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Abstract We study the influence of heterogeneities located near a planar surface on the elastic response of
a three-dimensional elastic medium. These heterogeneities can be either reinforcements, like steel reinforce-
ments in concrete, or defects, like micro-cracks periodically distributed. We prove that their influence is of
the second order from an energetic viewpoint. Then, we propose an “up to second order effective model”
in which the influence of the heterogeneities is given by a surface energy contribution involving both the
jump of displacement across the surface and the tangential strain components on the surface. The effective
coefficients entering in the definition of the surface energy are obtained by solving “elementary” elastic
problems formulated on an infinite representative cell containing the defects. We analyze this model, in
particular the properties of the effective surface coefficients, and establish its coherence with limit models
previously described in the literature for stiff or soft interfaces. This approach is finally applied to several
kinds of heterogeneities.
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Fig. 1 Examples of solids with periodic inhomogeneities located on a surface. (a) Homogeneous layer (b) Spherical cavities
(c) Periodic microcracks inside a material (d) Steel reinforcements in concrete

1 Introduction

Let us consider a three-dimensional elastic medium, which contains heterogeneities periodically distributed
on a surface. The size of these heterogeneities is much smaller than the size of the overall structure. Some
examples of such a problem are shown on Fig. 1: They range from steel reinforcements in concrete to
microcracks or cavities located on a surface. In the context of finite element simulations, modeling these
small heterogeneities results in huge computational costs. On the other hand, these heterogeneities do have
an influence on the behavior of the overall structure. It is therefore interesting to construct a simplified
model, which reproduces the effective behavior of the heterogeneities, while being much easier to compute.

Simplified approaches have been proposed in the simplest case where the heterogeneity is a thin homo-
geneous layer, whose constitutive behavior differs from the surrounding volume (see Fig. 1-a). This problem
has been first analyzed by Huy and Sanchez-Palencia [21], then by Caillerie [13], Licht and Michaille [28],
Abdelmoula et al. [1], Klarbring and Movchan [23], Geymonat et al. [19], Krasucki and Lenci [24, 25], Ben-
veniste [5, 6], Bessoud et al. [7–9]. In such a case, the thickness of the layer is assumed to be much smaller
than the global size of the structure and their ratio, say η, is considered as a small parameter. Other possible
parameters are the stiffnesses of the different materials, and the asymptotic analysis is based on a priori as-
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sumptions on the order of magnitude ratio between the stiffness of the layer and the stiffness of the material
in the bulk. In particular it is shown that, if the stiffness ratio does not depend on η, then the layer does
not have any influence on the behavior of the structure at first order, i.e. when η goes to 0. However, if one
assumes that the layer is very stiff (of the order of η−1), or very soft (of the order of η), the layer does have
an influence on the structure at the order η0. In the latter case, the layer behaves like an elastic interface
where the transmission conditions are of Robin’s type, while in the former case it is similar to a membrane
and the transmission conditions are of Ventcel’s type, see [26, 35]. These results are very satisfactory, but
they only concern homogeneous layers.

Here we study a problem which is more general in the sense that the heterogeneous zone takes the
form of a two dimensional periodic array of elastic inclusions (instead of a homogeneous layer of constant
thickness), but also more particular in the sense that the stiffness ratio is constant and does not depend
on the small parameter η characterizing the geometrical distribution of the inclusions. To identify a limit
model, we need to separate the description of the zone which contains the inclusions from the description
of the remaining part of the structure. The classical method used in such cases is the separation of scales,
which was used by Sanchez-Palencia [32], Léné [27], Andrieux et al. [4], Suquet [34], Devries et al. [15],
Briane [12] and Michel et al. [30] in the eighties to homogenize the behavior of three-dimensional periodic
or quasi-periodic materials. By separating the so-called micro- and macro-scales, this method enables to
identify an effective behavior, which characterizes the behavior of the material at large scales. This method
will enable us to describe the heterogeneous zone as an interface with ad hoc transmission conditions.

Outside the zone where the inclusions are located, the body is homogeneous and does not contain
heterogeneities. It can be described with a classical one-scale description. It is therefore necessary to spec-
ify matching conditions between the heterogeneous zone and the surrounding volume. Between these two
regions, one expect to see boundary layer effects, like those exhibited by Dumontet [16] for composite ma-
terials or those which appear at the boundary of thin or slender structures [10]. These matching conditions
will be established by using matched asymptotic expansions, which where first introduced in this context by
Nguetseng and Sanchez-Palencia [31, 33].

Following previous results, we expect the heterogeneities to have no influence on the structure at the

order η0 when η → 0. We will therefore need to take into account the next term in the expansion to find
the influence at the order η1. This approach has already been presented in previous papers for particular
cases, see [2, 18, 29]. Here we extend these results in a more general case and propose an energetic model
for the behavior of the homogenized interface. This energetic equivalence implicitly contains the desired
transmission conditions by virtue of “classical” variational arguments.

The paper is organized as follows. In the second section, we detail the setting of the problem, explain
the foundations of the method of separation of scales, and establish the main equations of our problem.
In the third section, we solve iteratively the different equations governing the behavior of the structure,
and show that the influence of the heterogeneities scales with their size. In the fourth section, we analyze
the microscopic problems which characterize the effective behavior of the heterogeneities, and exhibit a
so-called interface energy. The fifth section is devoted to constructing and analyzing a coupled energetic
formulation describing the interaction between the homogeneous volume and the heterogeneities. Finally,
the last section aims at validating the proposed model through several examples. We study the simplified
case of an homogeneous layer, and therefore establish the coherence of our model with previous works. We
also apply our method to more complex structures and analyze their effective behavior.

Throughout the paper we use the following notations: vectors and second order tensors are denoted by
bold symbols (like u, σ, ε) while third or fourth order tensors are denoted by sans serif letters (like A, B,



4 M. David et al.

C, D). Their components are denoted by plain letters (like vi, εij and Aijkl for the components of v, ε and
A). The single and double contraction of indices is indicated by dots and the convention of summation of
repeated indices is implicitly used. For instance, u·v stands for uivi, σ :ε stands for σijεij , A :ε denotes the
second order tensor whose ij-component reads as Aijklεkl and ε̃ :A : ε stands for Aijklε̃ijεkl. For a field f

which may be discontinuous across the plane surface Γ with unit normal vector e1, we denote by f + (x′)
and f − (x′) (or by f |± (x′) to avoid a possible confusion) the limits, when they exist, of f at the point x′

of Γ on each side of the plane Γ:

f + (x′) = lim
x→x

′

(x−x
′)·e1>0

f(x), f − (x′) = lim
x→x

′

(x−x
′)·e1<0

f(x).

Accordingly, we denote respectively by [[f ]] and f the jump and the mean value of f on Γ:

[[f ]] = f + − f − , f =
1

2

(

f + + f −
)

.

2 Separation of scales, asymptotic expansions of the real fields and matching conditions

2.1 The real problem

Let us consider a three-dimensional body, the natural reference configuration of which is the regular con-
nected open subset Ω of R3. The behaviour of the material is linear elastic, characterized by the stiffness
tensor A(x), and the density ρ(x), x ∈ Ω being the position vector. Except in the neighborhood of the surface
Γ located in the plane x1 = 0, the body is homogeneous, with a stiffness tensor A = A

∗ and a density ρ = ρ∗.
This material will be called the matrix. Near the plane surface Γ, the body contains heterogeneities which are
periodically distributed along an array characterized by the two vectors a and b. The material parameters
A and ρ are therefore a- and b-periodic in the vicinity of Γ. The heterogeneity of the material may be due
either to voids in the volume — like cavities or cracks — or to elastic inclusions. These two different cases
are very similar, and give the same kind of homogenized behavior. But to simplify the presentation, we will
explain the procedure in the case of elastic inclusions only. The case of cracks or voids is detailed in [29]
and we will simply recall the main results in the last section. Note, however, that in the case of cracks or
voids, the matrix must remain connected — i.e. the cracks or the voids must not separate the body into
two parts — in order that our results remain valid. The size of the inclusions is characterized by their outer
diameter e (that is the diameter of the smallest ball which contains one inclusion, or the thickness of the
heterogeneous layer). The periodic vectors a and b and the outer diameter e are small compared to the size
of the overall structure. The boundary ∂Ω of the solid is separated into two parts ∂FΩ and ∂uΩ. A density
F of surface forces are imposed on ∂FΩ, while a displacement ud is prescribed on ∂uΩ (see Fig. 2). The
body is also subjected to a uniform gravity g. In this context, the equilibrium of the body is governed by
the following set of equations























σ = A :ε(u) in Ω,

div(σ) + ρg = 0 in Ω,

σ ·n = F on ∂FΩ,

u = ud on ∂uΩ,

(1)

which are respectively the constitutive equation, the equation of equilibrium and the boundary conditions.
This problem is a classical linear elasto-static problem, and we know from classical theorems that, provided
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Fig. 2 The standard linear elastic problem, with prescribed forces and displacements. The heterogeneities are located on
the plane Γ, and are periodically distributed along an array characterized by the vectors a and b.

the data F and ud are sufficiently smooth, it admits a unique solution with finite energy. Moreover the
displacement field solution is the minimizer of the potential energy functional

P(u) =
1

2

∫

Ω

ε(u) :A :ε(u) dΩ−
∫

Ω

ρg·udΩ−
∫

∂FΩ

F·udS

over the set of kinematically admissible displacement fields.

2.2 Principles of scale separation and the two systems of coordinates

The purpose of scale separation is to identify an effective behavior for a given microscopic structure. This
microscopic structure is assumed periodic, or quasi-periodic, and the idea is to compute the limit behavior
of the medium when the size of the microstructure goes to zero. To this end, we need to give a sound
definition of the micro- and macrostructure. We introduce the following length parameters: the size of the
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x
i

ηy

Fig. 3 Separation of the so-called macroscopic and microscopic coordinates. The macroscopic one xi denotes the center of
the periodic cell, while ηy describes the relative position inside the periodic cell.

global structure is denoted by H, while the typical size of a periodic pattern is given by h. Since our model
describes a wide variety of problems, it is difficult to give a general definition of these parameters, but in
practice, H is the smallest dimension of the global structure, and h is the maximum of e, ||a|| and ||b||. In
particular, in the case when the heterogeneities form a simple homogeneous layer, a and b are arbitrary, so
we define h = e, with e the thickness of the layer. Throughout the paper, the ratio between these two scales
is denoted by η = h/H, and η will be considered as a small dimensionless parameter.

The first key point in scale separation is to properly separate the description of the global structure from
that of the microscopic details. This separation may be introduced in the following way. The volume Ω can
be separated into two parts: the outer domain far enough from the surface Γ which contains no heterogeneity,
and the inner domain near the plane Γ which contains the heterogeneities. The outer domain (which will
be finally identified with Ω \ Γ) can be described with a classical one-scale description. On the other hand,
the inner domain must be described with a two-scale description, in order to distinguish the details of the
heterogeneities. In this region, since the microstructure is periodic, the position of a given point may be
defined by two independent data: the position of the periodic pattern where the point belongs, and its
relative position inside the periodic pattern. The first data is denoted by xi, and describes the center of the
pattern. It is a vector, which only takes discrete values, and verifies by definition xi ∈ Γ. It may be seen as
the macroscopic position of the point (see Fig. 3).

If the real position of the point is denoted by X, the difference X− xi is a small vector, describing the
relative position of the point inside its periodic pattern. By introducing the ratio of scales η, we define the
position of a point in the periodic pattern by

y =
1

η
(X− xi). (2)

By definition, y ∈ R ×Y, with Y the cross section of a periodic pattern. This volume is called the periodic

cell, and will be denoted by Y in the following. Note that this periodic cell is not bounded in the transverse
direction. The vector y ∈ Y takes continuous values and may be seen as the microscopic position of the point

at the scale of a pattern. Since the microstructure is periodic, the relative position inside the periodic cell
is defined modulo the two vectors a/η and b/η, and we have

y+
1

η
(na+mb) ≡ y, ∀(n,m) ∈ Z

2.

This relation implies that all physical fields must be periodic with respect to a/η and b/η at the micro-scale:
the fields will be described as y′-periodic in the following.
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Γ
Ω \ Γ

y1

y2

y3

Y

Fig. 4 The original problem is separated into a macroscopic problem and a microscopic one. At the macro scale, the
heterogeneities reduce to a simple interface, while at the micro scale, the heterogeneities form a periodic infinite pattern.
The periodic cell Y is bounded in the y2 and y3 directions, but is infinite in the y1 direction.

The real position X of a given point near the interface Γ is given by the couple (xi,y) ∈ Γ × Y, xi

taking discrete values and y taking periodic continuous values. Note that xi and y are both of the order
of H, which will simplify the following developments. As η decreases, the microstructure becomes smaller,
and the discrete values taken by xi become dense in the continuum set Γ. This justifies that we treat xi as
a continuous parameter, denoted by x′ throughout the paper. With this approximation, the position of a
given point is defined by two independent continuous parameters, which may be written

X(x′,y) = x′ + ηy. (3)

Note that, if the microstructure is not periodic, it is much more difficult to define rigorously the micro- and
macro-scales, while it should still be possible to identify an effective behavior. This is a difficult point in
the theory of homogenization, which has been addressed by several authors, see for instance [12, 14].

Accordingly, we will use the two following coordinates systems depending whether we consider a material
point at a macro- or at a micro-scale:

1. At a macro-scale, a point of the outer domain Ω\Γ is defined by the macroscopic cartesian coordinates
x = (x1, x2, x3) with the associated orthonormal basis of vectors (e1, e2, e3). The coordinate x1 gives the
(signed) distance of a point to the plane Γ, the two other coordinates x′ = (x2, x3) describe the tangent
plane. e2 and e3 are not necessarily aligned with a or b. A point (0, x2, x3) of Γ will be identified with
x′ = (x2, x3).
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2. At a micro-scale, a point of the inner domain Γ × Y is characterized by the macroscopic coordinates
x′ = (x2, x3) and the microscopic coordinates y = (y1, y2, y3), which are derived from the macroscopic
ones near the interface by using the relation (2). The periodic coordinates y′ = (y2, y3) describe the
relative position in the tangent plane, while y1 describes the distance of a point to the midplane Γ.

2.3 Decomposition of the fields

The displacement and stress fields solutions of (1) depend on the parameter η and hence will be denoted
from now on by uη and σ

η. In the spirit of scale separation, the fields are decomposed in successive powers
of η with two types of expansion, depending whether we consider the fields far from the surface Γ (outer
expansion) or near the surface Γ (inner expansion). Specifically, we assume that uη and σ

η can be expanded
as follows.

Outer expansion

uη(x) = u0(x) + ηu1(x) + η2u2(x) + . . . (4)

σ
η(x) = σ

0(x) + ησ1(x) + η2σ2(x) + . . . (5)

Note that the outer fields ui and σ
i (i ∈ N) are defined on the whole outer domain Ω \ Γ, even though the

expansion is not a good approximation of the true solution in a small neighborhood of Γ.

Inner expansion

uη(X) = v0(x′,y) + ηv1(x′,y) + η2v2(x′,y) + . . . (6)

σ
η(X) = τ

0(x′,y) + ητ 1(x′,y) + η2τ 2(x′,y) + . . . (7)

The inner fields vi and τ
i are defined on the inner domain Γ× Y, and are periodic with respect to y′.

It can be established1 that the first non-zero order for all fields is the order 0. The terms indiced by 0 are
the limit of the fields when η goes to zero, while the subsequent terms provide more accurate estimations of
the fields when η is small. In the following, we will be most interested by the order 1, since it will appear that
the main influence of the interface on the global structure scales with η. Note that, similarly to standard
Taylor expansions, we do not know a priori if the series converge. To establish matching conditions between
the outer and inner expansions of the fields, we will use the fact that both the inner and the outer expansions
are valid in intermediate regions. These regions are both very close to the interface at the macro scale, and
far away from the heterogeneities at the micro scale. Note that these regions are only well defined when the
two scales are separated.

2.4 Set of equations at different orders

Let us introduce the two types of expansion into the elastic problem (1). For the inner expansions, it is
necessary to reformulate the differential operators in terms of the macroscopic and microscopic coordinates.

1 One can check that the negative order terms are zero. Conversely, if the series start at order 1, the boundary conditions
cannot be satisfied.
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Using relation (3), all derivative operators can be transformed in the following way:

∂(·)
∂X

→ ∂(·)
∂x′

+
1

η

∂(·)
∂y

.

This rule is very general, and can be applied to all first order differential operators. For example, if ε is the
symmetric part of the gradient, one gets

ε(·) → εx′(·) + 1

η
εy(·),

where εx′ and εy denote respectively the symmetric part of the gradient with respect to the macroscopic
and microscopic coordinates. The divergence operator can be transformed in the same way

div(·) → divx′(·) + 1

η
divy(·).

In terms of components those relations read as

εx′(v) =

(

∂vα
∂xβ

+
∂vβ
∂xα

)

eα ⊗s eβ +
∂v1
∂xα

eα ⊗s e1, εy(v) =

(

∂vi
∂yj

+
∂vj
∂yi

)

ei ⊗s ej , (8)

divx′τ =
∂τiα
∂xα

ei, divyτ =
∂τij
∂xj

ei, (9)

where the Greek indices run from 2 to 3, the Latin indices run from 1 to 3 and ei ⊗s ej stands for the
symmetrized dyadic product ei ⊗s ej = 1

2 (ei ⊗ ej + ej ⊗ ei). Accordingly, for the inner expansions, the
equilibrium and the constitutive equations read formally as



























+∞
∑

i=0

(

ηidivx′(τ i) + ηi−1divy(τ
i)
)

+ ρg = 0,

+∞
∑

i=0

ηiτ i =
+∞
∑

i=0

A :
(

ηiεx′(vi) + ηi−1
εy(v

i)
)

,

in Γ× Y. (10)

For the outer expansion, since the macroscopic coordinates x only are involved, the equilibrium and the
constitutive equations also read as



























+∞
∑

i=0

ηidiv(σi) + ρ∗g = 0,

+∞
∑

i=0

ηiσi =
+∞
∑

i=0

ηiA∗ :ε(ui),

in Ω\Γ. (11)

After identifying the powers of η, we obtain the sequences of equations which are detailed in the following
tables.
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Equilibrium equations:

Order Outer domain Ω\Γ Inner domain Γ× Y

−1 none divy(τ
0) = 0

0 div(σ0) + ρ∗g = 0 divx′(τ 0) + divy(τ
1) + ρg = 0

i ≥ 1 div(σi) = 0 divx′(τ i) + divy(τ
i+1) = 0

Constitutive equations:

Order Outer domain Ω\Γ Inner domain Γ× Y

−1 none A :εy(v
0) = 0

i ≥ 0 σ
i = A

∗ :ε(ui) τ
i = A :εx′(vi) + A :εy(v

i+1)

Similarly, we can write the boundary conditions in the following way.

Boundary conditions:

Order Dirichlet conditions Neumann conditions

0 u0 = ud
σ

0 ·n = F

i ≥ 1 ui = 0 σ
i ·n = 0

Remark 1 We overlook willingly the boundary conditions which apply on the inner domain, i.e. when
∂Γ ∩ ∂uΩ or ∂Γ ∩ ∂FΩ are not empty. These boundary conditions do not have any influence up to or-
der 1 in η, provided the external forces F or prescribed displacements ud are sufficiently smooth in these
regions. Identifying the influence of these boundary conditions would involve an additionnal separation of
scales between the heterogeneities distributed on Γ, and those located on ∂Γ.

2.5 Matching conditions

We now need to establish matching conditions between the outer and inner expansions, using the fact that
these expansions are both valid in some intermediate regions. These regions are far from the heterogeneities
at the micro-scale, while being close to them at the macro-scale, which means H ≫ |x1| ≫ h. We can
therefore introduce the following expansions of the outer fields in the vicinity of Γ.

ui(x) = ui±(x′) + x1
∂ui

∂x1

∣

∣

∣

∣

±

(x′) +
x21
2

∂2ui

∂x21

∣

∣

∣

∣

±

(x′) + . . .

σ
i(x) = σ

i±(x′) + x1
∂σi

∂x1

∣

∣

∣

∣

±

(x′) +
x21
2

∂2
σ
i

∂x21

∣

∣

∣

∣

±

(x′) + . . .
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Since we have x1 = ηy1, we obtain

ui(ηy1,x
′) = ui±(x′) + ηy1

∂ui

∂x1

∣

∣

∣

∣

±

(x′) + η2
y21
2

∂2ui

∂x21

∣

∣

∣

∣

±

(x′) + . . . , (12)

σ
i(ηy1,x

′) = σ
i±(x′) + ηy1

∂σi

∂x1

∣

∣

∣

∣

±

(x′) + η2
y21
2

∂2
σ
i

∂x21

∣

∣

∣

∣

±

(x′) + . . . , (13)

where y1 is such that H/η ≫ |y1| ≫ H. In the intermediate regions, since the outer and inner expansions
are both valid, we get

v0 + ηv1 + η2v2 + · · · = u0± + η

(

u1± + y1
∂u0

∂x1

∣

∣

∣

∣

±
)

+ η2

(

u2± + y1
∂u1

∂x1

∣

∣

∣

∣

±

+
y21
2

∂2u0

∂x21

∣

∣

∣

∣

±
)

+ . . . ,

where the terms on the left depend upon (x′,y), while the terms on the right only depend upon (x′, y1).
This relation implies that the microscopic fields vi should not depend upon (y2, y3) in the intermediate
regions (i.e. when |y1| ≫ H). This property will be explained in section 3.3.

Identifying in the previous equality the first three powers of η, we obtain

u0±
(x′) = lim

y1→±∞
v0(x′,y),

u1±
(x′) = lim

y1→±∞

(

v1(x′,y)− y1
∂u0

∂x1

∣

∣

∣

∣

±

(x′)

)

,

u2±
(x′) = lim

y1→±∞

(

v2(x′,y)− y1
∂u1

∂x1

∣

∣

∣

∣

±

(x′)− y21
2

∂2u0

∂x21

∣

∣

∣

∣

±

(x′)

)

,

were we formally passed to the limit y1 → ±∞. By introducing the developments (5), (7) and (13), we
obtain similarly

σ
0±

(x′) = lim
y1→±∞

τ
0(x′,y),

σ
1±

(x′) = lim
y1→±∞

(

τ
1(x′,y)− y1

∂σ0

∂x1

∣

∣

∣

∣

±

(x′)

)

,

σ
2±

(x′) = lim
y1→±∞

(

τ
2(x′,y)− y1

∂σ1

∂x1

∣

∣

∣

∣

±

(x′)− y21
2

∂2
σ

0

∂x21

∣

∣

∣

∣

±

(x′)

)

.

Note that the high order fields are coupled to all previous orders, which makes the matching conditions quite
complicated. However, in the following, we will only need the first two orders to characterize the effective
behavior of the heterogeneities.

3 Iterative resolution of the inner and outer problems of order 0 and 1

We have established the equations of equilibrium, the constitutive equations and the matching conditions
between the outer and the inner domains. Using these equations, we can solve the whole problem in an
iterative way, starting by the order 0, and studying alternatively the inner problem near the interface, and
the outer problem at the global scale.
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3.1 Inner problem of order 0

Inside a pattern, the constitutive equation of order −1 can be written A :εy(v
0) = 0. Since the stiffness of

the material is positive definite, it is invertible and we have εy(v
0) = 0. This equation means that v0 is a

rigid body motion at the scale of a periodic cell. Since v0 is also periodic in y′, v0 can only be a translation,
and does not depend upon y. The value of the translation is left undefined at this step, it will be determined
by the outer problem of order 0.

3.2 Outer problem of order 0

Using the previous result, we can now solve the outer problem of order 0. Inside the outer domain, the
constitutive relation of order 0 and the equation of equilibrium of order 0 read respectively as σ0 = A

∗ :ε(u0)
and div(σ0) + ρ∗g = 0, while on the boundary ∂Ω the boundary conditions of order 0 read as σ

0·n = F on
∂FΩ and u0 = ud on ∂uΩ.

We now need to identify the possible influence of the heterogeneities on the outer problem of order 0.
This influence may result in jumps of stress and displacement across the interface Γ. To identify these
possible jump conditions, we need to take into account the matching conditions between the inner and
outer expansions. These matching conditions for the displacement of order 0 read

u0±(x′) = lim
y1→±∞

v0(x′,y),

and since v0 is a simple translation with respect to y, we get

v0(x′) = u0+(x′) = u0−(x′) on Γ.

Consequently, the displacements of order 0 are continuous across the interface:

[[u0]] = 0 on Γ.

Let us now determine the jump of stress. The matching conditions of order 0 give

σ
0±(x′) = lim

y1→±∞
τ
0(x′,y).

The inner equation of equilibrium of order −1 reads as divy(τ
0) = 0. Integrating over the surface Y gives

∂

∂y1

∫

Y

τ
0(x′,y)·e1 dy′ = 0,

where we used the periodicity conditions. If we introduce the notation

〈f〉Y (x′, y1) =
1

area(Y)

∫

Y

f(x′,y) dy′, (14)

the former equation reads
∂

∂y1

〈

τ
0 ·e1

〉

Y
= 0, (15)

which means that the average stress
〈

τ
0 ·e1

〉

Y
is independent of y1 (but depends on x′). We emphasize that

this result is only valid on average, because the normal stress τ
0·e1 does depend upon y at the micro-scale,
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as will be shown in the next section. In particular, this property implies that the average stresses in the
limits y1 → ±∞ are the same. Accordingly, the matching conditions read

σ
0+(x′)·e1 = σ

0−(x′)·e1 =
〈

τ
0 ·e1

〉

Y
(x′),

and one concludes that the stress of order 0 is continuous across the interface:

[[σ0]]·e1 = 0 on Γ.

We have established that the heterogeneities do not introduce any jump of stress or displacement across
the interface. Accordingly, the interface behaves like a perfect interface at order 0, with no influence on the
behavior of the body. The entire body behaves as if it was completely homogeneous, and the set of equations
of order 0 can be written























σ
0 = A

∗ :ε(u0) in Ω,

div(σ0) + ρ∗g = 0 in Ω,

σ
0 ·n = F on ∂FΩ,

u0 = ud on ∂uΩ,

(16)

In conclusion, the defects do not have any influence on the outer structure at order 0. This result is well
known from previous studies, and may be understood with simple arguments: when the thickness of the
heterogeneous layer goes to zero, its own rigidity becomes negligible. Following this argument, we may guess
that the influence of the layer scales with its thickness. We therefore have to push our analysis until order 1
to identify the effective behavior of the surface.

However, one must emphasize that this result is a direct consequence of the hypothesis that we made
on the behavior of the material: we assumed that the stiffness of the heterogeneities does not depend on
their size. Even though this assumption is rather natural, it could be questioned. In previous works, when
studying the simplified case of a thin homogeneous layers, several authors made the hypothesis that the
behavior of the heterogeneities depends on η. In particular, if the rigidity of the layer scales with either η

or η−1 — that is if the layer is very soft, or very stiff, compared to the bulk material — the layer has an
influence on the behavior of the structure at order 0. In the latter case, the layer behaves like a membrane,
while in the former case, it behaves like an elastic interface. These models are very interesting, because they
are very simple to implement, but they are not suitable for more complex heterogeneities. We will show in
the last section that our general model covers much more applications, and is also consistent with these
previous works.

3.3 Inner problem of order 1

We previously saw that the inner field of displacement v0 is a simple translation at the microscale (i.e.
independent of y). To characterize more accurately the influence of the heterogeneities, we need to determine
v1. The inner equilibrium equation of order -1 reads divy(τ

0) = 0 and the constitutive equation of order 0
reads τ

0 = A : (εx′(v0) + εy(v
1)). Since v0(x′) = u0(x′) on Γ, the latter becomes

τ
0 = A : (εx′(u0) + εy(v

1)). (17)
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The inner fields v1 and τ
0 are related to the outer fields u0 and σ

0 through the matching conditions

u1± = lim
y1→±∞

(

v1 − y1
∂u0

∂x1

∣

∣

∣

∣

±
)

, σ
0± = lim

y1→±∞
τ
0.

Since the outer problem of order 0 is homogeneous, it can be established that σ0± and ∂u0

∂x1

∣

∣

∣

±
are continuous

across Γ, provided the volume forces are sufficiently smooth in the volume. It is therefore possible to introduce
the correctors v̂1 and τ̂

0, defined by

v1(x′,y) = y1
∂u0

∂x1
(0,x′) + v̂1(x′,y), τ

0(x′,y) = σ
0(0,x′) + τ̂

0(x′,y).

The constitutive equation (17) then reads

σ
0 + τ̂

0 = A :εy(v̂
1) + A :εy

(

y1
∂u0

∂x1

)

+ A :εx′(u0)

= A :εy(v̂
1) + A :ε(u0),

by definition of εx′ . Since σ
0 = A

∗ :ε(u0), we obtain

τ̂
0(x′,y) = A(y) :εy(v̂

1)(x′,y) + (A(y)− A
∗) :ε(u0)(0,x′),

where the arguments of the functions are explicitly stated to avoid any confusion. The behavior formulated in
terms of the correctors is finally an elastic behavior with a prestress (A−A

∗) :ε(u0). Since σ
0 is homogeneous

at the microscale (i.e. independent of y), the inner equation of equilibrium of order -1 becomes divy(τ̂
0) = 0

and the matching conditions for the stress reads limy1→±∞ τ̂
0 = 0.

Accordingly, the inner problem of order 1 reads as



























τ̂
0 = A :εy(v̂

1) + (A− A
∗) :ε(u0) in Γ× Y,

divy(τ̂
0) = 0 in Γ× Y,

lim
y1→±∞

τ̂
0 ·e1 = 0,

v̂1 and τ̂
0 are y′−periodic,

where we only used the matching conditions for the normal components of the stress τ̂ 0·e1. This problem is
an elastic problem, with (A−A

∗) :ε(u0) as a prestress, posed in the infinite inner domain Γ×Y. This prestress
is the only loading parameter of the problem, and is restricted to the inclusion, i.e. in the subdomain where
A 6= A

∗. This kind of problem has already been studied by Sanchez-Palencia and Dumontet [16,33]. It admits
a solution unique for τ̂ 0 and unique up to a x′–dependent translation for v̂1. Because of the periodicity with
respect to y′, the stress field corrector τ̂

0 decays exponentially to 0 when y1 tends to ±∞, which ensures
that the matching conditions for the stress are satisfied. Similarly, the displacement corrector v̂1 converges
exponentially to a translation when y1 goes to +∞ and to another translation when y1 goes to −∞. Both
translations depend on x′. Because of the non uniqueness of the solution, only the difference of these two
translations is determined. Similarly to the inner problem of order 0, the two translations will be completely
determined by the outer problem of order 1.
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Remark 2 The previous system of equations has been established in the case where the heterogeneities are
elastic inclusions; in the case of voids inside the matrix, the prestress is replaced by the following forces on
the boundary of the void:

τ̂
0 ·n = −(A∗ :ε(u0))·n.

Note also that, inside the void, the stress corrector is not equal to zero, but to −A
∗ :ε(u0), see [29] for more

details.

In this inner problem, ε(u0) is given by the outer problem of order 0 and plays the role of the data.
Since this problem is linear, the superposition principle is valid: there are six different modes of loading,
corresponding to the six independent components of ε(u0); it is thus sufficient to solve six elementary
problems posed in Y. We denote by Vij and Tij the displacement and stress fields solution of the ij–
elementary problem which reads as



























Tij = A :εy(V
ij) + (A− A

∗) :Iij in Y,

divy(T
ij) = 0 in Y,

lim
y1→±∞

Tij ·e1 = 0,

Vij and Tij are y′−periodic,

(18)

where Iij denotes the second order tensor defined by 2Iijkl = δikδjl + δilδjk, δ being the usual Kronecker
symbol (i.e. the second order identity tensor). By symmetry, the problems ij and ji are the same and
therefore there exist only 6 independent problems. The ij–elementary problem admits a unique solution for

Vij up to a translation. Since Vij(y) tends to two constants, say Vij±, when y1 goes to ±∞, the translation

can be fixed by imposing the extra condition Vij+ +Vij− = 0.

Remark 3 The unique solution of each elementary problem is Vij = Tij = 0 when the body is elastically
homogeneous, i.e. when A(y) = A

∗ everywhere.

Using these elementary solutions, the general solution of the inner problem of order 1 can be written

v̂1(x′,y) = Vij(y)εij(u
0)(0,x′) + v̌1(x′), (19)

τ̂
0(x′,y) = Tij(y)εij(u

0)(0,x′), (20)

where the summation convention is used. In (19), v̌1(x′) represents the translation which remains undeter-
mined at this stage and which will be determined once the outer problem of order 1 is solved.

In the next section, it turns out that the important information to extract from the inner problem are
the difference between the displacements at plus and minus infinity, and the average of the stress corrector
in the cell. For this reason, we introduce the following notations

d(x′) = lim
y1→∞

v̂1(x′, y1,y
′)− lim

y1→−∞
v̂1(x′, y1,y

′), (21)

〈f〉
Y
=

1

H area(Y)

∫

Y

f(y) dy. (22)

In the definition (22), the characteristic length H of the body is introduced so that the 〈f〉
Y
has the same

physical dimension as f ; 〈f〉
Y
is finite as soon as f decays exponentially with |y1|. By using (19) and (20),

we obtain
d(x′) =

(

Vij+ −Vij−
)

εij(u
0)(0,x′),

〈

τ̂
0
〉

Y

(x′) =
〈

Tij
〉

Y

εij(u
0)(0,x′). (23)
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The average of the stress corrector
〈

Tij
〉

Y
has a priori six independent components, but one can show

that only the membrane components are non zero. Indeed, integrating divyT
ij = 0 over Y and using the

y′ periodicity of Tij yield
∂

∂y1

〈

Tij ·e1
〉

Y
= 0, ∀k ∈ {1, 2, 3}.

Since Tij decreases to zero at infinity, we get
〈

Tij ·e1
〉

Y
(y1) = 0 for all k and all y1. Integrating with respect

to y1 gives the desired result:
〈

T ij
k1

〉

Y

=
〈

T ij
1k

〉

Y

= 0, ∀(i, j, k) ∈ {1, 2, 3}3. (24)

Therefore
〈

τ̂
0
〉

Y
can be interpreted as the membrane stress living inside the homogenized interface. This

will appear more clearly in the outer problem of order 1 considered below.

3.4 Outer problem of order 1

Whereas the heterogeneities are invisible in the outer problem of order 0, they appear in the outer problem of
order 1. The goal of this section is to construct this problem and to study the influence of the heterogeneities
on the solution.

At order 1, the outer constitutive equation reads σ
1 = A

∗ : ε(u1) and the equilibrium equation reads
div(σ1) = 0, both taking place in Ω\Γ, while the boundary conditions read σ

1 ·n = 0 on ∂FΩ and u1 = 0

on ∂uΩ. To complete the set of equations, we need to identify the jump conditions across the surface Γ. As
in the case of the outer problem of order 0, we use the matching conditions between the inner and outer
problems. At the order 1, they read as

u1± = lim
y1→±∞

v̂1, σ
1± = lim

y1→±∞

(

τ
1 − y1

∂σ0

∂x1

)

.

Using the definition (21) of d, the jump of displacement is therefore given by

[[u1]](x′) = d(x′). (25)

The jump of stress is given by

[[σ1]](x′) = lim
y1→∞

(

τ
1(x′, y1,y

′)− τ
1(x′,−y1,y

′)− 2y1
∂σ0

∂x1
(0,x′)

)

,

and, after averaging over the cross-section Y of the cell Y, we get

[[σ1]](x′)·e1 = lim
y1→∞

(

〈

τ
1
〉

Y
(x′, y1)−

〈

τ
1
〉

Y
(x′,−y1)− 2y1

∂σ0

∂x1
(0,x′)

)

·e1. (26)

Using the inner equilibrium of order 0

divx′(τ 0) + divy(τ
1) + ρg = 0,

integrating over the part [−y1, y1]×Y of the cell Y and using Ostrogradsky’s theorem lead to

(〈

τ
1
〉

Y
(x′, y1)−

〈

τ
1
〉

Y
(x′,−y1)

)

·e1 +
∫ y1

−y1

(〈

divx′(τ 0)
〉

Y
(x′, y1) + 〈ρ〉Y (y1)g

)

dy1 = 0, (27)
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where we used the periodicity of τ
1. After combining (26) and (27), one obtains (the arguments of the

functions are temporarily omitted)

[[σ1]]·e1 + lim
y1→∞

∫ y1

−y1

〈

divx′(τ 0) + ρg+
∂σ0

∂x1
·e1
〉

Y

dy1 = 0.

Introducing the stress corrector τ̂
0 yields

[[σ1]]·e1 + lim
y1→∞

∫ y1

−y1

〈

divx′(τ̂ 0) + divx′(σ0) +
∂σ0

∂x1
·e1 + ρg

〉

Y

dy1 = 0. (28)

By definition of divx′ , we have

divx′(σ0) +
∂σ0

∂x1
·e1 = div(σ0),

and, by the outer equilibrium equation of order 0, div(σ0) + ρ∗g = 0. Introducing these relations into (28)
leads to

[[σ1]](x′)·e1 +H divx′

〈

τ̂
0
〉

Y

(x′) +H
〈

ρ− ρ∗
〉

Y
g = 0. (29)

Remark 4 This equation can be interpreted as an equilibrium equation of the surface Γ considered as a
membrane: H

〈

τ̂
0
〉

Y
is the membrane stress tensor, H 〈ρ− ρ∗〉

Y
g is the bulk force density of the membrane

due to the gravity and [[σ1]] ·e1 is the resultant of the forces applied by the surrounding volume on the
membrane.

The complete system of equations for the outer problem of order 1 is finally


















































σ
1 = A

∗ :ε(u1) in Ω \ Γ,
div(σ1) = 0 in Ω \ Γ,
σ

1 ·n = 0 on ∂FΩ,

u1 = 0 on ∂uΩ,

[[u1]] = d on Γ,

[[σ1]]·e1 +H divx′

〈

τ̂
0
〉

Y

+H
〈

ρ− ρ∗
〉

Y
g = 0 on Γ,

(30)

where d and
〈

τ̂
0
〉

Y
are given by (23). We see that the influence of the heterogeneities is taken into account

by the jump of the displacement d and the membrane stress
〈

τ̂
0
〉

Y
. By virtue of (23), both involve the

outer strain field of order 0 ε(u0) and the solutions Vij and Tij of the 6 elementary problems posed on the
inner cell Y.

Remark 5 This outer problem of order 1 does not necessarily admit a solution with finite energy. Indeed, in
general the jump conditions across Γ create singularities at the boundary of the surface Γ: to equilibrate the
membrane stress

〈

τ̂
0
〉

Y
, a linear density of forces is applied on the outer domain at ∂Γ. In such a case, such

linear density of forces create singularities with infinite energy in a three-dimensional body. These singular
border effects have been studied in [2] in a two-dimensional context. Their study is outside the scope of the
present paper. We will focus on the elementary problems (18) and on the jump conditions (25) and (29).

Remark 6 When the body is homogeneous, i.e. when A = A
∗ and ρ = ρ∗, the solution of the outer problem

of order 1 is u1 = σ
1 = 0 and it can be proved in the same way that all the subsequent terms of the outer

expansion also vanish. That simply means that, in such a case, u0 and σ
0 are the exact solutions of the real

problem.
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4 The effective behavior of the interface

In this section, we study more deeply the transmission conditions at the interface and propose an interpre-
tation of the effective behavior of the heterogeneities in terms of a surface energy.

4.1 Properties of the transmission conditions

We have shown in the previous section that the jumps of the displacement u1 and of the normal stress σ1·e1
of order 1 through the interface Γ are related to the strain ε

0 = ε(u0) of order 0 at the interface through

[[u1
k]](x

′) =
(

V ij+
k − V ij−

k

)

ε0ij(0,x
′), (31)

[[σ1
11]](x

′) = −H
〈

ρ− ρ∗
〉

Y
g·e1, (32)

[[σ1
α1]](x

′) = −H
〈

T ij
αβ

〉

Y

∂ε0ij
∂xβ

(0,x′)−H
〈

ρ− ρ∗
〉

Y
g·eα, (33)

where the summation convention holds, the Latin indices running from 1 to 3 and the Greek indices from
2 to 3. These linear relations involve a third order tensor B and a fourth order tensor C whose components
are obtained from the 6 elementary inner problems:

HBkij = V ij+
k − V ij−

k , Cαβij =
〈

T ij
αβ

〉

Y

. (34)

In (34) the characteristic length H is introduced so that B is dimensionless, and C has the dimension of a
pressure. Because of the symmetries of the groups of indices ij and αβ, both tensors have 18 independent
components. Some of them may vanish when the geometry of the inclusions and the elementary cell admits
some symmetries, see the examples in the last section. (Note that both tensors vanish when the body is
elastically homogeneous.) Accordingly, the transmission conditions can read as

[[u1
k]] = HBkijε

0
ij , [[σ1

11]] = −H
〈

ρ− ρ∗
〉

Y
g1, [[σ1

α1]] = −HCαβij

∂ε0ij
∂xβ

−H
〈

ρ− ρ∗
〉

Y
gα. (35)

Let us introduce the fourth order tensor D whose components have the dimension of a pressure and corre-
spond to the following elastic energy associated with the 6 elementary problems:

Dijkl =
〈

εy(V
ij) :A :εy(V

kl)
〉

Y

−
〈

Iij : (A− A
∗) :Ikl

〉

Y

. (36)

These quantities are finite because εy(V
ij) decreases exponentially to 0 when y1 goes to ±∞ and because

A = A
∗ outside the inclusion (whose volume is assumed finite). By construction D is symmetric and hence

has at most 21 independent components, but it is not necessarily definite nor positive. Let us prove that
the components of B and C are related to those of D by

Bikl = S∗
ijDj1kl, Cαβkl = A∗

αβi1S
∗
ijDj1kl −Dαβkl. (37)

In (37), S∗ is the second order tensor, inverse of the second order tensor e1 ·A∗ ·e1 (whose components are
A∗
i1j1). Both tensors e1 ·A∗ ·e1 and S∗ are symmetric definite positive by virtue of the symmetry and the

positivity of A∗.
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Proof of (37). Let ε and ε̃ be two symmetric macroscopic strain tensors and let τ and τ̃ be the associated
microscopic stress tensor fields, i.e. τ (y) = σ + εijT

ij(y) and τ̃ (y) = σ̃ + ε̃ijT
ij(y), with σ = A

∗ : ε and
σ̃ = A

∗ : ε̃. Let v and ṽ be the associated microscopic displacement fields, i.e. v(y) = εijV
ij(y) and

ṽ(y) = ε̃ijV
ij(y). Let us first remark that

〈τ̃ :ε(v)〉
Y
= BpijA

∗
p1klε̃klεij . (38)

Indeed, using (18), we have
∫

Y

τ̃ :εy(v) dy = −
∫

Y

divy(τ̃ )·v dy+

∫

∂Y

n·τ̃ ·v dS.

Since divy τ̃ = 0, limy1→±∞ τ̃ (y) = σ̃, limy1→±∞ v(y) = Vij±εij and by virtue of the y′-periodicity of τ̃
and v, we get

∫

Y

τ̃ :εy(v) dy = area(Y)e1 ·σ̃ ·(Vij+ −Vij−)εij ,

and (38) follows from (34). Let us now express D in terms of B and C. Starting from its definition, we get

Dijklε̃ijεkl =
〈

εy(ṽ) :A :εy(v)− ε̃ : (A− A
∗) :ε

〉

Y

= 〈τ̃ :εy(v)〉Y − ε̃ :
〈

A :εy(v) + (A− A
∗) :ε

〉

Y

= A∗
p1ijBpklε̃ijεkl − Cαβklε̃αβεkl,

where we used (38), (24) and (34). Since this equality holds for all ε and ε̃, one gets

0 = (Dijkl −A∗
p1ijBpkl)ε̃ij + Cαβklε̃αβ , ∀ε̃.

Taking first ε̃ = e1 ⊗s ei yields Di1kl = A∗
i1j1Bjkl. Inverting this relation gives the first part of (37). Then

taking ε̃ = eα⊗s eβ yields Dαβkl−A∗
p1αβBpkl+Cαβkl = 0. Using the previously obtained expression of Bpkl

gives the second part of (37). ⊓⊔

To give an energetic interpretation of these transmission conditions, it is more convenient to express the
transmission conditions (35) not in terms of the whole strain tensor ε

0 but in terms of its in-plane part
ε
0
Γ = ε0αβeα ⊗s eβ and the normal stress vector σ

0 ·e1. To this end, introducing the stress-strain relation





σ0
11

σ0
δ1



 =





A∗
1111 A∗

11γ1

A∗
δ111 A∗

δ1γ1









ε011

2ε0γ1



+





A∗
11αβε

0
αβ

A∗
δ1αβε

0
αβ



 ,

and inverting it, ε0 ·e1 can be written as follows:





ε011

2ε0δ1



 =





S∗
11 S∗

1γ

S∗
δ1 S∗

δγ









σ0
11 −A∗

11αβε
0
αβ

σ0
γ1 −A∗

γ1αβε
0
αβ



 . (39)

Inserting (39) into (35) leads to the following transmission conditions

[[u1
k]] = HBki1S

∗
ijσ

0
j1 +H

(

Bkαβ −Bki1S
∗
ijA

∗
j1αβ

)

ε0αβ ,

[[σ1
α1]] = −HCαβi1S

∗
ij

∂σ0
j1

∂xβ
−H

(

Cαβγδ − Cαβi1S
∗
ijA

∗
j1γδ

)∂ε0γδ
∂xβ

−H
〈

ρ− ρ∗
〉

Y
gα.

Using the relations (37) one obtains the final form of the transmission conditions.
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Proposition 1 The jump conditions on Γ for the outer problem of order 1 can read as

[[u1]] = HL·(σ0 ·e1)+HM :εΓ(u
0), [[σ1]]·e1 = −Hdivx′

(

−(σ0 ·e1)·M+ N :εΓ(u
0)
)

−H
〈

ρ− ρ∗
〉

Y
g, (40)

where L, M and N are respectively the symmetric second order tensor, the third order tensor and the symmetric

fourth order tensor defined in terms of the tensors A
∗ and D by

Lij = S∗
ikDk1l1S

∗
lj , Miαβ = S∗

ijDj1αβ − LijA
∗
j1αβ , (41)

Nαβγδ = −Dαβγδ + S∗
ij

(

Di1αβA
∗
j1γδ +Di1γδA

∗
j1αβ

)

−A∗
i1αβLijA

∗
j1γδ, (42)

the other components vanishing.

Remark 7 The tensors L, M and N admit the following symmetries, consequences of the symmetries of A∗

and D:

Lij = Lji, Miαβ = Miβα, Nαβγδ = Nβαγδ = Nαβδγ = Nγδαβ .

Accordingly, in the case where there exists no additional symmetry, the tensors L, M and N have respectively
6, 9 and 6 independent components. Therefore we have a priori 21 independent coefficients characterizing
the homogenized behavior of the interface. If the periodic cell Y has symmetry properties, the number of
independent coefficients is reduced. For example, if the three planes normal to the basis vectors e1, e2 and e3
are symmetry planes, the behavior of the interface is characterized by only 9 independent coefficients. Fur-
thermore, if the periodic pattern is left invariant by a rotation of 90➦ around e1, the number of independent
coefficients is reduced to 6.

Note that the tensors L and N have a priori no property of definiteness or positivity. We will show in
the examples of the last sections that L can have positive, negative or zero eigenvalues and that N can be
negative or positive, depending whether the inclusion is stiffer or softer than the matrix.

4.2 The up to order 1 effective problem

In the third section, we presented the iterative resolution of the complete problem, where we solve alter-
natively the inner and outer mechanics equations. In practice, this method could be implemented in the
following way:

1. We solve the six elementary problems (18) at the microscale. These problems are solved once and for all
and they give the two tensors B and C or equivalently the tensor D.

2. We solve the order 0 outer problem (16) which does not involve the heterogeneities. One obtains the
macroscopic fields u0 and σ

0.
3. We extract from the previous limit problem the strain field ε(u0) on the surface Γ. Using the relation (35),

we identify the jump conditions across the interface for the order 1 outer problem.
4. We finally solve the order 1 outer problem (30), which is a correction of the outer mechanical fields due

to the presence of heterogeneities in the material.
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This approach is not very satisfactory in practice for several reasons. First, that needs to solve sequen-
tially two outer problems, the solution of the first giving the data for the second. Second, these data involve
the strain field and its tangential derivatives on the interface, but these quantities (particularly the deriva-
tives of the strains) are not, in general, well approximated by classical numerical methods. Finally, the
order 1 outer problem can exhibit singular boundary effects, which makes the numerical resolution tricky.
Here we present a method which can correct all these drawbacks. It consists in constructing a unique outer
problem which is a combination of the first two outer problems and whose solution Uη admits the same
expansion up to order 1 in η as the real solution uη. Accordingly, this new outer problem can be seen as the
up to order 1 effective problem . Moreover, it turns out that this problem admits a variational formulation
in which the solution Uη is the stationary point of a potential energy. This energy is the sum of the usual
potential energy and a surface energy over Γ which contains the information on the heterogeneities.

Let us consider the following problem which consists in finding the displacement field U and the stress
field Σ such that















































Σ = A
∗ :ε(U) in Ω \ Γ,

div(Σ) + ρ∗g = 0 in Ω \ Γ,
Σ ·n = F on ∂FΩ,

U = ud on ∂uΩ,

[[U]] = h
(

L·(Σ ·e1) +M :εΓ(U)
)

on Γ,

[[Σ]]·e1 + hdivx′

(

−(Σ ·e1)·M+ N :εΓ(U)
)

+ h
〈

ρ− ρ∗
〉

Y
g = 0 on Γ.

(43)

Note that the jumps of U and Σ ·e1 depend on the mean values of the normal stress Σ ·e1 and of the
tangential strain at the interface εΓ(U), the latter being defined by

εΓ(U) =

(

∂Uα

∂xβ
+

∂Uβ

∂xα

)

eα ⊗s eβ .

Remark 8 Some extra conditions could appear at the boundary ∂Γ of Γ, like a linear density of forces, see
Remark 5. Their study is outside the scope of the present paper, see [2] for their analysis in a particular
case. However, there exists no extra conditions when ∂Γ ⊂ ∂uΩ and ud = 0 in a neighborhood of ∂Γ.

Since h = ηH, if we consider again that η is a small parameter, the solution of (43) depends on this
parameter. After reintroducing explicitly this dependence and denoting the solution by (Uη,Ση), let us
assume that the solution can be expanded in terms of the powers of η as follows:

Uη =
∞
∑

i=0

ηiUi, Σ
η =

∞
∑

i=0

ηiΣi.

Inserting these expansions into the set of equations above and identifying the different powers of η imme-
diately show that the set of equations at order 0 are those of the outer problem of order 0, see (16), and in
particular that [[U0]] = 0, [[Σ0]]·e1 = 0 on Γ. That means that U0 = u0 and Σ

0 = σ
0. In the same way, since

u0 and σ
0 ·e1 are continuous across Γ and hence u0 = u0, σ0 ·e1 = σ

0 ·e1, the set of equations at order 1
are those of the outer problem of order 1, see (30) and (40). Therefore, U1 = u1 and Σ

1 = σ
1. Thus, the

pair (Uη,Ση), solution of (43), admits the same expansion as the solution (uη,ση) of the real problem (1)
up to order 1 in η. (In general, the subsequent terms of the expansions are different.) Accordingly, (43) can
be seen as an up to the order 1 effective problem.



22 M. David et al.

Remark 9 Note that the introduction of U and Σ in the system of equations (43) is somehow arbitrary:
Replacing (U,Σ) by (U+,Σ+) or (U−,Σ−) in (43) still leads to an effective problem accurate up to order 1.
In other words, there is no uniqueness of the up to the order 1 effective problem. The virtue of introducing U

and Σ in the formulation is that it preserves a kind of symmetry between the two sides of Γ.

Remark 10 The advantages of this formulation are: (i) the problem is set in a homogeneous body (the
matrix) cut by a surface where the fields can be discontinuous (like a cohesive crack), all the information
relative to the heterogeneities are included in the transmission conditions on that interface; (ii) the problem
can be solved in one step; (iii) the solution is not singular and is even more regular than the solution of
the true problem as seen in the next section; (iv) the practical implementation of such a problem in a
finite element code only requires to introduce the ad hoc interfacial elements; (v) the last advantage of this
formulation is that it leads to finding a stationary point of an energetic functional, i.e. the problem (43) has
a variational character; but the important drawback is that this energy functional is, in general, non convex

because the positivity of the tensors L and N is not guaranteed, as we explain in the next section.

Remark 11 This formulation is similar to other effective problems formulated in very different contexts: In the
field of viscous flow simulations, several authors were interested in formulating effective boundary conditions
for rough boundaries, which gives rise to similar problems [3,22]. In the domain of wave simulations, similar
equations also appear in the formulation of ideal absorbing boundary conditions [17, 20]. These artificial
boundary conditions are used to simulate infinite media with a low computational cost.

4.3 The variational formulation of the up to the order 1 effective problem

We show in this section that the problem (43) has a variational character, i.e. its solution is the stationary
point of an energetic functional. An important step in this proof consists in the identification of this energy
functional which contains a surface energy on Γ. The form of the variational formulation depends on whether
the tensor L is invertible. Let us begin by the simplest case where L is invertible, the general case will be
considered afterwards.

Let us assume that L is invertible and let us define the set C of kinematically admissible displacement
fields by

C =
{

w = (w1, w2, w3)
∣

∣

∣
w ∈ H1(Ω \ Γ )3, (w2, w3) ∈ H1(Γ)2, w = ud on ∂uΩ

}

, (44)

where H1(D) denotes the Sobolev space of functions which belong to L2(D) and whose distributional first
derivatives also belong to L2(D). The set C is an affine space whose associated linear space is denoted by
C0 and consists in the fields with the same regularity than those of C and which satisfy w = 0 on ∂uΩ. Let
us introduce the potential energy Peff as the functional defined on C by

Peff(w) =
1

2

∫

Ω\Γ

ε(w) :A∗ :ε(w) dx−
∫

∂FΩ

F·w dS−
∫

Ω

ρ∗g·w dx− h

∫

Γ

〈

ρ− ρ∗
〉

Y
g·w dx′

+
h

2

∫

Γ

((

[[w]]

h
−M :εΓ(w)

)

·L−1 ·
(

[[w]]

h
−M :εΓ(w)

)

+ εΓ(w) :N :εΓ(w)

)

dx′. (45)

The regularity assumed for w is exactly what is necessary and sufficient for Peff(w) to be finite. Specifically,
w must belong to H1(Ω \ Γ)3 so that the bulk elastic energy is finite. Accordingly, the traces w+ and
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w− associated with w on each side of the plane surface Γ belong to H1/2(Γ). Hence their mean value w

belongs also to H1/2(Γ). But this does not ensure that the surface energy remains finite, because of the term
εΓ(w) :N : εΓ(w). For that, it is necessary (in the case where N is definite) that εαβ(w) belongs to L2(Γ)
and hence that vα belongs to H1(Γ). The first three terms in the definition of Peff are the usual ones in the
definition of the potential energy for a (homogeneous) elastic body, while the last two are the “effective”
contribution of the heterogeneities. In particular the last one seems to correspond to a surface elastic energy
due to two contributions: one associated with a density of springs whose stiffness would be L

−1 and the
other associated with an elastic membrane whose stiffness tensor would be N; the main difference however
is that these quantities are not necessarily positive since the signs of L and N are not known in advance and
will depend on whether the inclusion is stiffer or softer than the matrix.

Let us prove the following fundamental result:

Proposition 2 Let us assume that the boundary ∂Γ of Γ is included in the part of the boundary which is fixed,

i.e. ∂Γ ⊂ ∂uΩ and ud = 0 in a neighborhood of ∂Γ, and let us assume that the tensor L is invertible. Let U be

a kinematically admissible displacement field and Σ its associated stress field, i.e. U ∈ C and Σ = A
∗ : ε(U).

Then, the pair (U,Σ) is solution of the up to order 1 effective problem (43) if and only if U renders stationary

the potential energy Peff over C.

Proof The proof will be formal, the questions of regularity lying outside the scope of our paper. Let (U,Σ)
be a solution of (43) with U ∈ C. We have to prove that P ′

eff(U)(w) = 0 for all w ∈ C0, P ′
eff(U) denoting

the Gâteaux derivative of Peff at U, i.e. the linear form defined on C0 by P ′
eff(U)(w) = d

dhPeff(U+hw)|h=0.
Accordingly, we have to prove the following variational equality

0 =

∫

Ω\Γ

Σ :ε(w) dx+ h

∫

Γ

((

[[U]]

h
−M :εΓ(U)

)

·L−1 ·
(

[[w]]

h
−M :εΓ(w)

)

+ εΓ(U) :N :εΓ(w)

)

dx′

−
∫

∂FΩ

F·w dS−
∫

Ω

ρ∗g·w dx− h

∫

Γ

〈

ρ− ρ∗
〉

Y
g·w dx′, ∀w ∈ C0. (46)

Let w ∈ C0, multiplying the equilibrium equation in (43) by w and integrating over Ω \ Γ lead to

0 = −
∫

Ω\Γ

(divΣ + ρ∗g)·w dx.

After an integration by parts, taking into account that w = 0 on ∂uΩ and that Σ = F on ∂FΩ gives

0 =

∫

Ω\Γ

Σ :ε(w) dx−
∫

∂FΩ

F·w dS−
∫

Ω

ρ∗g·w dx+

∫

Γ

[[w·Σ ·e1]] dx′. (47)

Since the jump of a product can read as [[fg]] = [[f ]]g + f [[g]], the integral over Γ in (47) becomes

∫

Γ

[[w·Σ ·e1]] dx′ =

∫

Γ

(

[[w]]·Σ ·e1 +w·[[Σ]]·e1
)

dx′.

By virtue of the jump condition of Σ in (43), the second part of the integral becomes

∫

Γ

w·[[Σ]]·e1 dx′ = −h

∫

Γ

divx′

(

−(Σ ·e1)·M+ N :εΓ(U)
)

·w dx′ − h

∫

Γ

〈

ρ− ρ∗
〉

Y
g·w dx′.



24 M. David et al.

After an integration by parts of the divergence term, using the hypothesis that w = 0 on ∂uΩ and the
symmetries of N gives

∫

Γ

w·[[Σ]]·e1 dx′ = +h

∫

Γ

(

−(Σ ·e1)·M+ εΓ(U) :N
)

:εΓ(w) dx′ − h

∫

Γ

〈

ρ− ρ∗
〉

Y
g·w dx′.

Then, (47) becomes

0 =

∫

Ω\Γ

Σ :ε(w) dx+ h

∫

Γ

(

(Σ ·e1)·
(

[[w]]

h
−M :εΓ(w)

)

+ εΓ(U) :N :εΓ(w)

)

dx′

−
∫

∂FΩ

F·w dS−
∫

Ω

ρ∗g·w dx− h

∫

Γ

〈

ρ− ρ∗
〉

Y
g·w dx′. (48)

Since L is assumed to be invertible, the jump condition of U in (43) can read as

Σ ·e1 = L
−1 ·
(

[[U]]

h
−M :εΓ(U)

)

. (49)

Inserting (49) into (48) gives (46).

The proof of the converse, i.e. if (U,Σ) satisfies (46) then (U,Σ) is solution of (43), does not present
any difficulty and is left to the reader. ⊓⊔

Remark 12 The assumption that ∂Γ ⊂ ∂uΩ plays an important role in the proof of the proposition above
since it allows us to eliminate the boundary terms in the integration by parts of the divergence term over
Γ. Otherwise a linear density of forces would appear on ∂Γ and should be combined with the linear density
of forces which exists in general in the formulation of the problem (43), see Remark 5.

Let us consider now the case when L is not invertible. Let Ker L and Im L be the kernel and the image of L.
Since L is symmetric, the jump condition of U in (43) implies that [[U]]−hM :εΓ(U) must belong to Im L and
hence be orthogonal to Ker L. This condition constitutes a kinematic condition which must be introduced
in the definition of C. Accordingly, C reads now

C =
{

w
∣

∣

∣
w ∈ H1(Ω \ Γ), (w2, w3) ∈ H1(Γ), w = ud on ∂uΩ, [[w]]− hM :εΓ(w) ∈ Im L on Γ

}

.

The restriction L̃ of L to the orthogonal of Ker L is invertible and the jump condition of U in (43) can read

Σ ·e1 = L̃
−1 ·
(

[[U]]

h
−M :εΓ(U)

)

.

Since all the proof of Proposition 2 is unchanged until (49), Proposition 2 remains valid, provided we replace
L
−1 by L̃

−1 in the definition of Peff.

Remark 13 From the mathematical viewpoint, the fact that the tensors L and N can be negative (and in
general one of the two tensors is really negative as it is shown in the examples presented in the next section)
has several drastic consequences: (i) neither the existence nor the uniqueness of a stationary point for Peff
on C is ensured; (ii) a stationary point is not necessarily a minimizer for Peff on C, and a global minimum
may not even exist. However, the mathematical analysis made in [11] in a simplified context suggests that,
even though (43) is a saddle point problem, it generally admits one unique solution, except for a countable
set of parameters of the model. The verification that this result remains true in our general context will be
the subject of future works.
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5 Examples

In all the examples considered below, the matrix and the inclusion are assumed isotropic with respective
Lamé coefficients (λ∗, µ∗), (λi, µi) and respective Young modulus and Poisson ratio (E∗, ν∗), (Ei, ν i). These
coefficients satisfy the usual inequalities : 3λ∗ + 2µ∗ > 0, µ∗ > 0, E∗ > 0, −1 < ν∗ < 1/2 for the matrix,
3λi + 2µi ≥ 0, µi ≥ 0, Ei ≥ 0, −1 ≤ ν i ≤ 1/2 for the inclusion. The limit case Ei = 0, corresponding to a
void or a crack, can be studied in the same framework, provided the matrix of the body remains connected.
Throughout this section, the difference between the value of an elastic coefficient in the inclusion and that
in the matrix is denoted by a double bracket, for example [[µ]] = µi−µ∗. By virtue of the isotropy hypothesis,
the tensors e1 ·A∗ ·e1 and S∗ read

e1 ·A∗ ·e1 = (λ∗ + 2µ∗)e1 ⊗ e1 + µ∗(e2 ⊗ e2 + e3 ⊗ e3), S∗ =
1

λ∗ + 2µ∗
e1 ⊗ e1 +

1

µ∗
(e2 ⊗ e2 + e3 ⊗ e3).

5.1 Layer of constant thickness

Here the heterogeneity is due to a thin layer with constant thickness h = ηH. Accordingly, the vectors of
periodicity (a,b) are arbitrary and the elementary cell Y can be reduced to the real line R, the heterogeneity
lying in the interval (−H/2,+H/2). In other words, the inner fields only depend on the y1 coordinate and

(λ(y1), µ(y1)) =

{

(λ∗, µ∗) if |y1| > H/2,

(λi, µi) if |y1| < H/2.

Our asymptotic analysis is valid if and only if 3λi + 2µi > 0 and µi > 0. The solutions of the 6 elementary
problems (18) can be obtained in a closed form. Indeed, since Tij depends only on y1, we deduce from the
equilibrium equation and the conditions at infinity that T ij

k1 = 0 for all (i, j, k) and everywhere in Y. In

the same way, one has εαβ(V
ij) = 0 for all (i, j, α, β) and everywhere in Y. Accordingly, the stress-strain

relation gives ε(Vij) = 0 in the matrix while in the layer one gets

ε11(V
ij) = − [[λ+ 2µ]]

λi + 2µi
Iij11 − [[λ]]

λi + 2µi
Iijαα, εα1(V

ij) = − [[µ]]

µi
Iijα1, in (−H/2,+H/2).

Inserting these values of ε(Vij) into the definition (36) of D yields

D1111 = −λ∗ + 2µ∗

λi + 2µi
[[λ+ 2µ]], Dα1β1 = −µ∗

µi
[[µ]]δαβ ,

D11αβ = −[[λ]]
λ∗ + 2µ∗

λi + 2µi
δαβ , Dαβγδ =

(

[[λ]]2

λi + 2µi
− [[λ]]

)

δαβδγδ − [[2µ]]Iαβγδ,

where Iαβγδ = 1
2 (δαγδβδ + δαδδβγ) is the projection operator on the vector space of second order symmetric

tensors. The other components of D are obtained by symmetry or vanish. By virtue of (41)-(42), the tensors
L, M and N read as

L =

[[

1

λ+ 2µ

]]

e1 ⊗ e1 +

[[

1

µ

]]

(e2 ⊗ e2 + e3 ⊗ e3), (50)

M = −
[[

ν

1− ν

]]

e1 ⊗ (e2 ⊗ e2 + e3 ⊗ e3), (51)

Nαβγδ =

[[

2µλ

λ+ 2µ

]]

δαβδγδ + [[2µ]]Iαβγδ, (52)



26 M. David et al.

The jumps of stress and displacement can be readily obtained from these relations by using equation (40).
The tensor L is generally invertible, except in the particular cases where [[λ + 2µ]] = 0 or [[µ]] = 0. In the
general case, the sign of L depends on the sign of these coefficients. The coupling tensor M only depends on
the Poisson ratio of the materials, and vanishes when the matrix and the inclusion have the same Poisson
ratio: the coupling between the membrane deformations and the jump of displacement is typically a Poisson
effect. The sign of N is not obvious at this step. In the trivial case where the matrix and the inclusion have
the same elastic moduli, the three tensors L, M and N vanish, which means that the jump of displacement
and membrane stress are zero.

Let us consider the particular case when the matrix and the layer have the same Poisson ratio, i.e. when
ν∗ = ν i = ν ∈ (−1, 1

2 ). In this case, M = 0 while the tensors L and N can read as

L =
(1 + ν)(1− 2ν)

1− ν

[[

1

E

]]

e1 ⊗ e1 + 2(1 + ν)

[[

1

E

]]

(e2 ⊗ e2 + e3 ⊗ e3),

Nαβγδ =
[[E]]

1 + ν

(

Iαβγδ +
ν

1− ν
δαβδγδ

)

.

In the latter expressions, L and N have opposite signs: if [[E]] > 0, i.e. if the layer is stiffer than the matrix,
N is positive while L is negative. Conversely, if the layer is softer than the matrix, L becomes positive while
N is negative. Since the coercitivity of the interface energy depends on the positiveness of these two tensors,
this result suggests that our interface model is generally not stable, as emphasized previously.

It is also interesting to show that our model is consistent with other models previously described in
the literature for stiff or soft interfaces. This proof can only be formal, since the derivation of our model
was based on the hypothesis that the material parameters were independent of η. Let us first consider the
case when the inclusion is much stiffer than the matrix, i.e. when Ei ≫ E∗. We can therefore introduce the
ratio θ = E∗/Ei as a small parameter. If we introduce Ei = θ−1E∗ in (50–52), we see that L and M remain
bounded when θ → 0, while N is not bounded. The unbounded part of N is

Nαβγδ = θ−1 E∗

1 + ν i
Iαβγδ + θ−1 E∗ν i

(1 + ν i)(1− ν i)
δαβδγδ +Oθ=0(θ

0).

In other words, the membrane stress becomes predominant over the displacement jump. Formally, if θ is
of the order of η, the membrane stress appears at order 0 instead of order 1, and depends only on the
membrane components of the deformation εΓ(u

0). The jump of stress at order 0 is therefore given by:

[[σ0]]·e1 + hdivx′

(

Ei

1 + ν i
εΓ(u

0) +
Eiν i

(1 + ν i)(1− ν i)
divx′(u0) (e2 ⊗ e2 + e3 ⊗ e3)

)

= 0.

In this case, we can construct a model which is effective up to order 0 in η, where the interface behaves like
a membrane. Specifically, the effective energy (45) can read as

Peff(w) =
1

2

∫

Ω\Γ

ε(w) :A∗ :ε(w) dx−
∫

∂FΩ

F·w dS−
∫

Ω

ρ∗g·w dx− h

∫

Γ

〈

ρ− ρ∗
〉

Y
g·w dx′

+
hEi

2(1 + ν i)

∫

Γ

(

εΓ(w) :εΓ(w) +
ν i

1− ν i
(divx′w)2

)

dx′. (53)

The displacements are continuous across Γ and the set of admissible displacements becomes

C =
{

w = (w1, w2, w3)
∣

∣

∣
w ∈ H1(Ω)3, (w2, w3) ∈ H1(Γ)2, w = ud on ∂uΩ

}

. (54)
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This model is consistent with the so-called stiff model described in the literature [6, 7, 21], where the trans-
mission conditions across the interface are of Ventcel’s type.

Conversely, we can consider the case when the layer is much softer than the matrix. This corresponds
to the case when θ → ∞. Following the previous method, when θ → ∞, M and N remain bounded while L

is not bounded:

L =
θ(1 + ν i)(1− 2ν i)

E∗(1− ν i)
e1 ⊗ e1 +

2θ(1 + ν i)

E∗
(e2 ⊗ e2 + e3 ⊗ e3) +Oθ→∞(θ0).

In other words, the jump of displacement become predominant over the membrane stress. Formally, if θ is
of the order of η−1, the jump of displacement appears at order 0 instead of order 1, and depends only on
the force applied on the interface σ

0 ·e1. The jump of displacement at order 0 is therefore given by:

[[u0]] = h

(

σ0
11

λi + 2µi
e1 +

σ0
12

µi
e2 +

σ0
13

µi
e3

)

.

In this case, we can construct a model which is effective up to order 0 in η, where the interface behaves like
an elastic interface. Specifically, the effective energy (45) can read as

Peff(w) =
1

2

∫

Ω\Γ

ε(w) :A∗ :ε(w) dx−
∫

∂FΩ

F·w dS−
∫

Ω

ρ∗g·w dx− h

∫

Γ

〈

ρ− ρ∗
〉

Y
g·w dx′

+
1

2h

∫

Γ

(

(λi + 2µi)[[w1]]
2 + µi[[w2]]

2 + µi[[w3]]
2
)

dx′, (55)

while the space of admissible displacements becomes

C =
{

w = (w1, w2, w3)
∣

∣

∣
w ∈ H1(Ω \ Γ)3, w = ud on ∂uΩ

}

. (56)

This model is consistent with the so-called soft model described in the literature [6,19], where the interface is
replaced by a uniform density of springs. Let us note that in both limit cases the energy functional retrieves
its positive definiteness, which was lost in the general case.

5.2 Square array of transverse penny-shaped cracks

The main interest of this formulation does not lie in the study of homogeneous layers: it is able to describe
a much wider variety of localized defects. We can study for example the influence of penny-shaped cracks.
These cracks lie in the plane (e2, e3), their radius is rh, 0 ≤ r < 1/

√
2, while the distance between two

neighboring cracks is h. Thus, the periodicity vectors at the macroscale are a = he2 and b = he3. At
the microscale, the elementary cell is Y = R×(−H/2, H/2)2 and contains a crack which is the disk D =
{

(0,y′)
∣

∣ ||y′|| < rH
}

with unit normal vector e1, cf. Figure 5. This case is treated in [29] and we simply recall
here the main results. The 6 elementary problems (18) must be slightly modified because of the presence of
the crack. In particular, the displacement fields Vij are discontinuous across D and the stress vector Tij ·e1
is prescribed on the lips of the crack (see Remark 2). Accordingly the elementary problems read now







































Tij = A
∗ :εy(V

ij) in Y \ D,

divy(T
ij) = 0 in Y \ D,

Tij ·e1 = −(A∗ :Iij)·e1 on D,

lim
y1→±∞

Tij ·e1 = 0,

Vij and Tij are y′−periodic.

(57)
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e2

e3 e3

e1

Fig. 5 Case when the defect is a penny-shaped crack in the plane y1 = 0

The force applied on the lips of the crack is −(A∗ :Iij)·e1 = −λ∗δije1 − 2µ∗Iij ·e1. It therefore appears that
V23 = V32 = 0, while V22 = V33 = λ∗/(λ∗ + 2µ∗)V11. The definition of the tensor D reads

Dijkl =
〈

εy(V
ij) :A :εy(V

kl)
〉

Y

−
〈

Iij : (A− A
∗) :Ikl

〉

Y

=
〈

εy(V
ij) :A∗ :εy(V

kl)
〉

Y

.

The tensor D is related to the effective damage compliance tensor D̃ defined in [29] (it was denoted there by
D) by A

∗ : D̃ :A∗ = D. By virtue of the relations above between the fields Vij and owing to the symmetries
of the elementary cell, the tensor D can be written as follows

ε :D :ε =
dn
E∗

(

(λ∗ + 2µ∗)ε11 + λ∗εαα

)2

+
dm
E∗

4µ∗2εα1εα1, ∀ε =
(

εij
)

. (58)

In (58), dn and dm are positive dimensionless coefficients which only depend on the parameter r characterizing
the ratio between the radius of the cracks and their mutual distance. It can also be proved that dn and dm
are increasing functions of r, growing from 0 to +∞ when r grows from 0 to 1/

√
2. (When r = 1/

√
2, the

crack separates the elementary cell into two parts, the matrix is no more connected and our analysis is no
more valid.)

Using Proposition 1 and inserting (58) into (41)-(42) yield

L =
dn
E∗

e1 ⊗ e1 +
dm
E∗

(e2 ⊗ e2 + e3 ⊗ e3), M = 0, N = 0.

Therefore, since 〈ρ− ρ∗〉
Y
= 0 (the volume of the void is zero), the jump conditions in (43) become

[[U]] =
dnh

E∗
Σ11e1 +

dmh

E∗
Σα1eα, [[Σ]]·e1 = 0, (59)

where h is the distance between two neighboring cracks. The jump conditions (59) correspond to Robin’s
transmission conditions, see [29]. In other words, this array of cracks behaves like a surface density of normal
and tangential springs whose stiffness is equal to E∗/dnh and E∗/dmh, respectively. We have obtained here
the simplest effective behavior. That example could suggest that the effective behavior of planar cracks is
always that of a surface density of springs. Other examples treated in [29], where one simply changes the
orientation of the cracks, proves the converse.

The effective potential energy reads now

Peff(v) =
1

2

∫

Ω\Γ

ε(v) :A∗ :ε(v) dx+
1

2

∫

Γ

(

E∗

dnh
[[v1]]

2 +
E∗

dmh
[[vα]][[vα]]

)

dx′ −
∫

∂FΩ

F·v dS−
∫

Ω

ρ∗g·v dx.
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It is a (strictly) convex functional by virtue of the positivity of the coefficients dn and dm. Moreover, since
M and N vanish, Peff does not involve the membrane strain ε

′ on Γ, and Peff(v) is finite if and only if v
belongs to H1(Ω \ Γ)3. Accordingly, the set of admissible displacement fields reads now

C =
{

v
∣

∣

∣
v ∈ H1(Ω \ Γ )3, v = ud on ∂uΩ

}

.

Since Peff is coercive and (strictly) convex on C, there exists a unique displacement field U which renders
stationary Peff on C (up to admissible rigid motions). Moreover, U is the global minimizer of Peff on C.

The effective behavior of the cracks is characterized by the dimensionless coefficients (dn, dm). To our
knowledge, there is no analytical solution to the elementary problems (57). These coefficients must therefore
be computed numerically, using for example the finite element method. Some precautions must however be
taken. First, the solution of the elementary problems is only unique up to an arbitrary translation. To obtain
a numerical solution, it is necessary to prescribe this uniform translation. This can be easily achieved by
prescribing the displacement of one single node of the finite element mesh. Second, the elementary cell is
theoretically unbounded in the e1 direction. However, since the stress correctors decay exponentially when
y1 goes to ±∞, the elementary cell can be artificially bounded in this direction without much influence on
the numerical result. Some numerical investigations show that reducing the cell in the y1 direction to 6H,
i.e. six times the size of the inclusion, is sufficient to obtain an accurate approximation of the solution.

We computed the values of (dn, dm) for several values of the radius of the cracks, ranging from 0 to
1/

√
2. The Poisson ratio of the matrix was set to 0.3. The results are presented in the following tabular.

r 0.0 0.1 0.2 0.3 0.4 0.5 0.6

dn 0.0 0.0042 0.037 0.134 0.355 0.96 2.25
dm 0.0 0.0047 0.043 0.156 0.413 1.11 2.52

One can see that dn and dm are not very large when the crack is small, but that they grow very fast in the
vicinity of 1/

√
2 ≈ 0.707. This was expected since, when r → 1/

√
2, the periodic array of microscopic cracks

transforms into one macroscopic crack.

5.3 An hexagonal array of spherical holes

Here we analyse a second non-trivial example, where the heterogeneity is due to a periodic distribution of
spherical voids in the plane (e2, e3). The radius of a void is rh, 0 ≤ r < 1/

√
3, h = ηH being the distance

between two neighboring voids. The periodicity vectors at the macroscale are a = ℓe2 and b = ℓ(e2+
√
3e3)/2.

At the microscale, we can choose for Y a perfect hexagon with center 0, see Figure 6. Accordingly, the
elementary cell is Y = R×Y and contains a void corresponding to the ball D = {y | ||y|| < rH }. This case
is also treated in [29] and we simply recall here the main results. The 6 elementary problems (18) must be
modified because of the presence of the void. In particular, the displacement fields Vij cannot be defined in
D, whereas the stress tensor Tij can be extended in D so that the equilibrium equations hold in the whole
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a

b

e3

e1

Fig. 6 Case when the defect is a spherical hole

cell Y. Accordingly the elementary problems read now







































Tij = A
∗ :εy(V

ij) in Y \ D,

Tij = −A
∗ :Iij in D,

divy(T
ij) = 0 in Y,

lim
y1→±∞

Tij ·e1 = 0,

Vij and Tij are y′−periodic.

(60)

Unlike the previous example of planar cracks, none of the elementary problems are trivial. The definition
of the tensor D reads

Dijkl =
〈

εy(V
ij) :A :εy(V

kl)
〉

Y

−
〈

Iij : (A− A
∗) :Ikl

〉

Y

=
〈

Tij :A∗−1
:Tkl

〉

Y

,

where Tij is extended inside the void by −A
∗ :Iij (see Remark 2). This tensor is still related to the effective

damage compliance tensor D̃ defined in [29] by A
∗ : D̃ :A∗ = D. Since the material is isotropic, the void is

spherical and the periodic array is hexagonal, we can use the results of [27] to obtain that D̃ and D are
positive transversely isotropic fourth order tensors with axis e1. Therefore, D can be written

ε :D :ε = ∆nE
∗ε211 + 2δnE

∗ε11εαα + δmE∗(ε22 + ε33)
2 + 2dmE∗εαβεαβ + 4dnE

∗ε1αε1α, (61)

where the five dimensionless coefficients ∆n, dm, dn, δm and δn are functions of r and ν∗ which satisfy the
following inequalities:

∆n > 0, dm > 0, dn > 0, δm + dm > 0, (δm + dm)∆n > δ2n. (62)

Inserting (61) into (41)–(42) gives the tensors L, M and N. The details of the calculations are left to the
reader and we finally obtain



































L =
∆nE

∗

(λ∗ + 2µ∗)2
e1 ⊗ e1 +

dnE
∗

µ∗2
(e2 ⊗ e2 + e3 ⊗ e3),

M =

(

δn − λ∗

λ∗ + 2µ∗
∆n

)

E∗

λ∗ + 2µ∗
e1 ⊗ (e2 ⊗ e2 + e3 ⊗ e3),

Nαβκζ = −2dmE∗Iαβκζ −
(

δm − 2λ∗δn
λ∗ + 2µ∗

+
λ∗

2
∆n

(λ∗ + 2µ∗)2

)

E∗δαβδκζ .

(63)
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e3

e1

e3

Fig. 7 Unidirectional reinforcements

By virtue of the positivity of the tensor D and hence of the inequalities (62), we immediately see that L is
positive while N is negative. That means that in terms of the effective surface energy, the spring-like energy
is positive while the membrane-like energy is negative as in the case of a soft layer. Note that the effective
behavior of the holes cannot be assimilated to a surface density of springs and is hence strongly different
from the effective behavior of transverse penny-shaped cracks.

These coefficients were numerically computed, in the case where the Poisson ratio of the matrix is 0.3,
and the radius of the sphere is 3/8. The results are presented in the following tabular.

Parameter ∆n dm dn δm δn
Value 1.05 0.15 0.30 0.41 0.54

5.4 Unidirectional reinforcements

Finally, we can study the effective behavior of unidirectional reinforcements. These reinforcements are
cylinders, with radius rh and axis e2. They are periodically distributed in the e3 direction, with a spacing
h. The periodic vectors at the macro-scale are a = αe2 and b = he3, with α an arbitrary constant. At
the microscopic level, the fields are therefore independent of y2, and the elementary cell can be reduced
to Y = R×(−H/2, H/2) in the plane (e1, e3). The reinforcement cylinder is located in the domain D =
{(y1, y3) | ||y|| < rH }, so we have

(λ(y1, y3), µ(y1, y3)) =

{

(λ∗, µ∗) if y /∈ D,

(λi, µi) if y ∈ D.

Since there is no void in the volume, the elementary problems are the ones derived previously



























Tij = A :εy(V
ij) + (A− A

∗) :Iij in Y,

divy(T
ij) = 0 in Y,

lim
y1→±∞

Tij ·e1 = 0,

Vij and Tij are y′−periodic,
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and the tensor D is defined by

Dijkl =
〈

εy(V
ij) :A :εy(V

kl)
〉

Y

−
〈

Iij : (A− A
∗) :Ikl

〉

Y

.

Since the planes with unit normal vectors e1, e2 and e3 are symmetry planes, the tensor D has only 9
independent components:

D = cijE
∗(ei ⊗ ei)⊗ (ej ⊗ ej) + 4ταE

∗(e1 ⊗s eα)⊗ (e1 ⊗s eα) + 4τmE∗(e2 ⊗s e3)⊗ (e2 ⊗s e3),

where cij , τα and τm are dimensionless coefficients which depend upon (r, θ, ν i, ν∗), and cij obeys a symmetry
condition cij = cji. The tensors L, M and N can be computed in terms of these coefficients by using the
formulas (41)–(42).

These coefficients were numerically computed in the case where θ = E∗/Ei = 0.1 and ν i = ν∗ = 0.3, for
two values of the relative radius r, and one obtains:

r c11 c22 c33 c12 c13 c23 τ2 τ3 τm
1/20 -0.014 -0.07 -0.014 -0.0059 -0.0055 -0.0059 -0.0052 -0.0043 -0.0053
1/3 -0.54 -3.30 -0.87 -0.21 -0.18 -0.31 -0.17 -0.14 -0.32

Note that the tensor D is negative definite. Unsurprisingly, the bigger the fibers are, the more influence they
have on the behavior of the structure. Moreover, one may notice that, when the relative radius of the fibers
r is small, the interaction between the fibers is small. In this case, several coefficients are almost equal :
c11 ≈ c33, c12 ≈ c23 and τ2 ≈ τm.

6 Conclusion and perspectives

We presented a comprehensive method to identify the effective behavior of periodic heterogeneities located on
a plane surface. A wide variety of problems may be described with this approach, ranging from reinforcements
and rigid inclusions to microcracks or cavities in solids. Preliminary works showed that the influence of
these heterogeneities results in a correction of order 1 of the mechanical fields. The effective behavior of the
interface is obtained by solving six elementary problems at the scale of a pattern. It is then necessary to
solve twice the outer problem: the first time with an entirely homogeneous body, and the second by taking
into account the jumps of displacement and stress due to the heterogeneities.

To simplify the implementation of this model, the order 0 and 1 problems are reformulated in an
energetic framework by introducing an interface energy. This formulation simplifies the analysis of the
effective behavior of the interface, along with its implementation in a finite element code. The general
model couples elastic interface and membrane behaviors, and is thus able to exhibit most kinds of interfacial
behaviors. This general model may also be reduced to simpler models when it is relevant, depending on the
energies involved in the different phenomena. The main drawback of this model is that the interface energy
is generally not positive definite, which fosters unphysical instabilities in the vicinity of the interface. This
is a consequence from the fact that we identified the effective behavior of a zero-thickness interface. We
believe that this problem could be solved by considering a finite thickness interface, for which the stiffness
of the homogeneous volume would control the instabilities of the interface. This problem will be the subject
of future works.
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This approach can be easily extended to all kinds of linear differential equations of second order. This
includes thermal diffusion, electrostatics, magnetism or elastodynamics. Note that, in the latter case, the
wave length of the vibrations must be much larger than the size of the heterogeneities to avoid any diffraction
effects. We also believe that this model may be generalized to take into account a wider variety of problems.
We assumed in particular that the defects are distributed on a surface which is planar. This hypothesis
could be removed by introducing differential geometry in the derivation of the model. However, the final
model should be very similar. We also assumed that the materials on each side of the heterogeneities are
the same, which may be untrue for interfacial cracks for example. Such problems could be treated in a very
similar manner.
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Math. Anal. Appl. 47, 284–309 (1974)

22. Jger, W., Mikelic, A.: On the roughness-induced effective boundary conditions for an incompressible viscous
flow. Journal of Differential Equations 170(1), 96 – 122 (2001). DOI DOI: 10.1006/jdeq.2000.3814. URL
http://www.sciencedirect.com/science/article/pii/S0022039600938142

23. Klarbring, A., Movchan, A.B.: Asymptotic modelling of adhesive joints. Mechanics of Materials 28(1-4), 137–145 (1998)
24. Krasucki, F., Lenci, S.: Analysis of interfaces of variable stiffness. Int. J. Solids Struct. 37, 3619–3632 (2000)
25. Krasucki, F., Lenci, S.: Yield design of bonded joints. Eur. J. Mech. - A/Solids 19(4), 649–667 (2000)
26. Lemrabet, K.: Le problème de Ventcel pour le système de l’élasticité dans un domaine de R
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