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Abstract. When using lower probabilities to model uncertainty about the value
assumed by a variable, 2-monotonicity is an interesting property to satisfy, as it
greatly facilitates further treatments (such as the computation of lower/upper ex-
pectation bounds). In this paper, we show that multivariate joint models induced
from marginal ones by strong independence, epistemic independence or epis-
temic irrelevance do not usually preserve such a property, even if it is satisfied by
all marginal models. We then propose a joint model outer-approximating those
induced by strong and epistemic independence and study some of its properties.
keywords: factorisation properties, credal sets, propagation, lower previsions.

1 Introduction

In imprecise probability theories where uncertainty is represented by so-called credal
sets (i.e., convex sets of probabilities), or equivalently by lower expectation bounds
(called coherent lower previsions by Walley), independence modeling and tractability
are two important issues.

Indeed, the notion of independence plays an essential role in uncertainty theories
when dealing with multivariate spaces, its associated factorization properties allowing
to decompose a complex problem into simpler ones, or to easily build joint models from
marginal ones. When probabilities or expectations are made imprecise, the notion of
stochastic independence used in probability theory can be extended in several ways, and
such extensions have been proposed and compared by many authors (see, for example,
Walley [1] and Couso et al. [2]).

On the other hand, tractability is essential in many applications, and although using
general uncertainty models is certainly attractive from a theoretical point of view, their
complexity often makes them difficult to handle computationally. In practice, tractabil-
ity can be improved by restricting oneself to classes of uncertainty models that presents
a good trade-off between generality and computational convenience. 2-monotone lower
probabilities, that encompass many useful uncertainty models (e.g., p-boxes [3], possi-
bility distributions [4], belief functions [5], probability intervals [6]), correspond to such
a class, as satisfying the property of 2-monotonicity greatly facilitates the handling of
uncertainty in information treatments (e.g., to compute lower and upper expectation
bounds). This is why researchers have devoted a lot of attention to such models [7,8].

In this paper, we consider the problem of whether the property of 2-monotonicity is
preserved when building a joint representation induced from marginal representations
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and a strong independence, an epistemic irrelevance or an epistemic independence as-
sumption. After introducing notations and required preliminaries in Section 2, we show
in Section 3 that 2-monotonicity is not preserved under none of the assumptions of
strong independence, epistemic independence or epistemic irrelevance. In order to solve
this issue, we propose in Section 4 an outer approximation by extending the notion of
random set independence to 2-monotone lower probabilities. We also study some prop-
erties of this approximation, concluding that, while this approximation may be useful
in some cases, its usefulness within Walley’s theory of imprecise probabilities may be
limited. In order to simplify our exposure, we will limit ourselves to the case of two
variables, however most presented results readily extend to any number of dimensions.

2 Preliminaries

This section recalls basic notions and introduces main notations used in the rest of
the paper. Although we deal with marginal uncertainty models defined by 2-monotone
lower probabilities, we will start from lower expectations, as they are needed to express
the joint models resulting from different independence assumptions.

2.1 Lower expectations and credal sets

Consider a variable X whose value lies in a finite space X . We assume here that the
uncertainty on X is described by a lower expectation (or coherent lower prevision in
Walley’s terms) P : L (X )→R defined over the set L (X ) of all real-valued functions
over X . The lower probability of an event A ⊆X corresponds to the value P(1A ),
where 1A is the indicator function of A. Here, it will be denoted by P(A) when no
confusion is possible. From a lower expectation, one can consider the dual notion of
upper expectation P, linked to lower expectation by the relation P( f ) = −P(− f ). In
the specific case of lower probabilities, the dual notion of upper probability is such
that P(A) = 1−P(A), with A the complement of A. A classical expectation operator
will be denoted P : L (X )→ R, the corresponding mass function p being defined as
p(x) := P(1x ),x ∈X with P( f ) = ∑x∈X p(x) f (x).

A lower expectation P induces a corresponding closed convex set M (P) of domi-
nating probability distributions, here called credal set, such that

M (P) = {p ∈ PX |P( f )≥ P( f ) ∀ f ∈L (X )},

where PX is the set of all probability masses over X . One can show that there is a
one-to-one correspondence between lower expectations and credal sets (that is, each
credal set correspond to one and only one lower expectation, and vice-versa).

In practice, the information contained in P can often be restricted to, or is given for,
a finite subset K of L (X ), and the induced credal set is then

M (P) = {p ∈ PX |P( f )≥ P( f ) ∀ f ∈K }.
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In such a case, the lower expectation, or natural extension1 induced by P on any func-
tion g ∈L (X ) is given by P(g) = min{P(g)|p ∈M (P)}. This natural extension rep-
resents the most conservative inference one can make when all the information we have
about X is represented by the initial lower prevision.

The evaluation of this natural extension, which plays an essential role in further in-
ferences, may represent a heavy computational burden, especially when the space X is
large (as happens in the multivariate case). An important case where this computational
burden can be reduced is when P can be restricted to events (i.e., is a lower probabil-
ity) and satisfy the property of 2-monotonicity. This property is satisfied if, for any pair
A,B⊆X of events, the following inequality holds:

P(A)+P(B)≤ P(A∪B)+P(A∩B).

Such a property ensures, for instance, that extreme points of M (P) can be easily de-
termined [9], or that natural extension over any function can be computed thanks to a
Choquet integral. Also, 2-monotonicity is a sufficient condition for P to be coherent.

2.2 2-monotone lower probability and Möbius inverse

Let P be a lower probability on X . Its Möbius inverse m : ℘(X )→ R is defined as a
mapping from the power set of X to the real space such that, for every subset E ⊆X ,

m(E) = ∑
A⊆E

(−1)|E\A|P(A), (1)

with |E \A| the cardinality of E \A. Note that for any lower probability, ∑E⊆X m(E) =
1, m( /0) = 0 and m({x}) ≥ 0 for any x ∈X . From the Möbius inverse m, the lower
probability P(A) of an event A can be found back through the formula

P(A) = ∑
E⊆A

m(E). (2)

Chateauneuf and Jaffray [9] (among other things) have proved the following relation
between 2-monotone lower probabilities and their Möbius inverse:

Proposition 1. P is a 2-monotone lower probability if and only if its Möbius inverse m
is such that, for any A⊆X and all {x1,x2} ∈ A, x1 6= x2,

∑
{x1,x2}⊆B⊆A

m(B)≥ 0

This proposition have the following corollary

Corollary 1. If P is a 2-monotone lower probability, then m(E)≥ 0 for all E such that
|E| ≤ 2.

1 Note that here, we use the same notation for P and its natural extension, as we only deal with
so-called coherent lower previsions.
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However, the inverse is not true, i.e., any mapping m with ∑E⊆X m(E) = 1 and
m(E)≥ 0 for all E such that |E| ≤ 2 will not induce a 2-monotone lower probability, as
shows the next example:

Example 1. Consider a 3 element space X = {x1,x2,x3} with the mass function m
such that

m({x1}) = 0.1, m({x2}) = 0.2, m({x3}) = 0.5, m({x1,x2}) = 0,
m({x1,x3}) = 0.2, m({x2,x3}) = 0.3, m(X ) =−0.3.

Using Eq (2), we get P({x1}) = 0.1 and P({x2,x3}) = 1, a non-coherent lower proba-
bility which therefore cannot be 2-monotone (another means to see it is to consider the
pair of events A = {x1,x3} and B = {x2,x3}).

Chateauneuf and Jaffray have also shown that, in the case of 2-monotone lower proba-
bilities, natural extension can be computed using the Möbius inverse.

Proposition 2. Let P be a 2-monotone lower probability and m its Möbius inverse.
Then, its natural extension to any function f ∈L (X ) is given by

P( f ) = ∑
E⊆X

m(E) inf
x∈E

f (x). (3)

These results will be instrumental in the rest of the paper.

3 2-monotonicity preservation under independence assumptions

We now assume that the uncertainty about two variables X and Y taking their values on
finite spaces X and Y , respectively, are modeled by the 2-monotone lower probabili-
ties PX and PY , respectively. In order to make inferences on the whole space X ×Y ,
one needs to build a joint uncertainty model P : L (X ×Y )→ R over it that respects
the marginal information given by PX and PY .

As recalled in the introduction, independence assumptions allow one to easily build
such a joint uncertainty model from marginal ones. In probability theory, this is done
by using the notion of stochastic independence. When considering lower expectations
as a model of uncertainty, there exist many ways in which stochastic independence can
be extended [2]. Also, one may require, when building the joint uncertainty model, that
this joint model remains 2-monotone, if only for computational convenience.

We will show in this section, by the means of simple counter-examples, that the
joint models obtained from the marginals PX , PY and the various assumptions of strong
independence, epistemic irrelevance or epistemic independence (each of them briefly
recalled in the corresponding subsection) are not, in general, 2-monotone lower proba-
bilities.

3.1 Strong independence

The concept of strong independence directly extends the concept of stochastic inde-
pendence to sets of probabilities, in the sense that it corresponds to take the stochastic
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product of every probability mass function inside M (PX ) and M (PY ). The joint lower
expectation obtained by such an assumption, denoted by PSI , is then such that for any
f ∈L (X ×Y ),

PSI( f ) = inf{P12( f )|P12 = P1⊗P2,P1 ∈M (PX ),P2 ∈M (PY )},

where ⊗ is the classical stochastic product. Let us now show that 2-monotonicity is, in
general, not preserved by an assumption of strong independence.

Example 2. Consider two binary spaces X = {x1,x2} and Y = {y1,y2}. Recall that
any lower expectation on such spaces can be restricted to their values on singletons.
Hence they are lower probabilities, which happens to always be 2-monotone. Consider
then the following marginal lower probabilities:

PX ({x1}) = 0.3,PX ({x2}) = 0.5 and PY ({y1}) = 0.4,PY ({y2}) = 0.4

Now, consider the two events A= {X ×y1} and B= {(x1×y2)∪(x2×y1)} on X ×Y .
Under an assumption of strong independence, we have

PSI(A) = PY ({y1}) = 0.4,
PSI(B)> 0.4,

where the second inequality follows from the fact that all probability masses p which
dominate PSI must satisfy p(y1|x2) ≥ PY ({y1}) = 0.4 and p(y2|x1) ≥ PY ({y2}) = 0.4,
whence

P(B) = p(y1|x2)p(x2)+ p(y2|x1)p(x1)≥ 0.4(p(x2)+ p(x1)) = 0.4

for all probabilities P which dominate PSI . The actual value is 0.46, obtained by choos-
ing probability masses p(x1) = 0.3 and p(y1) = 0.4. Then, using the factorization prop-
erties of PSI over events, we have

PSI(A∩B) = P(x2× y1) = P(x2)P(y2) = 0.2,

PSI(A∪B) = P(x2× y2) = 1−P(x2)P(y2) = 0.58,

hence, PSI violates 2-monotonicity,as

PSI(A)+PSI(B)≥ 0.8≥ PSI(A∪B)+PSI(A∩B) = 0.78.

3.2 Epistemic irrelevance

The concept of epistemic irrelevance [10] corresponds to an asymmetric concept, ex-
pressing the idea that learning the value of a variable does not modify the uncertainty
(or the knowledge) about the value of another variable (not excluding the possibility
that learning the value of the latter may modify our uncertainty about the former).
Here, we consider the statement that X is epistemically irrelevant to Y and denote it
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by X 6→ Y . The corresponding joint lower expectation, denoted by PX 6→Y , is such that,
for any f ∈L (X ×Y ),

PX 6→Y ( f ) = PX (PY ( f (X , ·))), (4)

where PY ( f (X , ·)) is a function on X assuming the value PY ( f (x, ·)) for every x∈X .
Note that, when X is epistemically irrelevant to Y , we have that the sets

{P(·|x)|P ∈M (PX 6→Y )}= M (PY )

coincide for every x ∈ X , with P(·|x) the conditional expectation of P. Recall that,
given a joint probability mass p over X ×Y , the conditional expectation P( f |x) of a
function f : Y →R is the expectation of f w.r.t. the conditional probability mass p(·|x).
This links epistemic irrelevance with credal sets.

Example 3. Consider the same model as in Example 2. The same arguments than for
strong independence (factorization and bounds on conditional dominated probabilities)
still hold, hence epistemic independence still violates 2-monotonicity. Note that, in this
case, the value PX 6→Y (B) = 0.4 is exact and can be computed by linear programming.

3.3 Epistemic independence

The concept of epistemic independence [11] is the symmetric counterpart of epistemic
irrelevance. It corresponds to the statements that X and Y are epistemically irrelevant of
each others, denoted by X 6↔Y . The corresponding joint lower expectation, denoted by
PX 6↔Y , is such that, for any f ∈L (X ×Y ),

PX 6↔Y ( f ) = inf{P( f )|P ∈
(
M (PX 6→Y )∩M (PY 6→X )

)
}.

Similarly to epistemic irrelevance, we have that the sets

{P(·|x)|P ∈M (PX 6↔Y )}= M (PY ) and {P(·|y)|P ∈M (PX 6↔Y )}= M (PX )

coincide for every x ∈X and y ∈ Y .

Example 4. Consider the same model as in Example 2. The same arguments than for
strong independence (factorization and bounds on conditional dominated probabilities)
still hold, hence epistemic independence still violates 2-monotonicity. Note that, in this
case, the value PX 6↔Y (B) = 0.4 is again exact and can be computed by linear program-
ming.

4 A 2-monotone outer-approximation

In this section, we propose and study a notion that allows one to easily build, from
marginals, a joint lower probability that is still 2-monotone and outer-approximates the
joint uncertainty models obtained by independence assumptions of Section 3.
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4.1 Definition and basic properties

We start by defining how the uncertainty joint model is built, and call the associated
notion Möbius inverse independence (MI).

Definition 1 (Möbius inverse independence). Consider two lower probabilities PX ,
PY defined on finite spaces X ,Y and their respective Möbius inverse mX ,mY . The
Möbius inverse mMI obtained under an assumption of Möbius inverse independence is
defined as the mapping mMI : X ×Y → R such that, for every A×B⊆X ×Y ,

mMI(A×B) = mX (A)mY (B) (5)

This notion of independence is symmetrical. The joint lower probability PMI induced
by mMI over X ×Y is then defined for every event E ⊆X ×Y as

PMI(E) = ∑
(A×B)⊆E

mMI(A×B).

The MI notion can simply be seen as an extension of the notion of random set inde-
pendence [2]. Random set independence notion applies to specific kinds of 2-monotone
lower probabilities, i.e., belief functions. Recall that a belief function Pbel : X → [0,1]
is a lower probability such that, for any collection of events {A1, . . . ,An} ⊆ X , the
following inequality

Pbel(
⋃

i=1n

Ai)≥ ∑
I⊆{1,...,n}

(−1)|I+1|P(
⋂

i∈I
Ai)

holds. Belief functions are also characterised by the fact that their Möbius inverse are
non-negative. Given this similarity, we can expect the resulting joint uncertainty model
PMI to share some properties fo the joint model obtained under an assumption of ran-
dom set independence (i.e. preservation of n-monotonicity and outer-approximating
other joint models studied in Section 3). It should be noted that the Möbius inverse and
the corresponding independence notion are here used as a mathematically and com-
putationally convenient tool, and that no semantic is associated to it. Indeed, how to
interpret non-positive weights on subsets is still an open problem.

Proposition 3. Let PX , PY be 2-monotone lower probabilities, then PMI is a 2-monotone
lower probability.

Proof. In order to show that PMI is 2-monotone, we have to show that mMI has the
following properties:

1. mMI( /0) = 0
2. ∑A×B⊆X ×Y mMI(A×B) = 1
3. For any A×B⊆X and all {x1×y1,x2×y2}∈A×B, ∑{x1×y1,x2×y2}⊆C⊆A×B m(C)≥

0 holds (using Prop. 1).

The first property is easily shown, as mX ( /0) = mY ( /0) = 0. The second property follows
from

∑
A×B⊆X ×Y

mMI(A×B) = ∑
A⊆X

∑
B⊆Y

mX (A)mY (B) = ∑
A⊆X

mX (A) ∑
B⊆Y

mY (B) = 1.
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Now, let us show the third property. We have

∑
{x1×y1,x2×y2}⊆C⊆A×B

m(C) = ∑
{x1×y1,x2×y2}⊆A′×B′⊆A×B

m(A′)m(B′)

= ∑
{x1,x2}⊆A′⊆A

m(A′) ∑
{y1,y2}⊆B′⊆A

m(B′)≥ 0,

where the last inequality comes from the fact that the two sums are positive (according
to Prop. 1). �

Let us now show that the joint lower probability PMI outer-approximates the joint
uncertainty models obtained by other independence notions.

Proposition 4. Let PX , PY be 2-monotone lower probabilities, then the joint uncer-
tainty model PMI outer-approximates the joint uncertainty models PX 6→Y ,PY 6→X ,PX 6↔Y ,PSI ,
in the sense that for any f ∈L (X ×Y ),

PMI( f )≤min{PX 6→Y ( f ),PY 6→X ( f ),PX 6↔Y ( f ),PSI( f )}.

Proof. First, recall that joint models obtained by independence assumptions are related
in the following way:

max{PX 6→Y ,PY 6→X} ≤ PX 6↔Y ≤ PSI

where the joint uncertainty models are obtained from the same marginals PX ,PY . Hence,
it is sufficient to show that PMI ≤ PX 6→Y to prove that PMI outer-approximates the other
joint uncertainty models.

Consider a function f ∈L (X ×Y ). Using the fact that PX , PY are 2-monotone
lower probabilities and combining Eq. (3) with Eq. (4), we obtain that PX 6→Y ( f ) can be
reformulated as follows:

PX 6→Y ( f ) = ∑
A⊆X

mX (A) inf
x∈A

(
∑

B⊆Y

mY (B) inf
y∈B

f (x,y)

)
.

Similarly, since we have shown that PMI is 2-monotone, we can use Eq. (3) and obtain

PMI( f ) = ∑
A×B⊆X ×Y

mMI(A×B) inf
x,y∈A×B

f (x,y)

= ∑
A⊆X

∑
B⊆Y

mX (A)mY (B) inf
x∈A

inf
y∈B

f (x,y)

= ∑
A⊆X

mX (A) ∑
B⊆Y

mY (B) inf
x∈A

inf
y∈B

f (x,y).

This shows that PMI( f )≤ PX 6→Y ( f ), since

∑
B⊆Y

mY (B) inf
x∈A

inf
y∈B

f (x,y)≤ inf
x∈A

(
∑

B⊆Y

mY (B) inf
y∈B

f (x,y)

)
.

�

Next section discusses the interest of the proposed approximation for various appli-
cations.
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4.2 Discussion about practical interest

To simplify notations, we identify in this section a function g defined on space X
with its cylindrical extension to the cartesian product X ×Y (defined, for every x ∈
X and all y ∈ Y , as g(x,y) = g(x)), and we identify similarly functions defined on
space Y . Within the theory of lower prevision, recent works [12,13] have focused at
characterising interesting factorisation properties of joint models. One of the weakest
properties developed in these works is the one of productivity, defined as follows in the
case of two variables:

Definition 2 (Productivity). Consider a joint lower expectation P on L (X ×Y ).
This lower expectation is called productive if for all g ∈L (X ) (resp. all g ∈L (Y ))
and all non-negative f ∈L (Y ) (resp. all f ∈L (X )), P( f [g−P(g)])≥ 0.

Unfortunately, the next example shows that the joint uncertainty model PMI ob-
tained under an MI assumption does not satisfy this property.

Example 5. Let X = {x1,x2} and Y = {y1,y2} be two binary spaces. Consider two 2-
monotone lower probabilities PY and PX defined on this space and their Möbius inverses
mX and mY (note that they are positive), such that

mX ({x1}) = α1,mX ({x2}) = α2 and mX (X ) = 1−α1−α2;

mY ({y1}) = β1,mY ({y2}) = β2 and mY (Y ) = 1−β1−β2;

Now consider two functions g∈L (X ) and f ∈L (Y ) such that g(x1)= a< g(x2)= b
and 0 < f (y1) = c < f (y2) = d. Consider now PMI as a joint uncertainty model, and let
us calculate PMI( f [g−PMI(g)]). Let us first consider PMI(g). As g ∈L (X ), we have
that

PMI(g) = α2b+(1−α2)a,

and the function h = f [g− P(g)] on X ×Y is summarised in Table 1 below. The

h = f [g−PMI(g)] x1 x2
y1 cα2(a−b) < c(1−α2)(b−a)

<

<

y2 dα2(a−b) < d(1−α2)(b−a)

Table 1. Function f [g−P(g)] of Example 5

inequalities in Table 1 are due to the two inequalities a ≤ b and 0 ≤ c ≤ d and to the
fact that (a−b)≤ 0, (1−α2)≥ 0. Note that the four values are totally ordered. Using
Eq. (3) and Definition 1, we have that

PMI(h) = (1−α2)(1−β1)h(x1,y2)+β1(1−α2)h(x1,y1)+α2(1−β2)h(x2,y1)+α2β2h(x2,y2)

= (1−α2)((1−β1)h(x1,y2)+β1h(x1,y1))+α2((1−β2)h(x2,y1)+β2h(x2,y2))

= ((1−α2)α2(a−b)(d−β1d +β1c))+(α2(1−α2)(b−a)(c−β2c+β2d))

= (1−α2)α2(b−a)(c−d)(1−β2−β1) = (1−α2)α2(b−a)(c−d)β3
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If we assume that 0 < α2 < 1, then this value is negative (as b−a > 0 and c−d < 0),
unless β3 = 0, that is unless PY is a precise probability. If we extend these conclusions
to all possible f and g satisfying Def. 2, this means that PMI( f [g−PMI(g)]) ≥ 0 only
in degenerated cases (that is, when PX and PY are either both precise probabilities or
vacuous models).

This example shows that we cannot expect the notion of Möbius inverse indepen-
dence (and also of random set independence) to satisfy productivity as well as other
stronger factorization properties that imply productivity. In the framework of lower pre-
visions, such factorisation properties allows to easily derive laws of large numbers, or
are instrumental in the construction of generalisation of Bayesian networks. However, it
should be noted that random set independence (of which Möbius inverse independence
is a direct extension) has been used in graphical models [14], hence not satisfying pro-
ductivity does not mean that this independence notion cannot be useful in such models.

Also, the computational convenience of this approximation may be useful in some
practical applications involving the computation of natural extension. One such appli-
cation, illustrated by the following (simple) example, may be multi-criteria decision-
making under uncertainty.

Example 6. Assume that some decision maker (DM) wants to build a new airport in a
region, and has retained some sites to do so. After selecting sites whose building costs
are roughly equivalent, the DM decides to base his/her decision on some additional
criteria: the easiness of access to main roads (variable X defined on X ), the generated
pollution impact on nearby lands (variable Y defined on Y ) and the public opinion
(variable Z defined on Z ). Each criterion is evaluated on a utility scale ranging from 1
to 4, 1 being the worst case, 4 the best. Criteria values are then aggregated according
to a weighted average f = wX X +wYY +wZZ to obtain the global utility of a given
alternative, where wX = 0.2,wY = 0.4,wZ = 0.4 are the importance weights given to
each criterion.

Now, consider an alternative where the utility of each criterion is uncertainly known.
The uncertainty concerning variable X is given by the following probability intervals
(i.e. upper and lower probabilities over singletons):

P({1}) = 0.1, P({2}) = 0.2, P({3}) = 0.6, P({4}) = 0.7

P({1}) = 0, P({2}) = 0, P({3}) = 0.3, P({4}) = 0.3

This uncertainty can correspond to the fact that a major road is likely to be built in the
future in the region, but that this fact is not fully certain. Uncertainty can come, for
example, from an expert. These probability intervals are 2-monotone (we refer to [6]
for details on probability intervals) and their Möbius inverse is such that

mX ({3}) = mX ({4}) = 0.3, mX ({3,4}) = mX ({1,2,4}) = mX ({1,3,4}) = 0.1,

mX ({2,3,4}) = 0.2, mX (X ) =−0.1.

Concerning variable Y , risk analysis shows that pollution impact may be high, and
the related uncertainty is modeled by the possibility distribution (recall that possibility
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distributions have Möbius inverses which are positive and are such that non-null masses
are given to nested sets)

mY ({1}) = 0.3, mY ({1,2}) = 0.7.

Finally, public opinion has been gathered by a survey where answers could be im-
precise (hence, frequencies are given to set of values). The results are such that

mZ({2}) = 0.3, mZ({4}) = 0.2, mZ({1,2}) = 0.2, mZ(Z ) = 0.3.

The weighted average (or any other aggregation functions) is a mapping f : X ×
Y ×Z → R, and as it seems reasonable to assume that each criterion is independent
of the other, we can use mMI as a joint model over X ×Y ×Z to compute lower and
upper expectations outer approximating results given by other (more complex) joint
models. Using mX ,mY ,mZ as uncertainty models, the results are (for lower and upper
expectations)

PMI( f ) = 1.936 ; PMI( f ) =−PMI(− f ) = 2.62.

Note that, in the above example, f can be replaced by any mapping or by any in-
dicator function on the resulting output of f , thus allowing one to perform uncertainty
propagation through f .

Finally, let us make two remarks concerning complexity related issues:

– storing information in terms of the Möbius inverse means storing at most 2|X |

values, as for lower probabilities on every events. This can be compared to the
maximum number of extreme points of a credal set induced by a 2-monotone lower
probability [9], which is |X |! (i.e., the number of permutations among elements of
X );

– when working in a multivariate space, computing the lower expectation PMI( f )
has a complexity that increases exponentially with the number of variables. This is
comparable to the complexity associated to the computations under an assumption
of forward irrelevance [10]. Also, if an important number of Möbius inverses are
positive (i.e., if marginal probabilities often correspond to belief functions), then
exact computations could be combined with efficient simulation techniques [15].

Acknowledgements

Examples of Section 3 are the results of discussion with M. Troffaes and E. Miranda.

5 Conclusions

Independence notions play a central role in many applications of uncertainty reasoning.
We have shown that the joint models obtained by independence notions proposed in
the theory of imprecise probabilities, in which uncertainty is modeled by the means of
credal sets or lower previsions, do not preserve the 2-monotonicity property of marginal
uncertainty models (when these latter models satisfy it).
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This is a practical downside of these independence notions, as satisfying 2-monotonicity
increases the computational tractability of imprecise probabilistic models. To solve this
issue, we have proposed a 2-monotone outer-approximation by simply extending the
notion of random set independence to 2-monotone lower probabilities.

This approximation does not satisfy the weak property of productivity, which is
implied by many other factorization properties of joint models. This means that this
approximation cannot benefit from results associated to such properties. Still, there re-
mains applications where this approximation may be useful, such as the one involv-
ing uncertainty propagation or expectation bound computations. Especially, since this
approximation is an extension of the random set independence, it may benefits from
algorithms and methods originating from random set and evidence theory.
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