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ASYMPTOTIC PROPERTIES OF AUTOREGRESSIVE

REGIME-SWITCHING MODELS

M. OLTEANU AND J. RYNKIEWICZ
SAMOS-MATISSE CES UNIVERSITE PARIS 1

Abstract. The statistical properties of the likelihood ratio test statistic (LRTS)
for autoregressive regime-switching models are addressed in this paper. This
question is particularly important for estimating the number of regimes in the
model. Our purpose is to extend the existing results for mixtures (Liu and
Shao, 2003) and hidden Markov chains (Gassiat, 2002). First, we study the

case of mixtures of autoregressive models (i.e. independent regime switches).
In this framework, we give sufficient conditions to keep the LRTS tight and
compute its the asymptotic distribution. Second, we consider the extension
of the ideas in Gassiat (2002) to autoregressive models with regimes switches
according to a Markov chain. In this case, it is shown that the marginal
likelihood is no longer a contrast function and cannot be used to select the
number of regimes. Some numerical examples illustrate the results and their
convergence properties.

1. Introduction

Autoregressive regime-switching models are being widely used in modelling financial
and economic time series such as business cycles (Hamilton, 1989; Lam, 1990),
exchange rates (Engle and Hamilton, 1990), financial panics (Schwert, 1989) or
stock prices (Wong and Li, 2000).

When the number of regimes is fixed, the statistical inference is relatively straight-
forward (Hamilton, 1990) and the asymptotic properties of the estimates have al-
ready been established (Francq and Roussignol, 1998; Krishnamurthy and Ryden,
1998; Douc R., Moulines E. and Rydén T., 2004). However, the problem of select-
ing the number of regimes is far less obvious and hasn’t been completely answered
yet. When the number of regimes is unknown, identifiability problems arise and
the likelihood ratio test statistic (LRTS hereafter) is no longer convergent to a χ2-
distribution. Some partial answers were proposed by Hansen (1992,1996a, 1996b)
and Garcia (1998). Hansen derived an asymptotic bound for the distribution of
the LRTS based on empirical processes techniques, while Garcia obtained the as-
ymptotic distribution of the LRTS, but under some very restrictive hypothesis. Let
us also mention that the consistency of the estimate of the number of regimes was
proven recently in a Bayesian framework (Rios, 2008).

In the particular case of mixture models, several ideas and methods were pro-
posed to estimate the number of components: non-parametric techniques as in
Henna (1985), Roeder (1994) or Izenman and Sommer (1998), moment techniques
in Lindsay (1983) or Dacunha-Castelle and Gassiat (1997) and penalized maximum-
likelihood in Leroux(1992a), Keribin (2000) and Liu and Shao (2003). Furthermore,
Gassiat (2002) proved that in the case of hidden Markov models, the number of
regimes can be estimated using a marginal penalized-likelihood estimate. The aim
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of this paper is to extend the existing results for mixtures and hidden Markov mod-
els to the case where the mean of the observed process is replaced by a regression
function.

In Section 2, the results on the LRTS for mixture models are extended to au-
toregressive regime-switching models with independent regime switches. We give
sufficient conditions for the tightness of the LRTS and compute its asymptotic dis-
tribution. Section 3 is devoted to verifying the result of the previous section in the
case where the noise is Gaussian and the regression functions are linear. The last
section handles the case where regime switches are Markovian. Once the result in
the independent case was established, it seemed natural to generalize it by using a
cost function close to the marginal likelihood, as defined in Gassiat (2002). Yet, it
can be seen right away that this is no longer a contrast function and the conver-
gence is achieved only in the particular cases of constant autoregressive functions
(hidden Markov models) or independent regime switches (autoregressive mixture
models).

2. LRTS for autoregressive mixture models

2.1. The observations. Let us briefly recall the definition of strong mixing pro-
cesses which will be needed hereafter. For a more detailed review, refer to Doukhan
(1995) and Bradley (2005).

Let (Yk)k∈Z
be a strictly stationary sequence of random variables defined on a

probability space (Ω,K,P). For every n ≥ 1, define the β-mixing coefficients

βn = β
(
F0
−∞, F∞n

)

where F0
−∞ = σ (Yk, k ≤ 0), F∞n = σ (Yk, k ≥ n), as

β (A,B) =
1

2
sup

(Ai)i∈I ,(Bj)j∈J

∑

(i,j)∈I×J
|P (Ai ∩Bj) − P (Ai) P (Bj)|

where (Ai)i∈I (resp. (Bj)j∈J ) ranges over the set of A(resp. B) measurable parti-
tions.

The sequence (Yk)k∈Z
is called β-mixing if limn→∞ βn = 0.

Throughout the rest of the paper, we will assume that the observations are a re-
alization of a stationnary process (Yk). Moreover, (Yk) will be assumed to be geo-
metrically β-mixing. This assumption may seem strong, but actually it is fulfilled
by a wide class of processes.

Finally, let us denote by µ the stationnary measure of the vector (Yk+1, Yk).

2.2. The model. Let P = {gθ, θ ∈ Θ} be a set of densities with respect to some
positive measure ν, where Θ is a compact finite-dimensional set.

Let us consider an observed sample {y1, ..., yn} of the series Yk. For every yk, the
true density conditionally to yk−1 is

g0 (yk | yk−1) =

p0∑

i=1

π0
i gθ0i (yk | yk−1) ,

where gθ0i ∈ P , π0
i > 0 and

∑p0
i=1 π

0
i = 1.
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This model is a generalization of mixture models. Several regression models can
be written in this way, for example mixtures of linear regressions with Gaussian
noise, which are particularly important in econometrics (see Hansen 1996) and will
be studied in Section 3 :

(1) Yt = a0
XtYt−1 + b0Xt + σ0

Xtεt ,

where

• Xt is an i.i.d. sequence of random variables valued in a finite space {1, ..., p0}
and with probability distribution π0 =

(
π0

1 , · · · , π0
p0

)

•
(
a0
1, · · · , a0

p0 , b
0
1, · · · , b0p0

)
are real numbers

•
(
σ0

1 , · · · , σ0
p0

)
are strictly positive real numbers

• εt is an i.i.d. noise N (0, 1), independent of (Yt−k)k≥1.

Let us remark that if
(
a0
1, · · · , a0

p0

)
are all zero, the model is a simple Gaussian

mixture.

2.3. Approximation of the LRTS. Let G be the set of possible conditional den-
sities:

G =

{
g (yk | yk−1) =

p∑

i=1

πigθi (yk | yk−1) , πi ∈ [0; 1],

p∑

i=1

πi = 1, gθi ∈ P , p ∈ N
⋆

}

If p ≤ p0, there are no identification issues. Therefore, we will assume that p > p0

in the sequel.

Let

ln (g) =

n∑

k=2

ln g (yk | yk−1)

be the log-likelihood function of (y1, · · · , yn), conditionally to y1.

The LRTS is defined as:

(2) 2λn = 2

(
sup
g∈G

ln(g) − ln(g0)

)
= 2 sup

g∈G

∑n
k=2

∑p
i=1 πigθi (yk | yk−1)∑n

k=2

∑p0
i=1 π

0
i gθ0i (yk | yk−1)

We establish a theorem giving an approximation of the LRTS. Some notations and
definitions are needed first:

• For an η > 0, denote

(3) Gη :=
{
g ∈ G, ‖g − g0‖L2(µ) ≤ η

}
.

The extended set of score-functions Sη is defined as:

(4) Sη =





sg =

g
g0 − 1

∥∥∥ g
g0 − 1

∥∥∥
L2(µ)

, g ∈ Gη





.
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• Let us define the limit-set of scores D

D =

{
d ∈ L

2(µ) | ∃(gn) ∈ G, ‖gn − g0

g0
‖L2(µ) −−−−→

n→∞
0, ‖d− sgn‖L2(µ) −−−−→

n→∞
0

}
.

By putting gt = gn for t ∈ [0, 1] and n ≤ 1
t < n+ 1, we obtain that, for all

d ∈ D, there exists a parametric path (gt)0≤t≤1 such that ∀t ∈ [0, 1], gt ∈ G,

t→ ‖ gt−g0g0 ‖L2(µ) is continuous, ‖ gt−g0g0 ‖L2(µ) −−−→
t→0

0 and ‖d−sgt‖L2(µ) −−−→
t→0

0.
• We recall the definition of the L2,β (P)-space and the notion of bracketing

entropy. Consider Zk a strictly stationary sequence, β-mixing and such
that

∑
n≥1 βn <∞. The L2,β (P)-space is defined as

L2,β (P) =
{
f, ‖f‖2,β <∞

}
, ‖f‖2,β =

√∫ 1

0

β−1 (u) [Qf (u)]
2
du

where
– β (u) is the càdlàg extension of βn by considering β (u) = β[u] and
β0 = 1

– ϕ−1 (u) = inf {t ∈ R, ϕ (t) ≤ u}, if ϕ is a non-increasing function
– Qf is the quantile function of |f (Z0)|, that is the inverse of
t→ P (|f (Z0)| > t)

Consider the extended set of score-functions Sη endowed with the norm
‖·‖2,β. For every ε > 0, we define an ε-bracket by [l, u] = {f ∈ F , l ≤ f ≤ u}
such that ‖u− l‖2,β < ε. The ε-bracketing entropy is

H[·]
(
ε,Sη, ‖·‖2,β

)
= ln

(
N[·]

(
ε,Sη, ‖·‖2,β

))
,

where N[·]
(
ε,Sη, ‖·‖2,β

)
is the minimum number of ε-brackets necessary

to cover Sη.

With the previous notations, we introduce the following assumption (B): Assume
that G is Glivenko-Cantelli and that there exists η > 0 such that

∫ 1

0

√
H[·]

(
ε,Sη, ‖·‖2,β

)
dε <∞.

Then, according to Doukhan (1995), the set Sη is Donsker under (B).

Now, let us state the following theorem which generalizes the result of Gassiat
(2002). The proof is given in the Appendix.

Theorem 1 :
Under the assumption (B),

2λn = sup
d∈D

(
max

{
1√
n

n∑

i=2

d(Yi, Yi−1); 0

})2

+ oP (1)

Although this result may be applied to more general models, this paper is restricted
to autoregressive mixture models.

2.4. Asymptotic law of the LRTS. This section is a direct application of The-
orem 1.

We give sufficient conditions for which the Donsker assumption (B) holds in the
case of autoregressive mixture models.
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Usually, for parametric models, a Lipschitz condition on θ is sufficient to show
that S is Donsker. However, if g depends on the parameter θ, the score-function

θ 7→ sg =
g

g0
−1

‚

‚

‚

g

g0
−1

‚

‚

‚

L2(µ)

may not be continuous, thus not Lipschitz, in θ0.

The following theorem shows that assumption (B) holds for autoregressive mixture
models under some general hypothesis. Furthermore, we prove that the limit set of
scores D is complete and has continuous parametric paths. Hence, the asymptotic
behavior of the LRTS may be completely described.

Assumptions for the tightness of LRTS.

H-1: The set G is Glivenko-Cantelli and the set of possible parameters:

{π1, · · · , πp ∈ [0, 1], θ1, · · · , θp ∈ Θ}
contains a neighborhood of the parameters defining the true conditional
density g0.

H-2: There exists η > 0 such that for all g ∈ G with ‖g − g0‖L2(µ) ≤ η,∥∥∥ g
g0 − 1

∥∥∥
L2(µ)

<∞
H-3: By denoting lθi :=

gθi
g0 and, with a slight abuse of notation, ∂q

∂θqj
the

derivative of order q with respect to all components of θj , we assume the
existence of a square-integrable function h and of a neighborhood N of
(θ01, · · · , θ0p0) such that, for all (θ1, · · · , θp0) ∈ N ,

∣∣∣∣
∂lθj

∂θj
(θj)

∣∣∣∣ ≤ h,

∣∣∣∣∣
∂2lθj

∂θ2j
(θj)

∣∣∣∣∣ ≤ h and

∣∣∣∣∣
∂3lθj

∂θ3j
(θj)

∣∣∣∣∣ ≤ h.

H-4: With the following notations:

l′j :=
∂lθj

∂θj

(
θ0j
)
, l′′ :=

∂2lθj

∂θ2j

(
θ0j
)

we assume that for distinct (θi)1≤i≤p
{
(lθi)1≤i≤p , (l

′
i)1≤i≤p0 , (l

′′
i )1≤i≤p0

}

are linearly independent in the Hilbert space L2(µ).

Let us define Ω : L2(P ) → L2(µ) by Ω(g) = g
‖g‖2 , for g 6= 0.

Now, we can state the following theorem, which generalizes theorem 4.1 of Liu and
Shao (2003) :

Theorem 2 :
Let d be the parametric dimension of the regression functions. Under the assump-
tions H-1, H-2, H-3 and H-4, there exists a centered Gaussian process {WS , S ∈ F}
with continuous sample path and covariance kernel P (WS1WS2) = P (S1S2) such
that

lim
n→∞

2λn = sup
S∈F

(max(WS , 0))
2
.

The index set F is defined as F = ∪tFt, with the union running over
t = (t0, · · · , tp0) ∈ N

p0+1 with 0 = t0 < t1 < · · · < tp0 ≤ p and

Ft =
{
Ω
(∑p0

i=1 ζilθ0i +
∑p

i=p0+1 ζilθi +
∑p0

i=1 λ
T
i l
′
i + δ

∑p0
i=1

∑ti
j=ti−1+1 γ

T
j l
′′
i γj

)
,

λ1, · · · , λp0 , γ1, · · · , γtp0 ∈ R
d ; ζ1, · · · , ζp ∈ R, θtp0+1, · · · , θp ∈ Θ −

{
θ01 , · · · , θ0p0

}}
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where δ = 1 if there exists a vector q such that:
qj ≤ 0,

∑ti
j=ti−1+1 qj = 1,

∑ti
j=ti−1+1

√
qjγ

t
j = 0 for i = 1, · · · , p0;

and δ = 0 otherwise.

Note that the asymptotic law of the LRTS depends on the true parameters of the
model. The next two sections illustrate important consequences of this theorem.

2.5. Penalized-likelihood estimate for the number of regimes. For p ∈ N
⋆,

let us denote

Gp =

{
g (yk | yk−1) =

p∑

i=1

πigθi (yk | yk−1) , πi ∈ [0; 1],

p∑

i=1

πi = 1, gθi ∈ P
}
.

For some fixed P ∈ N
⋆ sufficiently large, we shall consider the following class of

functions

GP =

P⋃

p=1

Gp

For every g ∈ GP we define the number of regimes as

p (g) = min {p ∈ {1, ..., P} , g ∈ Gp} .

With this definition, p0 = p
(
g0
)

is the number of regimes of the true model.

The estimate of the number of regimes p̂ can now be defined as p ∈ {1, ..., P}
maximizing the penalized criterion:

(5) Tn (p) = sup
g∈Gp

ln (g) − an (p)

where

ln (g) =

n∑

k=2

ln g (yk | yk−1)

is the conditional log-likelihood with respect to y1 and an (p) is a penalty term.

With the previous definitions, the following result can be stated:

Corollary 1
Suppose the following assumptions are true:

• Assumptions H-1, H-2, H-3 and H-4 are true.
• (A) an (·) is an increasing function of p, an (p1) − an (p2) −−−−→

n→∞
∞ for

every p1 > p2 and an(p)
n −−−−→

n→∞
0 for every p.

Then, p̂ maximizing the penalized criterion defined by (5) converges in probability,

p̂
P−−−−→

n→∞
p0.

Proof

The result and its proof are inspired by Gassiat (2002) and Keribin (2000).

First, let us show that p̂ does not overestimate p0.
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P (p̂ > p0) ≤ ∑P
p=p0+1 P (Tn (p) > Tn (p0))

=
∑P
p=p0+1 P

(
supg∈Gp ln (g) − an (p) > ln

(
g0
)
− an (p0)

)

≤ ∑P
p=p0+1 P (λn > an (p) − an (p0))

Since λn is tight (Theorem 1) and according to assumption (A),

P (λn > an (p) − an (p0)) → 0

Thus, P (p̂ > p0) → 0.

Let us now prove that p̂ does not underestimate p0 :

P (p̂ < p0) ≤ ∑p0−1
p=1 P (Tn (p) > Tn (p0))

=
∑p0−1
p=1 P

(
1

n−1 supg∈Gp
(
ln (g) − ln

(
g0
))
>

an(p)−an(p0)
n−1

)

For all p < p0, we shall prove that 1
n−1 supg∈Gp

(
ln (g) − ln

(
g0
))

converges in prob-

ability to a strictly negative value. Then, according to the hypothesis (A), the
proof will be complete.

Hypothesis (H-1) ensures that Eµ (ln g) <∞ for all g ∈ Gp.
Let us define

K
(
g0,Gp

)
= inf

g∈Gp
K
(
g0, g

)
,

where K
(
g0, g

)
= Eµ

(
ln
(
g0

g

))
.

Since the set of parameters is compact and K
(
g0, g

)
is continuous with respect to

the parameters, K
(
g0,Gp

)
attains its infimum for some g̃ ∈ Gp and, according to

the hypothesis (H-4), K
(
g0, g̃

)
> 0.

By the definition of the maximum likelihood,

1

n− 1
sup
g∈Gp

(
ln (g) − ln

(
g0
))

≥ 1

n− 1

(
ln (g̃) − ln

(
g0
))

Since (Yk, Yk−1) is strictly stationary and geometrically ergodic,

1

n− 1

(
ln (g̃) − ln

(
g0
)) P−−−−→

n→∞
−Eµ

(
ln

(
g0

g̃

))
= −K

(
g0, g̃

)

Thus,

lim inf
n→∞

1

n− 1
sup
g∈Gp

(
ln (g) − ln

(
g0
))

≥ −K
(
g0, g̃

)

It remains to prove that

lim sup
n→∞

1

n− 1
sup
g∈Gp

(
ln (g) − ln

(
g0
))

≤ −K
(
g0, g̃

)

Since the set of parameters is compact, for all η > 0, it may be covered by a finite
number of balls Nη, centered in ci = (πi, θi)p, i = 1, ..., Nη and with radius η

2 . Let
us now define

mη ((y1, y2) ,Gp) = sup
d((π1,θ1)p,(π2,θ2)p)≤η

|ln
(
g(π1,θ1) (y1, y2)

)
− ln

(
g(π2,θ2) (y1, y2)

)
|
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Now, we can write

1
n−1 supg∈Gp ln (g) − ln

(
g0
)

=

= supg∈Gp
1

n−1

∑n
k=2

(
ln (g (Yk, Yk−1)) − ln

(
g0 (Yk, Yk−1)

))

≤ supi=1,...,Nη

(
ln (gci) − ln

(
g0
))

+ 1
n−1

∑n
k=2mη ((Yk, Yk−1) ,Gp)

n→∞−−−−→ supi=1,...,Nη

(
−K

(
g0, gci

))
+ Eµ (mη ((Yk, Yk−1) ,Gp))

On the one hand,

sup
i=1,...,Nη

(
−K

(
g0, gci

))
= − inf

i=1,...,Nη
K
(
g0, gci

)
≤ −K

(
g0, g̃

)

on the other hand, if η → 0, mη ((y1, y2) ,Gp) → 0 and

Eµ (mη ((Yk, Yk−1) ,Gp)) → 0

Thus

lim sup
n→∞

1

n− 1
sup
g∈Gp

(
ln (g) − ln

(
g0
))

≤ −K
(
g0, g̃

)

�

3. Application to linear autoregressive models with Gaussian noise

In this section we are interested in checking whether the assumptions (H1)-(H4) in
subsection 2.4 hold in the case of a very popular autoregressive regime-switching
model. We shall consider that the process (Xt, Yt) follows the true model

(4) Yt = a0
XtYt−1 + b0Xt + σ0

Xtεt

where

• Xt is an i.i.d. sequence of random variables valued in a finite space {1, ..., p0}
and with probability distribution π0 :=

(
π0

1 , · · · , π0
p0

)

• for every i ∈ {1, ..., p0}, a0
i , b

0
i , σ

0
i are real numbers with

∣∣a0
i

∣∣ < 1 and σ0
i > 0

• (εt)t∈N
is a sequence of i.i.d. standard Gaussian variables, independent of

(Yt−k)k≥1.

This model is obviously a special case of the more general model in section 2.2.

The following result which ensures strict stationarity and ergodicity can be stated.
The proof may be found in the Appendix.

Proposition 1 :
If
∣∣a0
i

∣∣ < 1 for every i ∈ {1, ..., p0}, (Xt, Yt) is strictly stationary, geometrically
ergodic and, in particular, geometrically β-mixing. Moreover, there exists δ > 0

such that Eµ

(
eδY

2
t

)
<∞.

The set of possible conditional densities is the following :

G =

{
g | g (y2 | y1) =

∑p
i=1 πi

1√
2πσ2

i

e
− 1

2σ2
i

(y2−(aiy1+bi))
2

, p = 1, ..., P,

(ai, bi, σ
2
i ) ∈ Θ ⊂ R × R × R

⋆
+, πi ∈ [0, 1] ,

∑p
i=1 πi = 1

}
,

with Θ a compact set.
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Within this framework, G is Glivenko-Cantelli and the assumption H-1 is true.
Moreover, in a neighborhood of the true parameter θ0i , the second and third deriva-
tives of

lθi(y1, y2) =

√
2πσ0

i
2

√
2πσ2

i

e
− 1

2σ2
i

(y2−(aiy1+bi))
2+ 1

2σ0
i
2 (y2−(a0

i y1+b
0
i ))

2

exist and are dominated by a square integrable function, hence the assumption H-3
also holds.

Next, we check whether the generalized score functions are well defined (assumption
H-2): ∥∥∥∥

g

g0
− 1

∥∥∥∥
L2(µ)

<∞, ∀g such that ‖g − g0‖ ≤ η.

Conditions for the existence of the extended score functions

Consider the true conditional distribution

g0 (y2 | y1) =

p0∑

j=1

π0
j fθ0j

(
y2 − Fθ0j (y1)

)

and let the possible conditional distributions be

g (y2 | y1) =

p∑

i=1

πifθi (y2 − Fθi (y1)) .

One can prove by direct computations that

Proposition 2 (the proof is available in the Appendix)
∥∥∥ g
g0 − 1

∥∥∥
L2(µ)

< ∞ if for every i ∈ {1, ..., p}, there exists k ∈ {1, ..., p0}such that

σ2
i < 2

(
σ0
k

)2
and

∣∣ai − a0
k

∣∣ <
√
δ
(
2 (σ0

k)
2 − σ2

i

)
for δ > 0 verifying E

(
eδY

2
t

)
<∞.

This sufficient condition states that the possible models should not be too different
from the real one so that the convergence holds.

The consequences of this condition will be discussed later. For the moment, we will
assume it is fulfilled.

Finally, let us check the assumption H-4:

Lemma 1 (the proof is straightforward and will be omitted)

The functions

{
gθi, i = 1, · · · , p,

∂gθ0i
∂ai

,
∂gθ0i
∂bi

,
1

σ0
i

∂gθ0i
∂σi

+
∂2gθ0i
∂b2i

,
∂2gθ0i
∂a2

i

,

∂2gθ0i
∂σ2

i

,
∂2gθ0i
∂ai∂σi

,
∂2gθ0i
∂ai∂bi

,
∂2gθ0i
∂bi∂σi

, i = 1, ..., p0

}

are linearly independent.

Hence, the assumptions H-1, H-2, H-3 and H-4 are fulfilled if the possible param-
eters of the regression function are not too far from the true ones. Since the true
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regression function is not known, it seems very difficult to assume such hypothesis.
If the parameter set is not restricted, we will see in the next section that the LRTS
will be divergent.

3.1. Simple regression mixture example. Let G be the set of possible condi-
tional densities:

G =
{
g (yk | yk−1) = πgθ (yk | yk−1) + (1 − π)g0 (yk | yk−1) , π ∈ [0; 1], gθ ∈ P

}

with P =
{
gθ(yk|yk−1) = 1√

2π
e−

1
2 (yk−θyk−1)

2

, θ ∈ Θ ⊂ R

}
the set of conditional

densities and g0 (yk | yk−1) = 1√
2π
e−

1
2y

2
k . This model is clearly a particular case

of the general mixture of expert model and is a simple example of mixture of
regressions with Gaussian noise. Let

ln (g) =
∑n

k=2 ln g (yk | yk−1)

be the conditional log-likelihood function of (y1, · · · , yn). We want to know whether
the true model is really a mixture regression model (i.e. θ 6= 0 and π 6= 0) or the
observations are independent (θ = 0 or ∀x, π = 0). The LRTS is defined as:
(6)

2λn = 2

(
sup
g∈G

ln(g) − ln(g0)

)
= 2 sup

g∈G

n∑

k=1

ln
πgθ (yk | yk−1) + (1 − π)g0 (yk | yk−1)

g0 (yk | yk−1)

In order to derive the behaviour of the LRTS, two cases have to be analyzed. The
first one is if π can be close to 0. The second one is when ∃δ > 0 such that π ≥ δ.

Divergence of LRTS. The LRTS can be divergent if π is not constraint. Indeed,
for such sequence we can have Eµ

(
ln(g) − ln(g0)

)
→ 0 with θ 6= 0. The score

functions are well defined if the quantity∥∥∥ gθ(Y2|Y1)
g0(Y2|Y1)

− 1
∥∥∥
L2(µ)

=
∥∥∥exp

(
− θ2

2 Y
2
1 + θY2Y1

)
− 1
∥∥∥
L2(µ)

is finite. So,

∥∥∥exp
(
− θ2

2 Y
2
1 + θY2Y1

)
− 1
∥∥∥

2

L2(µ)
=

1
2π

∫ ∫ (
exp

(
− θ2

2 y
2
1 + θy2y1

)
− 1
)2

exp
(
− 1

2y
2
1

)
exp

(
− 1

2y
2
2

)
dy1dy2 =

1
2π

∫ ∫ (
exp

(
−θ2y2

1 + 2θy2y1
)
− 2 exp

(
− θ2

2 y
2
1 + θy2y1

)
+ 1
)

exp
(
− 1

2y
2
1

)
exp

(
− 1

2y
2
2

)
dy1dy2

The integral of the dominant term (the first) is:

I (θ) = 1
2π

∫ ∫
exp

(
−θ2y2

1 + 2θy2y1
)
exp

(
− 1

2y
2
1

)
exp

(
− 1

2y
2
2

)
dy1dy2

= 1
2π

∫ ∫
exp

(
−
(
θ2 + 1

2

)
y2
1 + 2θy1y2 − 1

2y
2
2

)
dy1dy2

= 1
2π

∫ ∫
exp

(
−
(√

θ2 + 1
2y1 − θ√

θ2+ 1
2

y2

)2

−
(

1
2 − θ2

θ2+ 1
2

)
y2
2

)
dy1dy2

=
√

2θ2+1√
2π

∫
exp

(
−
(

1
2 − θ2

θ2+ 1
2

)2

2

)
dy2

Finally for − 1√
2
< θ < 1√

2
,

∥∥∥exp
(
− θ2

2 Y
2
1 + θY2Y1

)
− 1
∥∥∥
L2(µ)

< +∞
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and the score function is well defined.

Note that the distribution of the LRTS 2λn for a finite number of possible pa-
rameters θ1, · · · , θm will always converge to the square of a m-dimensional normal
distribution with covariance

(
E
(
νθi (Y1, Y2) νθj (Y1, Y2)

))
1≤i,j≤m. Suppose that an

arbitrary number of“almost” uncorrelated random variables can be found, then λn
can take an arbitrarily large value since the maximum of m independent samples
from standard normal distribution is approximately

√
2 logm. Hence, Fukumizu

(2003) has shown that if a sequence θ1, · · · , θm, · · · exists so that

limm→∞ νθm (Y1, Y2)
P→ 0

then the likelihood ratio Tn diverges to infinite. Here, we get

limθ→ 1√
2
,θ< 1√

2

∥∥∥exp
(
− θ2

2 Y
2
1 + θY2Y1

)
− 1
∥∥∥
L2(µ)

= +∞

So, for each sphere B of R
2, centered on the origin, if (Y1, Y2) ∈ B:

limθ→ 1√
2
,θ< 1√

2

exp
“

− θ22 Y
2
1 +θY2Y1

”

−1
‚

‚

‚
exp

“

− θ22 Y 2
1 +θY2Y1

”

−1
‚

‚

‚

L2(µ)

= 0

and
exp

“

− θ22 Y
2
1 +θY2Y1

”

−1
‚

‚

‚
exp

“

− θ22 Y 2
1 +θY2Y1

”

−1
‚

‚

‚

L2(µ)

converges to 0 in probability for θ → 1√
2
, θ < 1√

2
.

With the choice θm = 1√
2
− 1

m , we get limm→∞ νθm (Y1, Y2)
P→ 0 and the LRTS is

divergent.

Convergence of LRTS. If π is greater or equal than a δ > 0 then, necessary,

the maximum likelihood estimator θ̂ converges to θ0 = 0, otherwise limn→∞ λn =
supg∈G Eµ

(
ln(g) − ln(g0)

)
can not be close to 0. Thus, the model is identifiable

in θ and unidentifiable in π. Since ∂
∂θ gθ(y2 | y1) = y1 (y2 − θy1) gθ, we have the

following Taylor expansion around θ0 = 0:

sg =
gθ
g0
−1

‖ gθ
g0
−1‖L2

=
(θ−θ0) ∂∂θ

gθ
g0

(θ0)+o(|θ−θ0|)
‖(θ−θ0) ∂∂θ

gθ
g0

(θ0)+o(|θ−θ0|)‖L2

= Y1Y2+o(1)
‖Y1Y2+o(1)‖L2

Hence, the LRTS converges to the square of the maximum of a Gaussian process
which convariance function is identically equal to 1 i.e. the classical χ2 law.

In conclusion, if the mixture weights can be as small as possible, the likelihood ratio
tends to infinity and in order to avoid this divergence, it is required to constraint
the parameters in a neighborhood of the true walue, which does not make much
sense if the model is unknown. But if the mixture weights are bounded by below,
then all parameters of regression density gθ converge to some true one. It is thus
possible, in the analysis of the asymptotics of the criterion, to restrict the set of
scores as in proposition 2 and then apply theorem 2 with restricted set of score
functions as well as corollary 1.
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4. Generalization to autoregressive Markov-switching models?

The aims of the section is to study the generalization of the previous results to
Markov switching models.

Let us consider the more general case where the process (Xt, Yt) follows the true
model

(5) Yt = Fθ0
Xt

(Yt−1) + εθ0
Xt

(t)

where

• Xt is a homogeneous Markov chain, irreducible and aperiodic, with fi-
nite state-space {1, ..., p0} and stationary probability distribution π0 :=(
π0

1 , ..., π
0
p0

)

• for every i ∈ {1, ..., p0}, Fθ0i (y) ∈ F , where

F =
{
Fθ, θ ∈ Θ, Θ ⊂ R

d compact set
}

is the family of possible regres-
sion functions. We suppose throughout the rest of this section that Fθ0i
are sublinear, that is they are continuous and ∃

(
a0
i , b

0
i

)
∈ R

2
+ such that∣∣∣Fθ0i (y)

∣∣∣ ≤ a0
i |y| + b0i , (∀) y ∈ R ;

• for every i ∈ {1, ..., p0}, (εθi (t))t is an i.i.d. noise so that εθi (t) is in-
dependent of (Yt−k)k≥1. Moreover, εθ0i (t) has density g0

i ∈ P , where

P =
{
gθ, θ ∈ Θ, Θ ⊂ R

l
}

is a family of strictly positive densities with re-
spect to the Lebesgue measure.

According to Yao and Attali (2000), a unique strictly-stationary and geometrically-
ergodic solution (Xt, Yt) exists under the hypothesis

(HS) (∃) s ≥ 1 so that ∀i ∈ {1, · · · , p0}, E
∣∣εθoi

∣∣s < ∞ and the spectral radius
ρ (Qs) < 1, with

Qs =





(
a0
1

)s
π0

11 · · ·
(
a0
p0

)s
π0

1p0
...

. . .
...(

a0
1

)s
π0
p01 · · ·

(
a0
p0

)s
π0
p0p0





where a0
i are the leading coefficients in the linear functions dominating Fθ0i and π0

ij

are the entries of the transition matrix of Xt, i, j ∈ {1, ..., p0}. The hypothesis (HS)
is clearly verified whenever a0

i < 1, for all i ∈ {1, ..., p0}.
Considering an observed n-sample of Yt, one would naturally attempt to extend
the methods in the previous sections to the case where the invariant measure of
the hidden Markov chain is lower bounded by a strictly positive constant. Several
problems arise: on the one hand, the non-identifiability issue and on the other hand,
the dependence structure of Xt. This dependence will not allow an explicit form
for the conditional density, marginally in Xt:

g0 (yk | yk−1, ..., y0) =

p0∑

i=1

P (Xk = i | yk−1, ..., y0) gθ0i

(
yk − Fθ0i (yk−1)

)

since P (Xk = i | yk−1, ..., y0) has to be computed recursively. However, since Xt

is stationary and following the same idea as Gassiat (2002), a cost function which
involves the invariant probability measure of the hidden Markov chain can be de-
fined.
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The class of possible mixture densities is:

G =

{
g | g (y1, y2) =

p∑

i=1

πigθi (y2 − Fθi (y1)) , θi ∈ Θ

}

where Θ is a compact set.

The cost function is defined as

Cn (g) =
1

n

n∑

k=2

ln g (yk | yk−1) =
1

n− 1

n∑

k=2

ln

(
p∑

i=1

πigθi (y2 − Fθi (y1))

)
.

One may notice that Cn (g) is similar to the conditional likelihood marginal in Xt

and may expect it to be maximized by g = g0, where “the true conditional density”
is now written as

g0 (yk | yk−1) =

p0∑

i=1

π0
i gθ0i

(
yk − Fθ0i (yk−1)

)
,

where π0
i is the expectation of the hidden state i under the true invariant distribu-

tion.

Let us check if Cn (g) is a contrast function with the maximum reached at g0. Let
(X,Y2, Y1) be a generic variable having the stationary measure of the extended
Markov-chain (Xk, Yk, Yk−1) as distribution. Since Cn (g) is an additive function
of the Markov chain (Xk, Yk, Yk−1)1≤k≤n and

∑p0
i=1 1{X=i} (X) = 1, we have

Cn (g) = 1
n

∑n
k=2 ln

(∑p
j=1 πjgθj

(
yk − Fθj (yk−1)

)) a.s.→
E
(
ln
(∑p

j=1 πjgθj
(
Y2 − Fθj (Y1)

)))
=

E
(∑p0

i=1 1{X=i} (X) ln
(∑p

j=1 πjgθj
(
Y2 − Fθj (Y1)

)))
=

∑p0
i=1 π

0
i

∫
R2 ln

(∑p
j=1 πjgθj

(
y2 − Fθj (y1)

))
gθ0i

(
y2 − Fθ0i (y1)

)
λi (y1) dy1dy2

where λi (y1) is the stationary measure of Y1 conditionally to X = i.

Then,

E
[
ln(g) − ln(g0)

]
=
∑p0
i=1 P (X = i)E

[
ln g

g0 | X = i
]

=

=
∑p0

i=1 π
0
i

∫
ln

(
Pp
j=1 πjgθj (y2−Fθj (y1))

Pp0
j=1 π

0
jg

0
θj

“

y2−F 0
θj

(y1)
”

)
gθ0i

(
y2 − Fθ0i (y1)

)
λi (y1) dy1dy2

and, by Fubini’s theorem,

E
[
ln(g) − ln(g0)

]
=

=
∫

ln

(
Pp
j=1 πjfθj (y2−Fθj (y1))

Pp0
j=1 π

0
j f

0
θj

“

y2−F 0
θj

(y1)
”

)
∑p0
i=1 π

0
i fθ0i

(
y2 − Fθ0i (y1)

)
λi (y1) dy1dy2

The last term can be proven immediately to be negative in either of the following
cases:

• λi (y1) = λ (y1) for all i ∈ {1, ..., p0} which leads to autoregressive mixture
models already considered in Section 2.
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• Fθj (y1) and Fθ0i (y1) are constant functions for j ∈ {1, ..., p}, i ∈ {1, ..., p0},
but this corresponds to hidden Markov chains already studied in Gassiat
(2002). Note that Theorem 2 applies in this case and it gives the probability
distribution of the marginal likelihood ratio which is exactly the same as
for mixture models (see Liu and Shao, 2003).

In the general case, however, there is no reason for the last integral to be negative.
Some simulation results are presented for illustrating this last assertion.

Simulation results
Several two-regime models were considered, with transition matrices:

M1 =

(
0.5 0.5
0.5 0.5

)
, M2 =

(
0.9 0.1
0.1 0.9

)
and M3 =

(
0.9 0.5
0.1 0.5

)
. The first tran-

sition matrix corresponds to independent regime switches. The regression functions
are either linear, or constant. The latter cases correspond to hidden Markov chains.

The noise was considered normally distributed N
(
0, (0.5)

2
)

and the likelihood was

penalized according to the BIC criterion. For every model, several sample sizes
were considered (from 200 up to 2000 input values) and for each model and sample
size, twenty different samples were simulated. In each case, Tables 1 and 2 contain
the estimated number of regimes (the maximum was fixed at three).

Simulation results prove that the penalized estimate p̂ diverges when the true model
is, for instance, a two-regime autoregressive Markov-switching model. This means
that the cost function that was considered as a generalization of the “marginal
likelihood” does not have the right properties to be a contrast function and the
problem of estimating p0 remains open in the general case of autoregressive Markov
switching models.
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M1 M2 M3

n p̂ = 1 p̂ = 2 p̂ = 3 p̂ = 1 p̂ = 2 p̂ = 3 p̂ = 1 p̂ = 2 p̂ = 3

F 0

1
(y) = 0.8y − 1 200 0 20 0 0 15 5 0 17 3

F 0

2
(y) = 0.3y + 1 500 0 20 0 0 17 3 0 8 12

1000 0 20 0 0 6 14 0 4 16

1500 0 20 0 0 1 19 0 5 15

2000 0 20 0 0 1 19 0 5 15

F 0

1
(y) = −1 200 0 20 0 0 20 0 0 20 0

F 0

2
(y) = 1 500 0 20 0 0 20 0 0 20 0

1000 0 20 0 0 20 0 0 20 0

1500 0 20 0 0 20 0 0 20 0

2000 0 20 0 0 20 0 0 20 0

Table 1. Results for the “marginal-loglikelihood” BIC-penalized
cost-function

M2 M3

n p̂ = 1 p̂ = 2 p̂ = 3 p̂ = 1 p̂ = 2 p̂ = 3

F 0

1
(y) = 0.8y − 1 200 0 16 4 0 15 5

F 0

2
(y) = 0.3y + 1 500 0 16 4 0 19 1

1000 0 17 3 0 19 1

1500 0 18 2 0 19 1

2000 0 19 1 0 20 0

Table 2. Results for the exact-loglikelihood BIC-penalized cost-function
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Appendix

4.1. Proof of theorem 1. Denote by ĝn the functions g maximizing the likelihood.
Since the set G is Glivenko-Cantelli, for all η > 0 and for n large enough: ĝn ∈ Gη,
where Gη is defined by equation (3). Now, using Theorem 1 of Doukhan (1995),
under (B)

(7) sup
s∈Sη

1

n− 1

(
n∑

k=2

s (Yk−1, Yk)

)2

= OP (1)

with Sη defined by equation (4). Moreover, Sη ⊂ L2 (µ), thus S2
η ⊂ L1 (µ)

and using the L2-entropy condition S2
_ =

{
(s)

2
_ , g ∈ Gη

}
, with (s)_ (yk−1, yk) =

min (0, s (yk−1, yk)), is Glivenko-Cantelli. Since (Yk−1, Yk) is ergodic and strictly
stationary, we obtain the following uniform convergence in probability:

inf
s∈Sη

1

n− 1

n∑

k=2

(s)2_ (Yk−1, Yk) −→n→∞ inf
s∈Sη

∥∥∥(s)_
∥∥∥

2

2

.

The following lemma is a straightforward adaptation of the inequality 1.1 in Gassiat
(2002).

Lemma 2.

Under (B)

(8) sup
g∈Gη :ln(g)−ln(g0)≥0

‖g − g0

g0
‖2 ≤ 2 sup

g∈Gη

∑n
t=2 sg (Yt−1, Yt)∑n

t=2(sg)
2
_ (Yt−1, Yt)

One may apply this inequality to obtain

(9) sup
g∈Gη :ln(g)−ln(g0)≥0

‖g − g0

g0
‖2 = OP

(
n−1/2

)

Taylor expansion gives that ln(1 + u) = u − u2

2 + u2R(u), with limu←0 R(u) = 0.
Thus, for any g,

ln(g) − ln(g0) = ‖ g−g0g0 ‖2

∑n
t=2 sg (Yt−1, Yt) − 1

2‖
g−g0
g0 ‖2

2

∑n
t=2 (sg (Yt−1, Yt))

2

+‖ g−g0g0 ‖2
2

∑n
t=2 (sg (Yt−1, Yt))

2
R
(
‖ g−g0g0 ‖2

∑n
t=2 sg (Yt−1, Yt)

)

By (B), 1
n−1

∑n
t=2 (sg (Yt−1, Yt))

2
= OP(1).

Now, we have the following lemma:

Lemma 3

Let (F (X1), · · · , F (Xn)) be stationnary sequence of real random variables in L
2

then

max
i∈{1,··· ,n}

(F (Xi)) = oP (
√
n)

Proof of lemma 3

Let us show that

∀ε > 0, lim
n→∞

P (| max
i∈{1,··· ,n}

(F (Xi))| > ε
√
n) = 0

We have

P (|maxi∈{1,··· ,n}(F (Xi))| > ε
√
n) ≤

P ({|F (X1)| > ε
√
n} ∪ · · · ∪ {|F (Xn)| > ε

√
n}) ≤ nP (|F (X1)| > ε

√
n)
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Now, since F (X1) ∈ L
2,

lim
n→∞

∫ ∞

ε
√
n

F (x)2dP (x) +

∫ ε
√
n

−∞
F (x)2dP (x) = 0

Hence

lim
n→∞

n×P (|F (X1)| > ε
√
n) ≤ lim

n→∞
1

ε2

(∫ ∞

ε
√
n

F (x)2dP (x) +

∫ ε
√
n

−∞
F (x)2dP (x)

)
= 0

�

Furthermore, since Sη admits a square integrable envelop function F and using (9)
we have:

sup
g∈Gη :ln(g)−ln(g0)≥0

‖g − g0

g0
‖2
2

n∑

t=2

(sg (Yt−1, Yt))
2
R

(
‖g − g0

g0
‖2

n∑

t=2

sg (Yt−1, Yt)

)
= oP(1).

Thus,

supg∈Gη
(
ln(g) − ln(g0)

)
=

supg∈Gη

{
‖ g−g0g0 ‖2

∑n
t=2 sg (Yt−1, Yt) − 1

2‖
g−g0
g0 ‖2

2

∑n
t=2 (sg (Yt−1, Yt))

2
}

+ oP(1),

which implies that

sup
g∈Gη

(
ln(g) − ln(g0)

)
≤ sup

g∈Gη:ln(g)−ln(g0)≥0

(
max

{
Pn
t=2 sg(Yt−1,Yt)√

n
; 0
})2

P

n
t=2(sg(Yt−1,Yt))

2

n

+ oP(1).

Since Sη2 is Glivenko-Cantelli:

sup
g∈Gη

∣∣∣∣∣

∑n
t=2 (sg (Yt−1, Yt))

2

n
− 1

∣∣∣∣∣ = oP(1),

and

2 sup
g∈Gη

(
ln(g) − ln(g0)

)
≤ sup

g∈Gη :ln(g)−ln(g0)≥0

(
max

{∑n
t=2 sg (Yt−1, Yt)√

n
; 0

})2

+oP(1).

Let Gηn =
{
g ∈ Gη : ‖ g−g0g0 ‖ ≤ n−1/4

}
. Using (9), we obtain that

2 sup
g∈Gη

(
ln(g) − ln(g0)

)
≤ sup
g∈Gηn

(
max

{∑n
t=2 sg (Yt−1, Yt)√

n
; 0

})2

+ oP(1).

Now, supg∈Gηn ‖sg−D‖2 −−−−→
n→∞

0, thus for a sequence un decreasing to 0, and with

∆n =
{
sg − d : g ∈ Gηn, d ∈ D, ‖sg − d‖2 ≤ un

}
,

we obtain that

2 supg∈Gη
(
ln(g) − ln(g0)

)
≤

(
max

{
supd∈D

Pn
t=2 d(Yt−1,Yt)√

n
+ supδ∈∆n

Pn
t=2 δ(Yt−1,Yt)√

n
; 0
})2

+ oP(1).

Under (B), thanks to Theorem 3 of Doukhan (1995) the empirical process indexed
by Sη has the property of asymptotic stochastic equicontinuity, so:

sup
δ∈∆n

∑n
t=2 δ (Yt−1, Yt)√

n
= oP(1),

and

2 sup
g∈Gη

(
ln(g) − ln(g0)

)
≤ sup
d∈D

(
max

{∑n
t=2 d (Yt−1, Yt)√

n
; 0

})2

+ oP(1).
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Moreover, using classical normal asymptotic properties along the parametric paths,
one obtains that, for a sequence of finite subsets Dk increasing to D,

2 sup
g∈Gη

(ln(g) − ln(f)) ≥ sup
d∈Dk

(
max

{∑n
t=2 d (Yt−1, Yt)√

n
; 0

})2

+ oP(1).

for any k. Therefore, Theorem 1 is true. �

4.2. Proof of Theorem 2. Let η > 0 be a real number. Consider Ĝn 6= ∅ the set
of functions which maximize the log-likelihood. Since, under H-1, G is Glivenko-
Cantelli, for n large enough, ‖g − g0‖L2(µ) < η for g ∈ Ĝn so Ĝn ⊂ Gη. Let us
remark that, under assumption H-2, the score function sg ∈ Sη is well defined in a
compact neighborhood of the true density function g0.

Proving that for an η > 0, a parametric family like Sη is Donsker is not so easy. The
problems arise when g → g0 and the limits of sg in L2 (µ) have to be computed.
To achieve our proof, let us split S into two classes of functions.

For a sufficiently small ε > 0, we consider F0 ⊂ Gη, a neighborhood of g0,

F0 =

{
g ∈ G,

∥∥∥ g
g0 − 1

∥∥∥
L2(µ)

≤ ε, g 6= g0

}
. S is splitted into S0 = {sg, g ∈ F0}

and Sη \ S0.

On Sη \ S0, it can be easily seen that

∥∥∥∥∥∥∥

g1
g0 − 1

∥∥∥ g1g0 − 1
∥∥∥
L2(µ)

−
g2
g0 − 1

∥∥∥ g2g0 − 1
∥∥∥
L2(µ)

∥∥∥∥∥∥∥
L2(µ)

≤ 2

∥∥∥ g1g0 − g2
g0

∥∥∥
L2(µ)∥∥∥ g1g0 − 1

∥∥∥
L2(µ)

for every g1, g2 ∈ Gη \ F0 and, moreover, by the definition of S0,

∥∥∥∥∥∥∥

g1
g0 − 1

∥∥∥ g1g0 − 1
∥∥∥
L2(µ)

−
g2
g0 − 1

∥∥∥ g2g0 − 1
∥∥∥
L2(µ)

∥∥∥∥∥∥∥
L2(µ)

≤ 2

ε

∥∥∥∥
g1

g0
− g2

g0

∥∥∥∥
L2(µ)

On the other hand, by the assumption H-3, g
g0 has square-integrable partial-

derivatives of order one and, using the result 19.7 on parametric classes of functions
in Van der Vaart (2000), we get:

N[·] (ε,S \ S0, ‖·‖2) = O
(

1

ε2

)D
,

where D is the number of parameters in the model.

It remains to prove that the bracketing number is a polynom of (1
ε ) for S0. The idea

is to reparameterize the model in a convenient manner which will allow a Taylor
expansion around the identifiable part of the true value of the parameters.

Let us recall that it is assumed that p0 < p.

When g
g0 − 1 = 0, by the linear independence of the functions gθj , a vector of

positive integers t = (ti)0≤i≤p0 , t0 = 0 exists so that:

θti−1+1 = ... = θti = θ0i ,

ti∑

j=ti−1+1

πj = π0
i , i ∈ {1, ..., p0}
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With this remark, one can define in the general case s = (si)1≤i≤p0 and q =

(qj)1≤j≤p so that, for every i ∈ {1, ..., p0} , j ∈ {ti−1 + 1, ..., ti},

si =

ti∑

j=ti−1+1

πj − π0
i , qj =

πj∑ti
l=ti−1+1 πl

and a new parameterization will be

Θt = (φt, ψt) , φt =
(
(θj)1≤j≤tp0

, (si)1≤i≤p0−1 , (πj)
p
j=tp0+1

)
,

ψt =
(
(qj)1≤j≤p , (θj)

p
j=tp0+1

)

with φt containing all the identifiable parameters of the model and ψt the non-
identifiable ones. Then, for g = g0, we will have:

φ0
t = (θ01 , ..., θ

0
1︸ ︷︷ ︸ , ..., θ0p0 , ..., θ

0
p0︸ ︷︷ ︸
, 0, ..., 0︸ ︷︷ ︸ 0, ..., 0︸ ︷︷ ︸

t1 tp0 − tp0−1 p0 − 1 p− tp0

)T

This reparameterization allows to write a second-order Taylor expansion of g
g0 − 1

at φ0
t .

With the notations introduced in assumptions H, the density ratio becomes:

g

g0
− 1 =

p0∑

i=1

(
si + π0

i

) ti∑

j=ti−1+1

qj lθj +

p∑

j=tp0+1

πj lθj − 1

and since sp0 = −∑p0−1
i=1 si,

g

g0
− 1 =

∑p0−1
i=1

(
si + π0

i

)∑ti
j=ti−1+1 qj lθj +

(
π0
p0 −

∑p0−1
i=1 si

)∑tp0
j=tp0−1+1 qj lθj

+
∑p
j=tp0+1 πj lθj − 1

By remarking that when φt = φ0
t ,

g
g0 does not vary with ψt, we will study the

variation of this ratio in a neighborhood of φ0
t and for fixed ψt.

We can state the following result:

Proposition 3

Let us denote D (φt, ψt) =
∥∥∥ g(φt,ψt)g0 − 1

∥∥∥
L2(µ)

. With the notations of assumptions

H-3 and H-4, for any fixed ψt, the second-order Taylor expansion at φ0
t exists such

as

g

g0
− 1 =

(
φt − φ0

t

)T
l′(φ0

t ,ψt)
+

1

2

(
φt − φ0

t

)T
l′′(φ0

t ,ψt)

(
φt − φ0

t

)
− 1 + o (D (φt, ψt))

with

(
φt − φ0

t

)T
l′(φ0

t ,ψt)
=

p0∑

i=1

π0
i




ti∑

j=ti−1+1

qjθj − θ0i




T

l′i +

p0∑

i=1

silθ0i
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+

p∑

j=tp0+1

πj lθj

and

(
φt − φ0

t

)T
l′′(φ0

t ,ψt)

(
φt − φ0

t

)
=

p0∑

i=1



2si




ti∑

j=ti−1+1

qjθj − θ0i




T

l′i+

+π0
i

ti∑

j=ti−1+1

qj
(
θj − θ0i

)T
l′′i
(
θj − θ0i

)




Moreover,

(
φt − φ0

t

)T
l′(φ0

t ,ψt)
+

1

2

(
φt − φ0

t

)T
l′′(φ0

t ,ψt)

(
φt − φ0

t

)
= 0 ⇔ φt = φ0

t

Proof of Proposition 3

The first term in the development can be computed easily by remarking that the
gradient of g

g0 − 1 at
(
φ0
t , ψt

)
is:

• for i ∈ {1, ..., p0} and j ∈ {ti−1 + 1, ..., ti},
∂

“

g

g0
−1

”

∂θj

(
φ0
t , ψt

)
= π0

i qj l
′
i

• for i ∈ {1, ..., p0 − 1},
∂

“

g

g0
−1

”

∂si

(
φ0
t , ψt

)
=
∑ti

j=ti−1+1 qj lθ0i −
∑tp0

j=tp0−1+1 qj lθ0p0
= lθ0i − lθ0p0

• for j ∈ {tp0 + 1, ..., p}, ∂
“

g

g0
−1

”

∂πj

(
φ0
t , ψt

)
= lj

The term of second order can be obtained by direct computations once the Hessian
is computed at

(
φ0
t , ψt

)
:

• ∂2
“

g

g0
−1

”

∂θ2j

(
φ0
t , ψt

)
= π0

i qj l
′′
i , i = 1, ..., p0 and j = ti−1 + 1, ..., ti

• ∂2
“

g

g0
−1

”

∂θj∂θl

(
φ0
t , ψt

)
= 0 , j, l = 1, ..., p and j 6= l

• ∂2
“

g

g0
−1

”

∂si∂sk

(
φ0
t , ψt

)
= 0 , i, k = 1, ..., p0 − 1

• ∂2
“

g

g0
−1

”

∂si∂θj

(
φ0
t , ψt

)
= qj l

′
i , i = 1, ..., p0 − 1 and j = ti−1 + 1, ..., ti

• ∂2
“

g

g0
−1

”

∂si∂θj

(
φ0
t , ψt

)
= −qj l′p0 , i = 1, ..., p0 − 1 and j = tp0−1 + 1, ..., tp0

• the other crossed derivatives of si and θj are zero

It still has to be proven that the rest is o
(∥∥φt − φ0

t

∥∥). As it can be easily seen that
the third derivative of g

g0 − 1 can be expressed in terms of partial derivatives of

order two and three of lθ0j , j = 1, ..., p0, the result follows from the assumption H-3

and the linear independence in H-4. �

Using the Taylor expansion above, we can now show that S0 \
{
g0
}

is a Donsker
class, using the next result:
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Proposition 4

Let d be the dimension of the parameter indexing the functions gθ. The number of

ε-brackets N[·] (ε,S0, ‖·‖2) covering S0 is O
(

1
ε

)p0×(2d)+p
.

Proof of Proposition 4

The idea of this proof is to bound N[·] (ε,S0, ‖·‖2) by the number of ε-brackets
covering a wider class of functions. For every g ∈ F0, we will consider the reparam-
eterization Φ = (φt, ψt) which allows to write a second-order development of the
density ratio:

g(φt,ψt)

g0
− 1 =

(
φt − φ0

t

)T
l′(φ0

t ,ψt)
+

1

2

(
φt − φ0

t

)T
l′′(φ0

t ,ψt)

(
φt − φ0

t

)
+ o (D (φt, ψt))

Then, by remarking that the first two terms in the Taylor expansion are linear
combinations of lθ0i , l

′
i, l
′′
i , i = 1, ..., p0 and lθj , j = tp0 + 1, · · · , p, the density ratio

can be written also as:

g(φt,ψt)

g0
− 1 =

p0∑

i=1

αilθ0i +

p∑

j=tp0+1

αj lθj +

p0∑

i=1

βTi l
′
i +

p0∑

i=1

γTi l
′′
i γi + o (D (φt, ψt))

where (αi)1≤i≤p ∈ R, (βi)1≤i≤p0 and (γi)1≤i≤p0 ∈ R
d.

Now, using the linear independence, ∃m > 0 ,so that, for every
(
αj , j = 1, · · · , p, βi, γiγTi , i = 1, · · · , p0

)

of norm 1,

∥∥∥∥∥∥

p0∑

i=1

αilθ0i +

p∑

j=tp0+1

αj lθj +

p0∑

i=1

βTi l
′
i +

p0∑

i=1

γTi l
′′
i γi

∥∥∥∥∥∥
L2(µ)

≥ m.

At the same time, since

∥∥∥∥∥∥∥

g(φt,ψt)
g0 − 1

∥∥∥ g(φt,ψt)g0 − 1
∥∥∥
L2(µ)

∥∥∥∥∥∥∥
L2(µ)

= 1

we will obtain that the Euclidean norm of the coefficients in the second-order de-

velopment of

g(φt,ψt)

g0
−1

‚

‚

‚

g(φt,ψt)

g0
−1

‚

‚

‚

L2(µ)

is upper bounded by 1
m . This fact implies that S0

can be included in

H =

{∑p0
i=1

(
αilθ0i + βTi l

′
i + γTi l

′′
i γi

)
+
∑p
j=tp0+1 αj lθj + o (1) ,∥∥(αj , j = tp0 + 1, · · · , p, βi, γiγTi , i = 1, · · · , p0

)∥∥ ≤ 1
m

}

and then obviously N[·] (ε,H, ‖·‖2) = O
(

1
ε

)p0×2d+p+1
. �

Since the set Sη was proved to be Donsker, it remains to identify the asymptotic
index set of score functions.
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Asymptotic index set. The set of limit score functions F is defined as the set
of functions d so that one can find a sequence gn satisfying ‖ gn−ff ‖2 → 0 and

‖d− sgn‖2 → 0.

Let us define the two principal behaviors for the sequences gn which influence the
form of functions d :

• If the second order term is negligible with respect to the first one :

gn

g0
− 1 = (Φn − Φ0)T l′(Φ0

t ,ψn) + o(D(Φn, ψn)).

• If the second order term is not negligible with respect to the first one :

gn
g0 − 1 = (Φn − Φ0)T l′

(Φ0
t ,ψn)

+

0.5(Φn − Φ0)T l′′(Φ0,ψn)(Φn − Φ0) + o(D(Φn, ψn)).

In the first case, a set t = (t0, · · · , tp0) exists so that the limit function of sgn will
be in the set:

D
t
1 =

{
Ω
(∑p0

i=1 ζ
T
i lθ0i +

∑p
i=p0+1 ζ

T
i lθi +

∑p0
i=1 λ

T
i l
′
i

)

λ1, · · · , λp0 ∈ R
d ; ζ1, · · · , ζp ∈ R

θtp0+1, · · · , θp ∈ Θ −
{
θ01 , · · · , θ0p0

}}

In the second case, an index i exists so that :

ti∑

j=ti−1+1

qj(θj − θ0i ) = 0,

Otherwise, the second order term will be negligible compared to the first one, so

ti∑

j=ti−1+1

√
qj ×√

qj(θj − θ0i ) = 0.

Hence, a set a set t = (t0, · · · , tp0) exists so that the set of functions d will be:

{
Ω
(∑p0

i=1 ζilθ0i +
∑p

i=p0+1 ζilθi +
∑p0

i=1 λ
T
i l
′
i

+δ
∑p0

i=1

∑ti
j=ti−1+1 γ

T
j l
′′
i γj

)

λ1, · · · , λp0 , γ1, · · · , γtp0 ∈ R
d ; ζ1, · · · , ζp ∈ R

θtp0+1, · · · , θp ∈ Θ −
{
θ01 , · · · , θ0p0

}}

where δ = 1 if there exists a vector q exists so that:
qj ≤ 0,

∑ti
j=ti−1+1 qj = 1,

∑ti
j=ti−1+1

√
qjγ

t
j = 0 for i = 1, · · · , p0; and δ = 0

otherwise.

So, the limit functions will belong to F. Conversely, let d be an element of F, as
functions d belong to the Hilbert sphere, one of their components is not equal to 0.
Let us assume that this component is ζ1, but the proof would be similar with any
other component. The norm of d is 1, so any component of d is determined by the
ratio: ζ2

ζ1
, · · · , 1

ζ1
γp0 .

Then, by assumption H-1, the set of possible parameters contains a neighborhood
of the parameters realizing the true conditional density function g0, we can chose
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the parameters of gn so that:

∀i ∈ {2, · · · , p0} :

Pti
j=ti−1+1 π

n
j −π0

i
Pt1
j=1 π

n
j −π0

1

n→∞−→ ζi
ζ1
,

∀i ∈ {1, · · · , p0} :

Pti
j=ti−1+1 q

n
j (θ

n
j −θ0i )

Pt1
j=1 π

n
j −π0

1

n→∞−→ 1
ζ1
λi,

∀j ∈ {1, · · · , tp0} :

√
qnj

Pt1
j=1 π

n
j −π0

1

(
θnj − θ0i

) n→∞−→ 1
ζ1
γj ,

∀i ∈ {p0 + 1, · · · , p} :
πni

Pt1
j=1 π

n
j −π0

1

n→∞−→ 1
ζ1
ζi.

�

Proof of Proposition 1

Since the noise is Gaussian and
∣∣a0
i

∣∣ < 1 for every i ∈ {1, ..., p0}, by Yao and Attali
(2000), there exists a unique strictly stationary and geometrically ergodic solution,
which in particular will be geometrically β-mixing.

On the other hand, the Gaussian noise implies the existence of moments of any
order. Now let us prove the existence of an exponential moment for Yt. By denoting
σ = maxi=1,...,p0 σ

0
i , ρ = maxi=1,...,p0

∣∣a0
i

∣∣ < 1, b = maxi=1,...,p0

∣∣b0i
∣∣ and for s ∈ N

⋆,
one has :

|Yt|2s =
∣∣∣F 0
θXt

(Yt−1) + εθXt (t)
∣∣∣
2s

≤ (ρ |Yt−1| + b+ σ |εt|)2s ≤ ... ≤

≤
(
b+ σ |εt| +

∞∑

k=1

ρk (b+ σ |εt−k|)
)2s

=

( ∞∑

k=0

ρk (b+ σ |εt−k|)
)2s

By taking the expectation,

E
(
|Yt|2s

) 1
2s ≤ E




( ∞∑

k=0

ρk (b + σ |εt−k|)
)2s





1
2s

≤
∞∑

k=0

ρk
(
b+ σE

(
|εt−k|2s

) 1
2s

)

Since ρ < 1 and E
(
|εt|2s

)
≥ E

(
ε2t
)

= 1, we finally obtain

E
(
|Yt|2s

) 1
2s ≤

b+ σE
(
|εt|2s

) 1
2s

1 − ρ
≤ b+ σ

1 − ρ
E
(
|εt|2s

) 1
2s

The exponential moment can be computed then by

E
(
eδY

2
t

)
=

∞∑

k=0

E |Yt|2k
k!

δk ≤
∞∑

k=0

E |εt|2k
k!

[
δ

(
b+ σ

1 − ρ

)2
]k

The last term being the moment generating function of a χ2 (1)-distribution, it will

be finite for any δ such that 0 < δ < 1
2

(
1−ρ
b+σ

)2

.

�
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Proof of Proposition 2

The norm of the generalized score function is
∥∥∥∥
g

g0
− 1

∥∥∥∥
L2(µ)

=

∫
g2 (y1, y2)

g0 (y1, y2)
dy2dλ (y1) − 1 =

=

∫
(
∑p
i=1 πifθi (y2 − Fθi (y1)))

2

∑p0
j=1 π

0
j f

0
θj

(
y2 − F 0

θj
(y1)

) dy2dλ (y1) − 1

and by the inequality (
∑p

i=1 πifθi (y2 − Fθi (y1)))
2 ≤∑p

i=1 πif
2
θi

(y2 − Fθi (y1)), the
integral will be finite if

∫
f2
θi

(y2 − Fθi (y1))
∑p0

j=1 π
0
j f

0
θj

(
y2 − F 0

θj
(y1)

)dy2dλ (y1) <∞

for all i ∈ {1, ..., p}. On the other hand, since
∑p0

j=1 π
0
j f

0
θj

(
y2 − F 0

θj
(y1)

)
≥

π0
kf

0
θk

(
y2 − F 0

θk
(y1)

)
for every k ∈ {1, ..., p0}, the generalized score function is well

defined if for every i ∈ {1, ..., p}, there exists k ∈ {1, ..., p0} such that

∫
f2
θi

(y2 − Fθi (y1))

f0
θk

(
y2 − F 0

θk
(y1)

)dy2dλ (y1) <∞

Next, replace fθi and f0
θk

by centered Gaussian densities with standard errors σi,

σ0
k, respectively, and consider also Fθi (y) = aiy + bi and F 0

θk
(y) = a0

ky + b0k.

Then, each of the integrals above becomes:

∫
f2
θi

(y2 − Fθi (y1))

f0
θk

(
y2 − F 0

θk
(y1)

)dy2dλ (y1) =

∫ (∫
σ0
k√

2πσ2
i

·

exp

{
−
(

1

σ2
i

− 1

2 (σ0
k)

2

)
(y2 −m (y1))

2

}
dy2

)

exp

{(
Fθi (y1) − F 0

θk
(y1)

)2

2 (σ0
k)

2 − σ2
i

}
dλ (y1)

where m (y1) =
2(σ0

k)
2
Fθi (y1)−σ

2
i F

0
θk

(y1)

2(σ0
k)

2−σ2
i

To have a sufficient condition, the integral in y2 is finite if σ2
i < 2

(
σ0
k

)2
, and the

integral in y1 is finite if
(ai−a0

k)
2

2(σ0
k)

2−σ2
i

< δ.

�
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