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Optimal synthesis for the minimum time control problems of

fed-batch bioprocesses for growth functions with two maxima

Térence Bayen∗ Pedro Gajardo † Francis Mairet ‡

December 31, 2011

Abstract

We address the problem of finding an optimal feedback control for feeding a fed-batch bioreactor with
one species and one substrate from a given initial condition to a given target value in a minimal amount
of time. Recently, the optimal synthesis (optimal feeding strategy) has been obtained in systems in which
the microorganisms involved are represented by increasing growth functions or growth functions with one
maxima, with either Monod or Haldane functions, respectively (widely used in bioprocesses modeling). In
the present work, we allow impulsive controls corresponding to instantaneous dilutions, and we assume
that the growth function of the microorganism present in the process has exactly two local maxima. This
problem has been considered from a numerical point of view in [15] without impulsive controls. In this
article, we introduce two singular arc feeding strategies, and we define explicit regions of initial conditions
in which the optimal strategy is either the first singular arc strategy or the second strategy.

Keywords. optimal control, minimal time problem, impulsive control, Pontryagin maximum principle, biore-
actor.

MSC. 49J15, 49K15, 49N25.

1 Introduction

The operation of a fed-batch bioreactor consists of feeding the reactor with a highly concentrated solution
without any removal of liquid before the end of the culture. This operating mode presents many advantages
over batch or chemostat (continuous culture) operations: a high concentration of cells or products can be
obtained, and it allows for the easy control of the operating conditions, in particular the limiting substrate
concentration (see [9]). Therefore, fed-batch bioreactors have been widely used in the food and pharmaceutical
industries, as well as in wastewater treatment. In a fed-batch process, choosing an adequate feeding strategy
is a key feature that can significantly increase productivity. Many authors have proposed feeding strategies
using optimal control theory for various types of problems (different bioprocesses and/or objectives, see for
example [8] and [10]). In this study, we will focus on the minimal time problem: given initial conditions, the
objective is to define a feeding strategy to reach a given substrate concentration in a minimal amount of time
with a given maximal volume (representing a completely full tank). The optimal synthesis for this problem
has been obtained in [13] using Green’s theorem, via the technique introduced in [11], in the following cases:

• For increasing growth functions (e.g., the Monod kinetic, see [12, 17]), the optimal solution is of the
Bang-Bang type: it consists of filling the reactor up to the maximum volume with the maximum input
flow rate and then waiting until the substrate concentration reaches the desired value.

• For nonmonotonic growth functions with one maximum point (e.g., Haldane kinetic, see [1, 17]), the
optimal solution is a singular arc strategy, consisting of regulating the substrate concentration at the
maximum of the specific growth rate.
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These results, obtained for regular controls in [13], have been recently extended to allow for impulsive controls
(corresponding to instantaneous dilutions), in [7], for the following situations :

• for the case of one microbial species with increasing (e.g., Monod) or one maxima (e.g., Haldane) growth
functions,

• for the case in which two microbial species compete for the same substrate with two increasing growth
functions that satisfy additional assumptions.

Several new methods have also been proposed for the practical implementation of these optimal strategies
(see [3]), including alternative approaches such as extremum seeking (see [5]). In this work, we will focus
on the problem of fed-batch operation with growth functions having two local maxima. This type of growth
function is observed when the bacterial population can grow via two possible metabolic pathways (e.g., each
one is related to a different non-limiting substrate). Indeed, for some microbial species, a high substrate
concentration can result in the changing of metabolic pathways (see [6]). A growth function having two local
maxima can also be obtained when we consider a growth function with one maximum point associated with
inhibition by a product. Under some hypotheses, the product concentration can be expressed as a function of
the substrate concentration, and the problem can be rewritten with a growth function with two local maxima
(see [2]).

In [15], the problem of minimal time control for a growth function with two local maxima has been
addressed using a numerical approach. It appears that the singular arcs defined by the two local maxima
are two optimal candidates, but to obtain the optimal synthesis is not easy, because none of the previous
methods applied for Monod or Haldane growth function are applicable here. Given the numerical results
obtained using a regularization method, the authors conjecture that the state space can be divided into two
domains in which each arc strategy is optimal. To solve this problem analytically, we allow impulsive control
(see [7]). In general, an impulsive control indicates that the input flow rate is allowed to take values um � 1
corresponding to instantaneous dilution. We consider two cases, which depend on whether the strict global
maximum of the growth function is the first local maximum (case B) or the second maximum (case A). The
problem is reformulated into a planar affine system with two controls (as was done in [13] without impulsive
control) introducing a constant M defined by the initial conditions (see Section 2). We then use the Pontryagin
maximum principle (see [14]) to derive the necessary conditions on optimal trajectories. Our method relies
on the exclusion of extremal trajectories that have a switching point before reaching one of the two singular
arcs. We then conclude by considering which singular strategy starting from a given initial condition has
the minimal cost. The paper is organized as follows. In Section 2, the problem is stated, and we derive
several general properties about extremal trajectories via the Pontryagin maximum principle. In particular,
we provide an explicite expression of the switching functions corresponding to the controls (see lemmas 2.3
and 2.4), which is the starting point for comparing both strategies. These expressions allow, in particular, the
easy retrieval of a result in [7] on the optimality of the singular arc strategy in the case of one species with a
Haldane growth function. The original proof (see [7]) makes use of the characterization of the value function
by using the Hamilton-Jacobi equation (a sufficient condition). In Section 3, we prove the general comparison
results between extremal trajectories that are valid for cases A and B. Section 4 and 5 are devoted to cases A
and B. The following results are obtained:

• Case A, M ≥ 0: the optimal synthesis is given by theorem 4.1

• Case A, M < 0: the optimal synthesis is obtained under the hypothesis 4.1 (see theorem 4.2).

• Case B, M ≥ 0: we prove that the first singular arc is optimal (see theorem 5.1).

• Case B, M < 0: we prove that the first singular arc is optimal (theorem 5.2) provided that the hypotheses
5.1 and 5.2 are satisfied.

For M ≥ 0, our optimal synthesis proves the conjecture proposed in [15] when impulsive control is allowed.
It appears that the case M < 0 (which corresponds to a low initial concentration of biomass) is slightly more
delicate to handle than the case M ≥ 0. In case B, M < 0, hypothesis 5.1 is satisfied when M is small.
Hypotheses 4.1 and 5.2 have been verified numerically (see Figure 4).
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2 Statement of the problem and general results

2.1 Formulation of the problem

In this subsection, we present the model and the optimal control problem. Let us consider the following control
system describing a perfectly mixed reactor operated in fed-batch mode with impulsive control (see [7]):

ẋ =
(
rµ(s)− u

v

)
x,

ṡ = −rµ(s)x+ u
v (sin − s),

v̇ = u,

(2.1)

where x is the concentration of biomass, s is the concentration of substrate, and v is the volume of water (with
concentrations x and s) in the tank. We will assume that the growth function µ has two local maxima s1 < s2
and one local minimum sm ∈ (s1, s2), see Figure 1. We will consider two cases:

• Case A: µ(s1) < µ(s2).

• Case B: µ(s1) > µ(s2).

We also suppose that µ′′(s1) 6= 0, µ′′(s2) 6= 0, and µ′′(sm) 6= 0, and we define s′2 ∈ [sm, s2] such that
µ(s′2) = µ(s1) in case A, and similarly, s′1 ∈ [s1, sm] such that µ(s′1) = µ(s2) in case B.

The set of admissible controls is defined as follows:

U = {u = (r, u) : [0,∞[→ ({0, 1} × [0, 1]) \ {(0, 0)} | meas.}.

Here, u is the input flow rate and r represents an impulse control. An instantaneous addition of volume
v+ − v− (i.e., a jump from volume v− to volume v+) is achieved by taking r = 0 on some interval of time
[τ−, τ+] for system (2.1) and any measurable control u satisfying∫ τ+

τ−

u(t)dt = v+ − v−, (2.2)

see [7] for more details. In particular, there is no uniqueness of u as long as integral (2.2) is equal to v+ − v−.
An addition of volume v+ − v− corresponds to a dilution of the substrate and the biomass:

s+ =
v−
v+
s− +

(
1− v−

v+

)
sin, x+ =

v−
v+
x−,

where s−, x− are the concentrations before dilution and s+, x+ are the concentrations after dilution. We
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Figure 1: Figure left: example of a growth function (corresponding to case A) that is a sum of two Haldane
growth functions having two local maxima s1 < s2, such that µ(s1) < µ(s2). Figure right: sum of two Haldane
growth functions with µ(s1) > µ(s2) (case B).

denote by ξ a triple ξ = (x, s, v), and let E = R∗+×]0, sin[×]0, vm] ⊂ R3 be the domain of state variables x, s,
and v. The target is defined as follows:

T = {ξ = (x, s, v) ∈ E | 0 ≤ s ≤ sref , v = vm},
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where sref is a given reference (low) concentration such that 0 < sref < s1 < s2 < sin, and vm is the volume
of the tank. For ξ ∈ E and a control u ∈ U , let tξ(u) be the first entry time in T . In the impulsive framework,
the minimum time problem, for an initial condition ξ0 ∈ E, can be gathered into:

inf
u∈U

∫ tξ0 (u)

0

r(τ)dτ, s.t. (x(0), s(0), v(0)) = ξ0; (2.3)

see [7] for more details on the reparametrization of the minimum time problem with impulsive control. If
(x, s, v) is a solution of (2.1), the function M := v(x+ s− sin) is constant equal to v0(x0 + s0 − sin); hence,
we have x = M

v − (s− sin), and the system can be gathered into a quasi-affine planar system with two inputs:{
ṡ = −rµ(s)

(
M
v − (s− sin)

)
+ u

v (sin − s),
v̇ = u.

(2.4)

Remark 2.1. The sign of the constant M = v0(x0 + s0 − sin) defined by the initial conditions plays an
important role in the synthesis of the optimal feeding strategy. Note that for repeated fed-batch cultures (i.e.,
at the end of the culture, the reactor is partially drained, and then a new culture begins using the substrate and
biomass concentrations reached at the end of the previous culture), one can easily check that M will tend to 0.

We claim that for any ξ0 ∈ E, the minimum time to reach T is finite. Indeed, one can reach volume vm
from any ξ0 ∈ E by an impulse of volume vm − v0 (that is, r = 0). If the concentration of substrate is greater
than sref , we put u = 0 and r = 1 until s(t) ≤ sref . This strategy steers any ξ0 ∈ E to the target T in
finite time, which proves that (2.3) is finite. The existence of an optimal solution of (2.3) is not guaranteed
by Filipov’s theorem (see [4]), as the set of admissible controls is not convex (recall that r(·) ∈ {0, 1}). Let us
now consider the relaxed problem, that is, the problem (2.3) in which the control (r, u) is allowed to take values
within U := [0, 1]× [0, 1]. By the convexity of U and the cost functional, the existence of an optimal control
for the relaxed problem is standard by Filipov’s theorem, see [4]. Without loss of generality, we may consider
trajectories such that (r, u) 6= 0 (if r = u = 0, the cost is unchanged while the system is stationary). We will
see in the next section that an optimal control of the relaxed problem can be taken such that r(·) ∈ {0, 1}.

2.2 Pontryagin maximum principle

In this subsection, we derive the necessary conditions for an optimal control by the Pontryagin maximum
principle (PMP), and we compute the singular arcs. We also prove the existence of an optimal solution of
problem (2.3). Let γ0 be the curve, in the plane s− v, defined by:

γ0(s) = vm

(
sin − sref
sin − s

)
, s ∈ [0, sref ]. (2.5)

In the rest of the paper, we will consider initial conditions for the system (2.4) in the set D defined as follows:

D =
{

(s0, v0) ∈ R∗+ × R∗+ | s0 ∈ (0, sin), 0 < v0 < min(γ0(s0), vm), M + v0(sin − s) > 0
}
. (2.6)

Note that the last condition guarantees that the initial conditions ξ0 of system (2.1) satisfy x0 > 0. We will
prove in the next subsection that for initial conditions (s0, v0) such that γ0(s0) ≤ v0 ≤ vm, the optimal control
is a single impulse from volume v0 to volume vm (see proposition 2.3). Therefore, we will assume throughout
the paper that initial conditions are in D. The Hamiltonian of the system H = H(s, v, λs, λv, λ0, r, u) is:

H = −rλsµ(s)

(
M

v
− (s− sin)

)
+ u

(
λs(sin − s)

v
+ λv

)
+ λ0r. (2.7)

Let us apply the Pontryagin maximum principle to the relaxed problem. Let (r, u) be an optimal solution and
(s, v) the corresponding solution of (2.4). Then, there exists tf > 0, λ0 ≤ 0 and an absolutely continuous map

λ = (λs, λv) : [0, tf ]→ R2 such that (λ0, λ) 6= 0, λ̇s = −∂H∂s , λ̇v = −∂H∂v , that is:{
λ̇s = λs(rµ

′(s)x− rµ(s) + u
v ),

λ̇v = λs
v2 (−rµ(s)M + u(sin − s)),

(2.8)
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and we have the maximality condition:

for a.e. t ∈ [0, tf ], H(s(t), v(t), λs(t), λv(t), λ0, r(t), u(t)) = max
(r̃,ũ)∈U

H(s(t), v(t), λs(t), λv(t), λ0, r̃, ũ) = 0.

(2.9)
The Hamiltonian in (2.9) is zero, as tf is free. Without loss of generality, we may assume λ0 = −1. Next,
define the switching functions φ1 and φ2 associated with controls r and u:{

φ1(t) = −λsµ(s)
(
M
v − (s− sin)

)
− 1,

φ2(t) = λs
sin−s
v + λv.

(2.10)

We call an extremal trajectory a quintuplet (s(·), v(·), λs(·), λv(·), r(·), u(·)) satisfying (2.4)-(2.8)-(2.9). It fol-
lows that any extremal trajectory satisfies for a.e. t ∈ [0, tf ]:

r(t)φ1(t) + u(t)φ2(t) = 0. (2.11)

We obtain from (2.9) that any optimal control satisfies the following control law: for a.e. t ∈ [0, tf ], we have
φ1(t) < 0, φ2(t) = 0 =⇒ r(t) = 0, u(t) ∈ (0, 1], (Impulse),

φ2(t) < 0, φ1(t) = 0 =⇒ u(t) = 0, r(t) ∈ (0, 1], (No feeding),

φ1(t) = 0, φ2(t) = 0 =⇒ r(t) ∈ (0, 1], u(t) ∈ (0, 1], (Singular arc).

(2.12)

In particular, an extremal trajectory has a singular arc on some time interval I if both switching functions
satisfy φ1(t) = φ2(t) = 0 for all t ∈ I. Derivating the switching functions yields:

φ̇1(t) = −uφ(t), φ̇2(t) = rφ(t), (2.13)

where:

φ(t) =
λsµ

′(s)(sin − s)x
v

. (2.14)

The next lemma will be useful in the following.

Lemma 2.1. If (s0, v0) is in D, then any optimal trajectory satisfies λs < 0.

Proof. An optimal trajectory is a concatenation of arcs where u = 0 (no feeding), r = 0 (impulse), or s is
constant with s ∈ {s1, s2, sm} (singular arc, see lemma 2.2 (i)). If the initial condition is in D, any optimal
trajectory contains an arc u = 0 (otherwise, the trajectory would not reach T ). If λs vanishes at some point
t0 ∈ [0, tf ], then λs ≡ 0 from (2.8). Hence, when u = 0, we obtain from (2.7) that r = 0, which is not possible
(recall that we assumed (r, u) 6= (0, 0)). Hence, λs is always non-zero and of constant sign. Moreover, when
u = 0, one has from (2.7) −rλsµ(s)x− r = 0; thus, λs < 0.

From the expression of φ and the sign of λs, one can prove the following proposition that will be useful to
perform the optimal synthesis in the two next sections.

Proposition 2.1. (i). Let (s0, v0) ∈ D such that s0 ∈ (sm, s2] and let us consider an extremal trajectory
satisfying u = 0 at time 0. Then, there exists t1 > 0 with s(t1) < sm such that we have u = 0 on [0, t1].
(ii). Let (s0, v0) ∈ D such that s0 ∈ [s1, sm), v0 < vm, and let us consider an extremal trajectory satisfying
r = 0 at time 0. Then, there exists t′1 > 0 with s(t′1) > sm such that we have r = 0 on [0, t′1].

Proof. Let us prove (i). From (2.14), we have that φ is non-negative when s(t) ∈ [s1, sm], and φ is negative
when s(t) ∈ [sm, s2]. It follows that if s(t) ∈ [s1, sm], then φ2 is increasing, whereas if s(t) ∈ [sm, s2], then
φ2 is decreasing. When u = 0, the concentration of substrate s(t) is strictly decreasing at time 0; thus, φ2
remains negative until s(t) = sm. If φu is always negative, then the trajectory does not reach the target (as
v0 < vm). Therefore, there exists t1 > 0 with s(t1) < sm such that φ2(t1) = 0. The proof of (ii) is similar
using φ1(0) ≤ 0 and the monotonicity of φ1 for s(t) ∈ [s1, sm].

The previous lemma means that an arc r = 0 (resp. an arc u = 0) starting with s0 ∈ [s1, sm) (resp.
s0 ∈ (sm, s2]) always passes though the line s = sm. Let us now evaluate a singular arc strategy.
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Lemma 2.2. Let us consider a trajectory that contains a singular arc on some time interval [t0, t1]. Then:
(i). The concentration of substrate is constant on [t0, t1], and s ∈ {s1, s2, sm}.
(ii). If the singular arc is optimal, then s ∈ {s1, s2}.
(iii). The cost of a singular arc from a volume v0 to a volume v1 is:∫ t1

t0

r(t)dt =
1

µ(si)
ln

(
M + v1(sin − si)
M + v0(sin − si)

)
, i = 1, 2, (2.15)

and the singular control can be expressed as follows:

usi = µ(si)

(
v +

M

sin − si

)
, i = 1, 2. (2.16)

Proof. By the definition of a singular arc, we have φ1(t) = φ2(t) = 0 on [t0, t1]. By derivating, we obtain
φ(t) = 0 for t ∈ [t0, t1] as (r, u) 6= (0, 0). In view of (2.14), the only possibility for φ to be zero on [t0, t1] is
µ′(s) = 0; hence, s must be constant on the interval [t0, t1], that is, s = s1, s = sm or s = s2, which proves
(i). By using ṡ = 0 on [t0, t1], (2.4) becomes:

v̇ − rµ(s)v = rµ(s)
M

sin − s
.

Solving this equation yields:

v1 =

(
v0 +

M

sin − s

)
e
µ(s)

∫ t
t0
r(τ)dτ − M

sin − s
,

and we obtain (2.15). By derivating, we obtain (2.16), which proves (iii). From (2.15), we may assume that
r = 1 along a singular arc. Indeed, it is enough to ensure that the L1-norm of r on some time interval (where
the volume goes from v0 to v1) is equal to the right hand side of (2.15).

Let us now discuss the optimality of a singular arc. By derivating φ(t) and replacing r(t) by 1, we obtain:

φ′(t) =
λsx

v

(
µ′′(s)(sin − s)(−µ(s)x+

u

v
(sin − s)) + xµ(s)µ′(s)− 2

u

v
µ′(s)(sin − s) + µ′(s)x

)
. (2.17)

An optimal control u must satisfy the Legendre-Clebsch necessary condition along the trajectory, that is,
∂
∂u

d2

dt2Hu ≥ 0, see e.g., [16]. Combining µ′(s) = 0 and (2.17) yields:

∂

∂u

d2

dt2
Hu = µ′′(s)

λsx(sin − s)2

v
.

Thus, one must have µ′′(s) ≤ 0 (recall that λs < 0). Hence, the only possibility for s is s = s1 or s = s2,
which proves (ii).

Theorem 2.1. There exists an optimal solution of (2.3) such that r ∈ {0, 1}.

Proof. Let (r, u) 6= (0, 0) an optimal solution of the relaxed problem. Notice that (r, u) satisfies (2.12) for a.e.
t ∈ [0, tf ]. In the case of an impulse, we have r = 0, whereas in the case of a singular arc, one can take r = 1
by the previous lemma. Let us now examine the case where u = 0 (no feeding). If u = 0 on some time interval
[t0, t1], the volume v is constant, and we have ṡ = r(t)f(s(t)), where f(s) = −µ(s)(M/v − (s − sin)). Let us
put {

θ =
∫ t
t0
r(τ)dτ,

z(θ(t)) = s(t).

By derivating, one has dz
dθ (θ(t))r(t) = ṡ(t) = r(t)f(s(t)); thus, we have:

dz

dθ
= f(z(θ)), (2.18)

as r is non-zero. Moreover, z satisfies z(0) = s(t0) and z(θ) = s(t1), where θ =
∫ t1
t0
r(τ)dτ , and the cost

remains unchanged (as the cost of z on the interval [0, θ] is θ). We can repeat this argument on any arc u = 0
of the trajectory, which allows us to take r = 1 by (2.18). This concludes the proof.
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Remark 2.2. Theorem 2.1 answers a question raised in [7] on the existence of an optimal solution of (2.3)
with r ∈ {0, 1} in the case of one species. The existence of an optimal control of (2.3) with a control r such
that r ∈ {0, 1} remains an open question in presence of more than one species.

Definition 2.1. The singular arc strategy SASi, i = 1, 2 (corresponding to s = s1 or s = s2) starting at some
point (s0, v0) ∈ D is defined as follows:

(r(s0, v0), u(s0, v0)) =


(1, usi) if s0 = si and v0 < vm,

(1, 0) if s > si or v0 = vm,

(0, ũ) if s < si and v0 < vm,

where control ũ is any measurable function taking values in [0, 1] such that (2.2) holds in presence of a dilution.

The next proposition is concerned with some restrictions on the parameters of the system in order to obtain
admissible singular arcs.

Proposition 2.2. (i). If M < 0 and µ(si)vm ≤ 1 for i = 1, 2 then both singular strategies are well-defined.

(ii). If M ≥ 0 and µ(si)
(
vm + M

sin−si

)
≤ 1, i = 1, 2, then both singular strategies are well-defined.

Proof. By lemma 2.2, with i = 1, 2, the control usi is admissible if and only if:

0 ≤ µ(si)

(
v(t) +

M

sin − si

)
≤ 1, t ∈ [t0, t1]. (2.19)

As
{

(s0, v0) ∈ R∗+ × R∗+ | s0 ∈ (0, sin), 0 < v0 ≤ vm, M + v0(sin − s) > 0
}

is invariant by the dynamics, and
the left inequality in (2.19) is always satisfied. When M < 0, a sufficient condition to have an admissible
control is µ(si)vm ≤ 1, i = 1, 2 (to ensure the right inequality of (2.19)). This proves (i). The proof of (ii) is
similar.

Remark 2.3. From a practical point of view, we assume that the parameters of the system always satisfy the
conditions given by the previous proposition.

2.3 Computations of the switching functions

In this subsection, we compute the switching functions in the case of non-feeding (that is u = 0 and r = 1)
and in the case of an impulse (r = 0) in order to address the global optimality of the singular arc strategies
SASi, i = 1, 2 in the next section. Let us define a function ψv by:

ψv(s) =
sin − s

M + v(sin − s)
,

Notice that ψv is non-negative by (2.4). In the case where M = 0, one has ψv(s) = 1
v . Moreover, one has

ψ′v(s) = −M
(M+v(sin−s))2 ; hence, if M < 0, then ψv is increasing, whereas if M > 0, then ψv is decreasing.

Lemma 2.3. Let us consider an extremal trajectory starting at (s0, v0) ∈ D at time 0 with u = 0 on some
time interval [0, t1]. Then, we have for t ∈ [0, t1]:

λs(t) =
−v0

µ(s(t))(M + v0(sin − s(t)))
, λv(t) = λv(0) +

∫ s(t)

s0

ψ′v0(s)

µ(s)
ds, (2.20)

φ2(t) = λv(0)− ψv0(s0)

µ(s0)
+

∫ s(t)

s0

ψv0(s)
µ′(s)

µ2(s)
ds. (2.21)

The cost associated to this trajectory is:

J = −
∫ s(t1)

s0

ds

µ(s)
(
M
v0

+ sin − s
) (2.22)
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Proof. The expression of λs is straightforward from the expression of the Hamiltonian along u = 0. We then

obtain λ̇v =
M
v0

M+v0(sin−s) . By dividing by ṡ (which is non-zero as (r, u) 6= (0, 0)), we obtain:

dλv
ds

= − M

µ(s)(M + v0(sin − s))2
=
ψ′v0(s)

µ(s)
,

and we obtain the desired expression of λv by integrating. Replacing λs into the expression of φ yields:

φ2(t) = λv(t)−
ψv0(s(t))

µ(s(t))
,

and we obtain the desired expression for φ2 by integrating by parts the expression of λv. Finally, the cost J
is obtained by integrating the differential equation ṡ along u = 0.

Let D′ = {(s0, v0) ∈ R∗+ × R∗+ | γ0(s0) ≤ v0 ≤ vm}. From the previous lemma, we obtain the optimal
solution for any initial conditions in D′.

Proposition 2.3. (i). If (s0, v0) ∈ D′, then the optimal feedback steering (s0, v0) to the target is an impulse
of volume vm − v0.
(ii). An extremal trajectory starting at some point (s0, v0) ∈ D such that s0 ≤ s1, v0 < vm and satisfying
u = 0 on a time interval [0, t1] is not optimal.

Proof. (i). If v0 = vm, then the initial point is in T , and the result is proved. Assume v0 < vm. If an optimal
trajectory satisfies u = 0 with volume v < vm on some time interval [t0, t1], we must have φ2(t0) ≤ 0, and
there exists a time t′0 > 0 such that φ2(t′0) = 0 (otherwise, the trajectory would not reach T ). We obtain:

φ2(t0) < φ2(t′0) = 0 = φ2(t0) +

∫ s(t′0)

s(t0)

ψv(s)
µ′(s)

µ2(s)
ds;

hence, we obtain: ∫ s(t′0)

s(t0)

ψv(s)
µ′(s)

µ2(s)
ds > 0.

But one has ψv(s) > 0, µ′(s) > 0 (recall that s < s1), and s(t0) > s(t′0). Consequently, the integral above is
negative, which is a contradiction. We can use the same argument for proving (ii).

Corollary 2.1. Consider an optimal trajectory starting from a point (s0, v0) ∈ D such that 0 < s0 ≤ s2 and
0 < v0 < vm. Assume that u = 0 in the neighborhood of zero.
(i). There exists a time t0 such that φ2(t0) = 0, s(t0) < sm, and we have:∫ s0

s(t0)

ψv0(s)
µ′(s)

µ2(s)
ds < 0 (2.23)

(ii). Moreover, if M ≤ 0, we have:
µ(s(t0)) > µ(s0). (2.24)

Proof. We have φ2(0) < 0; hence, φ2 remains negative for t close to zero. As v0 < vm, the switching function
must be zero at a certain time, and we obtain the existence of a time t0 such that φ2(t0) = 0. Notice that
s(t0) < sm. Indeed, if s0 < sm, the result is clear, as s is decreasing along u = 0. If s0 > sm, the result follows
from proposition 2.1. The previous conditions on the switching function can be written:

φ2(0) < 0 = φ2(t0) = φ2(0) +

∫ s0

s(t0)

−ψv0(s)
µ′(s)

µ2(s)
ds = 0,

hence: ∫ s0

s(t0)

−ψv0(s)
µ′(s)

µ2(s)
ds > 0,
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which proves (i). From this last inequality, we obtain:∫ s0

sm

ψv0(s)
µ′(s)

µ2(s)
ds <

∫ sm

s(t0)

ψv0(s)
−µ′(s)
µ2(s)

ds. (2.25)

When M ≤ 0, ψv0 is increasing; therefore:

ψv0(sm)

∫ s0

sm

µ′(s)

µ2(s)
ds ≤

∫ s0

sm

ψv0(s)
µ′(s)

µ2(s)
ds <

∫ sm

s(t0)

ψv0(s)
−µ′(s)
µ2(s)

ds ≤ ψv0(sm)

∫ sm

s(t0)

−µ′(s)
µ2(s)

ds.

We obtain the inequality:

ψv0(sm)

(
1

µ(sm)
− 1

µ(s0)

)
< ψv0(sm)

(
1

µ(sm)
− 1

µ(s(t0))

)
,

which gives (2.24).

We now compute the switching functions in the case of an impulse.

Lemma 2.4. Assume that an extremal trajectory starting at (s0, v0) ∈ D with 0 < v0 < vm satisfies r = 0 on
[0, t0]. Then, one has:

λs(t) =
λs(0)

v0
v(t), λv(t) = λv(0) +

λs(0)

v0
(s− s0), (2.26)

φ1(t) = −λs(0)x0µ(s)− 1, φ2(t) = λv(0) +
λs(0)(sin − s0)

v0
= 0. (2.27)

Proof. The proof is straightforward from the state-adjoint equation and the Hamiltonian. Notice that the

adjoint vector must satisfy λv(0) + λs(0)(sin−s0)
v0

= 0 to ensure φ2 = 0 along the impulse.

Remark 2.4. The cost associated to this trajectory is null.

Lemma 2.5. Assume that an extremal trajectory starting at (s0, v0) ∈ D with 0 < v0 < vm satisfies r = 0 on
[0, t0] and φ1(t0) = 0 for t0 > 0. Then, one has:

µ(s(t0)) ≥ µ(s0). (2.28)

Proof. Condition φ1(0) ≤ 0 gives µ(s0) ≤ 1
−λs(0)x0

, and condition φ1(t0) = 0 gives −λs(0)x0µ(s(t0))− 1 = 0;

hence, µ(s(t0)) = 1
−λs(0)x0

≥ µ(s0).

The previous lemma has simple consequences:

• In case A, any trajectory starting at s0 ≥ s2 with an impulse is not optimal, as µ is strictly decreasing
on [s2,+∞). This remark (combined with proposition 2.3 (ii)) allows us to retrieve the optimality of a
singular strategy for one species and a Haldane growth function in the impulsive case, see [7] (the proof
in [7] makes use of the value function and the Hamilton-Jacobi equation).

• In case A, any extremal trajectory starting at (s0, v0) ∈ D, s0 ∈ [s1, sm] with an impulse, is such that φ1
will vanish between s′0 and min(s2, s

∗(s0, v0)) where s′0 ∈ [sm, s2] satisfies µ(s′0) = µ(s0) and s∗(s0, v0)
is defined by s∗(s0, v0) = s0

v0
vm

+ (1− v0
vm

)sin. Indeed, combining lemma 2.5 and the monotonicity of µ
on [s2,+∞), we have that an extremal trajectory crossing s = s2 with an impulse is not optimal.

• In case B, any trajectory starting at s1 ≤ s0 < s′1 with an impulse is not optimal by using (2.28).
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3 General comparison results for case A and B

In this section, we compare the cost of several extremal trajectories in order to exclude some candidates for
optimality. Let us define:

s∗1 =

{
s1 for case A,
s′1 for case B,

and s∗2 =

{
s′2 for case A,
s2 for case B,

and let γ∗2 (s), γ2(s), such that:

γ∗2(s) = vm

(
sin − s∗2
sin − s

)
, γ2(s) = vm

(
sin − s2
sin − s

)
.

Notice that for s ∈]0, s2[:

γ2(s) < γ∗2 (s) for case A, and γ2(s) = γ∗2 (s) for case B.

Let us now consider C2 and C∗2 defined by:

C2 = {(s, v) ∈ (0, s2]× (0, vm] | v = γ2(s)} , C∗2 = {(s, v) ∈ (0, s2]× (0, vm] | v = γ∗2(s)} .

The curves C2 and C∗2 are dilution curves; hence, if (s0, v0) ∈ C2, then an impulse of volume v − v0 (with
v < vm) transforms (s0, v0) into another point of C2. It is important to see that any set

Fs :=

{
(s, v) ∈ (0, sin)× (0, vm) | v ≥ vm

(
sin − s
sin − s

)}
,

where s ∈ (0, sin), is such that any extremal trajectory starting in Fs will stay in this set for all t. In the
following, we make use of the notations:

• Is+,v+s−,v− denotes a dilution (or impulse) from (s−, v−) to (s+, v+) achieved by r = 0 and any admissible
control u such that

∫ τ+
τ−

u(τ)dτ = v+ − v−. For short, we will also make use of the notation I to denote

an impulse.

• NF s
′
0,v0
s0,v0 denotes an arc u = 0 (no feeding) at constant volume v0 from a concentration s0 to a concen-

tration s′0 < s0. For short, we will also make use of the notation NF to denote an arc u = 0.

• SAv1,v2i denotes a singular arc si from volume v1 to volume v2, i = 1, 2.

We will say that an extremal trajectory has a switching (or switching point) at some time t0 if it contains

a sequence I
s+,v+
s−,v−NF

s,v+
s+,v+ (with s+ > s−, s < s+) or NF

s′0,v0
s0,v0 I

s+,v+
s′0,v0

(with s′0 < s0, s+ > s′0) such that the

control (r, u) is non-constant in a neighborhood of t0. We now examine the possibility for an optimal control
to have switching points at some point (s, v) with v < vm and s ∈]s1, s

∗
2[, i = 1, 2. In the next lemma, we

prove that for certain initial conditions, a trajectory reaching the singular arc s2 with one switching point is
not optimal. The proof of this lemma is illustrated on Figure 2.

Lemma 3.1. Let (s0, v0) ∈ D be a point such that s∗1 < s0 < s2. A sequence NF
s−,v0
s0,v0 I

s2,v+
s−,v0 with s− > s∗1,

and v0 < γ2(s−) is not optimal.

Proof. The cost of the sequence above is:

J1 =

∫ s0

s−

ds

µ(s)(Mv0 + sin − s)
,

and we have by definition of the dilution s2 = v0
v+
s− +

(
1− v0

v+

)
sin. As µ(s) ≤ µ(s2), we obtain

J1 ≥
1

µ(s2)

∫ s0

s−

ds
M
v0

+ sin − s
=

1

µ(s2)
ln

(
M + v0(sin − s−)

M + v0(sin − s0)

)
.
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The cost of the sequence Is2,v2s0,v0SA
v2,v+
2 is:

J2 =
1

µ(s2)
ln

(
M + v+(sin − s2)

M + v2(sin − s2)

)
,

where we have s2 = v0
v2
s0 +

(
1− v0

v2

)
sin. Using v0

v2
= sin−s2

sin−s0 ,
v0
v+

= sin−s2
sin−s− , we obtain:

J1 − J2 ≥
1

µ(s2)

(
ln

(
M + v0(sin − s−)

M + v0(sin − s0)

)
− ln

(
M + v+(sin − s2)

M + v2(sin − s2)

))
= 0,

which proves the lemma.

Corollary 3.1. Any trajectory (s(t), v(t)) starting at some point (s0, v0) ∈ D with s∗1 ≤ s0 < s2, v0 < vm,
such that s(t) ≥ s∗1 for all t and containing a sequence NF sc,vbsb,vb

Is2,vcsc,vb
, is not optimal.

Proof. It is enough to compare the trajectory with the one that coincides until the point (sb, vb) and contains
the sequence I

s2,v+
sb,vb SA

v+,vc
2 . By lemma 3.1, this trajectory has a lower cost than the initial one, which concludes

the proof.

Figure 2: Figure left: illustration of the proof of lemma 3.1 for case B. Figure right: illustration of the proof
of lemma 5.1 for case A.

Lemma 3.2. Let (s0, v0) ∈ D be a point such that v0 < vm, s0 > s1. Then, any extremal trajectory that

contains a sequence NF
s−,v0
s0,v0 I

s+,v+
s−,v0 NF

s1,v+
s+,v+ with s1 < s− < s0 and s+ ≤ s2 is not optimal.

Proof. Let ts− < ts+ the two instants in which the sequence contains a switch. If the trajectory is optimal,
we must have µ(s−) = µ(s+) given that φ1(ts−) = φ1(ts+) = 0 (see lemmas 2.4 and 2.5). Consequently, one
has s− < sm < s+. Now, let us choose an ε > 0 small enough such that s− − ε > s1 and s+ − ε′ > sm

with ε′ = v+
v0
ε. We will show that the cost Jε1 of the sequence NF

s−−ε,v0
s0,v0 I

s+−ε′,v+
s−−ε,v0 NF

s1,v+
s+−ε′,v+ is lower than

the cost J2 of the sequence NF
s−,v0
s0,v0 I

s+,v+
s−,v0 NF

s1,v+
s+,v+ . Indeed, we have µ(s) ≤ µ(s+) for s ∈ [s+ − ε′, s+] and

µ(s) ≥ µ(s−) for s ∈ [s− − ε, s−] so that:

J2 − Jε1 =

∫ s+

s+−ε′

ds

µ(s)(Mv+ + sin − s)
−
∫ s−

s−−ε

ds

µ(s)(Mv0 + sin − s)

>
1

µ(s+)

∫ s+

s+−ε′

ds
M
v+

+ sin − s
− 1

µ(s−)

∫ s−

s−−ε

ds
M
v0

+ sin − s

>
1

µ(s+)
ln

(
M + v+(sin − s+ + ε′)

M + v+(sin − s+)

)
− 1

µ(s−)
ln

(
M + v0(sin − s− + ε)

M + v0(sin − s−)

)
.

Moreover, the dilution can be written:

v0
v+

=
sin − s+
sin − s−

=
sin − s+ + ε′

sin − s− + ε
.
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As µ(s−) = µ(s+), we obtain J2 − Jε1 > 0, which concludes the proof.

In the following, we will focus on trajectories containing a sequence NF SA1. Let us recall that along an
arc u = 0 starting at some point (s0, v0) ∈ D, the switching function φ2 can be expressed by:

φ2(t) = φ2(0) +

∫ s(t)

s0

ψv0(s)
µ′(s)

µ2(s)
ds, (3.1)

and let us define a function F by:

(s, v) ∈ D 7−→ F (s, v) =

∫ s

s1

ψv(σ)
µ′(σ)

µ2(σ)
dσ (3.2)

It follows that if φ2 < 0 until a time ts1 such that s(ts1) = s1, then we have φ2(ts1) = φ2(0)− F (s0, v0). We
will see in the following sections that the sign of the function F (s, v) is of particular interest.

Lemma 3.3. We have F (sm, v) < 0 for any volume v, and for given v, s 7−→ F (s, v) is increasing with respect
to s in the interval (sm, s2). Moreover, for case A, we have:
(i). If M > 0, then F (s′2, v) < 0.
(ii). If M = 0, then F (s′2, v) = 0.
(iii). If M < 0, then F (s′2, v) > 0.

Proof. First, ψv(s)
µ′(s)
µ2(s) is negative for s ∈ (s1, sm) and positive for s ∈ (sm, s2), which proves that F (sm, v) <

0 and that s 7−→ F (s, v) is increasing with respect to s in the interval (sm, s2). Let us prove (i). Assume that
the inequality does not hold. Then, we have:∫ sm

s1

ψv(s)
µ′(s)

µ2(s)
ds+

∫ s′2

sm

ψv(s)
µ′(s)

µ2(s)
ds ≥ 0,

that is:

I1 :=

∫ sm

s1

ψv(s)

(
− µ
′(s)

µ2(s)

)
ds ≤

∫ s′2

sm

ψv(s)
µ′(s)

µ2(s)
ds := I2

Using that ψv is decreasing on [s1, s2], and µ(s′2) = µ(s1), we obtain

ψv(sm)

(
1

µ(sm)
− 1

µ(s1)

)
< I1 ≤ I2 < ψv(sm)

(
1

µ(sm)
− 1

µ(s1)

)
,

which is a contradiction. The proof of (iii) is analogous, given that ψv(s) is increasing with M < 0. To prove
(ii), notice that s 7−→ ψv(s) is constant, so that F (s′2, v) = 0 by (3.2).

Remark 3.1. For case A, one can prove more generally that if s 7−→ α(s) is a non-decreasing function (resp.

s 7−→ β(s) is a non-increasing function), then
∫ s′2
s1
α(s) µ

′(s)
µ2(s)ds ≥ 0 (resp.

∫ s′2
s1
β(s) µ

′(s)
µ2(s)ds ≤ 0).

4 Optimal synthesis for case A

In this section, we study the optimality of the singular arcs s1 and s2 in case A.

4.1 Preliminary results for all M

In the next proposition, we prove that if a trajectory satisfies s(t0) = s1 for a certain time t0, then it is optimal
to stay on the first singular arc until the tank is completely filled.

Proposition 4.1. Let us consider an optimal trajectory such that s(t) = s1 on some interval of time [t0, t1].
If there exists η > 0 such that s(t) 6= s1 for t ∈]t1, t1 + η], then v(t1) = vm.
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Proof. Assume that v(t1) < vm. From proposition 2.3, we may discard the case u = 0 on the interval
t ∈]t1, t1 + η]. Therefore, we can assume that r = 0 on ]t1, t1 + η]. In order to reach the target, there must
exist a switching time t2 with φ1(t1) = φ1(t2) = 0, so µ(s1) = µ(s(t2)) (see lemma 2.5). Because an impulse
cannot cross s2, we obtain s(t2) = s′2. Moreover, we can prove that s(t) ≤ s′2 by the same argument. It follows
that at time t2, we have two possibilities:

Case 1. The trajectory has a unique arc u = 0 until s1. In this case, the cost of the sequence I
s′2,v+
s1,v−NF

s1,v+
s′2,v+

is higher than the cost of SA
v−,v+
1 . Indeed, the cost of the sequence NF

s1,v+
s′2,v+

is

J1 =

∫ s′2

s1

ds

µ(s)(Mv+ + sin − s)
≥ 1

µ(s1)
ln

(
M + v+(sin − s1)

M + v−(sin − s′2)

)
,

using µ(s) ≤ µ(s1) for s ∈ [s1, s
′
2]. Now the cost J2 of the sequence SA

v−,v+
1 is

J2 =
1

µ(s1)
ln

(
M + v+(sin − s1)

M + v−(sin − s1)

)
,

and using the dilution v−(sin − s1) = v+(sin − s′2), we obtain that J1 − J2 ≥ 0.
Case 2. The trajectory has an arc u = 0, and it contains at least one more sequence I NF . We obtain a
contradiction by lemma 3.2 (considering the last sequence NF I NF before reaching s1).

Finally, we prove the existence of a curve such that both strategies SAS1 and SAS2 are equal. Let Ji(s, v)
the cost of a singular strategy si, i = 1, 2 starting at point (s, v).

Lemma 4.1. For every v0 ∈]0, vm[, there exists at most a unique s := f(v0) in [s1, s2] such that J1(f(v0), v0) =
J2(f(v0), v0).

Proof. Let α :=
∫ s1
sref

ds
µ(s)(Mv0

+sin−s)
. First, observe that the cost of the strategy SAS2 is

J2(s0, v0) =


∫ v0
vm

s0+(1− v0
vm

)sin
s1

ds
µ(s)( Mvm+sin−s)

+ α, if γ2(s0) ≤ v0,∫ s2
s1

ds
µ(s)( Mvm+sin−s)

+ 1
µ(s2)

ln
(
M+vm(sin−s2)
M+v0(sin−s0)

)
+ α, if v0 ≤ γ2(s0),

(4.1)

and that the cost of the strategy SAS1 is:

J1(s0, v0) =

∫ s0

s1

ds

µ(s)(Mv0 + sin − s)
+

1

µ(s1)
ln

(
M + vm(sin − s1)

M + v0(sin − s1)

)
+ α. (4.2)

For a fixed v0, s0 7−→ J2(s0, v0) is continuous (both expressions of (4.1) coincide on C2), as is s0 7−→ J1(s0, v0);
thus, s0 7−→ gv0(s0) := J2(s0, v0)− J1(s0, v0) is also continuous.
If v0 ≤ γ2(s0), then:

g′v0(s0) =
v0

M + v0(sin − s0)

(
1

µ(s2)
− 1

µ(s0)

)
< 0 (4.3)

If v0 ≥ γ2(s0), then

g′v0(s0) =
v0

M + v0(sin − s0)

(
1

µ(s+)
− 1

µ(s0)

)
, (4.4)

where s+ = v0
vm
s0 + (1− v0

vm
)sin.

We consider three subcases:
Subcase 1: v0 ≤ γ2(s1). From equation (4.3), s0 7−→ gv0(s0) is strictly decreasing on the interval [s1, s2].
Subcase 2: γ2(s1) < v0 ≤ γ∗2(s1). We obtain in this case from equation (4.4), g′v0(s0) < 0 as µ(s+) > µ(s1) >

µ(s0) for all s0 ∈ [s1, sa], where sa = γ−12 (v0). Moreover, g′v0(s0) < 0 for all s0 ∈ [sa, s2) (equation (4.3)).
Consequently, gv0(s0) is strictly decreasing on [s1, s2]
Subcase 3: v0 > γ∗2 (s1). One can easily check that gv0(s1) > 0 (see the proof of proposition 4.1 case
1). Moreover, gv0(s) is increasing on an interval [s0, s̃0] where s̃0 ∈ [s1, γ

∗
2
−1(v0)] is such that µ(s̃0) =

µ( v0vm s̃0 + (1− v0
vm

)sin), and gv0(s) is decreasing for s > s̃0.
Consequently, there exists at most a unique s := f(v0) such that J1(f(v0), v0) = J2(f(v0), v0).
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In the rest of the paper, we consider for (s0, v0) ∈ D:

gv0(s0) = J2(s0, v0)− J1(s0, v0), (4.5)

where J1(s0, v0) and J2(s0, v0) are defined by (4.2) and (4.1). We also use C to denote the curve whose graph
is f , and let A1, A2 be the sets defined as follows:

A1 = {(s0, v0) ∈ D | s0 ∈ [s1, s2], gv0(s0) > 0} ,

A2 = {(s0, v0) ∈ D | s0 ∈ [s1, s2], gv0(s0) < 0} .

For (s0, v0) ∈ A1, the strategy SAS1 is better than SAS2, whereas for (s0, v0) ∈ A1, the strategy SAS2 is
better than SAS1. In Figure 3, the costs J1(s0, v0) and J2(s0, v0) have been computed using equations (4.1)
and (4.2) in order to determine numerically the curve C.

4.2 Case A with M ≥ 0

Lemma 4.2. A sequence I
s+,v+
s0,v0 NF

s1,v+
s+,v+SA

v+,vm
1 such that (s0, v0) ∈ D, s0 ∈ (s1, s2), 0 < v0 < v+ < vm,

s+ ∈ (s0, s2] is not optimal.

Proof. Let us define J(vJ) as the cost of the sequence IsJ ,vJs0,v0 NF
s1,vJ
sJ ,vJ SA

vJ ,vm
1 , where sJ = sJ(vJ) is defined

by the dilution:
vJ
v0

=
sin − s0

sin − sJ(vJ)
.

To prove this lemma, we show that J(vJ) is minimal for vJ such that sJ(vJ) ∈ {s0, s2} or for vJ = vm (if
v0 > γ∗2(s0)). The cost J(vJ) can be written:

J(vJ) =

∫ sJ (vJ )

s1

ds

µ(s)(MvJ + sin − s)
+

1

µ(s1)
ln

(
M + vm(sin − s1)

M + vJ(sin − s1)

)
,

whose derivative is:

J ′(vJ) =

∫ sJ (vJ )

s1

Mds

µ(s)(M + vJ(sin − s))2
+

(sin − sJ)

µ(sJ)(M + vJ(sin − sJ))
− (sin − s1)

µ(s1)(M + vJ(sin − s1))
. (4.6)

This can be equivalently written:

J ′(vJ) =

∫ sJ (vJ )

s1

−ψ
′
v(s)

µ(s)
ds+

ψv(sJ)

µ(sJ)
− ψv(s1)

µ(s1)
,

and by an integration by parts, we obtain:

J ′(vJ) =

∫ sJ

s1

−ψvJ (s)
µ′(s)

µ2(s)
ds. (4.7)

Finally, we have:

J ′′(vJ) =

∫ sJ

s1

−∂ψvJ (s)

∂vJ

µ′(s)

µ2(s)
ds− ψvJ (sJ)

(sin − sJ)µ′(sJ)

vJµ2(sJ)

=

∫ sJ

s1

ψ2
vJ (s)

µ′(s)

µ2(s)
ds− ψvJ (sJ)

(sin − sJ)µ′(sJ)

vJµ2(sJ)
.

For M > 0, s 7−→ ψvJ (s) is decreasing, so J ′(vJ) = 0 implies that:∫ sJ

s1

ψ2
vJ (s)

µ′(s)

µ2(s)
ds =

∫ sm

s1

ψ2
vJ (s)

µ′(s)

µ2(s)
ds+

∫ sJ

sm

ψ2
vJ (s)

µ′(s)

µ2(s)
ds

< ψvJ (sm)

∫ sm

s1

ψvJ (s)
µ′(s)

µ2(s)
ds+ ψvJ (sm)

∫ sJ

sm

ψvJ (s)
µ′(s)

µ2(s)
ds = 0;
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consequently, J ′′(vJ) < 0. Hence, the minimum of J(vJ) is obtained for vJ such that sJ ∈ {s0, s2} or vJ = vm
(if v0 > γ∗2(s0)).
Now for M = 0, J ′(vJ) = 0 is achieved if and only if sJ(vJ) = s′2 (by lemma 3.3). Thus, we have:

J ′′(vJ) = −ψvJ (s′2)
(sin − s′2)µ′(s′2)

vJµ2(s′2)
< 0.

Thus, we can conclude as for M > 0.
Finally, let us prove that we can exclude the case in which vJ is such that sJ = s2. If a sequence Is2,vJs0,v0 NF

s1,vJ
s2,vJ

SAvJ ,vm1 is optimal, we have necessarily

J ′(vJ) =

∫ s2

s1

−ψvJ (s)
µ′(s)

µ2(s)
ds = 0,

using that φ2 vanishes at the two switching points (see proof of corollary 2.1). For M = 0, this conclusion is
not possible (lemma 3.3). For M > 0, we obtain J ′′(vJ) < 0, so the trajectory is not optimal.
To conclude, the minimum of J(vJ) is obtained for vJ = v0 or vJ = vm (if v0 > γ∗2 (s0)). Given that
v0 < v+ < vm, the sequence I

s+,v+
s0,v0 NF

s1,v+
s+,v+SA

v+,vm
1 is not optimal.

Corollary 4.1. A sequence I
s+,vm
s0,v0 NF s1,vms+,vm such that (s0, v0) ∈ D, s0 ∈ (s1, s

′
2), γ∗2 (s0) < v0 < vm, is not

optimal.

Proof. Following the same sketch as for the proof of the lemma above, we obtain:

J ′(vm) =

∫ s+

s1

−ψvm(s)
µ′(s)

µ2(s)
ds = −F (s+, vm).

Given that s+ < s′2, we have J ′(vm) > 0 (see lemma 3.3), so the trajectory is not optimal.

Lemma 4.3. A sequence SA
v0,v+
2 NF

s1,v+
s2,v+ SA

v+,vm
1 such that (s0, v0) ∈ D, 0 < v0 < v+ < vm, is not optimal.

Proof. The proof is similar to the proof of lemma 4.2. Let us define J(vJ) as the cost of the sequence
SAv0,vJ2 NF s1,vJs2,vJ SA

vJ ,vm
1 . We will show that vJ 7−→ J(vJ) reaches its minimum for vJ ∈ {v0, vm}. The cost

J(vJ) can be written:

J(vJ) =

∫ s2

s1

ds

µ(s)(MvJ + sin − s)
+

1

µ(s1)
ln

(
M + vm(sin − s1)

M + vJ(sin − s1)

)
+

1

µ(s2)
ln

(
M + vJ(sin − s2)

M + v0(sin − s2)

)
,

whose derivative is:

J ′(vJ) =

∫ s2

s1

−ψvJ (s)
µ′(s)

µ2(s)
ds.

By derivating with respect to vJ , we obtain:

J ′′(vJ) =

∫ s2

s1

ψ2
vJ (s)

µ′(s)

µ2(s)
ds.

For M > 0, if J ′(vJ) = 0, then one can easily check that J ′′(vJ) < 0. Consequently, the minimum of J(vJ) is
obtained for vJ ∈ {v0, vm} (see proof of lemma 4.2).
For M = 0, we have J ′(vJ) < 0 (lemma 3.3), so the minimum is obtained for vJ = vm.

Proposition 4.2. For any initial condition (s0, v0) ∈ D such that s0 ∈ [s1, s2] and 0 < v0 < vm, the optimal
feedback is either SAS1 or SAS2.

Proof. First, from proposition 4.1, lemma 2.5 and lemma 4.3, we know that an extremal trajectory is not
optimal if it leaves a singular arc si before vm. Let us now assume that there exists an optimal trajectory
starting from (s0, v0) ∈ D and that does not coincide with one of the two singular arc strategies. This
trajectory necessarily contains at least one switching point at some point s∗. We have three cases depending
on whether the trajectory first reaches s2, vm, or s1
Case 1: The trajectory reaches s2. In this case, it contains a sequence NF I SA2 before reaching the singular
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arc s2. We then conclude that the trajectory is not optimal by lemma 3.1.
Case 2: The trajectory reaches vm (before s2). In this case, it contains a sequence NF I .,vm.,. NF s1,vm.,vm and
does not reach the singular arc s2. Using lemma 3.2, we conclude that the trajectory is not optimal.
Case 3: The trajectory reaches s1. In this case, it contains a sequence I NF SA1 reaching the singular arc
s1. We then conclude that the trajectory is not optimal by lemma 4.2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

∆ J(s,v)

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

Figure 3: Comparison of the two singular arc strategies SASi (of cost Ji). Top panels: case A, bottom panels:
case B; on the left: M > 0, on the right: M < 0. The curve C such that J1(s, v) = J2(s, v) (see lemma 4.1)

and the dilution curves in red. The background color represents ∆J(s, v) = J1(s,v)−J2(s,v)
max(J1(s,v),J2(s,v))

.

In this case, it remains to compare the cost of the two singular arc strategies SAS1 and SAS2, which are
the only candidates for optimality. From lemma 4.1, the set D can be divided into two regions for which the
optimal strategy is either SAS1 or SAS2. Therefore, we can conclude case A with M ≥ 0 using the following
theorem:
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Theorem 4.1. Let (s0, v0) ∈ D.
(i). If s0 < s1, then:

• If (s1, v0
sin−s0
sin−s1 ) ∈ A1, then the optimal feedback is SAS1.

• If (s1, v0
sin−s0
sin−s1 ) ∈ A2, then the optimal feedback is SAS2.

• If f
(
v0
sin−s0
sin−s1

)
= s1, then the optimal feedback is either SAS1 or SAS2.

(ii). If s0 ∈ [s1, s2], then:

• If (s0, v0) ∈ A1, then the optimal feedback is SAS1.

• If (s0, v0) ∈ A2, then the optimal feedback is SAS2.

• If s0 = f(v0), then the optimal feedback is either SAS1 or SAS2.

(iii). If s0 > s2, then:

• If (s2, v0) ∈ A1, then the optimal feedback is SAS1.

• If (s2, v0) ∈ A2, then the optimal feedback is SAS2.

• If f(v0) = s2, then the optimal feedback is either SAS1 or SAS2.

Proof. Statement (ii) is a consequence of proposition 4.2 and lemma 4.1. Let us prove (i). From proposition
2.3, we have that r = 0 until the concentration s reaches s = s1. Then, we can apply (ii). Similarly, for (iii),
the optimal trajectory starts with u = 0 until s = s2 (see lemma 2.5).

Remark 4.1. Our optimal synthesis in this case shows that an extremal trajectory that has a switching point
before reaching one singular arc is not optimal. In [15], the authors obtain a numerical form of the problem
in this case. Extremal trajectories that contain a switching point before reaching a singular arc are depicted.
We believe that the numerical approach, which is presented in [15], is very sensitive to the presence of singular
arcs. Another possible explanation is that, contrary to [15], we allow impulsive control. Nevertheless, given
the set of parameter values used in [15] (in particular, u � µm), the impulsive problem should not differ
from the numerical computations of [15] without impulse. On the other hand, in the aforementioned paper,
the authors do not consider these trajectories, and they conjecture that the optimal control is either SAS1 or
SAS2. Theorem 4.1 proves this conjecture when impulsive control is allowed.

4.3 Case A with M < 0

In this section, we will consider the case A with M < 0.

Lemma 4.4. Let (s0, v0) ∈ D such that s′2 ≤ s0 < sin and v0 < vm. Then, the optimal control steering
(s0, v0) to the target T is SAS2.

Proof. Let us take s′2 ≤ s0 < s2. If we have u = 0 at time 0, then φ2 must switch at a certain time t0 (because
v0 < vm) such that µ(s(t0)) > µ(s0) (corollary 2.1). We obtain a contradiction because µ(s(t0)) ≤ µ(s1) and
µ(s0) ≥ µ(s′2) = µ(s1). Hence, we must have r = 0 at time 0. The same argument shows that the trajectory
cannot switch to u = 0 before reaching s = s2. If s0 > s2 and r = 0 at the initial time, then the trajectory
must switch at a certain time t0 such that φ1(t0) = 0. We obtain µ(s(t0)) > µ(s0) (lemma 2.5), which is not
possible as µ is decreasing on [s2,+∞). Hence, we must have u = 0 at time zero, and the same argument
shows that the trajectory cannot switch before reaching s = s2. Finally, when s = s2, the arguments above
shows that the trajectory reaches the maximum of volume vm, which concludes the proof.

Proposition 4.3. For any volume v ∈ (0, vm), there exists a unique s = s̃(v) ∈ (sm, s
′
2) such that F (s̃(v), v) =

0.

Proof. From lemma 3.3, the function F (s, v) is continuous and increasing with respect to s on (sm, s
′
2).

Moreover, we have F (sm, v) < 0 and F (s′2, v) > 0, which concludes the proof.
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In the remainder of this subsection, we will consider that the following hypothesis holds true:

Hypothesis 4.1. For any volume v ∈ (0, vm), we have:∫ s̃(v)

s1

ψ2
v(s)

µ′(s)

µ2(s)
ds− ψv(s̃(v))

(sin − s̃(v))µ′(s̃(v))

vµ2(s̃(v))
< 0.

Remark 4.2. From a geometric point of view, for a given v, this hypothesis holds if and only if the slope of
the dilution curve passing through the point s̃(v) is lower than the slope of the curve s̃(v). According to various
numerical simulations, this assumption seems to be always true (see figure 4).
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Figure 4: Verification of hypothesis 4.1. At the intersections, the slope of the dilution curves (in red) is lower
than the slope of the curve s̃(v) (in blue) determined numerically by solving F (s̃(v), v) = 0 (see proposition
4.3). The green line delimits the domain D.

Lemma 4.5. A sequence I
s+,v+
s0,v0 NF

s1,v+
s+,v+SA

v+,vm
1 such that (s0, v0) ∈ D, s0 ∈ (s1, s2), 0 < v0 < v+ < vm,

s+ ∈ (sm, s
′
2] is not optimal.

Proof. As for the proof of lemma 4.2, we define J(vJ) the cost of the sequence IsJ ,vJs0,v0 NF
s1,vJ
sJ ,vJ SA

vJ ,vm
1 . We

have:

J ′(vJ) =

∫ sJ

s1

−ψvJ (s)
µ′(s)

µ2(s)
ds,

and:

J ′′(vJ) =

∫ sJ

s1

ψ2
vJ (s)

µ′(s)

µ2(s)
ds− ψvJ (sJ)

(sin − sJ)µ′(sJ)

vJµ2(sJ)
.

Given hypothesis 4.1, if J ′(vJ) = 0, then J ′′(vJ) < 0. Consequently, the minimum of J(vJ) is obtained for
sJ ∈ {s0, s′2} or vJ = vm (if v0 > γ∗2 (s0)). Finally, we can exclude sJ = s′2 from lemma 4.4.

Proposition 4.4. proposition 4.2 applies for case A with M < 0.

Proof. We can follow the same proof as for proposition 4.2 with these modifications:

• It is not optimal to leave the singular arc SA2 before vm from lemma 4.4.

• In case 3, replace lemma 4.2 with lemma 4.5
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We now discuss the position of the curve C in the plane (s, v) (see fig. 3). Recall that gv(s) is defined by
gv(s) = J2(s, v) − J1(s, v), where J1 and J2 are given by (4.1)-(4.2). From lemma 4.4, we have gv0(s′2) < 0.
Moreover, one can easily check that gv0(s1) is continuous and strictly increasing with respect to v0 in the
interval ]0, γ∗2 (s1)]. For M ≤ 0, we can also show that limv0→ −M

sin−s1
gv0(s1) = −∞, while gγ∗2 (s1)(s1) > 0.

Consequently, there exists a unique v∗ ∈
]
−M

sin−s1 , γ
∗
2(s1)

[
such that J1(s1, v∗) = J2(s1, v∗). Hence, C starts at

(s1, v∗). We can now conclude case A with M < 0.

Theorem 4.2. Let (s0, v0) ∈ D.
(i). If s0 < s1, then:

• If v0
sin−s0
sin−s1 > v∗, then the optimal feedback is SAS1.

• If v0
sin−s0
sin−s1 = v∗, then the optimal feedback is either SAS1 or SAS2.

• If v0
sin−s0
sin−s1 < v∗, then the optimal feedback is SAS2.

(ii) If s0 ∈ [s1, s
′
2[, then:

• If (s0, v0) ∈ A1, then the optimal feedback is SAS1.

• If (s0, v0) ∈ A2, then the optimal feedback is SAS2.

• If s0 = f(v0), then the optimal feedback is either SAS1 or SAS2.

(iii). If s0 ≥ s′2, then the optimal feedback is SAS2.

Proof. Statement (ii) is a consequence of proposition 4.2 and lemma 4.1 and statement (iii) of lemma 4.4. Let
us prove (i). From proposition 2.3, we have that r = 0 until the concentration s reaches s = s1. Then, we can
apply (ii).

5 Optimal synthesis for case B

In this section, we prove that SAS1 is optimal in case B.

5.1 Case B with M ≥ 0

The proof of lemma 5.1 is illustrated on Figure 2.

Lemma 5.1. A sequence I
s+,v+
s0,v0 NF

s1,v+
s+,v+ such that (s0, v0) ∈ D, s0 ∈ [s1, s2), 0 < v0 < vm, s+ ∈ (s0, s2] is

not optimal.

Proof. We will show that the cost of the sequence NF s1,v0s0,v0 SA
v0,v+
1 , denoted J2, is lower than the cost of the

sequence above, denoted J1 (see Figure 2). Let us write J1 = Ja1 + Jb1 and J2 = Ja2 + Jb2 with:

Ja1 =

∫ s0

s1

ds

µ(s)(Mv+ + sin − s)
, Jb1 =

∫ s+

s0

ds

µ(s)(Mv+ + sin − s)
,

and

Ja2 =

∫ s0

s1

ds

µ(s)(Mv0 + sin − s)
, Jb2 =

1

µ(s1)
ln

(
M + v+(sin − s1)

M + v0(sin − s1)

)
.

As s+ ≤ s2, we obtain:

Jb1 >
1

µ(s1)

∫ s+

s0

ds
M
v+

+ sin − s
=

1

µ(s1)
ln

(
M + v+(sin − s0)

M + v+(sin − s+)

)
and, with the dilution v+

v0
= sin−s0

sin−s+ ,

Jb1 >
1

µ(s1)
ln

(
M + v+(sin − s0)

M + v0(sin − s0)

)
. (5.1)

19



Now, let us compare Ja1 and Ja2 . We have:

Ja1 − Ja2 =

∫ s0

s1

1

µ(s)

(
1

M
v+

+ sin − s
− 1

M
v0

+ sin − s

)
ds.

As M ≥ 0, we have 1
M
v+

+sin−s
− 1

M
v0

+sin−s
≥ 0 for all s ∈ [s1, s0]. Therefore, we obtain:

Ja1 − Ja2 ≥
1

µ(s1)

∫ s0

s1

(
1

M
v+

+ sin − s
− 1

M
v0

+ sin − s

)
ds

=
1

µ(s1)
ln

(
[M + v+(sin − s1)] [M + v0(sin − s0)]

[M + v+(sin − s0)] [M + v0(sin − s1)]

)
.

Combining this inequality, the expression of Jb2 above, and (5.1), we obtain J1 − J2 > 0, which proves the
result.

Corollary 5.1. Any trajectory (s(t), v(t)) starting at some point (s0, v0) ∈ D such that s1 ≤ s0 < s2, v0 < vm,
that is a finite concatenation of arcs Isb,vbsa,va and NF sc,vbsb,vb

, and such that for all time t, s1 ≤ s(t) ≤ s2, is not
optimal.

Proof. As sref < s1, there exists a time t0 > 0 such that the trajectory reaches s1 that is s(t0) = s1.
Before reaching s1, the trajectory necessarily contains a sequence: Isb,vbsa,vaNF

s1,vb
sb,vb

, with va < vb ≤ vm, and
s1 ≤ sa < sb ≤ s2. By the lemma above, the trajectory that coincides with the initial one until the point
(sa, va) and that is then equal to NF s1,v1sa,vaSA

va,vb
1 , has a lower cost.

In the next corollary, we provide a region where the singular arc strategy SAS2 is not optimal.

Corollary 5.2. Let (s0, v0) ∈ D such that s0 ≤ s2 and 0 < v0 < vm. If v0 ≥ γ2(s0), then the singular arc
strategy SAS2 is not optimal.

Proof. Given that v0 ≥ γ2(s0), the singular arc strategy SAS2 corresponds to the sequence I
s+,vm
s0,v0 NF s1,vms+,vm

with s(t) < s2 for all t. This corollary is therefore a direct consequence of lemma 5.1 using v+ = vm.

Lemma 5.2. A sequence SA
v0,v+
2 NF

s1,v+
s2,v+ such that (s0, v0) ∈ D, 0 < v0 < vm and v0 < v+ ≤ vm is not

optimal.

Proof. Let us compare the cost of the sequence NF s1,v0s2,v0 SA
v0,v+
1 (denoted J1) with the cost of the sequence

SA
v0,v+
2 NF

s1,v+
s2,v+ (denoted J2). We have J1 = Ja1 + Jb1 and J2 = Ja2 + Jb2 with:

Ja1 =
1

µ(s1)
ln

(
M + v+(sin − s1)

M + v0(sin − s1)

)
, Jb1 =

∫ s2

s1

ds

µ(s)(Mv0 + sin − s)
,

and

Ja2 =
1

µ(s2)
ln

(
M + v+(sin − s2)

M + v0(sin − s2)

)
, Jb2 =

∫ s2

s1

ds

µ(s)(Mv+ + sin − s)
.

Let us compare Jb1 and Jb2 :

Jb2 − Jb1 =

∫ s2

s1

1

µ(s)

(
1

M
v+

+ sin − s
− 1

M
v0

+ sin − s

)
ds.

Given that M ≥ 0, we have 1
M
v+

+sin−s
− 1

M
v0

+sin−s
≥ 0 for all s ∈ [s1, s2]. Therefore, we obtain:

Jb2 − Jb1 ≥
1

µ(s1)

∫ s2

s1

(
1

M
v+

+ sin − s
− 1

M
v0

+ sin − s

)
ds

=
1

µ(s1)
ln

(
[M + v+(sin − s1)] [M + v0(sin − s2)]

[M + v+(sin − s2)] [M + v0(sin − s1)]

)
.
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Using this inequality, we obtain:

J2 − J1 ≥
(

1

µ(s2)
− 1

µ(s1)

)
ln

(
M + v+(sin − s2)

M + v0(sin − s2)

)
> 0,

which proves the lemma.

Corollary 5.3. Let (s0, v0) ∈ D such that v0 < γ2(s0). The singular arc strategy SAS2 starting from the
point (s0, v0) is not optimal.

Proof. Because v0 < γ2(s0), the trajectory given by the singular arc strategy SAS2 necessarily contains a
sequence SAv1,vm2 NF s1,vms2,vm , where 0 < v1 < vm. Therefore, from the lemma above, the strategy SAS2 is not
optimal.

In the next theorem, we use the previous results to conclude that the optimal feedback is the singular arc
s1.

Theorem 5.1. Let (s0, v0) ∈ D. For case B with M ≥ 0, the optimal strategy steering (s0, v0) to the target is
the singular arc strategy SAS1.

Proof. First, if s0 < s1, from proposition 2.3, we have that r = 0 until the concentration s reaches s = s1.
Now consider s0 ≥ s1. From corollary 5.2 and corollary 5.3, the singular arc strategy SAS2 is not optimal. For
the same reason, we can also eliminate all of the extremal trajectories that have at least one switching point
and then reach s2 or vm with a concentration s > s1. The condition with an extremal trajectory containing
a sequence of dilutions and no feeding until s1 with v < vm remains to be considered. This trajectory is not
optimal from lemma 5.1 and corollary 5.1. Finally, we can also exclude the case in which the trajectory leaves
the singular arc s1 with v < vm (consequence of lemma 2.5 and proposition 2.3(ii)). It follows that the only
candidate for optimality is SAS1.

Remark 5.1. If M > 0, theorem 5.1 applies also for the limit case µ(s1) = µ(s2). If M = 0, lemma 5.2 no
longer holds in this limit case. However, we can prove the following optimal synthesis:

• (i). If s0 < s2, the optimal strategy is the singular arc strategy SA1.

• (ii). If s0 ≥ s2, the optimal strategy is either SA1, SA2 or any strategy NF s2,v0s0,v0 SA
v0,v+
2 NF

s1,v+
s2,v+

SA
v+,vm
1 NF

sref ,vm
s1,vm with v+ ∈ (v0, vm).

Sketch of the proof. Let us prove (i). The result is clear if s0 < s1 from proposition 2.3 and lemma 2.5. Now,
assume that s0 ∈ [s1, s2). The cost of a sequence NF s0,v0s+,v0 is J1 =

∫ s+
s0

ds
µ(s)(sin−s) and does not depend on v0.

Moreover, the two sequences SAv1,v21 and SAv1,v22 have the same cost J2 = 1
µ(s1)

ln(v2v1 ). Finally, notice that for

any (s0, v0) ∈ D, we have
∫ s+
s0

ds
µ(s)(sin−s) ≥

1
µ(s1)

ln
(
v+
v0

)
, where s+ = (1− v0

v+
)s0 + v0

v+
sin. This last inequality

shows that lemmas 3.1 and 5.1 hold when M = 0. Combining these remarks yields the desired conclusion for
s0 ∈ [s1, s2).

Let us prove (ii). When s0 ≥ s2, the cost associated with SAS1, SAS2 and NF s2,v0s0,v0 SA
v0,v+
2 NF

s1,v+
s2,v+ SA

v+,vm
1

NF
sref ,vm
s1,vm are the same using the previous case. The conclusion follows.

5.2 Case B with M < 0

For the study of this case, the following assumption will be required.

Hypothesis 5.1. For a given v0 such that 0 < v0 < vm, we have:(
1

µ(sm)
− 1

µ(s1)

)
ψv(s1) >

(
1

µ(sm)
− 1

µ(s2)

)
ψv(s2),

for all v ∈ [v0, vm).

Remark 5.2. One can easily check that this hypothesis holds when M → 0− (as ψv(s)→ 1
v ).

Lemma 5.3. Under hypothesis 5.1, lemma 5.2 and corollary 5.3 hold for M < 0.
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Proof. We show that one can find a volume v− ∈ [v0, v+[ such that the cost of the trajectory NF
s1,v−
s2,v− SA

v−,v+
1

is lower than the cost of the sequence SA
v−,v+
2 NF

s1,v+
s2,v+ . Consider ε = v+ − v− > 0. Notice that v+ is fixed,

and v− = v−(ε) is a function of ε; therefore, we denote by J1(ε) the cost of NF
s1,v−
s2,v− SA

v−,v+
1 and J2(ε) the

cost of SA
v−,v+
2 NF

s1,v+
s2,v+ . Let us write J1(ε) = Ja1 (ε) + Jb1(ε) and J2(ε) = Ja2 (ε) + Jb2(ε) with:

Ja1 (ε) =
1

µ(s1)
ln

(
M + v+(sin − s1)

M + v−(sin − s1)

)
, Jb1(ε) =

∫ s2

s1

ds

µ(s)(Mv− + sin − s)
,

and

Ja2 (ε) =
1

µ(s2)
ln

(
M + v+(sin − s2)

M + v−(sin − s2)

)
, Jb2(ε) =

∫ s2

s1

ds

µ(s)(Mv+ + sin − s)
.

Given that for i = 1, 2:
M + v+(sin − si)
M + v−(sin − si)

= 1 + εψv−(si),

we obtain Ja2 (ε)− Ja1 (ε) ∼ aε when ε goes to zero, where

a =
ψv+(s2)

µ(s2)
−
ψv+(s1)

µ(s1)
.

Clearly Jb2(ε) − Jb1(ε) → 0 when ε goes to zero. By a Taylor expansion, we obtain when ε goes to zero:
Jb2(ε)− Jb1(ε) ∼ bε, with:

b :=

∫ s2

s1

M

µ(s)(M + v+(sin − s))2
ds =

∫ s2

s1

−
ψ′v+(s)

µ(s)
ds.

As M < 0, we obtain the inequality:

b >
1

µ(sm)
(ψv+(s1)− ψv+(s2)).

Combining these expansions yields

lim inf
ε→0+

(J2(ε)− J1(ε)) ≥ lim inf
ε→0+

(a+ b)ε ≥ 0,

the last inequality above is a consequence of hypothesis 5.1 with v = v+. This concludes the proof for lemma
5.2. The corollary is a direct consequence of the lemma.

Proposition 5.1. For any volume v ∈ (0, vm), there exists at most a unique s = s̃(v) ∈ (sm, s
′
2) such that

F (s̃(v), v) = 0.

Proof. For fixed v, the function s 7−→ F (s, v) is continuous and increasing with respect to s on (sm, s
′
2).

Moreover, we have F (sm, v) < 0, which concludes the proof.

As for case A with M < 0, we have to introduce the following hypothesis:

Hypothesis 5.2. For any volume v ∈ (0, vm), if s̃(v) exists, then we have:∫ s̃(v)

s1

ψ2
v(s)

µ′(s)

µ2(s)
ds− ψv(s̃(v))

(sin − s̃(v))µ′(s̃(v))

vµ2(s̃(v))
< 0.

Lemma 5.4. Under hypothesis 5.2, a sequence I
s+,v+
s0,v0 NF

s1,v+
s+,v+SA

v+,vm
1 such that (s0, v0) ∈ D, s0 ∈ (s1, s2),

0 < v0 < v+ < vm, s+ ∈ (sm, s2] is not optimal.

Proof. The proof is the same as the proof of lemma 4.5.

Lemma 5.5. The singular arc strategy SAS2 is not optimal.

Proof. Recall that
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• if v0 ≥ γ2(s0), then g′v0(s0) = v0
M+v0(sin−s0)

(
1

µ(s+) −
1

µ(s0)

)
, where s+ = v0

vm
s0 + (1− v0

vm
)sin,

• if v0 ≤ γ2(s0), then g′v0(s0) = v0
M+v0(sin−s0)

(
1

µ(s2)
− 1

µ(s0)

)
.

Hence, for a given volume v0 > γ2(s′1), s 7−→ gv0(s) is a continuous function that is increasing on the interval
[s′1, s̃0] where s̃0 ∈ [s′1, s2] is such that µ(s̃0) = µ( v0vm s̃0 + (1− v0

vm
)sin); and is decreasing for s > s̃0.

Now, let us assume s0 < s′1. The result is then a direct consequence of lemma 2.5. Assume now that s0 ≥ s′1.
If v0 < γ2(s0), SA2 is not optimal from lemma 5.3. The case for which v0 > γ2(s0) remains to be considered.
One has gv0(s′1) > 0 as the singular arc strategy and that SAS1 is optimal in this case (lemma 2.5), and we
also have gv0(s2) > 0 from lemma 5.3. Consequently, given that gv0(s) is increasing on [s′1, s̃0] and decreasing
on [s̃0, s2], we have gv0(s) > 0, ∀s ∈ [s′1, s2], and the singular arc strategy SAS2 is not optimal.

Finally, we can conclude the case B with M < 0 as follows.

Theorem 5.2. Let (s0, v0) ∈ D. For case B with M < 0, under hypotheses 5.1 and 5.2, the optimal strategy
steering (s0, v0) to the target is the singular arc strategy SAS1.

Proof. The proof is similar to the proof of theorem 5.1, eliminating the singular arc strategy SAS2 (lemma
5.5) and all of the trajectories containing a sequence of dilution and no feeding until s1 with v < vm. (lemma
5.4).

Remark 5.3. In contrast to what was stated in the previous theorem, we can see in Figure 3 a region where
SAS2 is better than SAS1. Indeed, hypothesis 5.2 does not hold in this region. Moreover, this area has no
practical interest because it corresponds to very low levels of x.

6 Conclusion

In this work, the problem of the minimal time control of a fed-batch bioreactor has been considered for a growth
function with two local maxima defining two competitive singular arc strategies. Using a numerical approach,
Rapaport and Dochain [15] have conjectured that the state space can be divided in two domains in which each
arc strategy is optimal. In the present work, we provide the optimal synthesis for this problem allowing for
impulsive controls to provide an answer to the question stated in [15]. These results are obtained using the
Pontryagin maximum principle to derive the necessary conditions on optimal trajectories. In particular, our
method relies on the analysis of the switching functions and on the cost comparison of extremal trajectories
in order to exclude certain strategies.
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