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Abstract We study the dynamic debonding of a one-

dimensional inextensible film, subject to a monotonic
loading and under the hypothesis that the toughness of

the glue can take only two values. We first consider the
case of a single defect of small length in the glue where
the toughness is lower than in the remaining part. The
dynamic solution is obtained in a closed form and we

prove that it does not converge to the expected quasi-
static one when the loading speed tends to zero. The
gap is due to a kinetic energy which appears when the

debonding propagates across the defect at a velocity
which is of the same order as the sound velocity. The
kinetic energy becomes negligible again only when the
debonding has reached a critical distance beyond the

defect. The case of many defects is then considered and
solved using an exact numerical solution of the wave
equation and the Griffith law of propagation. The nu-

merical results highlight the effects of the time evolution

of the kinetic energy which induce alternate phases of
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rapid and slow debonding, these oscillations depending

essentially on the volume fraction of the highest tough-

ness.
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Introduction

This paper is a contribution to the study of dynamic
fracture in the framework of Griffith’s theory [4,11,12,

17]. We are interested in analyzing the propagation
of a crack in a heterogeneous material (with variable
toughness), understanding the role of the kinetic en-

ergy. In particular, we wonder whether a (possibly mod-
ified) quasistatic model is a good approximation of the
phenomenon, avoiding delicate and time-consuming dy-
namic computations.

Indeed, even under quasistatic loading (i.e., assum-
ing that the speed of loading is smaller than the speed
of the internal vibrations), the material’s answer is a

priori dynamic, because Griffith’s theory does not pro-
vide an absolutely continuous solution when the crack
passes through a zone where the toughness suddenly

decreases [9,2,18]. In this case, since the energy release

rate becomes greater than the toughness, the dynamic
evolution presents a fast propagation, whose speed has
the order of the speed of sound; in a quasistatic frame-

work, the counterparts of fast propagations are jumps

in time.
Hence, one deals with a free-boundary problem of

elastodynamics, driven by Griffith’s dynamic law. In or-

der to capture the nontrivial behaviour of the kinetic
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energy, we consider here the simplified model like in
[16,6,7]: we study the debonding of a one-dimensional
inextensible film, subject to a monotonic loading with
vanishing speed, under the hypothesis that the tough-

ness is piecewise constant and takes only two possible
values.

It is quite surprising to see that, at least at our
knowledge, this “elementary” problem was never solved
in the literature. Indeed, even if there exists a great
number of papers devoted to the case of debonding in

the homogeneous case, see for instance [10,13–15], very
few consider the heterogeneous case. One can find works
like [5,22] devoted to dynamic delamination of Double

Cantilever Beams where the heterogeneities are though-
thickness reinforcements. However, the heterogeneities
are there treated as continuously distributed bridging

cohesive zones and this modelling leads to a different

type of effective dynamic behaviour. In particular, it
cannot capture the transitory effects of kinetic energy
due to the back and forth of shock waves created when

the crack tip crosses the interfaces.

Here, we follow the approach of [6,7], where a com-
plete analysis is performed in the case of a single dis-

continuity of the toughness (increasing or decreasing).
In particular, in the case of toughness with one disconti-
nuity, the results of [7] show that the dynamic solutions

converge, as the loading speed tends to zero, towards

the quasistatic evolution, upon assuming a criterion of
energy conservation to govern the jumps. So the qua-

sistatic approximation is good, even if the kinetic en-
ergy reaches a large value during the fast propagation.
Moreover, it is possible to determine the length of the
crack’s jump and the time occurring for the debonding

to restart after the jump.

In this work, we consider the case of a defect, i.e.,

the case of two discontinuities of the toughness. If the
size of the defect does not exceed a threshold depend-
ing only on the two possible values of the toughness,
we prove that the dynamic solutions do not converge

to the usual quasistatic one: indeed, the jump’s length
is overestimated by the usual quasistatic evolution (see
Proposition 6 and Figure 6). Hence, the kinetic energy

cannot be neglected, so we provide an “optimal bound”
on it (Proposition 9): it turns out that the kinetic en-
ergy increases during the fast propagation and is totally
relaxed when the system comes back to a quasistatic

behaviour. Nevertheless, a good approximation is rep-
resented by a quasistatic model where the toughness is
suitably modified: we give the expression of the alter-

native toughness in Proposition 7.

Finally, we consider the case of many defects, whose
number diverges and whose distribution could be peri-

odic or random. In the quasistatic model (under the

assumption of energy conservation), the solutions are

staircase functions in the space/time plane, bounded
by lines whose slope depends on the density of material
with the lowest toughness. In particular, fixed a level
of load, the length of debonding can be higher than the

one corresponding to a material with a constant low

toughness. Moreover, even if the density of the lowest
toughness tends to one, in the limit the behaviour is

different from the case of a homogeneous material.
Due to the difficulty of controlling the several inter-

actions that perturb the debonding process, in the case

of many defects the dynamic problem is treated using
an exact numerical solution of the wave equation. The
simulations show that the qualitative aspect of the dy-
namic solutions depends strongly on the density of the

lowest toughness, while it is not affected by the choice
of the defects’ distribution.

If the density of the lowest toughness is close to one,

the dynamic solutions seem to converge to a quasistatic
staircase evolution: indeed, during the fast propagations
the debonding passes through many defects. As this
density decreases, the curves in the space/time plane

seem smoother, showing a wave trend; if the density is
close to 1/2, their shape approaches a line, whose slope
is however different from the one corresponding to the

mean toughness.
This behaviour reflects the influence of the kinetic

energy on the dynamics. Indeed, we see here the com-

petition of two opposite phenomena: the creation of ki-

netic energy as the toughness decreases and the relax-
ation observed in the case of a single defect.

This paper is organized as follows. In Section 1 we

introduce the main ingredients of the model and we
summarize the results in the case of a single disconti-
nuity of the toughness. Section 2 contains the analysis

of the case of a defect (two discontinuities), both in the
quasistatic and the dynamic framework. Since the dy-
namics does not tend to the quasistatics, we show in

Section 2.4 the possible modification to the toughness
in order to ensure convergence. Finally, we study the
kinetic energy in Section 2.5. In Section 3 we discuss
the numerical results for the case of many defects.

1 Convergence to a discontinuous quasistatic

solution

We introduce the problem of a simplified peeling test

for a thin film, comparing quasistatics and dynamics.

In [7] it is presented an example where the dynamic

solutions converge, as the speed of loading tends to zero,
to a discontinuous quasistatic evolution. We summarise
here the main features of the model, referring to [7] for
further details.
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Fig. 1 Simplified peeling test.

1.1 Simplified peeling test

We consider a simplified version of the peeling test [17,
21]. A semi-infinite, perfectly flexible, and inextensible

thin film is initially bonded to a rigid substrate with
normal e2 (Figure 1). Its end x1 = 0 is submitted

both to a constant tension −Ne1, with N > 0, and

to an opening displacement W ; as W increases, the

front of debonding propagates. The film has a tough-

ness Gc(x1), depending only on x1, which is assumed
to be piecewise constant.

In order to shorten the expressions, we introduce
dimensionless quantities. For this purpose, we consider
a specific characteristic length L of the film and we set

x :=
x1
L
, T :=

W

L
. (1)

The displacement field u of the film can then be ex-

pressed as a function of (x, T ) defined onQ := (0,+∞)2,

u(x, T ) = u(x, T )Le1 + w(x, T )Le2. (2)

If w is small enough, using a linearized inextensibility

condition we can express u in terms of w,

u(x, T ) =
1

2

∫ ∞

x

(
∂w

∂x
(s, T )

)2

ds, (3)

so the only unknown of the problem is w.
The debonded part of the film for a given loading T

corresponds to the points x such that supS6T w(x, S) >

0. The debonding is assumed to grow from x = 0 at

T = 0 in such a way that the debonded part of the film
corresponds to an interval (0, ℓ(T )) (notice that ℓ(T )L

represents the physical debonded length). Therefore, we
have

u = w = 0 in Q0 := {(x, T ) ∈ (0,+∞)2 : x > ℓ(T )}.
(4)

In our analysis, the various energies play a major

role. Since the film is perfectly flexible, the potential

energy is equal to the opposite of the work produced

by the tension N in the displacement u(0, T ); by (3), it

reads

P(T ) :=
NL

2

∫ ∞

0

(
∂w

∂x
(x, T )

)2

dx. (5)

The debonding of the film is assumed to be governed
by Griffith’s law [12]. The surface energy of the film is

then given by

S(T ) := L

∫ ℓ(T )

0

Gc(x) dx. (6)

In the following sections we present the main tools for
the quasistatic and the dynamic analysis.

1.2 Ingredients for the quasistatic analysis

In the quasistatic approach, the film is assumed to be
in equilibrium for every value of the given loading T .

Minimizing the potential energy (5) over the functions

w such that w > 0, w(0) = T , and w = 0 in [ℓ,+∞)
(where ℓ > 0 is a fixed length), one sees [7, Section 2.2]

that the transverse displacement field at equilibrium is

w0(x) := T
(
1− x

ℓ

)+
,

where (·)+ stands for the positive part. The correspond-

ing energies are

P(T, ℓ) =
NLT 2

2ℓ
, S(ℓ) = L

∫ ℓ

0

Gc(x) dx.

The quasistatic potential energy release rate, which is

defined as the opposite of the derivative of the potential

energy with respect to ℓ, consequently reads

G(T, ℓ) := − 1

L

∂P
∂ℓ

(T, ℓ) =
NT 2

2ℓ2
. (7)

The quasistatic total energy Eq(T, ℓ) is given by

Eq(T, ℓ) := P(T, ℓ) + S(ℓ) = NLT 2

2ℓ
+ L

∫ ℓ

0

Gc(x) dx.

(8)

Given T > 0, the function ℓ 7→ Eq(T, ℓ) is strictly con-
vex if and only if x 7→ Gc(x) is nondecreasing.

The quasistatic evolution of the length of debonding
ℓ(T ) is a function of the loading T , satisfying Griffith’s
criterion: T 7→ ℓ(T ) must be absolutely continuous (see,

e.g., [8] for the definition of absolutely continuous func-

tion) and must satisfy for a.e. T > 0





ℓ̇(T ) > 0,

NT 2

2ℓ2(T )
6 Gc(ℓ(T )),

(
NT 2

2ℓ2(T )
−Gc(ℓ(T ))

)
ℓ̇(T ) = 0,

(9)

with the initial condition ℓ(0) = 0. In (9) the first in-

equality is the irreversibility condition, the second is
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Griffith’s criterion (the energy release rate is always
bounded by the local toughness Gc(ℓ)), and the last

equality prescribes that the debonding evolves only when
the energy release rate is critical.

We recall that by assumption the toughness of the
material is a piecewise constant function of x1. During

the first phase (before the first change of toughness),

the evolution of the debonding T 7→ ℓ(T ) can be deter-
mined by Griffith’s law (9). However, after the change

of toughness, the results of [7] show that there exists a

unique absolutely continuous solution in the case of a

toughness increase, whereas there is no absolutely con-
tinuous solution in the case of a toughness decrease.

More precisely, let us consider the two cases:

• Case (a) (increasing toughness):

Gc(x) =

{
Nγ1 if 0 < x 6 ℓ1,

Nγ2 if x > ℓ1 ;
(10)

• Case (b) (decreasing toughness):

Gc(x) =

{
Nγ2 if 0 < x 6 ℓ1,

Nγ1 if x > ℓ1 ;
(11)

where ℓ1 > 0 and 0 < γ1 < γ2 in both cases.

In case (a), the debonding evolves with speed 1/
√
2γ1

for T 6 T1 := ℓ1
√
2γ1. Then by (9) it stops at ℓ1,

since G(T1, ℓ1) = Gc(ℓ
−
1 ) < Gc(ℓ

+
1 ). The debonding

restarts when the loading T is so large that the energy

release rate G(T, ℓ1) equals again Gc(ℓ
+
1 ), namely when

T = T̃1 := ℓ1
√
2γ2, and propagates with speed 1/

√
2γ2

(see Figure 2).

On the other hand, in case (b) the debonding evo-

lution is necessarily discontinuous: ℓ must jump from

ℓ1 (the discontinuity point) to some point ℓc > 1, im-
possible to determine using Griffith’s law. Therefore,

in [7] the problem is set in an extended quasistatic
framework, under a principle of energy conservation

(see also [20,19,2] for a general variational approach
to rate independent behaviours): this permits one to

deal with the unstable crack propagation phase. More
precisely, at T1 := ℓ1

√
2γ2 the debonding jumps from ℓ1

to a value ℓc := ℓ1
γ2

γ1
such that Eq(T1, ℓ1) = Eq(T1, ℓc).

Afterwards, since the energy release rate is less than
the toughness, the debonding stops and its length re-
mains constant at the value ℓc: this holds as long as

T 6 T̃c := 2γ2/
√
2γ1, where the energy release rate is

again critical. Then the debonding restarts with speed
1/
√
2γ1 (see Figure 2).
The criterion of conservation of the total quasistatic

energy thus provides a solution for the unstable crack
propagation, i.e., when Griffith’s law fails. In addition,
in both cases the solution coincides with the limit of

some dynamic solutions as the loading speed tends to

zero, as we will see in the next section.

PSfrag replacements

ℓ1
ℓc
ℓ
T
T1

T̃1

T1

T̃c

Fig. 2 Quasistatic evolution with a single discontinuity of
the toughness: left, case (a); right, case (b).

1.3 Ingredients for the dynamic analysis

Following [7, Section 2.1], we present the tools to anal-

yse the dynamics of the peeling test, in order to treat

the case of unstable (discontinuous) crack propagation.

The loading is assumed to have a dimensionless speed

ε > 0,

W = εc t, (12)

where c :=
√

N
ρ
is the velocity of the transversal waves

propagating in the film and ρ is the mass of a unit
length of the film. For the whole paper the speed ε will

be assumed small enough.

As above, we denote by ℓε(T ) the length of the

debonded part and by wε the transverse component of

the displacement field (see (2)). Its partial derivatives
are

ωε :=
∂wε

∂x
, vε :=

∂wε

∂T
, (13)

where the rescaled variables (x, T ) are given in (1).

The field ωε represents the infinitesimal rotation of the

film, while the field vε is the rescaled transverse velocity

(the actual transverse velocity of material points being

εc vε).

The potential and the surface energy are defined by

Pε(T ) :=
NL

2

∫ ∞

0

ωε(x, T )2 dx (14)

and

Sε(T ) := L

∫ ℓε(T )

0

Gc(x) dx, (15)

respectively. The kinetic energy of the film at time t is

defined as

Kε(T ) := ε2
NL

2

∫ ∞

0

vε(x, T )2 dx, (16)

where the factor ε2 is due to the rescaling of time.
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The debonded part of the film is governed by the
equation of motion [1]

∂ωε

∂x
− ε2

∂vε

∂T
= 0 in Q \ (Qε

0 ∪ Sε), (17)

where Qε
0 := {(x, T ) ∈ (0,+∞)2 : x > ℓε(T )} and Sε

is the set of the discontinuity points of ωε and vε in

Q \ Qε
0 (see also the definition below). In addition, the

Hadamard compatibility condition gives

∂ωε

∂T
− ∂vε

∂x
= 0 in Q \ (Qε

0 ∪ Sε). (18)

Notice that (17) and (18) are equivalent to the wave

equation [1]

∂2wε

∂x2
− ε2

∂2wε

∂T 2
= 0 in Q \ (Qε

0 ∪ Sε). (19)

Finally, the initial condition (4) holds on Qε
0. Moreover,

due to the rescaling vε satisfies at x = 0 the boundary
condition

vε(0, T ) = 1 (20)

for every T > 0.

As shown in [7] , the change of toughness at ℓ1 gen-

erates a backward shock wave Sε−
1 , i.e., a discontinu-

ity point for ωε and vε; moreover, at ℓ1 the debonding
speed changes. The backward shock wave is then re-

flected on the axis x = 0 and transformed into a forward
shock wave Sε+

1 , which intersects the front of debond-

ing modifying again the speed. At the intersection, the
forward shock wave is replaced by a backward shock

wave Sε−
2 , and so on. The backward shock waves, de-

noted by Sε− :=
⋃

m Sε−
m , propagate with a local veloc-

ity s = −1/ε, while the forward shock waves, denoted

by Sε+ :=
⋃

m Sε+
m , propagate with velocity s = 1/ε.

On Sε := Sε− ∪ Sε+, equations (17)–(18) are replaced

by the Hadamard condition and the Rankine-Hugoniot

relation [23],

JωεK+ εJvεK = 0 on Sε+, JωεK− εJvεK = 0 on Sε−.

(21)

In the last equations, JfK stands for the jump of f across

Sε, i.e., JfK := f+ − f− on Sε, f+ and f− denoting
respectively the limit after and before the passage of

the shock wave.

We now present the law to determine the evolution
of the front of debonding Γ ε := {(ℓε(T ), T ) : T > 0}.
On Γ ε the displacement wε is continuous (and equal

to 0), but ωε and vε are discontinous and satisfy the
compatibility condition

JvεK + ℓ̇εJωεK = vε+ + ℓ̇εωε
+ = 0 on Γ ε. (22)

In the last equation, we have used (4) and we have

denoted by JfK the difference f+−f− between the limit
in Q \ Qε

0 and in Qε
0.

The debonding of the film is governed by Griffith’s
law [12], in terms of the dynamic energy release rate Gε.

In a general two-dimensional context, where wε : R2 →
R

2 denotes the displacement, Gε is defined as the limit

of a path integral where the path Cr tends to the tip of
the crack as r → 0 (see [11]):

Gε := lim
r→0

∫

Cr

((
ρ

2

∣∣∣∣
∂wε

∂t

∣∣∣∣
2

+
N

2
|∇wε|2

)
n1

− ∂wε

∂x1
· (∇wε n)

)
ds,

(23)

where n denotes the outer unit normal to Cr and s

stands for the arc length parameter. Notice that the

term containing the time derivative in (23) refers to

the kinetic energy, while the others correspond to the

static energy release rate.

In the one-dimensional context used in this paper,
Cr reduces to two points approaching the debonding

tip from the two opposite sides, so, taking into account

the orientation of the debonding front, (23) simplifies

as follows:

Gε :=
N

2
(J(ωε)2K − ε2J(vε)2K) =

N

2
(1− (εℓ̇ε)2)(ωε

+)
2

(24)

(we refer to [7, Appendix A] for more details). In the

last equality we dropped the dependence on (T, ℓ) and

we used (4) and (22). Griffith’s dynamic law finally
reads

ℓ̇ε > 0, Gε
6 Gc(ℓ

ε), (Gε −Gc(ℓ
ε))ℓ̇ε = 0. (25)

Notice that, according to (24) and (25), the speed of

debonding is necessarily smaller than the wave speed:

0 6 εℓ̇ε < 1. (26)

Following [7] , we assume that the speed of debond-
ing and the fields of infinitesimal rotation and trans-

verse velocity are constant in each of the sectors delim-

ited by the shock waves and by the front of debonding.

This assumption seems reasonable, because

• both boundary and limit conditions are constant,
• the problem is linear (except of course for the prop-

agation law), and

• the shock waves propagate with a velocity equal to

±1/ε.
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Equations (17)–(25) permit then to perform the com-
plete dynamic analysis of the debonding evolution.

Both in cases (a) and (b) (see (10) and (11)), the
debonding front propagates at a constant speed, un-

til it reaches the discontinuity of the toughness. The
change of toughness generates a backward shock wave
and modifies the speed of debonding. Later, the back-
ward shock wave is reflected on the axis x = 0 and

transformed into a forward shock wave, which inter-
sects the front of debonding, since the wave speed is
greater than the one of debonding. This leads to a fur-

ther change in the speed of debonding, while the for-
ward shock wave is reflected into a backward one, and
so on.

In [7] it is shown that, in both cases, the dynamic so-

lutions converge to the quasistatic one (described in the
previous section) as the speed of loading tends to zero.
This is easier for case (a), since Griffith’s classical dy-

namic law converges towards the usual quasistatic one

in cases of stable propagation. On the contrary, more
attention must be paid to case (b), when Griffith’s clas-
sical quasistatic law fails. In case (b), it can be seen

that the jump in the quasistatic solution is the limit
of a dynamic fast propagation, corresponding to one
backward/forward transition of the shock wave; during

this process, the kinetic energy increases and suddenly

vanishes. Hence one obtains an unexpected result: the
phase of unstable propagation can be approximated by

means of quasistatic quantities, because the kinetic en-
ergy plays only a transitory role. The correct criterion
to predict the jump turns out to be the conservation of
the total quasistatic energy.

2 The case of a defect

In the previous section, we presented the essential items

for the quasistatic and the dynamical analysis of a peel-

ing test. If the toughness has only one discontinuity, the

dynamical solutions converge to the quasistatic one as

the loading speed vanishes; hence, the kinetic energy

plays a transitory role and does not need to be com-

puted, since the value of the jump in crack length is

given by the conservation of the total quasistatic en-

ergy.

We consider now the same peeling test in the case
of a defect: the toughness is assumed to have two dis-

continuities. Here, the kinetic energy turns out to be
relevant, so that the dynamic solutions do not converge
to the quasistatic one (Proposition 6). This leads to the

definition of an equivalent quasistatic toughness, whose

expression is provided in (78).

2.1 Peeling test with two discontinuities

As in Section 1, we consider a peeling test for a film,

bonded to a substrate with a specific toughness repar-

tition, subject to a tension N and a given opening dis-
placement field W ; due to the loading, the front of

debonding propagates.

We assume now that the toughness has the following

distribution:

Gc(x) =





Nγ2 if 0 < x 6 ℓ1,

Nγ1 if ℓ1 < x 6 ℓ2,

Nγ2 if x > ℓ2,

(27)

where 0 < ℓ1 < ℓ2 and 0 < γ1 < γ2 again. This corre-

sponds to a defect, i.e., the inclusion of particles whose

toughness is smaller than the one of the matrix.

Remark 1 We do not treat the case of a defect with
toughness greater than the matrix (that is, Gc(x) =

Nγ2 for ℓ1 < x 6 ℓ2, Gc(x) = Nγ1 otherwise). In fact,

this situation does not present a particular behaviour:

the first discontinuity (increase of toughness) causes a

temporary arrest of the debonding, until the loading

overtakes a certain threshold. When the propagation

continues and the second discontinuity is reached, the

effect of the first one is somehow “forgotten”, so we

have the usual situation of decreasing toughness. The

global solution is thus a simple combination of the two
cases analysed in [7] and summarized in Section 1; the
dynamic solutions converge to the quasistatic one as

the loading speed tends to zero.

In the following sections we compare the quasistatic

and the dynamic solutions as the loading speed tends

to zero, for a defect of the type (27).

2.2 Quasistatic solution

Following the lines of [7] (see Section 1), the quasistatic
evolution is supposed to be governed by Griffith’s law
when possible, and by a criterion of conservation of the

total quasistatic energy otherwise.

During the first phase, i.e., before the first disconti-

nuity (ℓ 6 ℓ1), Griffith’s law admits a unique solution:

by (7), (9), and (27) one has

ℓ(T ) =
T√
2γ2

for 0 6 T 6 ℓ1
√
2γ2. (28)

The decrease in toughness at the first discontinuity (ℓ =

ℓ1, T = T1 := ℓ1
√
2γ2) leads to an unstable propaga-

tion of the debonding (see Section 1). For this level of
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loading, the quasistatic energy (8) reads

Eq(T1, ℓ) =



NL
( ℓ21γ2

ℓ
+ ℓγ2

)
if 0 < ℓ 6 ℓ1,

NL
( ℓ21γ2

ℓ
+ ℓ1γ2 + (ℓ− ℓ1)γ1

)
if ℓ1 < ℓ 6 ℓ2,

NL
( ℓ21γ2

ℓ
+ ℓ1γ2

+ (ℓ2 − ℓ1)γ1 + (ℓ− ℓ2)γ2
) if ℓ > ℓ2.

(29)

The jump in crack length is determined by the cri-

terion of energy conservation and the assumption of

crack irreversibility. Calling ℓb > 1 the position of the

debonding front at the end of the unstable phase, these
conditions give

Eq(T1, ℓb) = Eq(T1, ℓ1) = 2NLℓ1γ2. (30)

In presence of a second discontinuity at ℓ2 > ℓ1, two

cases are possible. They depend on the value of ℓc,
which is defined as the length of the debonding front

after the unstable phase if the toughness presents only
one discontinuity (as seen above, ℓc = ℓ1

γ2

γ1
> ℓ1). The

two cases are given by

Case I (long defect): ℓc 6 ℓ2, (31)

Case II (small defect): ℓc > ℓ2. (32)

In case I, the unstable phase stops at ℓb = ℓc 6 ℓ2,

in other words inside the defect. By (7) and (27) the

energy release rate is

G(T1, ℓc) = N
γ21
γ2

< Nγ1 = Gc(ℓc). (33)

Therefore, as predicted by Griffith’s law (9), the debond-
ing front stops until the loading T reaches the value T̃c
such that G(T̃c, ℓc) = Gc(ℓc) = Nγ1. By (7) we have

T̃c = ℓ1
2γ2√
2γ1

. (34)

Between ℓc and ℓ2 (if the interval is not empty) the

debonding is given by Griffith’s law:

ℓ(T ) =
T√
2γ1

for T̃c < T 6 T2, (35)

where T2 := ℓ2
√
2γ1. In order to study the second dis-

continuity, it is sufficient to recall the simple case of

increasing toughness (Section 1): the debonding length

remains constant (ℓ(T ) = ℓ2) as long as the opening

T is less than T̃2, which is defined as the loading such
that the energy release rate is equal to Nγ2. By (7) we
obtain

T̃2 = ℓ2
√
2γ2. (36)

Then, when T > T̃2, the debonding restarts again fol-
lowing Griffith’s law with Gc = Nγ2.

This concludes the analysis of case I, under the as-
sumption that the debonding evolution is determined

by Griffith’s law except during the unstable phase, where
the jump is governed by the principle of quasistatic en-
ergy conservation. In case I, the map T 7→ ℓ(T ) is given

by

ℓ(T ) =





T√
2γ2

if 0 6 T 6 ℓ1
√
2γ2,

ℓc =
γ2

γ1
ℓ1 if ℓ1

√
2γ2 < T 6 ℓ1

2γ2√
2γ1

,
T√
2γ1

if ℓ1
2γ2√
2γ1

< T 6 ℓ2
√
2γ1,

ℓ2 if ℓ2
√
2γ1 < T 6 ℓ2

√
2γ2,

T√
2γ2

if T > ℓ2
√
2γ2

(37)

(see Figure 3).

Case II corresponds to the situation where the size
of the defect is small (ℓc > ℓ2). Hence, the criterion of

energy conservation does not admit any solution inside
the defect: it is not possible to find any ℓb ∈ (ℓ1, ℓ2]

such that Eq(T1, ℓb) = Eq(T1, ℓ1). Then, as one can eas-
ily see by solving the last equation, the unstable crack
propagation phase stops outside the defect, at length

ℓb =
1

2γ2

(
γ2(ℓ2 + ℓ1)− γ1(ℓ2 − ℓ1)

+

√
(γ2(ℓ2 + ℓ1)− γ1(ℓ2 − ℓ1))

2 − 4ℓ21γ
2
2

)
,

(38)

with ℓb > ℓ2. Since Eq(T1, ℓb) = Eq(T1, ℓ1) < Eq(T1, ℓc),

we have ℓb < ℓc. As for the energy release rate, it turns

out that

G(T1, ℓb) < Nγ2 = G(T1, ℓ1) = Gc(ℓb). (39)

Therefore, by Griffith’s law (9) the debonding front
stops until the loading T reaches the value T̃b such that

PSfrag replacements

ℓ1
ℓc
ℓ2
ℓb
ℓ
T
T1

T̃c

T2

T̃2

T̃b

Fig. 3 Quasistatic evolution with one defect: left, case I (ℓc 6

ℓ2); right, case II (ℓc > ℓ2).
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G(T̃b, ℓb) = Gc(ℓb) = Nγ2. By (7) we have

T̃b = ℓb
√
2γ2. (40)

As T > T̃b, the debonding restarts again following Grif-
fith’s law with Gc = Nγ2. Hence, in case II the evolu-

tion of the debonding length ℓ is given by

ℓ(T ) =





T√
2γ2

if 0 6 T 6 ℓ1
√
2γ2,

ℓb if ℓ1
√
2γ2 < T 6 ℓb

√
2γ2,

T√
2γ2

if T > ℓb
√
2γ2

(41)

(see Figure 3).

The quasistatic analysis of a defect with toughness
lower than the matrix exhibits two main features:

• the length of the jump of the debonding can take

two different values depending on the size of the de-

fect: if it is large, the crack stops inside the defect,
otherwise the cracks passes through and stops out-

side the defect if it is small;
• no memory effect is put forward: after the unstable

phase due to the defect, the propagation remains
stable and follows Griffith’s classical law as if the
defect did not exist.

The next step consists in performing the dynamic anal-
ysis and comparing the results.

2.3 Dynamic analysis

In this section, we analyse the dynamics of the peel-

ing test containing one defect, presented above. As in
section 1.3, each change of toughness generates a back-
ward shock wave, which is reflected on the axis x = 0

and transformed into a forward shock wave intersecting
the front of debonding and modifying again the crack
speed. Since there are two points of discontinuity for
the toughness, we deal now with two different groups

of shock waves.

In the same spirit as in [7] , the (x, T )-plane is

divided into sectors Qε
i , i > 0, delimited either by

the shock waves, or by the coordinate axes. As defined

above, the sectorQε
0 is delimited by the front of debond-

ing and the axis T = 0, and corresponds to the region

with ωε = vε = 0. The sector Qε
1 is delimited by the

front of debonding, the backward shock wave generated
at ℓ1, and the axis x = 0; then the index i is incremented

at each reflection of the shock waves, as shown in Fig-
ure 4. The infinitesimal rotation ωε and the transverse

velocity vε are assumed to be constant on each sector;

the symbols ωε
i and vεi denote the values of ωε and vε

on the sector Qε
i , respectively.

PSfrag replacements

ℓ
ℓ1
ℓ2
T

Qε
0

Qε
1

Qε
2

Qε
3

Qε
4

Qε
5

Qε
6

Qε
7

Qε
8

Qε
9

Qε
10

Γ ε
0

Γ ε
1

Γ ε
2

Γ ε
3

Γ ε
4

0

1

2

3

4

Fig. 4 Sectors in the (x, T )-plane: the thick line repre-
sents the debonding, the thin ones are the shock waves.
The numbers 0, . . . , 4 denote, respectively, the points
(ℓε0, T

ε
0 ), . . . , (ℓ

ε
4, T

ε
4 ).

The long defect (case I) is not of particular interest.

The kinetic energy generated during the unstable prop-

agation is totally relaxed before the debonding reaches

the second discontinuity: indeed, ℓc corresponds to the
length where the kinetic energy vanishes (see [7]). This

case can thus be seen as a combination of cases (a) and
(b) of Section 1, disconnected in the sense of the role
of the kinetic energy; therefore, the dynamic solutions

converge to the quasistatic one (under the principle of

energy conservation). Both the dynamic and the qua-
sistatic solutions for case I are presented in Figure 5.

We consider here only the small defect (case II).

Since ℓc > ℓ2, it is easy to see that the debonding

reaches the second discontinuity before being intersected
by the first forward shock wave. Hence, the kinetic en-
ergy is not totally relaxed when the debonding reaches

the second discontinuity. We will study the consequence
of this residual kinetic energy on the propagation of the
debonding.

The front of debonding Γ ε is decomposed into lin-

ear segments Γ ε
i , i > 0, numbered in such a way that

Γ ε
i stands between ℓεi and ℓεi+1, where ℓ

ε
0 := 0, ℓε1 := ℓ1,

ℓε2 := ℓ2, and ℓεi corresponds to the i-th reflection of

waves (see Figure 4). We shall determine the speed ℓ̇εi
of the front of debonding, that is the slope of Γ ε

i , tak-
ing into account the kinetic energy. For this purpose,

we shall compute the fields ωε
i and vεi in the different

sectors and the dynamic energy release rate Gε
i on Γ ε

i .
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ℓ1 =
Fig. 5 Convergence of the dynamic solutions to the quasistatic one in the case of a long defect (case I). Here, γ1 = 0.5, γ2 = 2,
ℓ1 = 1, ℓ2 = 5.

First, we will use the tools of Section 1.3 (more pre-

cisely, equations (21)–(25)) in order to describe the evo-
lution ℓε. Then, we will study the evolution of the ki-

netic energy, which shows quite a complex behaviour.

2.3.1 Initial stage

While ℓ 6 ℓ2, only one discontinuity of the toughness af-
fects the solution, so it is sufficient to follow [7] . Before

the first discontinuity, the boundary condition (20), the

Hadamard compatibility condition (21) and Griffith’s

dynamic law (25) give

ℓ̇ε0 =
1√

2γ2 + ε2
. (42)

The first discontinuity (ℓ = ℓ1) is thus reached at the
load

T ε
1 := ℓ1

√
2γ2 + ε2. (43)

Afterwards, the debonding proceeds with speed

ℓ̇ε1 =
1

ε

(√
2γ2 + ε2 + ε

)2
− 2γ1

(√
2γ2 + ε2 + ε

)2
+ 2γ1

(44)

and the second discontinuity (ℓ = ℓ2) is reached for
T = T ε

2 , with

T ε
2 := T ε

1 + ε

(√
2γ2 + ε2 + ε

)2
+ 2γ1

(√
2γ2 + ε2 + ε

)2
− 2γ1

(ℓ2 − ℓ1). (45)

As ε → 0, T ε
1 and T ε

2 tend to T1 = ℓ1
√
2γ2, while ℓ̇

ε
1

diverges (indeed, the limit of ℓε has a jump).

Using [7, Proposition 3.1] we find the fields of in-

finitesimal rotation and transverse velocity:

{
vε1 = 1,

ωε
1 = −

√
2γ2 + ε2,

(46)




vε2 = −ℓ̇ε1ωε

2,

ωε
2 = − γ1+γ2√

2γ2+ε2+ε
− ε,

(47)




vε3 = 1,

ωε
3 = − 2γ1√

2γ2+ε2+ε
− ε.

(48)

We will use these fields for the computation of the ve-
locity of propagation after the second discontinuity.

2.3.2 Intermediate stage

When the second discontinuity is reached, the second

shock wave is created, dividing the plane in sectors Qε
i

as described above. The fields of infinitesimal rotation

and transverse velocity in each sector can then be com-

puted inductively using (21). The propagation speeds

ℓ̇εm, ℓ̇
ε
m+1, . . . are determined by the mechanical fields in

the corresponding sectors Qε
3m−2,Qε

3m+1 . . . , which are
coupled with the sectors Qε

3m,Qε
3m+3 . . . If the sectors

Qε
i are known for every i 6 3m, the values in the fol-

lowing sectors are given by the next proposition, which

is the counterpart of [7, Proposition 3.1].



10 G. Lazzaroni et al.

Proposition 2 For every m > 2 we have





vε3m+1 = −ℓ̇εm+1ω
ε
3m+1,

ωε
3m+1 =

ωε
3m−3−ε

1+εℓ̇ε
m+1

,

ℓ̇εm+1 = 1
ε

((ωε
3m−3−ε)2−2γ2)

+

(ωε
3m−3

−ε)2+2γ2
,

(49)

{
vε3m+3 = 1,

ωε
3m+3 = 2ωε

3m+1 − ωε
3m−3,

(50)

where (·)+ stands for the positive part. For m = 1 the

previous relations hold substituting ω3m−3 with ω1.

Proof The proof follows the lines of [7, Proposition 3.1].
By (22), (24),(25), and by (21)2 between Qε

3m+1 and

Qε
3m−1 and between Qε

3m−1 and Qε
3m−3, we get for ev-

ery m > 2

vε3m+1 = −ℓ̇εm+1ω
ε
3m+1, (51)

ωε
3m+1 − ωε

3m−3 = ε(vε3m+1 − vε3m−3), (52)

Gε
m+1 =

N

2
(1− (εℓ̇εm+1)

2)(ωε
3m+1)

2
6 Nγ2, (53)

where (53) is actually an equality if ℓ̇εm+1 6= 0. For

m = 1, these expressions still hold substituting Qε
3m−3

with Qε
1.

By (51) and (52) we get ωε
3m+1 =

ωε
3m−3−ε

1+εℓ̇ε
m+1

. If ℓ̇εm+1 6=
0, substituting ωε

3m+1 in (53) we find

ℓ̇εm+1 =
1

ε

(ωε
3m−3 − ε)2 − 2γ2

(ωε
3m−3 − ε)2 + 2γ2

.

In the opposite case, by (53) we obtain (ωε
3m−3 − ε)2 6

2γ2.

Recalling (20), we have vε3m+3 = 1. Using again (21)

we get

ωε
3m−3 − ωε

3m+1 = ε(1− vε3m+1),

ωε
3m+3 − ωε

3m+1 = −ε(1− vε3m+1).

Summing up in the last two equations, we conclude. ⊓⊔

The previous formulas show that the sectors Q3m+1

are divided in two uncoupled families, according asm is

even or odd. If m is even, we set n := m/2 and find the
family of sectors of the type Qε

6n−2, coupled with Qε
6n;

if m is odd, for n := (m − 1)/2 we obtain the family

Qε
6n+1, coupled with Qε

6n+3. Starting from (46)–(48),

we compute the values of the mechanical fields, until a

certain threshold is overtaken.

Proposition 3 For every ε > 0 there exists an integer

Nε such that for every n such that 1 6 n < Nε we have





vε6n−2 = 1,

ωε
6n−2 = −

√
2γ2 + ε2,

ℓ̇ε2n = ℓ̇ε0,

(54)

{
vε6n = 1,

ωε
6n = −

√
2γ2 + ε2,

(55)





vε6n+1 = 0,

ωε
6n+1 = − 2γ1√

2γ2+ε2+ε
− 2nε,

ℓ̇ε2n+1 = 0,

(56)




vε6n+3 = 1,

ωε
6n+3 = − 2γ1√

2γ2+ε2+ε
− (2n+ 1)ε.

(57)

Proof Let us start with n = 1 and then argue by in-
duction. Since ℓ̇ε2 6= 0, by (24) and (25) we have Nγ2 =

Gε
1 <

1
2ω

2
1 . If ℓ̇

ε
2 = 0, by (46)–(48) and (49)–(50) we ob-

tain 1
2ω

2
1 <

1
2ω

2
4 ; on the other hand 1

2ω
2
4 = Gε

2 6 Nγ2,

that is a contradiction. Hence, ℓ̇ε2 6= 0 and we find a

system of three equalities for Qε
4, which show

vε4 = vε1 = 1, ωε
4 = ωε

1 = −
√
2γ2 + ε2,

ℓ̇ε2 = ℓ̇ε0 =
1√

2γ2 + ε2
.

By (49)–(50) we get vε6 = 1 and ωε
6 = ωε

1.

Repeating the argument inductively, we find for ev-
ery n > 1

vε6n = vε6n−2 = 1, ωε
6n = ωε

6n−2 = ωε
1, ℓ̇ε2n = ℓ̇ε0.

This completes the proof for Qε
6n−2 and Qε

6n.

Let us pass to Qε
6n+1 and Qε

6n+3. For n = 1, as-

sume by contradiction that ℓ̇ε3 6= 0; then using (24),
(25), (46)–(48), and (49)–(50) we get Gε

3 <
N
2 (ω

ε
7)

2 <
N
2 (ω

ε
3 − ε)2 6 Nγ2, which implies that ℓ̇ε3 = 0. Hence,

ℓ̇ε3 = 0 and vε3 = 0.

Repeating the scheme, we compute by induction
ωε
6n+1, v

ε
6n+1, and ωε

6n+3 for all indices n such that

(ωε
6n−3 − ε)2 6 2γ2. In particular, ℓ̇ε2n+1 = 0 for those

indices. ⊓⊔

Remark 4 The last proposition shows the repetition of
identical sectors of the type Qε

6n−2 and Qε
6n (until n <

Nε). Indeed, the shock wave generated when the debond-

ing reaches the second discontinuity, restores the fields
of rotation and velocity when intersecting the debond-
ing. This gives some kind of “impulsion” to the crack,

which is forced to propagate at Griffith’s classical speed

in a homogeneous media of thoughness γ2, i.e., ℓ̇
ε
0.
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Instead, the shock wave generated at the first dis-
continuity stops the crack propagation when intersect-

ing the debonding and increments the values of the ro-

tation and the deformation fields in the sectors Qε
6n+1

and Qε
6n+3. This corresponds to the behaviour of the

shock wave in the case of one discontinuity, which is

here alternating with the “restoring” shock wave.

Remark 5 As shown in the proof, the best value for Nε

is the least integer such that (ωε
6Nε−3−ε)2 > 2γ2. Using

the expression for ωε
6n−3 we get

Nε =

[
1

ε

(√
γ2
2

− γ1√
2γ2 + ε2 + ε

)]
+ 1, (58)

where [·] denotes the integer part. Moreover, we have

lim
ε→0

εNε =
γ2 − γ1√

2γ2
. (59)

This intermediate phase is consequently composed of

alterning propagation and arrest phases. According to

(59), the slower the loading, the larger the number of

phases.

We now define, for i = 2, . . . , 2Nε, the points (ℓεi , T
ε
i )

of intersection of the two shock waves with the debond-
ing in the (x, T )-plane (see Figure 4). We start from

ℓε2 := ℓ2 and T ε
2 as in (45); it turns out that (for n =

1, . . . , Nε)





ℓε2n+1 = ℓε2n + ℓ̇ε0(T
ε
2n+1 − T ε

2n),

ℓε2n = ℓε2n−1,

T ε
2n+1 = T ε

2n−1 + ε(ℓε2n−1 + ℓε2n+1),

T ε
2n = T ε

2n−1 +∆ε,

(60)

where

∆ε := (ℓ2 − ℓ1)ε
2(
√
2γ2 + ε2 + ε)2

(
√

2γ2 + ε2 + ε)2 − 2γ1
(61)

denotes the variation of loading. Notice that ∆ε is in-

dependent of n, it vanishes as ε→ 0, and

lim
ε→0

∆ε

ε
= (ℓ2 − ℓ1)

2γ2
γ2 − γ1

. (62)

In order to determine the curve followed by the debond-

ing, it is sufficient to know (ℓε2n, T
ε
2n) for n = 1, . . . , Nε.

Using the previous relations one sees that

ℓε2n+2 = (Cε
1)

nℓ2 − Cε
2

n−1∑

j=0

(Cε
1)

j , (63)

T ε
2n+2 = T ε

2 + n∆ε +
ℓε2n+2 − ℓ2

ℓ̇ε0
, (64)

where

Cε
1 :=

1 + εℓ̇ε0
1− εℓ̇ε0

=

√
2γ2 + ε2 + ε√
2γ2 + ε2 − ε

,

Cε
2 := ∆ε ℓ̇ε0

1− εℓ̇ε0
=

∆ε

√
2γ2 + ε2 − ε

.

Notice that, as ε→ 0,

Cε
1 → 1,

1

ε
(Cε

1 − 1) →
√

2

γ2
, (65)

Cε
2 → 0,

1

ε
Cε

2 → (ℓ2 − ℓ1)

√
2γ2

γ2 − γ1
. (66)

We now provide an analytic expression for the curve

followed by the debonding during the intermediate stage.
Rewriting (63) we have

ℓε2n+2 = (Cε
1)

nℓ2 − Cε
2

(Cε
1)

n − 1

Cε
1 − 1

,

giving ℓε2n+2 in function of n < Nε. We define an “in-
verse” of the previous relation, setting for every ℓ ∈
[ℓ2, ℓ2Nε ]

nε(ℓ) := (lnCε
1)

−1
ln

(
ℓ (Cε

1 − 1)− Cε
2

ℓε2(C
ε
1 − 1)− Cε

2

)
(67)

and

nε(ℓ) := [nε(ℓ)]. (68)

Hence, nε(ℓ) is the integer such that ℓε2nε(ℓ)+2 ≤ ℓ <

ℓε2nε(ℓ)+4. For a fixed ℓ, as ε→ 0 we have

nε(ℓ) → +∞, (69)

εnε(ℓ) →
√
γ2
2

ln

(
ℓ(γ2 − γ1)− (ℓ2 − ℓ1)γ2

ℓ1γ2 − ℓ2γ1

)
, (70)

and the same holds for nε(ℓ), because nε(ℓ) − 1 6

nε(ℓ) 6 nε(ℓ) (we recall that ℓ1γ2 − ℓ2γ1 > 0 since

we are in case II; see (32)). Substituting nε(ℓ) to n in
the expression for T2n+2 (63), we can parametrize the

curve followed by the debonding as

T ε(ℓ) = T ε
2 + nε(ℓ)∆ε +

ℓ− ℓ2

ℓ̇ε0
(71)

for ℓ ∈ [ℓ2, ℓ2Nε ]. As ε→ 0, this tends to the limit curve

ℓ 7→
√
2γ2Φ(ℓ), (72)

with

Φ(ℓ) := ℓ− (ℓ2 − ℓ1)

(
1− γ2

γ2 − γ1
φ(ℓ)

)
(73)

and φ(ℓ) := ln ℓ(γ2−γ1)−(ℓ2−ℓ1)γ2

ℓ1γ2−ℓ2γ1
. Notice that Φ is an

increasing concave function of ℓ.
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ℓ1 = ℓdℓbℓ2

Fig. 6 Comparison between the dynamic solutions and the quasistatic one in the case of a short defect (case II). Here,
γ1 = 0.5, γ2 = 2, ℓ1 = 1, ℓ2 = 1.5.

The quantity ℓε2Nε = ℓε2Nε−1 represents the debond-
ing level reached at the end of the transition described

in Proposition 3. Using (65) and (70) we see that

lim
ε→0

ℓε2Nε =
γ2(ℓ2 − ℓ1) + (ℓ1γ2 − ℓ2γ1)e

1− γ1
γ2

γ2 − γ1
=: ℓd.

(74)

The limit curve (72) joins at ℓd the classical quasistatic
solution corresponding to the toughness γ2: indeed,
√
2γ2Φ(ℓd) =

√
2γ2ℓd =: Td. (75)

Since by assumption ℓ1γ2 > ℓ2γ1, we have ℓd >

ℓ2, so that the quasistatic solution is reached outside

the defect. Fixed ℓ1 and letting ℓ2 vary between ℓ1 and

ℓ1
γ2

γ1
, one sees that the distance ℓd − ℓ2 decreases as ℓ2

increases; moreover,

ℓd − ℓ2 < ℓ1 e
1− γ1

γ2 ,

ℓd − ℓ2 → ℓ1 e
1− γ1

γ2 as ℓ2 → ℓ1,

ℓd − ℓ2 → 0 as ℓ2 → ℓ1
γ2
γ1
.

Finally, notice that ℓc > ℓd.

2.3.3 Final stage

For n > Nε, the system switches to a different regime.

The values of the mechanical fields are found by induc-
tion using again Proposition 2.

Actually, the equations for the sectors of the type

Qε
6n−2 are not modified. Indeed, these sectors are in-

dependent of the ones of the type Qε
6n+1 and all the

fields are constant up to n = Nε − 1. Hence, formulas
(54)–(55) still hold, in particular ℓ̇ε2n = ℓ̇ε0 for every n.

On the contrary, by the choice of Nε we find that
ℓ̇ε2Nε+1 6= 0, which represents a change of regime in the

sectors of the type Qε
6n+1. Arguing as in the proof of

Proposition 3, it is possible to compute the values of

the mechanical fields for n > Nε. Starting with (56)–
(57) and using Proposition 2, we see inductively that

(ωε
6n−3 − ε)2 > γ2 and so

ℓ̇ε2n+1 =
1

ε

(ωε
6n−3 − ε)2 − γ2

(ωε
6n−3 − ε)2 + γ2

> 0 (76)

for n > Nε.

We are now in position to apply [7, Lemma 3.2],

setting

Xε
0 :=

√
2γ2∣∣ωε

6Nε−3

∣∣ , X
ε
i :=

√
2γ2∣∣ωε

6Nε−3+6i

∣∣ , ηε :=
ε√
2γ2

.

Indeed, it is possible to prove that 1/Xε
i+1 = Xε

i +2ηε,

so that by [7, Lemma 3.2] we obtainXε
i →

√
1 + η2ε−ηε

as i→ ∞ (with oscillations). In particular, we find

lim
n→∞

ℓ̇ε2n+1 =
1√

2γ2 + ε2
= ℓ̇ε0,

lim
n→∞

ωε
6n+1 = −

√
2γ2 + ε2 = ωε

1.

Hence, the final stage presents the alternation of

two phases: as before, the second shock wave restores
the speed of propagation, which turns to be equal to ℓ̇ε0;

the first shock wave changes the speed, which tends to

ℓ̇ε0 as T → ∞, with a behaviour similar to the case of a

single discontinuity. Arguing as in [7, Proposition 3.3],
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ℓdℓ2ℓ1 =
Fig. 7 Equivalent toughness in the case of a short defect (case II). Here, γ1 = 0.5, γ2 = 2, ℓ1 = 1, ℓ2 = 1.5.

it is possible to see that in the final stage the dy-

namic solutions converge as ε→ 0 to the propagation of
speed 1√

2γ2
. In this section we have proven the following

proposition.

Proposition 6 In case II, the dynamic solutions ℓε

converge, as the speed of loading ε tends to zero, to-

wards the following function:

ℓ̃ (T ) =





T√
2γ2

if 0 6 T 6 ℓ1
√
2γ2,

Φ−1
(

T√
2γ2

)
if ℓ1

√
2γ2 < T 6 ℓd

√
2γ2,

T√
2γ2

if T > ℓd
√
2γ2,

(77)

where Φ−1 is the inverse of (73).

Notice that ℓ̃ has a discontinuity at ℓ1
√
2γ2 and dif-

fers from the quasistatic solution (41) between ℓ1
√
2γ2

and ℓd
√
2γ2 (see Figure 6).

2.4 Equivalent quasistatic toughness

In the previous sections, we compared the quasistatic
and the dynamic solutions in the case of a defect and we

showed that the quasistatic solution ℓ does not coincide
with ℓ̃, the limit of the dynamic ones as ε→ 0 (provided

the defect is small, i.e., ℓ2 < ℓc: see (32)). We refer to

(41) and to (77) for the definition of ℓ and ℓ̃. We assume

ℓ2 < ℓc (see (32)).

The differences between ℓ and ℓ̃ raise a question on

the effective toughness, which can be formulated in two

different ways: (i) When a numerical analysis is per-
formed, is it possible to obtain the dynamic (more rep-
resentative) solution via a quasistatic calculation? (ii)
If one measures experimentally the toughness of such a

composite material, what will one get?

The aim of this section is to answer these questions

by computing the equivalent quasistatic toughness G̃c

such that the quasistatic solution associated to G̃c (as-

suming the criterion of energy conservation) coincides

with ℓ̃. This is indeed the natural procedure to obtain

the effective quasistatic toughness of the composite ma-
terial.

In the intervals [0, ℓ1] and (ℓd,+∞) the equivalent
toughness equals the original one, Nγ2: indeed, ℓ̃ co-

incides with the evolution corresponding to Nγ2 ac-

cording to Griffith’s classical theory. On the contrary,
we shall modify the toughness in the interval (ℓ1, ℓd],
where ℓ̃ exhibits a particular behaviour.

In order to correct the length of the unstable crack
propagation, the equivalent toughness can be deter-
mined using the criterion of energy conservation: since

ℓ̃ jumps from ℓ1 to ℓ2, we look for a new toughness such

that Eq(T1, ℓ2) = Eq(T1, ℓ1). This leads to define, using
(29) and assuming the new toughness constant inside

the defect,

G̃c(x) = Nγ2
ℓ1
ℓ2

for x ∈ (ℓ1, ℓ2].

Notice that in this interval G̃c is independent of the

toughness γ1 inside the defect.

Since
˙̃
ℓ(T ) 6= 0 in (ℓ1

√
2γ2, ℓd

√
2γ2], Griffith’s crite-

rion (9) implies that G̃c equals the energy release rate
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of the solution in this interval. Using (7), (72), and (73)
we obtain

G̃c(x) = Nγ2
Φ(x)2

x2

if x ∈ (ℓ2, ℓd]. As G̃c(ℓd) = Nγ2 = Gc(ℓd), the tough-
ness is continuous at ℓd. We have proven the following

result.

Proposition 7 Given a defect (ℓ1, ℓ2), we define the

equivalent quasistatic toughness

G̃c(x) :=





Nγ2 if 0 6 x 6 ℓ1,

Nγ2
ℓ1
ℓ2

if ℓ1 < x 6 ℓ2,

Nγ2
Φ(x)2

x2 if ℓ2 < x 6 ℓd,

Nγ2 if x > ℓd.

(78)

Then the dynamic solutions converge, as the speed of

loading tends to zero, towards the evolution ℓ̃ given by

Griffith’s quasistatic criterion, under the hypothesis of

energy conservation, with toughness G̃c.

Figure 7 presents this equivalent toughness, which
should be used for a quasistatic numerical analysis or

which would be experimentally measured on such a
composite. This equivalent toughness differs from the
real one both inside and outside the defect, i.e., in the

interval (ℓ1, ℓd). Inside the defect, the equivalent tough-
ness is higher than the one of the material, whereas

outside the defect the equivalent toughness is lower.

2.5 Evolution of the kinetic energy

In this section we study the evolution of the kinetic

energy (see (16)). For the sake of simplicity, in what

follows we assume that the second discontinuity ℓ2 is

reached before the first backward shock wave Sε−
1 is

reflected on the axis x = 0, i.e., we assume T ε
2 < τ ε1

with τ ε1 := T ε
1 + εℓ1 (see Section 1.3 for the definition

of Sε±
i ). By (43) and (45) this condition reads

ℓ2 < ℓ1
2(
√
2γ2 + ε2 + ε)2

(
√
2γ2 + ε2 + ε)2 + 2γ1

. (79)

It is straightforward to check that, under this hypoth-

esis, the same behaviour is repeated at every further

interaction of the second shock waves: if (τ ε2n+1, 0) de-

notes the point of reflection of the first shock wave

Sε−
2n+1 on the axis x = 0, then T ε

2n+2 < τε2n+1. On the
contrary, one has T ε

2n+1 > τε2n, where (τ ε2n, 0) corre-

sponds to the reflection of the second shock wave Sε−
2n .

This situation is pictured in Figure 8.

More precisely, we assume the following condition
on the lengths:

ℓ2 6 ℓ1
2γ2

γ2 + γ1
, (80)
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Fig. 8 Notation in the (x, T )-plane: the thick line represents
the debonding, the thin ones are the shock waves.

which implies (79) for every ε > 0. Moreover, (80) im-

plies also (32), i.e., we are in case II. From the energetic
point of view, (80) means that the kinetic energy is still

increasing in the media when the second discontinuity is
reached. Notice that in the opposite case (ℓ2 > ℓ1

2γ2

γ2+γ1
)

we have T ε
2 > τε1 for ε small enough, but it may happen

that T ε
2n+2 < τε2n+1 for some index n > 1.

Recalling (13), (46)–(48), and (49)–(50), it is pos-

sible to compute the kinetic energy Kε inside the me-

dia during the different stages of the evolution, and its
limit as the speed of loading tends to zero. When the

debonding meets the first discontinuity of the toughness
we have Kε(T ε

1 ) = NL
2 ε2ℓ1, so Kε(T ε

1 ) → 0 as ε → 0.
Afterwards, Kε increases until the second discontinuity,

reaching the value

Kε(T ε
2 ) =

NL

2

(∫ xε
1

0

(εvε1(x))
2 dx+

∫ ℓ2

xε
1

(εvε2(x))
2 dx

)
,

where xε1 = ℓ1 − ℓ2−ℓ1
εℓ̇ε

1

is the coordinate of the inter-

section between the first backward shock wave Sε−
1 and

the line T = T ε
2 (see Figure 8). A direct computation

gives

K̃2 := lim
ε→0

Kε(T ε
2 ) =

NL

2
(ℓ2 − ℓ1)(γ2 − γ1),

which is interpreted as the value of some “limiting ki-

netic energy” at the length ℓ2.

In particular, when the debonding reaches the sec-

ond discontinuity, the kinetic energy does not vanish.
Indeed, during the unstable propagation, Kε increases

and then decreases; since ℓ2 < ℓc, Kε is still positive

when the front of debonding reaches the end of the de-
fect.
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Remark 8 Until (80) holds, K̃2 increases as ℓ2 does.
If on the contrary ℓ2 > ℓ1

2γ2

γ2+γ1
, repeating the argu-

ments it is possible to show that xε1 = ℓ2−ℓ1
εℓ̇ε

1

− ℓ1 and

K̃2 = NL
2 (ℓ1γ2 − ℓ2γ1)

γ2−γ1

γ2
(which is decreasing in

ℓ2). Therefore, the map ℓ2 7→ K̃2 assumes its maximum

value for ℓ2 = ℓ1
2γ2

γ2+γ1
. In the sequel, we will always

suppose that (80) holds.

As for the intermediate stage, following this pro-
cedure we can compute the kinetic energy Kε(T ε

2n+2)

at each point where the debonding restarts, i.e, at the

points (ℓε2n+2, T
ε
2n+2) for n = 1, . . . , Nε − 1 (see (60)).

Thanks to the hypothesis (80), Kε(T ε
2n+2) depends just

on the transverse velocity in the sectorsQε
6n andQε

6n+2.

By (54)–(55) we have vε6n = 1; comparing Qε
6n+2 with

Qε
6n and Qε

6n+1, by (21), (54)–(55), and (56)–(57) we
have

vε6n+2 =
γ2 − γ1

ε(
√
2γ2 + ε2 + ε)

+ 1− n.

Hence, for n = 1, . . . , Nε − 1

Kε(T ε
2n+2) =

NL

2

(∫ xε
2n+1

0

(εvε6n(x))
2 dx

+

∫ ℓε2n+2

xε
2n+1

(εvε6n+2)
2 dx

)
,

(81)

where xε2n+1 ∈ [0, ℓ1] is the coordinate of the inter-

section between the (2n + 1)-th backward shock wave

Sε−
2n+1 and the line T = T ε

2n+2. A direct computation

gives xε2n+1 = ℓε2n+2−∆ε

ε
, with∆ε as in (61). Therefore,

Kε(T ε
2n+2) =

NL

2
ε2
(
ℓε2n+2 −

∆ε

ε

)

+
NL

2

∆ε

ε

(
γ2−γ1√
2γ2+ε2+ε

+ ε(1− n)

)2

.

(82)

We can repeat the above arguments for each point of

arrest, (ℓε2n+1, T
ε
2n+1) for n = 1, . . . , Nε − 1 (of course,

ℓε2n+1 = ℓε2n+2). Since Kε(T ε
2n+1) depends just on the

transverse velocity in the sectors Qε
6n and Qε

6n−1, we
compute

vε6n−1 = 1− vε6n+2

and we get

Kε(T ε
2n+1) = Kε(T ε

2n+2) +O(ε2).

In order to describe the behaviour of the kinetic

energy as ε → 0, given ℓ ∈ (ℓ2, ℓd) we set n = nε(ℓ) in

(82), where ℓd is defined in (74) and nε(ℓ) is the integer

such that ℓε2nε(ℓ)+2 ≤ ℓ < ℓε2nε(ℓ)+4 (see (67) and (68)).
Recalling (62) and (70), we obtain

K̃(ℓ) := lim
ε→0

Kε(T ε
2nε(ℓ)+2) = lim

ε→0
Kε(T ε

2nε(ℓ)+3)

=
NL

2

ℓ2 − ℓ1
γ2 − γ1

(γ2 − γ1 − γ2φ(ℓ))
2,

(83)

where φ(ℓ) := ln ℓ(γ2−γ1)−(ℓ2−ℓ1)γ2

ℓ1γ2−ℓ2γ1
. Notice that the only

sectors giving a contribution to the “limit” kinetic en-

ergy are the ones of the type Qε
6n−1 and Qε

6n+2.

As for the length ℓ2Nε reached at the end of the

intermediate stage (see (58)), with the notation intro-
duced above we have nε(ℓ2Nε) = εNε − ε. Then, using

(74) and (75) we get in the limit

K̃(ℓd) = lim
ε→0

Kε(T ε
2Nε) = 0,

so the kinetic energy in the final stage vanishes as the

speed of loading tends to zero. This suggests that the
intermediate stage corresponds to a transformation of
the kinetic energy created during the unstable propa-
gation inside the defect. The quasistatic propagation

starts again when all the kinetic energy has been trans-

formed.

The function K̃ is naturally extended as

K̃(ℓ) :=





0 if 0 6 ℓ 6 ℓ1,
NL
2 (ℓ−ℓ1)(γ2−γ1) if ℓ1 < ℓ 6 ℓ2,

NL
2

ℓ2−ℓ1
γ2−γ1

(γ2−γ1−γ2φ(ℓ))2 if ℓ2<ℓ 6 ℓd,

0 if ℓ > ℓd.

(84)

Hence, ℓ 7→ K̃(ℓ) is continuous and K̃(ℓ2) = K̃2.

Actually, the kinetic energy Kε(T ) oscillates as T

varies between T ε
2 and T ε

2Nε : this can be seen arguing
as before and recalling the geometric structure of the

sectors Qε
i (see Figure 8). In particular,

• Kε is piecewise affine with C1-discontinuities in the
points T ε

m, τ εm, and σε
m, where the loads σε

m corre-
spond to each intersection of the forward shock wave

Sε+
m with the backward one Sε−

m+1 (m = 1, . . . , 2Nε−
2);

• the local minimum points are σε
m (m = 1, . . . , 2Nε−

2); since in the associated sectors Qε
3m and Qε

3m+1

the transverse velocity can assume only the values
0 or 1, it turns out that Kε(σε

m) = O(ε2);

• Kε is increasing in [0, τε1 ], decreasing in every inter-

val of the type [τ εm, σ
ε
m], then increasing in [σε

m, τ
ε
m+1]

(m = 1, . . . , 2Nε − 2);

• the local maximum points are τ εm (m = 1, . . . , 2Nε−
2); arguing as before, it turns out that Kε(τ εm) =

Kε(T ε
m+1) +O(ε2).
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Therefore, K̃ estimates the maximal oscillation of the
kinetic energy when ε≪ 1.

More precisely, we consider the functions K̃ε(ℓ) :=
Kε(T ε(ℓ)), where ℓ 7→ T ε(ℓ) denotes the inverse of

T 7→ ℓε(T ) (see (71) for its expression in [ℓ2, ℓ2Nε ]).
The previous discussion shows that K̃ gives an estimate

from above on the “limit” of K̃ε, i.e., for every ℓ > 0

K̃(ℓ) > lim sup
ε→0

K̃ε(lε) for every possible lε → ℓ. (85)

On the other hand, the last estimate is optimal, since

for every ℓ > 0

there exists l̄ε → ℓ : K̃(ℓ) = lim
ε→0

K̃ε(l̄ε). (86)

To prove (86) it suffices to take l̄ε = ℓε2nε(ℓ)+2 if ℓ ∈
[ℓ2, ℓd] and l̄ε = ℓ otherwise. Properties (85) and (86)

imply the Γ -convergence of (the opposite of) the ki-
netic energy; we refer to [3] for the definition of this

convergence.

Proposition 9 The functions −K̃ε Γ -converge as ε→
0 to −K̃.

Notice that, if we consider the Γ -limit of K̃ε in-

stead of the one of −K̃ε, we get a trivial estimate: in-
deed, since Kε is nonnegative and for every ℓ we have

Kε(σε
2nε(ℓ)+1) → 0, then the functions K̃ε Γ -converge

in (ℓ2, ℓd) to 0 as ε → 0. This means that the “mini-

mal oscillations” of the kinetic energy vanish between
ℓ2 and ℓd.

Thus, the function K̃ defined in (84) is interpreted

as the limiting kinetic energy (in the sense of Γ -conver-
gence) corresponding to the evolution ℓ̃ introduced in

(77); in other words, it is the kinetic energy associated

to the equivalent toughness G̃c (see (78)) under the

assumption of energy conservation.
The oscillating behaviour of the kinetic energy has

its counterpart in the potential energy Pε. Indeed, re-

peating the previous arguments it can be shown that
the oscillations of Pε are opposite to the ones of Kε:

the local minimum points of Pε are (close to) the local

maximum points of Kε, and viceversa. More precisely,

• Pε is piecewise affine with C1-discontinuities in the
points T ε

m, τ εm, and σε
m defined above;

• each of the points σε
m is a local maximum point

(m = 1, . . . , 2Nε − 2);
• the local minimum points are of the type T ε

2n, τ
ε
2n

(n = 1, . . . , Nε − 1).

Hence, in the limit as ε → 0 we can determine for

the potential energy an upper bound

P̃max(ℓ) := lim
ε→0

Pε(σε
2nε(ℓ)+1) = lim

ε→0
Pε(σε

2nε(ℓ)+2)

= NL
(

ℓ2−ℓ1
γ2−γ1

(γ1+γ2φ(ℓ))
2 − ℓ2−ℓ1

γ2−γ1
γ22 + ℓγ2

)

(87)

and a lower bound

P̃min(ℓ) := lim
ε→0

Pε(T ε
2nε(ℓ)+2) = lim

ε→0
Pε(T ε

2nε(ℓ)+3)

= NL
(

1
2

ℓ2−ℓ1
γ2−γ1

(γ1+γ2+γ2φ(ℓ))
2

− 2 ℓ2−ℓ1
γ2−γ1

γ22 + ℓγ2

)
.

(88)

We have also

P̃min(ℓ) = lim
ε→0

Pε(τ ε2nε(ℓ)+1) = lim
ε→0

Pε(τ ε2nε(ℓ)+2).

As before, this bounds are optimal: indeed, if we define
P̃ε(ℓ) := Pε(T ε(ℓ)) for ℓ2 < ℓ < ℓd, the functions P̃ε

Γ -converge in (ℓ2, ℓd) to P̃min, while their opposites Γ -

converge to −P̃max. Both these limits are nondecreasing

functions of ℓ, since the load is monotonic.
Finally, notice that

P̃max(ℓ)− P̃min(ℓ) = K̃(ℓ).

The mechanical interpretation is that the oscillations
correspond to transformations of kinetic energy in po-
tential energy, and viceversa. At each step the amount

of kinetic energy is lower, so the process finishes when

the kinetic energy has been completely relaxed; after-
wards, the system switches to a quasistatic behaviour,

where the kinetic energy is negligible.

2.6 Conclusion

In this section we have compared evolutions of qua-
sistatic and dynamic type in the debonding of a thin

film with one defect (of toughness lower than the one
of the material). The quasistatic propagation is deter-
mined using the principle of energy conservation.

Two cases are possible. In the first, where the defect

is long, the quasistatic solution coincides with the limit
of the dynamic ones as the loading speed tends to zero.
The evolution contains an unstable stage and an arrest

inside the defect, followed by a slow propagation and a
second arrest at the end of the defect. This case in fact
corresponds to a combination of two discontinuities, the
first one without any influence on the second, due to the

large length of the defect: indeed, the kinetic energy
created during the unstable stage vanishes when the
debonding reaches the second discontinuity.

In the second case, where the defect is small enough,
the dynamic solutions do not converge to the quasistatic
one. Indeed, a complex behaviour (though, limited in

time) emerges after the second discontinuity: this is

due to the presence of residual kinetic energy when the
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debonding reaches the second discontinuity. The equiv-
alent quasistatic toughness (78) allows one to find the
limit of the dynamic response using only quasistatic
criteria.

This analysis shows two different behaviours of the
kinetic energy. In the part with the lowest toughness
there is an increase in the kinetic energy during the

unstable propagation. On the contrary, after the defect
the kinetic energy decreases and is transformed into po-
tential and surface energy, while the loading increases.

3 The case of an infinite number of defects

In the previous sections we have studied the role of the

kinetic energy in the debonding of a thin film, in the

cases of one discontinuity of the toughness and one de-

fect (two discontinuities). A specific behaviour of the

kinetic energy has been highlighted: it is created when

the debonding propagates inside a zone of lower touhg-
ness and vanishes in a logarithmic fashion in the zones
of higher toughness. We consider now the case of infi-
nite defects with vanishing size: the quasistatic solution

can be determined analytically (under the assumption

of energy conservation), while the dynamic solutions are
studied numerically, due to the difficulties of computa-

tion. The simulations show different possible qualitative
behaviours for the dynamic solutions, depending on the
density of the material with the lowest toughness.

3.1 Quasistatic solution

The following periodic repartition of the toughness is

considered,

Gc(x) =

{
γ1N if x ∈ (id, (i+ θ)d) for i ∈ N,

γ2N if x ∈ ((i+ θ)d, (i+ 1)d) for i ∈ N,

(89)

where 0 < γ1 < γ2 again, θ ∈ (0, 1) is the density of the
lowest toughness γ1, d is the period, and (1− θ)d is the

length of each defect. Even if all our arguments work
without assumptions on θ, in the following simulations

we consider in particular the case where θ is close to 1:
hence we model a material of toughness γ1 with small

inclusions (defects) of higher toughness γ2.
We are interested in the limit as the number of de-

fects tends to infinity (homogenized material), so the

length d vanishes. We sketch here the algorithm to de-
termine the quasistatic solution (under the principle

of energy conservation) and its limit as d → 0; a de-
tailed analysis can be done using the arguments of Sec-

tion 2.2. As shown before, in the quasistatic framework

2γ̄√
2γ2

Fig. 9 Limit of the quasistatic evolution for d → 0 (continu-
ous line). The dashed lines have slope

√
2γ2 and 2γ̄/

√
2γ2 and

correspond to quasistatic evolutions for homogeneous mate-
rials of toughness γ2 and γ̄2/γ2, respectively.

the debonding front may jump, be constant, or evolve
with the two possible speeds 1/

√
2γ1 and 1/

√
2γ2, ac-

cording to the toughness of the zone where the front

is.

More precisely, let us consider a discontinuity of
the type ℓ̃i := id (decreasing toughness), reached with

speed 1/
√
2γ2 and load T̃i :=

√
2γ2id. From here the

length jumps to the (minimal) point ℓ+(i) > ℓ̃i such

that Eq(T̃i, ℓ̃i) = Eq(T̃i, ℓ
+(i)), according to the crite-

rion of energy conservation presented before (see (8) for
the definition of the quasistatic energy Eq). Afterwards,

• if ℓ+(i) is in a zone of toughness γ2, the debond-
ing front remains constant until the loading level√
2γ2ℓ

+(i) is reached, then the debonding can restart
with speed 1/

√
2γ2;

• otherwise, if ℓ+(i) is in a zone of toughness γ1, the

debonding front remains constant until the loading

level
√
2γ1ℓ

+(i) is reached, then the debonding can

restart with speed 1/
√
2γ1; at the following discon-

tinuity (increasing toughness), the debonding front

remains constant until it reaches a loading level so
high that it can restart with speed 1/

√
2γ2, again.

In both cases, the debonding meets a discontinuity with

decreasing toughness, so it jumps as described above;
and so on.

As d → 0, the transition between ℓ+(i) and the
new jump point tends (in both cases) to a constant
evolution; therefore, the limit propagation as d → 0

(homogenized case) is a staircase function, composed
just of jumps and stops. The mechanical interpretation
is that the systems stores potential energy during the

arrest phase, until this energy is sufficient to create an

unstable propagation of the crack. Moreover, by a direct
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computation it turns out that

lim
d→0

ℓ+(i)

T̃i
=

√
2γ2
2γ̄

,

where γ̄ := θγ1 + (1 − θ)γ2 is the mean toughness.

Hence, the bounds for the limit staircase evolution (in
the (x, T )-plane) are two lines of respective slopes

√
2γ2

and 2γ̄√
2γ2

. The quasistatic evolution is pictured in Fig-
ure 9.

Notice that 2γ̄√
2γ2

<
√
2γ̄: this means that the näıve

homogenization (using the mean toughness γ̄) leads to

underestimate the propagation of the debonding found

under the assumption of energy conservation. In addi-

tion, for θ sufficiently close to 1 (the case of a mate-
rial with small inclusions of higher toughness) we have
2γ̄√
2γ2

<
√
2γ1: therefore, in a homogenized material

with low density of the highest toughness, the expected
length of propagation during the fast growth is greater

than the one corresponding to the pure material with
the lowest toughness. This non-intuitive result will be
enforced by the dynamic analysis.

3.2 Dynamic solutions

In the previous section, we analyzed the quasistatic so-
lution in the case of infinite discontinuities, showing a
structure of staircase evolution. We consider here the

dynamic solutions; however, due to the large amount of
computations needed, we provide only some numerical
results. Since the method presented in Section 1.3 would

lead to a number of quantities impossible to manage, we

use an alternative approach based on the properties of
the wave equation, which allows us to deal with a great
number of discontinuities (we perform the method in a

lattice of 105 defects). The drawback is that now the

kinetic energy cannot be easily computed: this makes
the interpretation more difficult.

3.2.1 Exact recursive scheme for the wave equation

For every ε > 0, let us consider the transverse compo-
nent wε of the displacement field with its derivatives

ωε and vε (see (2) and (13)). By the classical proper-

ties of the wave equation (17), we can find two functions

fε, gε : R → R such that

wε(x, T ) = fε(T − εx) + gε(T + εx)

for every (x, T ) ∈ (0,+∞)2. Passing to the derivatives,
we get ωε = ε((gε)′ − (fε)′) and vε = (fε)′ + (gε)′.

Moreover, using (20) we can assume (gε)′ = 1 − (fε)′

everywhere in R, so we can express the dynamic fields

ωε and vε by ψε := (fε)′.

We now determine some conditions on the function

T 7→ ℓε(T ) using equations (22), (24), and (25). By (22)
we obtain

ψε(T + εℓε(T )) = 1 +
1− εℓ̇ε(T )

1 + εℓ̇ε(T )
ψε(T − εℓε(T )). (90)

Furthermore, by (24), (25), and (90), repeating the ar-
guments of the proof of Proposition 2 we see that

ℓ̇ε(T ) =
1

ε

(
2Nε2 ψε(T − εℓε(T ))2 −Gc(ℓ

ε(T ))
)+

2Nε2 ψε(T − εℓε(T ))2 +Gc(ℓε(T ))
,

(91)

where (·)+ stands for the positive part. The previous

equations are understood to hold where the time deriva-

tive is defined.

Using (90) and (91), it is possible to perform an ex-

act scheme for the solution of the dynamic problem even

with a large number of discontinuities of the toughness.

Recalling the structure of the solution seen in the pre-
vious sections, the function ℓε is piecewise affine, so one

has to determine the sequence (ℓεi , T
ε
i ) of points where

the speed changes, due either to the effect of disconti-

nuities or to the interaction with the shock waves; the

number of interactions between discontinuities depends

in fact on the length of the defects (see e.g. Section 2.3.2
in the case of one defect, with no interactions before the
second discontinuity). As previously, the speed between

T ε
i and T ε

i+1 is denoted by ℓ̇εi .

Since the speed is piecewise constant and (91) holds,
the functions ψε defined above are piecewise constant,

too, with discontinuities in the points T ε
i ± εℓεi , which

correspond to the reflections of the shock waves on the

axis x = 0. By definition of point of reflection, if at

the load T ε
i there are Mi waves acting in the film, then

Mi 6 i and

T ε
i − εℓεi = T ε

i−Mi
+ εℓεi−Mi

, (92)

so it is sufficient to consider only the sequence T ε
i +εℓ

ε
i .

We set (ℓε0, T
ε
0 ) := (0, 0).

In what follows, ψε
i denotes the value of ψε between

T ε
i + εℓεi and T ε

i+1 + εℓεi+1. Recalling (92), it is possible

to translate (90) and (91) into the following recursive

relations:

ψε
i = 1 +

1− εℓ̇εi
1 + εℓ̇εi

ψε
i−Mi

, (93)

ℓ̇εi =
1

ε

(
2Nε2(ψε

i−Mi
)2 −Gc(ℓi)

)+

2Nε2(ψε
i−Mi

)2 +Gc(ℓi)
, (94)

where Mi is the number of waves acting in the film at

the load T ε
i . Notice that the debonding proceeds with
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2γ1√
2γ2

Fig. 10 Dynamic solutions in the case of many defects. Here, γ1 = 0.5, γ2 = 2, ε = 0.001, d = 0.001.

the speed prescribed by (94) only until a new disconti-

nuity is met; then the numberMi must be incremented.

More precisely, we describe here the inductive com-
putation of ℓεi , T

ε
i , ℓ̇

ε
i , and ψ

ε
i . The values for i = 0 are

found as mentioned in Section 2.3.1: we have (ℓε0, T
ε
0 ) =

(0, 0) and ℓ̇ε0 = 1/
√
2Gc(0) + ε2, while a direct compu-

tation shows that

ψε
0 =

√
2Gc(0) + ε2 + ε

2ε
.

We set M0 := 0.

Let us assume now the values of ℓεi−1, T
ε
i−1, ℓ̇

ε
i−1,

and ψε
i−1 to be known; suppose that Mi−1 waves are

acting in the film. Hence, we compute the intersection
(ℓ∗, T ∗) between the front of debonding (a line starting

at (ℓεi−1, T
ε
i−1) with slope 1/ℓ̇εi−1, possibly parallel to

the axis T = 0 if ℓ̇εi−1 = 0) and the shock wave starting
at (0, T ε

i−Mi−1
+ εℓεi−Mi−1

) with slope ε. Then

• if no discontinuities of the toughness are present in
the interval (ℓεi−1, ℓ

∗), we set (ℓεi , T
ε
i ) := (ℓ∗, T ∗) and

Mi :=Mi−1;
• if a discontinuity of the toughness is met in ℓ̄ ∈
(ℓεi−1, ℓ

∗) for some load T̄ , we set (ℓεi , T
ε
i ) := (ℓ̄, T̄ )

and Mi :=Mi−1 + 1.

Finally, in both cases we compute ℓ̇εi and ψε
i using (93)

and (94). Notice that these values take into account the

possible presence of a new shock wave and the possible

change in toughness.

3.2.2 Analysis of the dynamic solutions in dependence

on θ

The method described in the previous section permits

us to perform the numerical analysis of a material with
many defects. We study in particular how the qualita-
tive aspect of the limit dynamic evolution (as ε → 0

and d→ 0) is influenced by the choice of the parameter

θ, that is, the density of the lowest toughness in the
defects’ distribution given in (89). In the following pic-

tures we fix γ1 = 0.5, γ2 = 2, ε = 0.001, and d = 0.001,
and present the dynamic evolutions obtained for differ-
ent values of θ.

We compare the evolution of the debonding with
periodic defects’ distribution (89) for d small, with the

solution for a homogeneous film of toughness γ̄ := θγ1+
(1− θ)γ2. The two answers are different, since an effec-

tive toughness different from γ̄ must be considered for
the study of the homogenized material.

Figure 10 presents the dynamic evolutions obtained

for different values of the densities of the lowest tough-
ness. The simulation shows that the behaviour of the
debonding depends strongly on θ.

For θ close to 1, the debonding curves show a wave

trend. When θ is close to 1/2, they approach a straight

line, whose slope is greater than
√
2γ̄, i.e., greater than

the slope of the line corresponding to the mean tough-

ness γ̄. Therefore, in the limit as ε → 0 the debonding

speed is lower than the one prescribed by the pure qua-

sistatic approach in a homogeneous setting.

However, when θ is very close to 1 (i.e., when the

film is quasi homogeneous and γ̄ is close to γ1), a dif-
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limits of quasistatic solution

2γ1√
2γ2

Fig. 11 Dynamic solutions at a different scale. Here, γ1 = 0.5, γ2 = 2, ε = 0.001, d = 0.001.

ferent phenomenon emerges: the curve approaches a

staircase function in the (x, T )-plane, bounded by two
lines of respective slopes close to

√
2γ2 and 2γ̄√

2γ2
. This

turns out to be the same trend predicted in the qua-
sistatic context by the energetic criterion presented in
Section 3.1. Thus, when the density of the lowest tough-

ness is close to 1, the properties of the debonding evolu-
tion could be studied through the quasistatic approach
based on energy conservation, introduced above.

Consequently, the behaviour of a homogeneous ma-

terial is completely different from the heterogeneous
case even with density of the lowest toughness tend-

ing towards 1. In addition, performing a classical qua-
sistatic analysis with an average value of the toughness
would lead to underestimate the length of debonding.

The case of θ close to 1 recalls the competition

of the two phenomena, described above in the case
of a single defect: the kinetic energy increases as the

debonding passes from a zone of high toughness to a
one with low toughness; afterwards, the created energy
is relaxed out of the defect. In other words, when the

debonding stops at the interface between low and high
toughness, a part of the accumulated energy is trans-
formed into kinetic energy; then, the debonding passes
through a large number of defects (recall that in the

simulations presented here, the size d of the periodic
pattern is 0.001). The kinetic energy is transformed

(quasi) totally into Griffith’s surface energy during the

fast propagation. On the contrary, when the density

of the highest toughness decreases, the kinetic energy

is not transformed but accumulated, leading to a com-

plex behaviour that cannot be captured by a quasistatic

criterion.

Two scales are here involved: in the small scale of
the defects, every single interface modifies the speed of

debonding, so arrests and fast propagations occur, and

the energy is transformed; yet, in the macroscopic scale
a global behaviour is showed. Indeed, if θ is close to

1, the curves show a macroscopic phase of arrest and
a macroscopic phase of fast propagation, bounded by

the two lines characterizing the quasistatic evolution:
so, the system seems to present a characteristic length,
increasing as the debonding evolves. On the other hand,

the macroscopic behaviour is repeated in a self-similar
fashion around the initial instant (ℓ = 0, T = 0): this

is shown in Figure 11, which is a zoom of the previ-

ous one close to the initial point. Unfortunately, the

self-similarity seems too complex to be detemined by
analytical arguments, which would require the solution
of a nonconvex dynamic homogeneization problem.

The dependence of the solution on θ can be under-

stood through a limit analysis. Repeating the numerical

simulations for several small values of ε and d, we find

similar results in all the three cases ε ∼ d, ε ≪ d, and
ε ≫ d, i.e., when ε tends to zero together with, be-
fore than, or later than d, respectively. For instance, we

present in Figures 12, 13, 14, and 15 some curves with
different values of the two parameters. Since the quali-
tative behaviour looks the same, this suggests that the

two limits as ε → 0 and d → 0 commute. Of course,

this does not mean that we expect pointwise conver-
gence of the solutions: in fact, as the two parameters

vary, the positions of the jump points change, so we see
a translation of the phases of propagation and arrest.

Finally, the choice of the defects’ distribution seems

to have no influence on the possible shapes assumed
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2γ1√
2γ2

Fig. 12 Limit solution when ε tends to 0 faster than d. Here, γ1 = 0.5, γ2 = 2, d = 0.01, θ = 0.97.

d = 0.1
d = 0.01
d = 0.001

d = 0.0001

T

2γ1√
2γ2

Fig. 13 Limit solution when d tends to 0 faster than ε. Here, γ1 = 0.5, γ2 = 2, ε = 0.01, θ = 0.97.

by the evolutionary curves, which are piloted only by

θ. In order to show this property, we provide in Fig-

ure 16 the result of a simulation where the defects are

distributed randomly, in such a way that the mean den-

sity of the lowest toughness is θ. The answer of the

debonding for a random repartition of defects presents

the same characteristics seen in the periodic framework:

the modification of the position of the defects gives only

a quantitative modification (curve translation).

3.3 Conclusion

In this section we have studied a material with many

defects, whose number diverges and whose distribution

could be periodic or random. In particular we have con-

sidered the case where the density of the highest tough-

ness tends to zero. The limit behaviour is different from

the case of a homogeneous material and highlights the

effects of the kinetic energy as in the case of a single
defect, discussed in Section 2. The quasistatic problem
has been treated with analytical methods, while in the

dynamic context only some numerical simulations have

been performed.
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2γ1√
2γ2

Fig. 14 Limit solution when ε tends to 0 faster than d. Here, γ1 = 0.5, γ2 = 2, d = 0.01, θ = 0.99999.

d = 0.1
d = 0.01
d = 0.001

d = 0.0001

T

2γ1√
2γ2

Fig. 15 Limit solution when d tends to 0 faster than ε. Here, γ1 = 0.5, γ2 = 2, ε = 0.01, θ = 0.99999.

In the quasistatic model (under the assumption of
energy conservation), the solutions are staircase func-

tions in the space/time plane. The dynamic solutions
depend strongly on the density of the lowest toughness,
while the choice of the defects’ distribution (periodic
or random) plays a minor role. In addition, the limit is

qualitatively the same if ε≪ d or if viceversa d≪ ε.

If the density of the lowest toughness is close to one,

the dynamic solutions converge to a staircase evolution,
with the same properties of the one found in the qua-
sistatic framework: indeed, during the fast propagations

the debonding passes through many defects. As this

density decreases, the curves in the space/time plane

seem smoother, showing a wave trend; if the density is
close to 1/2, their shape approaches a line, whose slope
is however different from the one corresponding to the

mean toughness.
This behaviour reflects the influence of the kinetic

energy on the dynamics. Indeed, we see here the com-

petition of two opposite phenomena: the creation of ki-

netic energy as the toughness decreases and the relax-

ation observed in the case of a single defect.
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2γ1√
2γ2

Fig. 16 Dynamic solutions for a random distribution of defects of length d(1−θ). Here, γ1 = 0.5, γ2 = 2, ε = 0.001, d = 0.001.

4 Concluding remarks

The present study clearly proves that toughness hetero-

geneities induce inertial effects which cannot be negli-
gible even in the case of a quasi-static loading. The
solution is necessarily dynamic and the kinetic energy

plays an important role in the propagation of cracks.

However, the present study suggests also that there ex-
ists a limit effective behaviour when the speed of loading

and the size of the heterogeneities go to zero. Beyond
the somewhat chaotic motion of waves which propagate
inside the body, it seems that an order takes place at
the macroscopic level. What is this effective dynamic

debonding law? Which macroscopic quantities give rise
to the computed macroscopic behaviour? Even in our
very simple case of a film debonding, we have been un-

able to answer to these fundamental questions. It is a
very exciting challenge to advance in the understanding
of this nonlinear dynamic homogenization problem and

future theoretical works will be devoted to this task.
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Table 1 Notation
x1 coordinate on the film
W opening displacement
L characteristic length
N tension
x rescaled coordinate on the film
T rescaled displacement
t time
ε loading speed (adimensional)
c velocity of transversal waves
ρ density of the film

Eq quasistatic total energy
Kε kinetic energy

P, Pε potential energy
S, Sε surface energy

G quasistatic energy release rate
Gε dynamic energy release rate
Gc material toughness

G̃c effective toughness
Nγ1, Nγ2 values for material toughness

Nγ̄ mean toughness
ℓ1, ℓ2 toughness discontinuities

u displacement field
u first component of u

w, wε second component of u
ωε infinitesimal rotation
vε transverse velocity
Q (x, T )-plane

Q0, Qε
0, Qε

i sectors in Q
Γ ε debonding front

Sε, Sε± shock waves
ℓ quasistatic debonding

ℓε dynamic debonding
ℓc final point after jump (single discontinuity)
ℓb final point after jump (defect)

ℓ̃ limit of ℓε

ℓd point where ℓ̃ joins ℓ

K̃ optimal bound for Kε

P̃min, P̃max optimal bounds for Pε
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