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Stability analysis of periodic orbits in the framework of

Galerkin approximations

Denis Laxalde

Abstract

In dynamical systems, when periodic orbits are derived using approximation methods

and more specifically Galerkin weighted residuals, their stability analysis usually requires

a subsequent and sometimes uncorrelated treatment. The trouble is that this additional

analysis may involve another level of approximation which, if not consistent with that used

in the solution procedure, may lead to incorrect results. This paper suggests a general

framework for stability analysis of periodic solutions derived using Galerkin approximation

methods that systematically recasts the problem of finding periodic solutions into a fixed

point problem in the spirit of the averaging method. It follows that approximations are

consistent between the solution derivation and the stability analysis and that virtually any

kind of projection basis could be used in a similar fashion. In this initial version of the

paper, the approach is illustrated on a Duffing oscillator with strongly nonlinear dynamics.

1 Introduction

The methodology for stability analysis of periodic solutions in dynamical systems usually de-
pends on the way the solutions are actually calculated. For instance, in perturbation methods
(e.g. multiple scales, averaging), an approximate dynamical system is derived from the original
one, which is then used for both solution derivation and stability analysis. This is interesting
because it ensures that the level of approximation used in the solution procedure and in the
stability analysis are consistent. However, in the framework of Galerkin methods (such as har-
monic balance method), the picture is not that clear and there appears to be several different
approaches to analyze the stability of solutions which do not always ensure such a consistency.
Most techniques introduce a perturbation defined in the time domain and derive a linearized
differential system with periodic coefficients to be treated using the Floquet theory. Then, one
can distinguish two main classes of methods depending on the way the monodromy matrix is
handled. The first is straightforward and evaluates the monodromy matrix using some numerical
integration technique, the eigenvalues of the latter being used to determine the stability of the
solution [see Cardona et al., 1998, for instance]. The second uses the so-called Hill method to
approximate this perturbation using a Fourier series and then reformulate the matrix into an
infinite determinant of Hill type.

The effects of approximations in the solution method on the stability analysis appears to have
been first raised by Hamdan and Burton [1993] who showed that the direct Floquet approach may
lead to incorrect results regarding the stability of periodic solutions if the latter were obtained in
an approximate manner (typically harmonic balance solutions). The point is that examining the
exact dynamics in the neighborhood of an approximate solution may be a questionable approach.
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The authors hence advocate for the use of an approximate method for stability analysis in such
cases. Later in the same vein Hassan [1996] suggested that the use of a truncated Fourier
expansion of the perturbation in the stability analysis would fulfil this requirement and that
choosing consistent levels of approximation (i.e. in the case of harmonic balance method, the
same number of harmonics) between the solution procedure and the stability analysis would lead
to correct results as confirmed elsewhere [Szemplinska-Stupnicka, 1988, Al-Qaisia and Hamdan,
2001, von Groll and Ewins, 2001]. Despite these conclusions, in many cases, if the approximation
is good enough (i.e. if a sufficient number of harmonics is retained in the case of harmonic
balance method), the direct Floquet approach can lead to correct results as demonstrates its
(still) important popularity [see e.g. Bauchau and Nikishkov, 2001; Grolet and Thouverez, 2010,
in an harmonic balance framework or Bauchau and Hong [1988]; Demailly et al., 2004, in a
time finite-element approach]. Moreover, the treatment of approximation methods which do not
involve Fourier series is not straightforward in the Hill method.

Here, we follow the aforementioned conclusions and suggest an alternative formulation to derive
the stability of periodic orbits in the framework of Galerkin approximation methods that ensures
a consistent level of approximation between the solution and its stability.

• The main idea (Section 2) is to systematically recast the problem of finding a periodic
orbit into a fixed point problem and to analyze the stability of the former using methods
typical of the latter, hence eliminating the need for theoretical tools specific to each kind
of generalized orbits.

We would like to highlight the generality of the proposed approach with respect to two
aspects mainly. First, it does not assume a particular form for the basis functions in the
Galerkin procedure; for instance, global (e.g. Fourier series) or local (e.g. finite-elements)
functions could be used in a similar fashion. Second, althought not covered in the present
paper, the approach could intuitively be used for other kinds of non-trivial orbits, such as
quasi-periodic solutions.

• While starting from a generic first order dynamical system, we also address the case of sec-
ond order systems by introducing an ad hoc compatibility condition between state variables
(Section 2.2) which leads to similar linearized systems whatever the order of the problem.

• The method is finally illustrated (Section 3) on a Duffing system, featuring a strongly
dynamics, which highlights the validity of the approach.

This paper is the result of a preliminary investigation, which ought to be extended in a near
future.

2 Stability analysis of approximate periodic orbits

This section gathers the theoretical derivations of the proposed approach for stability analysis
of periodic orbits in Galerkin approximations. The presentation is general in that no particular
Galerkin method is assumed. In particular the basis functions are not specified explicitly. The
general case of first order dynamical system is first considered, followed by another derivation
for second order systems as those are often encountered in practical applications.
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2.1 First order dynamical systems

Consider a first order dynamical system governed by the following differential equation:

ẋ = f(x, µ) (1)

in which µ is a parameter and f is a sufficiently smooth mapping. We are interested in the
stability of periodic orbits of system (1), which are defined by the following condition:

∃ T > 0, x(t+ T ) = x(t) ∀t ∈ R (2)

where T = 2π/ω is the fundamental period of the motion. The determination of such solutions is
done in the framework of a Galerkin weighted residuals procedure which consists of the following
steps.

First, approximate periodic orbits are thought in the following form:

xh(τ) =

N
∑

i=1

ϕi(τ)xi, τ = ωt (3)

where {ϕi}1≤i≤N are admissible basis functions with respect to boundary condition (2).

Then, this approximated solution is introduced in Eq. (1) to derive a residue:

rh(t) = f(xh, µ)−

N
∑

i=1

ωϕi
′xi (4)

which, once projected on the basis functions as per the Galerkin weighted residuals approach,
must be zero, leading to a set of algebraic equations:

〈f(xh, µ), ϕj〉 −

N
∑

i=1

ω〈ϕi
′, ϕj〉xi = 0 ∀ϕj j = 1, . . . , N (5)

where 〈f, g〉 =
∫ 2π

0
fgdτ is a scalar product. System (5) may be rewritten in the following vector

form:
F (X, µ)− ωD

(1)
h X = 0 (6)

in which we have introduce a differentiation matrix:

D
(1)
h = (〈ϕi

′, ϕj〉)i=1,...,N,j=1,...,N (7)

and the projected nonlinear term:

F (X, µ) =

(

〈f(

N
∑

i=1

ϕixi, µ), ϕj〉

)

j=1,...,N

(8)

System (6) may finally be solved numerically.
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Now focusing on the dynamics in the neighborhood of the approximate solution, let us introduce
a perturbation of the latter so that the state variable x is thought in the following form:

xh(τ, η) =

N
∑

i=1

ϕi(τ)xi(η) (9)

which features two independent time scales, namely:

• τ = ωt, the time scale of the periodic motion, as introduced earlier and,

• η = ǫt, the time scale of perturbations.

Following a similar derivation as above, one defines a residue:

rh(τ, η) = f(xh, µ)−

N
∑

i=1

(ωϕi
′xi + ǫϕixi

′) (10)

and performs a Galerkin weighted residuals projection, still on {ϕi}, leading to:

N
∑

i=1

ǫ〈ϕi, ϕj〉xi
′ = 〈f(xh, µ), ϕj〉 −

N
∑

i=1

ω〈ϕi
′, ϕj〉xi ∀ϕj j = 1, . . . , N (11)

Eq. (11) defines a new dynamical system, in which state variables are the degrees-of-freedom of
the Galerkin projection (9). As above, it can be rewritten as:

ǫD
(0)
h X

′ = F (X, µ)− ωD
(1)
h X (12)

in which another differentiation matrix appears:

D
(0)
h = (〈ϕi, ϕj〉)i=1,...,N,j=1,...,N (13)

Clearly, fixed points of Eq. (12) are solutions of Eq. (6), namely approximated periodic orbits
of the original dynamical system governed by Eq. (1). One would then naturally infer that the
stability of these orbits may be derived by studying the underlying linearized system derived from
(12). This means that the stability of approximate periodic orbits obtained in the framework of
a Galerkin projection can be studied in a similar fashion to that of equilibria, namely those of
Eq. (12). Note that the same reasoning is probably applicable for other kind of non-trivial orbits
(e.g. quasi-periodic orbits), provided that one is able to think of an appropriate projection basis.

Let X(η) = X0 +Y(η) be a small perturbation of the equilibrium X0 of Eq. (12). Introducing
this perturbation into Eq. (12) and linearizing yield:

ǫD
(0)
h Y

′ =
(

∇XF (X0, µ)− ωD
(1)
h

)

Y (14)

The solution of Eq. (14) is determined by the eigenvalues and eigenvectors of the underlying
generalized eigenvalue problem. These eigenvalues are actually defined as the characteristic
exponents. If all eigenvalues have strictly negative real parts, the corresponding periodic orbit is
stable, if at least one eigenvalue has a positive real part, it is unstable and if there is a pair of
purely imaginary eigenvalues, the equilibrium gives birth to a limit cycle, which means that the
periodic orbit degenerates into a quasi-periodic orbit.
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2.2 Second order dynamical system

In many applications, dynamical systems are governed by a second-order differential equation.
For instance, the canonical motion equation in mechanics is M(q)q̈ = f(t, q̇, q) in which M(q)
is the mass matrix at q of the considered system and f here accounts for both internal and
external forces. Applying the previous derivation straightforward to such a system is obviously
doable but this would result in a second order dynamical system similar to (12) which might
pose some difficulties when it comes to examining the results of the linearized system. We thus
propose an alternative derivation of higher order dynamical systems, illustrated on the case of a
second-order one, that leads to a similar formulation to that of first order systems.

Consider then a second order dynamical system governed by the following differential equation:

ẍ = g(ẋ, x, µ) (15)

Periodic solutions are defined by the following conditions:

∃ T > 0, x(t+ T ) = x(t) and ẋ(t+ T ) = ẋ(t) ∀t ∈ R (16)

As above, perturbations of approximate periodic solutions are thought in the form of Eq. (9).
Then, instead of deriving the first and second derivatives of x from Eq. (16), a compatibility
condition, defining the approximation of first derivative of x, is introduced as:

ẋh(τ, η) =

N
∑

i=1

ωϕi
′(τ)xi(η) (17)

In turns, the second derivative is:

ẍh(τ, η) =

N
∑

i=1

ω2ϕi
′′(τ)xi(η) + ωǫϕi

′(τ)xi
′(η) (18)

Introducing the latter in Eq. (15) and averaging over the time scale of periodic motion yield the
following dynamical system:

ǫωD
(1)
h X

′ = G(X, ω, µ)− ω2D
(2)
h X (19)

in which another differentiation matrix appears:

D
(2)
h = (〈ϕi

′′, ϕj〉)i=1,...,N,j=1,...,N (20)

The stability of periodic orbits of the second order dynamical system is obtained in a similar
manner as for the first order one, by linearizing Eq. (19):

ǫωD
(1)
h Y

′ =
(

∇XG(X, ω, µ)− ω2D
(2)
h

)

Y (21)

and solving the underlying eigenvalue problem.
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Remark 2.1 The interest of the above derivation is the introduction the compatibility condition
(17) which yields a first order dynamical system despite the original system is of order two.
This is particularly interesting since the stability analysis simply involves a standard eigenvalue
problem instead of a second order one.

Remark 2.2 Higher order differentiation matrices (D(n), n > 0) can be defined in different
manners. So far, only the classical (straightforward) form has been presented. Alternative forms
can be derived using integration by parts which, in particular, make it possible to lower the
smoothness conditions on basis functions ϕi. E.g. considering the second order differentiation
matrix, an alternative form is:

D
(2)
h = − (〈ϕi

′, ϕj
′〉)

i=1,...,N,j=1,...,N (22)

accounting for the fact that basis functions ϕi are admissible (ϕi(2π) = ϕi(0)).

3 Application

This section concerns an application of the previously description methodology for stability
analysis of periodic orbits to a Duffing oscillator, described by the following equation:

ẍ+ µẋ+ ω2
0x+ Γx3 = F cosωt (23)

The parameters are chosen so that the dynamics is strongly non-linear: µ = 0.05, ω0 = 1, Γ = 1
and F = 1. For the record, the same system was studied recently in [Lazarus and Thomas, 2010].

Here, a Fourier-Galerkin approximation is used, which means that a truncated Fourier series is
used in the expansion (3). In this framework, if N harmonics are kept in the Fourier series, the
differentiation matrices are:

D
(0)
h = I, D

(1)
h = diag ([0, 1, . . . , N ])⊗

(

0 1
−1 0

)

and D
(2)
h = −diag ([0, 1, . . . , N ])

2
⊗ I2

(24)

(in which ⊗ is the Kronecker product). The nonlinear restoring force approximation, given by
Eq. (8), is obtained using a discrete Fourier transform.

The dynamic response of the oscillator is computed within the frequency range of ω = [0, 5]
rad/s and a (basic) pseudo-arclength continuation algorithm is used (no bifurcation detection
is performed, only stability analysis). Nine harmonics are kept in the approximation and the
discrete Fourier transform uses 500 points.

Fig. 1 depicts the resonance response of this system with unstable regions marked with dots
while Fig. 2 shows the characteristic exponents arising from the eigenvalue problem underlying
the linearized system (21). A general view and a zoom on a super-harmonic resonance are shown.

Regions of stable and unstable periodic response appear to be correctly predicted. In particular,
the saddle node bifurcations for the primary and super-harmonic resonances correspond to turn-
ing points of the resonance response. Overall, results compare well with those of the literature
[e.g. Lazarus and Thomas, 2010].
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Figure 1: Frequency response of the Duffing oscillator; dots indicate unstable response.
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