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Abstract: This paper addresses the problem of self-synchronization of dynamical systems in a
so-called master-slave configuration. The study is motivated by potential cryptographic appli-
cations. It is shown that the notion of flatness is central for guaranteeing self-synchronization
and that the concept of transmissions zeros plays also an important role. We motivate the fact
that switched linear systems have great interest in this context.

Keywords: switched systems, synchronization, communication, flatness, invertibility

1. INTRODUCTION

Synchronization of dynamical systems is an important
purpose in many fields like biology, mechanics, commu-
nications. Synchronization means coordinated behavior of
different interconnected entities involved in an overall sys-
tem. Many different definitions and related configurations,
in terms of coupling, can be investigated. An exhaus-
tive and interesting overview can be found in Blekhman
et al. [1997]. A special kind of synchronization is the self-
synchronization. By self-synchronization, it is meant a co-
ordinated behavior which is achieved without any external
control.

The configuration under consideration in this paper in-
volves two parties: a so-called master system which forces,
through a unidirectional coupling, a second system called
slave. The configuration is borrowed from the field of com-
munications and more specifically secure transmissions. In
this context, cryptography plays a central role. It is the
discipline which is mainly intended to protect information
and to guarantee confidential exchanges through public
channels. One of the cryptographic methods obeys the
following principle. The transmitter, called the cipher,
delivers a complex sequence (theoretically indistinguish-
able from a uniformly random sequence) used to con-
ceal information. The information to be kept secret is,
in some sense, “mixed” with the complex sequence so
that the resulting sequence called cryptogram, which is
conveyed to the receiver, cannot be understood by any
unauthorized party. For proper information recovery, the
receiver, called the decipher, must deliver the same com-
plex sequence synchronized with the cipher. It is typically
a master-slave configuration with unidirectional coupling.

? This work was supported in part by the Institut des Sciences
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The master is nothing but the cipher, the slave is nothing
but the decipher. The coupling is achieved through the
cryptograms. Some communication setups require that the
synchronization must be guaranteed without any exter-
nal control. In other words, self-synchronization must be
achieved. Such a requirement can be motivated by the fact
that, for instance, insertion of synchronization flags in the
transmitted packets is forbidden for throughput purposes.

From the 90’s, many “scrambling” methods resorting to
synchronized dynamical systems have been proposed. A
recent overview can be found in Banerjee [2010]. However,
their well admitted poor efficiency regarding the security
can be explained by the fact that they were disconnected
from standard ciphering methods. Recently, in Millérioux
et al. [2008] and Millérioux and Guillot [2010], the con-
nection has been made and shows that using dynamical
systems in a master-slave configuration makes sense from
a cryptographic point of view under specific conditions. In
particular, whenever the involved dynamical systems are
flat, the communication scheme is structurally equivalent
to a so-called self-synchronizing stream cipher. So far,
the study reduced to analysis, no efficient constructive
approach for the design was proposed. The aim of the
present work is precisely to handle this problem. Discrete-
time switched linear systems are specifically addressed
because they correspond to the so-called Maiorana McFar-
land construction which has proved to produce functions
that have many interesting cryptographic properties (see
Carlet [2010]).

The outline of this paper is the following. In Sec-
tion 2, strict necessary background on cryptography is
provided. A special emphasis is put on the role of self-
synchronization in this context and a formal definition
of finite-time self-synchronization is given. In Section 3,
the design of admissible master-slave configurations, de-
scribed by piecewise linear systems, achieving finite-time



self-synchronization is detailed. A constructive approach
for guaranteeing the self-synchronization is suggested. It
is mainly based on the notion of nilpotent semigroups.
A connection between the issue of guaranteeing self-
synchronization and the concept of flatness is brought
out. Further considerations for the design are developed
in Section 4 where it is shown that the concept of trans-
mission zeros of a dynamical system play an important
role. Finally, Section 5 is devoted to an example.

Notation 1n stands for the identity matrix of dimension
n, 0 stands for the zero matrix of appropriate dimension
regarding the situation. We denote by {z}k2k1 the sequence

{zk1 , . . . , zk2} when the initial and final times k1 and k2
are defined, otherwise the sequence is merely denoted {z}.

2. CRYPTOGRAPHY AND SYNCHRONIZATION

2.1 Background on cryptography

e(ke, u) d(kd, y)
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Fig. 1. General encryption mechanism

A general encryption mechanism, also called cryptosystem
or cipher, is illustrated in Fig. 1. We are given an alphabet
A, that is, a finite set of basic elements named symbols. On
the transmitter part, a plaintext (also called information
or message) {u} ∈ U (U is called the message space) con-
sisting of a string of symbols uk ∈ A is encrypted according
to an encryption function e which depends on the key
ke ∈ K (K is called the key space). The resulting ciphertext
{y} ∈ C (C is called the ciphertext space), a string of
symbols yk from an alphabet B usually identical to A, is
conveyed through a public channel to the receiver. At the
receiver side, the ciphertext yk is decrypted according to
a decryption function d which depends on the key kd ∈ K.
For a prescribed ke, the function e must be invertible.
Cryptography distinguishes asymmetric and symmetric
ciphers. Asymmetric cryptography is largely based upon
computationally very demanding mathematical problems,
for instance, integer factorization into primes. It is not
discussed in this paper. In symmetric encryption, both
keys are identical, that is kd = ke. That explains the
terminology “symmetric”.
Next we describe a special class of symmetric ciphers,
under consideration hereafter, called stream ciphers, for
which synchronization is a central issue. It is shown that
the problem can be tackled with efficiency through the
control theory point of view.

For stream ciphers, the key ke and kd are replaced by
a time-varying sequence called running key or keystream.
They are denoted {x} (with samples xk) at the transmitter

part and {x̂} (with samples x̂k) at the receiver part. As a
result, stream ciphers require keystream generators. The
keystreams {x} and {x̂} are produced by deterministic dy-
namical systems and must be synchronized. The secret key
ke is some suitable selected parameters of the dynamical
systems, the selection being based on security considera-
tions. As mentioned in the introduction, some applications
require that the synchronization is guaranteed without
any external control that is, self-synchronization must be
achieved. In such a case, the stream ciphers must have a
special architecture and they are called Self-Synchronizing
Stream Ciphers. An overview on this class of ciphers can
be found in Millérioux and Guillot [2010], Daemen and
Kitsos [2005].

2.2 Self-synchronization and ciphering

Self-Synchronizing Stream Ciphers (written hereafter SSSC
for short) admit at the transmitter and receiver ends the
respective equations:{

xk = gke(yk−K , . . . , yk−1)
yk = e(xk, uk)

(1){
x̂k = gke(yk−K , . . . , yk−1)
ûk = d(x̂k, yk)

(2)

gke is the function that generates the keystreams {x} and
{x̂}. It depends on K past values of yk.

The ciphertext yk is worked out through an encryption
function e which must be invertible for any prescribed
xk. The decryption is performed through a function d
depending on the ciphertext yk and on the running key
x̂k of the receiver. Such a function must obey the rule:

ûk = d(x̂k, yk) = uk if x̂k = xk (3)

According to (3), the synchronization of the keystreams
{x} and {x̂} generated respectively at the transmitter and
receiver sides is a condition for proper decryption. Since
the function gke is identical at the transmitter and receiver
sides and shares the same arguments, namely the past
ciphertexts yk−i (i = 1, . . . ,K), it is clear that the gen-
erators synchronize automatically after a finite transient
time of lengthK. This kind of self-synchronization is called
finite time self-synchronization.

Actually, the model (1)–(2) of an SSSC is a conceptual
model, called canonical representation, that can corre-
spond to different architectures. It turns out that resorting
to dynamical systems instead of implementing directly
the canonical function gke is much more relevant for two
major reasons (some detailed motivations can be found in
Maurer [1991] and Daemen [1995]). First, implementation
of a complex function in a recursive way is, in general,
much more computationally efficient than implementing
the function itself. Secondly, the canonical representa-
tion (1)–(2) assumes that the synchronization delay K is
bounded. This assumption limits the complexity of the
ciphering which can be represented as a memoryless func-
tion. This requirement is not mandatory in practice, and
it is acceptable that the synchronization delay is not a
constant value but a random variable with a probability
law that reaches one as time reaches infinity. In this case,
self-synchronization is said to be statistical. Statistical
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Fig. 2. Dynamical system-based cryptosystems

self-synchronization is more general than the finite-time
one. Its interest lies in a broader choice of candidate
dynamical systems. The resulting flexibility is important
in view of matching additional constraints, besides the
self-synchronization, in particular regarding the security of
the communication setup. Statistical self-synchronization
is not addressed in the present paper, it is detailed for the
Boolean case in Parriaux et al. [2010].

To sum up, the problem can be formulated as follows. We
are given a setup with two parts (Fig. 2). The first part
consists of a dynamical system C, with input uk (playing
the role of the plaintext), output yk (playing the role of
the ciphertext) and state vector xk (playing the role of the
keystream).

C
{
xk+1 = f(xk, uk)
yk = h(xk, uk)

(4)

The output yk ensures a unidirectional coupling with the
second part, the dynamical system D with state vector x̂k.
It acts as an input for D.

D
{
x̂k+1 = f̂(x̂k, yk)

ûk = ĥ(x̂k, yk)
(5)

ûk is the output of D. In a cryptographic context, it acts
as the recovered information and must be equal to uk
whenever xk = x̂k.

Definition 1. (Finite time self-synchronization). The uni-
directional coupled system C–D is finite time self-synchroni-
zing if, for all admissible input sequences,

∃K ∈ N, ∀x0, x̂0, ∀k ≥ K, xk = x̂k (6)

A delay r ∈ N can be allowed. If so, Equation (6) turns
into

∃K ∈ N, ∀x0, x̂0, ∀k ≥ K, xk = x̂k+r (7)

Finally, the issue to be investigated is the following. How
to design a master-slave setup C–D so that

• self-synchronization (6) (possibly (7)) can be guaran-
teed
• proper input recovery ûk = uk is ensured whenever

self-synchronization is achieved

It is the purpose of the next sections. Actually, as moti-
vated in the introduction, we concentrate on the special
class of switched linear systems.

3. FINITE TIME SELF-SYNCHRONIZATION AND
SWITCHED SYSTEMS

The equations of the set-up read at the transmitter part

C
{
xk+1 = Aσ(k)xk +Bσ(k)uk
yk = Cσ(k)xk +Dσ(k)uk

(8)

and at the receiver part

D
{
x̂k+1 = A′σ(k)x̂k +B′σ(k)yk
ûk = C ′σ(k)x̂k +D′σ(k)yk

(9)

with uk, ûk ∈ F, yk ∈ F and xk, x̂k ∈ Fn where F is a field.
In digital transmissions, F is a finite field of cardinality pq

with p a prime and q a positive integer. When q = 1, all the
operations, namely, addition, subtraction, multiplication
and inversion are still defined like in the field of real
numbers except that the results are computed modulo p.

The switching function σ is defined as

σ : k ∈ N 7→ j = σ(k) ∈ {1, . . . , J} = J
At a given time k, the index j corresponds to the mode
of the system given by the switching function σ. J is the
number of modes. All the matrices, namely Aσ(k) ∈ Fn×n,

Bσ(k) ∈ Fn×1, Cσ(k) ∈ F1×n and Dσ(k) ∈ F belong to
the respective finite sets (Aj)1≤j≤J , (Bj)1≤j≤J , (Cj)1≤j≤J
and (Dj)1≤j≤J . The switching function must depend on
the output yk. The motivation of such a dependence lies
in that the switching rule is the same for both systems
C and D and must be self-synchronizing. Thus, it must
depend on shared variables and so on the output yk or
a finite sequence of delayed outputs. It is worth pointing
out that the writing σ(k) is somehow abusive since the
dynamical system is not a time-varying system. We denote
by {v} the sequence of modes {v} = {σ(0), σ(1), . . .}. If the
sequence has a finite length K, it is an element of the set
denoted JK .
In the following, we derive conditions for guaranteeing self-
synchronization of the master-slave set-up C–D (8)–(9)
and propose constructive approaches for achieving finite-
time self-synchronization.

3.1 General conditions

Theorem 1. The set-up (8)–(9) is finite-time self-synchroni-
zing whenever the three following conditions are fulfilled:

• ∀j ∈ J , D′j 6= 0
(10)

• ∃K ∈ N,∀x0, x̂0, ∀{v} ∈ JK ,
K−1∏
i=0

A′vi = 0

(11)

• Given the matrices (A′j , B
′
j , C

′
j , D

′
j) of D, the system C

reads
xk+1 =

(
A′σ(k) −B

′
σ(k)(D

′
σ(k))

−1C ′σ(k)

)
xk

+B′σ(k)(D
′
σ(k))

−1uk
yk = −(D′σ(k))

−1C ′σ(k)xk + (D′σ(k))
−1uk

(12)

Proof 1. Since D′j 6= 0 for any j ∈ J (Condition (10)), the
input uk can be derived from the output equation of C and
reads

uk = D′σ(k)yk + C ′σ(k)xk (13)

Thus,

ûk − uk = C ′σ(k)x̂k +D′σ(k)yk −D
′
σ(k)yk

−C ′σ(k)xk
= C ′σ(k)(x̂k − xk)

Let the reconstruction error be εk = x̂k − xk. Then,
from (9) and (12)



εk+1 = A′σ(k)x̂k +B′σ(k)yk
−(A′σ(k) −B

′
σ(k)(D

′
σ(k))

−1C ′σ(k))xk
−B′σ(k)(D

′
σ(k))

−1uk
= A′σ(k)εk −B

′
σ(k)(yk − (D′σ(k))

−1uk)

−B′σ(k)(D
′
σ(k))

−1uk +B′σ(k)yk
= A′σ(k)εk

(14)

After iterating (14) K times and taking into account (11),
εk = 0 or equivalently xk = x̂k for any k ≥ K. Hence,
according to Definition 1, the set-up (8)–(9) is finite-time
self-synchronizing. That completes the proof.

No constraint is imposed on B′j and C ′j . Condition (11)
means that regardless of the order of multiplication of the
matrices A′j , and so for any mode sequences, the product
is zero after a finite number K of iterations. K is the delay
of synchronization.

Remark 1. The condition D′j 6= 0 for any j ∈ J means
that the relative degree of the systems C and D is zero.

Remark 2. The system (8) is a right inverse for the sys-
tem (9). Indeed, for any identical initial conditions x0 = x̂0
and for any identical mode sequence {v}, the system (8)
drives (9) such that ∀k ≥ 0, ûk = uk.

Theorem 1 does not provide a constructive solution for the
selection of appropriate matrices A′j which must fulfill the
constraint (11). The purpose of the next paragraph is to
obtain an equivalent constructive condition. It is based on
the notion of nilpotent semigroups.

3.2 Constructive approach

Let us first recall two definitions:

Definition 2. (Semigroup). A semigroup S is a set to-
gether with an associative internal law. It is said to be
finite if S has a finite number of elements.

Definition 3. (Nilpotent semigroup). A semigroup S is
said to be nilpotent if it is such that any product of a
finite number t ∈ N∗ of its elements (possibly the same
element) is always 0. The smallest integer t is called the
class of nilpotency of S.

Proposition 1. In order for (11) to be fulfilled, the set of
dynamical matrices {A′j , j ∈ J must generate a nilpotent
semigroup. The delay of synchronizationK equals the class
of nilpotency of this semigroup.

A theorem, useful for the construction of semigroups with
a given class of nilpotency is stated in the book Radjavi
and Rosenthal [2000] and recalled below.

Theorem 2. (Levitsky’s theorem). Any semigroup of nilpo-
tent matrices can be triangularized.

In other words, there is a common basis in which all the
matrices of the semigroup are upper triangular with zeros
on the diagonal.

Remark 3. The product of t nilpotent matrices which
commute pairwise is 0 but the product of t nilpotent
matrices is not, in general, nilpotent. Indeed, we observe

that

(
0 1
0 0

) (
0 0
1 0

)
=

(
1 0
0 0

)
. Theorem 2 provides a

generalization of this special case, should each matrix be
nilpotent is only a necessary condition.

Hence, based on Levitsky’s theorem, the construction
of the family (A′j)1≤j≤J which fulfills (11) follows three
successive steps

• choose an invertible matrix T ∈ Fn×n
• choose a set of J upper triangular matrices Ā′j with

zero on the diagonal
• for all j ∈ J , compute A′j = T−1Ā′jT

The matrix T may possibly be the identity matrix.

Remark 4. Because of Levitzky’s theorem, the considera-
tion of a semigroup of n–dimensional matrices is equivalent
to the consideration of the corresponding set of upper
triangular matrices. And yet, for triangular matrices, it
is clear that the nilpotency class is at most n. As a result,
the delay of synchronization K is upper bounded by n.

3.3 Connection with flatness

Flatness is an important concept in control theory. It was
introduced in Fliess et al. [1995] and a deep insight can be
found in the book Sira-Ramirez and Agrawal [2004]. In this
section, we show that the constructive approach proposed
for designing a finite-time self-synchronizing master-slave
system amounts to designing a flat system C with flat
output yk.

Definition 4. (Flat dynamical system). A system with in-
put uk and state vector xk is said to be flat if there
is a set of independent variables yk, referred to as flat
output, such that all the system variables can be expressed
as a function of the flat output and a finite number of
its backward and/or forward iterates. In particular, there
exist two functions F and G such that{

xk = F(yk+t1 , . . . , yk+t2)
uk = G(yk+t′1 , . . . , yk+t′2)

where t1, t2, t
′
1, t
′
2 ∈ Z.

Proposition 2. The system C resulting from the conditions
(10)-(11)-(12) is flat with flat output yk
Proof 2. The state of the switched system (9) can be
written, at time k +K

x̂k+K =

K−1∏
i=0

A′σ(k+K−1−i)x̂k

+

K−1∑
i=0

 K−1∏
j=i+1

A′σ(k+K−j)

B′σ(k+i)yk+i
Therefore, if (11) holds, any state at time k ≥ 0 reads:

x̂k+K =

K−1∑
i=0

 K−1∏
j=i+1

A′σ(k+K−j)

B′σ(k+i)yk+i (15)



And yet, εk = 0 or equivalently xk = x̂k for any k ≥ K.
Hence, after a shift of K, one obtains

x̂k = xk =

K−1∑
i=0

 K−1∏
j=i+1

A′σ(k−j)

B′σ(k−K+i)yk−K+i (16)

which gives the function F .
On the other hand, since D′j 6= 0 for any j ∈ J , the input
uk reads like (13). Substituting the expression (16) of xk
into (13) gives the function G. That completes the proof.

Relation (16), and in the general case, the function F ,
gives explicitly the function gke of (1) and (2). As a result,
and as pointed out in Section 2.2, there is an equivalence
between the recursive part of both equations (4) and
(5) and the function F . The equivalence applies under
flatness conditions. In the special case of switched linear
systems, (8) and (9) can be equivalently rewritten into the
respective canonical forms (1) and (2) xk =

K−1∑
i=0

 K−1∏
j=i+1

A′σ(k−j)

B′σ(k−K+i)yk−K+i

yk = Cσ(k)xk +Dσ(k)uk

(17)


x̂k =

K−1∑
i=0

 K−1∏
j=i+1

A′σ(k−j)

B′σ(k−K+i)yk−K+i

ûk = C ′σ(k)x̂k +D′σ(k)yk

(18)

It is worth pointing out that, from a computational point
of view, the recursive form (8)–(9) is more relevant than
(17)–(18)

4. TRANSMISSION ZEROS AND SURJECTIVITY

For cryptographic purposes (basically a consideration re-
garding the entropy of sequences), it is relevant that the
maps xk 7→ Ajxk j ∈ J are surjective. In other words, we
want to guarantee that

∀j ∈ J , rank(Aj) = n (19)

The problem lies in that, according to Theorem 1, the
matrices (Aj , Bj , Cj , Dj) of the system C are not de-
signed directly but are derived from (A′j , B

′
j , C

′
j , D

′
j) of

D. Hence, we must find out a condition on the matrices
(A′j , B

′
j , C

′
j , D

′
j) so that (19) is ensured. It turns out that

the notion of transmission zeros are relevant to this end.

A definition of transmission zeros can be found for exam-
ple in Schrader and Sain [1989]. It is recalled below and
particularized for a SISO system.

Definition 5. Let us consider a SISO linear system with
state space realization (A,B,C,D). The transmission ze-
ros are the complex numbers {si} which satisfy

rank

[
A− si1n B

C D

]
< n+ 1 (20)

where it is recalled that 1n stands for the identity matrix
of dimension n.

Before proceeding further, we must introduce some nota-
tion. Consider the matrix T and the corresponding matri-
ces A′j = T−1Ā′jT derived from Ā′j (j ∈ J ) as explained

in Section 3.2 devoted to the constructive approach.

Let us write Ā′j as

Ā′j =


0 a1j

0 a2j A
∗
j

...
. . .

0 0 an−1j

· · · 0

 (21)

where A∗j denotes the coefficients above the n−1 diagonal
entries amj (m = 1, . . . , n − 1) located above the zero
diagonal. Let have

TB′j = [b1j · · · bnj ]T (22)

bmj stands for the mth component of the column vector
TB′j .

C ′jT
−1 = [c1j · · · cnj ] (23)

cmj stands for the mth component of the row vector C ′jT
−1.

Proposition 3. The surjectivity of each map xk 7→ Ajxk
(j ∈ {1, . . . , J}) of C is guaranteed whenever

c1jb
n
j

n−1∏
m=1

amj 6= 0 (24)

Proof 3. According to Remark 2, C is a right inverse for
D. Furthermore, let us recall that (see Remark 1) the
relative degree of C and D is zero. We conclude that
each realization (A′j , B

′
j , C

′
j , D

′
j) (j ∈ J ) of D has n

transmission zeros si and the si’s are nothing but the n
eigenvalues λi of Aj of C. They are the roots of

Ψj(s) = det R = 0 with R =

[
A′j − s1n B′j

C ′j D′j

]
(25)

R is often called the Rosenbrock’s matrix.
Ψj(s) is a polynomial, its constant monomial is Ψj(0) and
corresponds to the product

∏n
i=1 of the roots of Ψj(s) and

so corresponds to the product
∏n
i=1 λi of the eigenvalues

of Aj of C. Hence, surjectivity of xk 7→ Ajxk j ∈ J is
guaranteed whenever Ψj(0) 6= 0.

The following equalities apply

Ψj(0) = det

[
A′j B

′
j

C ′j D
′
j

]
= det

[
T−1Ā′jT B′j
C ′j D′j

]
= det

([
T−1 0
0 1

] [
Ā′j TB′j

C ′jT
−1 D′j

] [
T 0
0 1

])
= det

[
Ā′j TB′j

C ′jT
−1 D′j

] (26)

Consider a partitioned matrix with four sub-blocks E,
F , G, H of compatible dimensions. We recall a result
concerning its determinant.

det

[
E F
G H

]
= det(H) · det(E − FH−1G)

Taking into account the special structure (21) of Ā′j , (22)
and (23), it turns out that basic manipulations yield

Ψj(0) = det

[
Ā′j TB′j

C ′jT
−1 D′j

]
= c1jb

n
j

n−1∏
m=1

amj (27)

That completes the proof.



5. EXAMPLE

This section gives an example that illustrates the construc-
tion of a finite-time self-synchronizing setup. We propose
to design a finite time self-synchronizing system of dimen-
sion n = 3 and with J = 3 modes. We consider matrices
defined over the finite field F = Z/7Z. This means that
the only coefficients allowed for the matrices are elements
in the set {0, . . . , 6} and that the operations of additions
and multiplications are performed modulo 7.
The design starts with the setting of the matrices
A′j , B

′
j , C

′
j , D

′
j which must fulfill the three conditions of

Theorem 1, the condition (11) being replaced by the con-
structive approach provided in Section 3.2. We add the
condition (24) on surjectivity.
First, for simplicity, we choose D′j = 1 for any j ∈ {1, 2, 3}.
Secondly, we choose a set of three 3–dimensional matrices
Ā′j in the form of strict upper triangular matrices and with
non zero entries located above the diagonal in order to
guarantee the surjectivity.

Ā′1 =

(
0 3 2
0 0 1
0 0 0

)
Ā′2 =

(
0 2 1
0 0 2
0 0 0

)
Ā′3 =

(
0 1 3
0 0 2
0 0 0

)
We then choose an invertible matrix T

T =

(
4 0 5
1 5 2
5 5 5

)
Its inverse over F = Z/7Z reads

T−1 =

(
4 2 5
6 1 2
4 4 3

)
Applying the change of basis A′j = T−1Ā′jT , we get that

A′1 =

(
5 5 4
6 1 3
2 1 0

)
A′2 =

(
6 3 0
3 2 1
5 2 6

)
A′3 =

(
0 2 4
1 4 0
6 1 3

)
Finally, we choose arbitrary matrices B′j and C ′j except the

fact that the first entry c1j of C ′jT
−1 and last entry bnj of

TB′j are not zero to fulfill the surjectivity condition (24).

B′1 =

(
0
0
1

)
, B′2 =

(
1
2
5

)
, B′3 =

(
3
6
1

)
C ′1 = (2 1 3) , C ′2 = (6 2 1) , C ′3 = (3 1 1)

Finally, we derive the equations (12) of C. The matrices
read

A1 =

(
6 5 4
6 1 3
0 0 4

)
, A2 =

(
0 1 6
5 5 6
3 6 1

)
, A3 =

(
5 6 1
4 5 1
3 0 2

)

B1 =

(
0
0
1

)
, B2 =

(
1
2
5

)
, B3 =

(
3
6
1

)
C1 = (5 6 4) , C2 = (1 5 6) , C3 = (4 6 6)

D1 = D2 = D3 = 1

After the setting is completed, a sequence {u} is applied to
C. As expected, the self-synchronization is achieved after a
finite transient time, so does the recovery of the sequence
of inputs (see Figure 3). The transient time before self-
synchronization is of length K = 3 since the class of
nilpotency t of the set (A′1, A

′
2, A

′
3) equals 3.

Fig. 3. Time evolution of {u} and {û} of the setup C-D
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