045,0.050]. As expected by the theory (i.e., im-
precise kernels all include the set kj,)), all the 50 precise
filtered signals belong to the enveloppe of each impre-
cise valued filtered signals. Moreover, since the filter
has been correctly designed, Vx € R there is always a
value A € [0.045,0.050] such that Ey (s) = f(x), ie.,
the exact original signal is retrieved for some value of A.
Thus, the real signal is always included in all the impre-
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Figure 8: Ten summative-based filtered signals (cyan)
superimposed with the maxitive-based filtered signal
(dotted blue and red), the cloud-based filtered signal
(plain blue and red) and the original signal (black).
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Figure 9: Ten summative-based filtered signals (cyan)
superimposed with the maxitive-based filtered signal
(dotted blue and red), the cloud-based filtered signal
(plain blue and red) and the original signal (black).



cise valued filtered signals.

As expected, the f-box based imprecise valued filtered
signal is included in the imprecise valued filtered signals
obtained with the maxitive (see Figure[8)) and the cloudy
kernels (see Figure[9). The inclusion of the cloudy based
imprecise valued filtered signal into the maxitive based
imprecise valued filtered signal (see Figure[/)) has been
proved in [L1]. Similarly, we proved in this paper that
the f-box filtered signal would be included in the two
others.

The inclusion of the Dirac measure in the maxitive
kernel gives very large upper and lower filtered bounds,
that encompass the whole signal (i.e., the signal is al-
ways in the interval provided by the maxitive kernel).
Compared to maxitive kernels, cloudy kernels are more
appropriate to represent the available knowledge on the
kernel shape and bandwidth. However, as it can be re-
marked in Figures [7] and [9] the bounds of the cloudy
based imprecise filtered signal are very chaotic and are
not similar to the general shape of the precise filtered
signals (in cyan on the figures). This provides results
that may be difficult to interpret.

On the other hand, the f-box filtered signal is
smoother and well follows the general trend of precise
signals filtered with different summative kernels. It is
also a bit more precise than the cloudy filtered signal.
Hence, the use of f-box kernels appears as a promising
solution in this kind of situation.

6. Final remarks and perspectives

In this paper, we have introduced f-boxes as convenient
models to achieve filtering when the bandwidth of the
desired filter is ill-known. F-boxes allow us to model in
a single representation a set of (here symmetric and uni-
modal) kernels whose bandwidth is lower- and upper-
bounded. Thanks to their particular properties (i.e., they
induce co-monotone lower probabilities that possess par-
ticular additive properties), we have developed an ef-
ficient algorithm, based on the Choquet integral, that
computes the lower and upper envelope of sets of fil-
tered signals.

We have also shown that when it comes to model sets
of symmetric and unimodal summative kernes, f-boxes
display particularly good properties, of theoretical as
well as of practical nature. They thus constitute a good
approximation and interesting tool to achieve imprecise
filtering.

Also, compared to other kernels derived from impre-
cise probabilistic models, such as maxitive or cloudy
kernels, f-boxes are well adapted to the case of causal
filtering, mainly because the p-box representation use
bounding probabilities over sets [—oo, x], rather than over
sets centred around a modal value. In future works, we
intend to explore the potential of f-boxes to model sets
of causal filters as well.

We would also like to remark that this model directly
extends to the case of positive filters with a fixed gain
higher or lower than one. Indeed, since lower and upper
expectations are such that E(a- f) = a-E(f) and E(a-

f) = a-E(f), it is sufficient to consider the kernel such
that a - k, where x is an unknown summative kernel and
to do process exactly as before.
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