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Hidden Markov models for time series of counts

with excess zeros

Madalina Olteanu and James Ridgway ∗

University Paris 1 Pantheon-Sorbonne - SAMM, EA4543
90 Rue de Tolbiac, 75013 Paris - France

Abstract. Integer-valued time series are often modeled with Markov
models or hidden Markov models (HMM). However, when the series rep-
resents count data it is often subject to excess zeros. In this case, usual
distributions such as binomial or Poisson are unable to estimate the zero
mass correctly. In order to overcome this issue, we introduce zero-inflated
distributions in the hidden Markov model. The empirical results on simu-
lated and real data show good convergence properties, while excess zeros
are better estimated than with classical HMM.

1 Introduction

Time series of count data occur quite often and in various fields such as history,
economy or biology. During the past fifty years, several models were proposed
in order to deal with integer-valued time series, although preferred methods
have not yet been established [2]. One solution for dealing with time series of
count data are hidden Markov models (HMM hereafter). Originally introduced
for speech recognition [1], they are especially interesting in the context of the
presumed existence of several regimes controlling the parameters of the model
(coding vs. non-coding regions for DNA data, crisis vs. stable periods for finan-
cial data,...). However, count data are often subject to excess zeros, while the
available software is generally implemented for usual distributions such as bino-
mial or Poisson. For example, to our knowledge there is no available R-package
proposing to model count data subject to zero-overdispersion with HMM.

This paper introduces zero-inflated Poisson distributions (ZIP hereafter) in
the HMM models. Introduced in the late 60’s [3], ZIP distributions allow for
excess zeros according to the following definition:

P(X = x) =

{

ω + (1− ω) exp(−λ) , x = 0

(1 − ω) exp(−λ)λx

x! , x > 0

where ω ∈]0, 1[ and λ > 0. Thus, a ZIP distribution is written as a mixture
between a Dirac in zero and a Poisson. ZIP distributions allow for a certain
amount of dispersion in the data[9], in the sense that in the Poisson distribution
the mean and the variance are both equal to λ, whereas for Y ∼ ZIP (ω, λ) :

E(Y ) = (1− ω)λ = µ , V(Y ) = µ+

(

ω

1− ω

)

µ2
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This can be an interesting aspect of the distribution since it allows more flexi-
bility in the modelisation.

ZIP distributions were mainly used for regression purposes ([8], [7]), but one
can extend their use in the context of hidden Markov models. Let us mention
that the idea of mixing ZIP and HMM is not completely new. Recently, [5]
and [10] proposed close versions of the same model by introducing a partially
observed Markov chain in which the two components in the zero-inflated Poisson
occur according to the states of the partially hidden process. Both articles use
the model in a regression context and suppose the existence of covariates. We
introduce a modified ZIP-HMM model, in which both the Poisson parameter λ
and the mixing weight ω depend on the hidden states.

The rest of the paper is organized as follows : section 2 is devoted to a
detailed presentation of the model and the associated EM algorithm. Section 3
presents some results on simulated and real-life data, while section 4 concludes
the paper.

2 Hidden Markov models with zero-inflated Poisson dis-
tribution (ZIP-HMM)

As we mentioned earlier, we are interested in modelling switching time-series
for which each regime is composed of an important number of zeroes. Let Xt

be the observed series and St a homogeneous, unobserved Markov chain, with
state-space E = {e1, · · · , eq}. We suppose that, conditionally to St = ei, Xt is
distributed according to a ZIP of parameters (ωi, λi). The ZIP-HMM model is
estimated through the EM algorithm, [4]. Let us define the parameter space:

Θ = {θ = (ω, π, λ) ∈]0, 1[q×]0, 1[q
2

×(R+)q, ∀j ∈ {1 · · · q}

q
∑

i=1

πji = 1}

In order to write the complete likelihood, we introduce an auxiliary variable. Let
us define Zt an underlying random process such that Zt = 1 leads to a structural
zero, with Zt|St = ei ∼ Ber(ωi). By structural zero we mean a zero induced by
the Dirac rather than the Poisson. Then, the complete likelihood is given by:

L(Z,X, S; θ) =

T
∏

t=1

q
∏

i=1

f(Xt, Zt|St; θ)

T−1
∏

t=1

q
∏

i,j=1

π
1ei,ej

(St,St+1)

ij × C

where f(Xt, Zt|St; θ) = ω
1(1,ei)

(Zt,Xt)

i (1−ωi)
1(0,ei)

(Zt,Xt)

(

e−λiλXt

i

Xt!

)1(0,ei)
(Zt,Xt)

The constant stands for the initial probability and does not intervene in the
algorithm. The algorithm consists in maximizing Eθ⋆

[

ln(L(Z,X, S; θ)|XT
1

]

with
respect to θ and updating θ⋆ at each step.



The expectation step is given by:

Q(θ|θ⋆) = Eθ⋆

[

ln(L(Z,X, S; θ))|XT
1

]

=
∑T

t=1

∑q

i=1{Pθ⋆(St = ei, Zt = 1|XT
1 ) ln(ωi)

+ Pθ⋆(St = ei, Zt = 0|XT
1 )(ln(1 − ωi)− λi +Xt ln(λi)− ln(Xt!))}

+
∑T

t=1

∑q

i,j=1 Pθ⋆(St−1 = ei, St = ej |X
T
1 ) ln(πij) (1)

We take further interest in the part of (1) containing the parameters associated
to the ZIP; we denote it νθ (the rest of the equation will be dealt with separately).
This equation contains two joint probabilities that can be expressed as:

Pθ⋆(St = ei, Zt = 1|XT
1 ) = Pθ⋆(Zt = 1|XT

1 , St = ei)Pθ⋆(St = ei|X
T
1 ) (2)

The latter probability of the right hand-side of (2) is obtained by the Baum-
Welch forward-backward algorithm, the first is given by:

Pθ⋆(Zt = 1|XT
1 , St = ei) =

{

0 if Xt > 0
Pθ⋆(Xt=0|St=ei,Zt=1)Pθ⋆ (Zt=1|St=ei)

Pθ⋆(Xt=0|St=ei)
if Xt = 0

By denoting α⋆
i :=

ω⋆
i

ω⋆
i
+(1−ω⋆

i
)eλ

⋆
i
, we get:

Pθ⋆(St = ei, Zt = 1|XT
1 ) =

{

0 if Xt > 0

α⋆
i Pθ⋆(St = ei|X

T
1 ) if Xt = 0

Pθ⋆(St = ei, Zt = 0|XT
1 ) =

{

Pθ⋆(St = ei|X
T
1 ) if Xt > 0

(1− α⋆
i )Pθ⋆(St = ei|X

T
1 ) if Xt = 0

We can therefore express νθ:

νθ =
∑

t:Xt>0

q
∑

i=0

pt(ei){ln(1− ωi)− λi +Xt ln(λi)− ln(Xt!)}

+
∑

t:Xt=0

q
∑

i=0

α⋆
i ln(ωi) + (1− α⋆

i )pt(ei){ln(1 − ωi)− λi} (3)

The maximization step can be carried analytically. The fact that the updates
may be computed entirely analytically leads to a very fast algorithm. The transi-
tion probabilities updates are computed using the forward-backward algorithm.
For the ZIP parameters, we obtain the following updates :

πij =

∑T

t=2 Pθ⋆(St−1 = ei, St = ej |X
T
1 )

∑T

t=1 Pθ⋆(St = ei|XT
1 )

ωi =
α⋆
i

∑

Xt=0 Pθ⋆(St = ei|X
T
1 )

∑T

t:t=1 Pθ⋆(St = ei|XT
1 )

λi =

∑

t:Xt>0 Pθ⋆(St = ei|X
T
1 ) ∗Xt

∑

t:Xt=0 Pθ⋆(St = ei|XT
1 )(1− α⋆

i ) +
∑

t:Xt>0 Pθ⋆(St = ei|XT
1 )



3 Examples

3.1 Simulations

We shall evaluate the quality of the estimates by using the mean squared error
(MSE) on simulated data. The simulations were repeated on different sample
sizes ranging from 500 to 10000 and on different parameter values. For each pa-
rameter configuration, 10.000 samples were simulated. In Table 1 all parameters
except a transition probability were kept constant. In Table 2 all parameters
except a Poisson parameter were kept constant. The results show relatively low
MSE, decreasing with the sample size.

H
H
H
H
H

N
π11 0.1 0.3 0.4 0.5 0.6 0.8 0.9

500 0.0247 0.0286 0.0317 0.035 0.0415 0.0541 0.055
1000 0.0021 0.0054 0.0084 0.0131 0.0081 0.021 0.026
5000 0.0003 0.0015 0.0026 0.0058 0.011 0.0019 0.0008
10000 0.0001 0.0008 0.0018 0.005 0.0105 0.0012 0.0008

Table 1: MSE (π22 = 0.6, ω1 = 0.2, λ1 = 0.5, ω2 = 0.2, λ2 = 3)

H
H
H
H
H

N
λ1 0.1 0.5 1 5 10 14

500 0.0498 0.0417 0.0732 0.0199 0.0028 0.0397
1000 0.0085 0.0190 0.032 0.0103 0.0154 0.028
5000 0.0133 0.0193 0.0036 0.0018 0.003 0.0039
10000 0.00195 0.0094 0.001 0.001 0.001 0.0019

Table 2: MSE (π11 = 0.4, π22 = 0.6, ω1 = 0.2, ω2 = 0.2, λ2 = 3)

3.2 Real data application

Next, the ZIP-HMM model was applied to a real-life data set. The observations
come from the recordings of people flow out of a building on the UCI campus over
15 weeks, 48 time slices per day, [6]. Two models were estimated and compared:
HMM with Poisson distribution and ZIP-HMM. The results are quite similar
and both models are able to separate the activity periods during the week days
and the inactivity periods during night-time and weekends. However, when
closely analyzing the results, the ZIP-HMM model seems fit the data better.
The estimated transition matrices of the two models are very close :

πHMM =

(

0.972 0.028
0.071 0.929

)

, πZIP−HMM =

(

0.975 0.025
0.072 0.928

)

The Poisson parameters estimated by the HMM are λHMM
1 = 0.40 for the first

regime, corresponding to the inactivity periods, and λHMM
2 = 12.58 for the



second regime, corresponding to the activity periods. The parameters estimated
by the ZIP-HMM are ωZIP−HMM

1 = 0.70, λZIP−HMM
1 = 1.92 for the first regime

and ωZIP−HMM
2 = 0, λZIP−HMM

2 = 13.53 for the second regime. The second
model seems more flexible, especially for modelling the inactivity periods with
an important zero overdispersion. In Figure 1 we represent the histograms and
the estimated distributions conditionally to the regimes, for both models. Both
models select the same periods of inactivity (time series valued 0 or 1). ZIP-
HMM is however more flexible and selects more values translating low activity
in the building. Moreover, we clearly see that a Poisson distribution alone is
not sufficient to estimate the zeros in the first regime. Although the Poisson
parameter estimated by the HMM model for the first regime is very low, the
zeros are underestimated, while the 1’s are overestimated.
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Fig. 1: Conditional distributions

In Figure 2, the conditional probabilities of being in the second regime, cor-
responding to the activity periods in the building, are estimated with the ZIP-
HMM model. In order to facilitate visualization, 20% of the data was repre-
sented. The second regime identifies the office hours during week days, but also
specific events that took place either in the evening (the peak after the third
day) or during weekend (the peak before the second week).

4 Conclusion and future work

We proposed to deal with excess zeros in time series of count data by introducing
a zero-inflated Poisson distribution in a hidden Markov model. The estimation
was done through the EM algorithm. The method was implemented in R and
is available as an R-package. Simulations illustrated the convergence properties,
while the real-life data example showed that ZIP-HMM performs better than
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Fig. 2: Zoom on the results for the ZIP-HMM

HMM when there is a strong overdispersion in zero. However, both models had
poorer results when estimating the activity periods and more specifically the
peaks of activity during office hours. ZIP-HMM managed to identify specific
evens but only in the case where they took place in the evening or during the
weekend. In order to adress this issue, we consider to further develop the method
by introducing time lags in the model.
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