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Abstract

For a robot, an animal, and even for man, to be able to use an internal representation of the

spatial layout of its environment to position itself is a very complex task, which raises nu-

merous issues of perception, categorization and motor control that must all be solved in an

integrated manner to promote survival. This point is illustrated here, within the framework

of a review of localization strategies in mobile robots. The allothetic and idiothetic sensors

that may be used by these robots to build internal representations of their environment,

and the maps in which these representations may be instantiated, are first described. Then

map-based navigation systems are categorized according to a 3-level hierarchy of local-

ization strategies, which respectively call upon direct position inference, single-hypothesis

tracking, and multiple-hypothesis tracking. The advantages and drawbacks of these strate-

gies, notably with respect to the limitations of the sensors on which they rely, are discussed

throughout the text.

Key words: autonomous mobile robot, map-based navigation, localization strategies

1 Introduction

In a recent review, Guillot and Meyer (2001) emphasized the animat contribution

to cognitive systems research. In particular, they stressed the capacity of this ap-

proach to integrate both the body and the control in the quest for understanding
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intelligence in living systems, a discourse that a steadily growing number of re-

searchers elaborate according to various modalities (Brooks, 1991a,b; Clark, 1999;

Hara and Pfeifer, 2000; Pfeifer and Scheier, 1999; Varela et al., 1991).

An animat is a simulated animal or a real robot that permanently interacts with

its environment through its sensors, its body and its actuators, and that must con-

tinuously cope with many concurrent, and possibly contradictory, needs and goals

(Meyer and Wilson, 1991; Meyer et al., 1993; Cliff et al., 1994; Maes et al., 1996;

Pfeifer et al., 1998; Meyer et al., 2000; Hallam et al., 2002). Animat designers,

wishing to contribute to our understanding of human intelligence and cognition,

approach such endeavors in an evolutionary perspective – according to which intel-

ligence and cognition are supposed to be rooted in basic adaptive capacities inher-

ited from animals. Therefore, their effort to investigate the interactions between an

animat and its environment particularly focuses on the animat’s aptitude to survive

in unexpected environmental circumstances.

In the light of these characteristics, the animat approach is complementary to that of

traditional artificial intelligence. Instead of directly modeling human-specific and

isolated capacities - like problem solving, natural language understanding or logical

reasoning - it addresses basic adaptive capacities that man shares with other animals

- like those of perception, categorization and motor control - in both a bottom-up

and an integrative perspective.

This article will review various models where such capacities are integrated within

a framework highly important in the animat literature, i.e., that of navigation tasks.

Indeed, the ability to navigate - making it possible to reach any goal place from any

starting point, while avoiding passing through unwanted places - is probably the

most basic requirement for an animat’s survival. Clearly, without such an ability, the

animat would not be able to reach energy sources, to avoid bumping into damaging

obstacles, or to escape from dangerous hazards. However, among many navigation

models and strategies that animals and robots may use to this end (see Trullier

et al., 1997; Franz and Mallot, 2000, for recent reviews), this article will focus

on map-based navigation, in which internal representations of the spatial layout of

the animat’s whole environment will be used, thereby making detour behavior and

goal-directed movement planning possible. Basically, such models will cover the

three last navigation strategies described by Trullier et al. (1997), namely those of

place-recognition-triggered response, topological navigation and metric navigation.

Likewise, they will call upon the three varieties of knowledge that, according to

Werner et al. (1997), are involved in spatial cognition of both humans and robots:

landmark, route and survey knowledge.

Map-based navigation seems quite natural to humans because using a map is a very

convenient way to describe an environment and to share it with other people. How-

ever, the human use of a map requires a lot of high-level cognitive processes in

order to interpret the map and to establish the correspondence with the real world.
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Often, this correspondence is made easier by modifying the environment, for ex-

ample, by writing names on posts indicating subway stations.

The first research efforts in robotic map-based navigation were mainly inspired

by these cognitive processes, assuming that errors in sensing and acting may be

detected and corrected by a high-level cognitive process, or using some sort of en-

vironmental modification to make the navigation process easier. However, some

ethological studies led to think that animals also made use of maps for navigation

(for example the cognitive map hypothesized by Tolman, 1948). Such hypotheses

gained support with the identification of place cells in rodent brains (O’Keefe and

Dostrovsky, 1971). These place cells are neurons, found notably in a part of the

brain called the hippocampus, that have an activity correlated with the rat’s posi-

tion in its environment. Experimental studies show that the activity of these cells

largely depends on visual cues, but that they are also sensitive to animal motion,

as they are still active in the dark. This kind of map-based navigation is a much

more appealing paradigm for robot map-based navigation, as it does not presup-

pose high-level cognitive processes and is able to work in natural and unmodified

environments. Because several robotic navigation models inspired by these biolog-

ical examples have been designed, we will include them in this review, along with

robotic navigation models designed without such an inspiration, so as to point out

their respective capacities and differences.

Basically, map-based navigation calls upon three processes (Levitt and Lawton,

1990; Balakrishnan et al., 1999) :

• Map-learning, the process of memorizing the data acquired by the robot during

exploration in a suitable representation.

• Localization, the process of deriving the current position of the robot within the

map.

• Path planning, the process of choosing a course of action to reach a goal, given

the current position.

The third process is simply dependent on the first two, as the current position and

the map of the environment between this position and the goal are required to

plan actions toward this goal. The first two processes are also closely related. The

chicken-and-egg nature of their relation (Yamauchi et al., 1999; Kurz, 1995) arises

from the fact that the map is needed to estimate the position and that, conversely,

the position is needed in order to build the map. This relation makes the problem

of simultaneous localization and map-learning 2 very difficult.

Conceiving a review on map-based navigation also entails tackling the above-mentioned

chicken-and-egg problem. To solve this we have chosen to limit the scope of this

article to localization strategies that rely on a fully-known map of the environment.

The issues that arise when localization and map-learning are tackled simultane-

2 Often referred to as the SLAM - Simultaneous Localization And Mapping - problem
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ously, together with a survey of planning methods, are the subject of another re-

view to be published in a companion paper (Meyer and Filliat, 2002). The reason

for this order is that most of the literature on navigation in animals and humans

addresses localization but not map-learning. Our first goal is therefore to provide

elements about localization methods in robots that could be compared with those of

animals and humans, before trying to describe how the corresponding underlying

maps have been built and how they are used.

This article will start with the description of what sort of information may be used

by a robot to localize itself and of how this information may be stored in a map.

Then, it will review localization strategies and sort them according to their use of

allothetic and idiothetic information. Incidentally, it should be noted that, because

the field is the subject of considerable research efforts, the choice of these models

is not exhaustive but, rather, seeks to be representative of the numerous strategies

currently implemented in the field.

2 Useful information for map-based navigation

Two distinct sources of information may be used for map navigation. The first is

the idiothetic source, which provides internal information about the robot’s move-

ments. The second is the allothetic source, which provides external information

about the environment.

Idiothetic information may concern speed, acceleration, leg movement for animals,

or wheel rotation for robots. A straightforward integration of these data results

in a position estimate for the robot in a 2D space. This process is referred to as

dead-reckoning or path-integration. The term idiothetic data used in this review is

borrowed from biological literature. It corresponds to what is called odometry in

robotics.

Allothetic information may be derived from vision, odor, or touch, for animals, and

laser range-finder, sonars or vision, for robots. Here again, the word allothetic is

borrowed from biology; it corresponds to expressions like observation, perception

or sensor data in robotics literature. There are two main uses of this information

source :

• Data may be used to directly recognize a place or a situation. In this case, any

cue - such as sonars time-of-flight, color or odor - may be used.

• A metric model may be used to convert raw allothetic data into information ex-

pressed in the 2D space related to the idiothetic data. In this case, geometric

properties of the environment, such as object positions, are inferred (Figure 1).

This may be straightforward, as is the case for laser-range finders or sonars, or

more complicated, as for stereo-vision.
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Using a model to convert raw allothetic information into a 2D space may be quite

difficult. In fact, sensor measurements depend not only on the intrinsic characteris-

tic of the sensor, but often also on the local properties of the environment (for ex-

ample sonar sensor values depend on the material of the walls). This makes reliable

metric models quite difficult to obtain, as these models depend on the properties of

both the local environment and the sensor.

It must be noted, however, that such a dependence on the environment only be-

comes an issue when trying to infer metric information about the environment.

When using raw sensory data to characterize a position, the fact that a given sensor

response depends on the local properties of the environment is fully integrated in

the place definition and is not problematic.

The gain obtained with such a metric model is quite frequently worth the effort.

Indeed, the first consequence of the use of a metric model is that it makes it possible

to fuse allothetic and idiothetic information in a common geometric reference frame

which is quite natural and expressive for human operators (Figure 1b).
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a b c

Real Environment

A1

I1

A2
A3 ?

I2

Dead-Reckoning
Sensor Model

Sensor Model

A3 ?

A3

I1
A1 A2

I2

Common Reference Frame

Direct Memorization

 ?

 ?

Dead-Reckoning
No Sensor Model

Fig. 1. A sensor model may be used to infer allothetic cues which should be available in

unvisited places. In this example, allothetic cues A1 and A2 are collected in two places

related by idiothetic cues I1 (part a). Using a metric model for allothetic sensors allows

information to be fused in a common reference frame where objects are represented (part b,

top), whereas, without a metric sensor model, only a set of places characterized by allothetic

cues and related by idiothetic information is memorized (part b, bottom). Using a sensor

model, these data may then be used to infer allothetic cues A3 in a new position related to

a previous position by idiothetic cues I2 (part c, top). Without such a model, only visited

places may be recognized, and no inference can be made about unvisited places (part c,

bottom).

Another important consequence is that a metric model makes it possible to infer

allothetic information about parts of the environment that have not been physically

explored by the robot, but that have been sensed from other locations. This property
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arises from the fact that a sensor model allows allothetic information to be inferred

from the map for different locations (Figure 1c). Thus, if a robot senses a wall 3

meters ahead and moves forward 1 meter, it can estimate that the wall is now 2

meters away. A related consequence is that the relation between allothetic informa-

tion acquired in two places can be used to infer the relative position of these places

(Figure 2). Thus, if a robot senses a wall first 3 meters ahead and subsequently 2

meters ahead, it can estimate that it has moved forward 1 meter.

Correspondence

I1

A1

A2

Correspondence

NOT

SIMILAR
I1 = 0

A1 A2I1?

Real Environment

A2

A1

ba c

Sensor Model

No Model

Fig. 2. A sensor model may be used to infer the relative position I1 of two places where

two sensory situations A1 and A2 were recorded (part a). This is achieved by comparing

the two allothetic situations. When using a sensor model, finding this correspondence first

entails finding an object which is common to the two situations (part b, top). Using this

common object makes it possible to infer the relative metric positions of the two places

(part c, top). When no sensor model is used, only the similarity of the two situations can

be assessed (part b, bottom). It is then only possible to conclude whether the two situations

are the same or not and whether I1 is null or not (part c, bottom).

The drawbacks and advantages of these two sources of information are comple-

mentary. Indeed, the main issue raised by idiothetic information is that, because it

involves an integration process, it is subject to cumulative error. Its quality accord-

ingly decreases continually, so that such information cannot be trusted over long

periods of time. On the contrary, the quality of allothetic information is stationary

over time, but it suffers from the perceptual aliasing problem, i.e., the fact that,

for a given sensory system, two distinct places in the environment may appear the

same. A related problem raised by allothetic cues is that of perceptual variability

(Kuipers and Beeson, 2002) which occurs when a given place looks different over

time because, for example, of changes in light conditions. This second problem

often trades off against the first one because using only features that are not sub-

ject to perceptual variability often leads to poor discrimination between places, and

hence to perceptual aliasing. On the contrary, trying to characterize more precisely

a given perception to avoid perceptual aliasing often makes the system sensitive

to perceptual variability. In this review, we concentrate on the perceptual alias-
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ing problem, assuming that, in most models, the choice has been made to design

perceptual systems that are as resistant to perceptual variability as possible. How-

ever, some models explicitly take the problem of perceptual variability into account

(Kuipers and Beeson, 2002), while other models (such as most of those of section

4.5) are designed to be robust to noise in the perceptions, and are consequently little

concerned by it.

The consequence of these properties is that, in order to reliably navigate for long

periods of time, the two sources must be combined (Cox, 1991). In other words,

allothetic information must compensate for idiothetic information drift, while idio-

thetic information must allow allothetic information to be disambiguated.

3 Map representations

Given the allothetic and idiothetic sources of information, there are many ways

to integrate them in a representation useful for robot navigation. Classically, the

corresponding models are separated into two categories resorting to either metric

or topological maps. In metric maps, the positions of some objects, mainly the

obstacles that the robot can encounter, are stored in a common reference frame.

On the contrary, within topological maps, allothetic definitions of places the robot

can reach are stored, along with some information about their relative positions

(Figure 3).

3.1 Metric maps

In the metric framework, the environment is represented as a set of objects with

coordinates in a 2D space. As idiothetic information makes it possible to directly

monitor the robot position in this space, this source of information is usually im-

portant in this representation. As explained in section 2, allothetic information is

stored after transformation in the 2D space by means of a metric model. This trans-

formation yields a set of objects, or obstacles, along with their positions relative to

the robot. The key difference with respect to topological maps stems from this use

of sensor models, which allows the fusion of idiothetic and allothetic information

in a common reference frame.

The position estimate is continuous in the 2D space and therefore usually much

more precise than it is in the topological framework. Moreover, metric maps display

the layout of the environment in a way similar to an architectural sketch, which is

easy to read for humans. This objective view of the environment, which is rather

independent of any given robot, also makes it easy for different robots to reuse

such maps. Metric maps are easier to build than topological maps because of the
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Fig. 3. Illustration of the classical distinction between metric and topological maps. In the

metric framework, object positions are inferred and represented in a common reference

frame. Two positions, A and B, are represented in this map by their coordinates in this

reference frame. These coordinates make it possible to infer their distance. In topological

maps, places are stored with their spatial relations. Two positions A and B in the environ-

ment may be recognized as being part of places R and C. This makes it possible to infer

that position B can be reached from position A via places C,C and T (In this figure, R =

room, C = corridor, D = door and T = turn).

non-ambiguous definition of locations afforded by their coordinates (Thrun, 1999).

The difficulty in obtaining a reliable sensor model is an important issue in metric

map-building. As mentioned in the previous section, this difficulty arises from the

fact that such a model may depend not only on a given sensor, but also on the lo-

cal properties of the environment. Metric map-building also often heavily depends

on the quality of the position estimated by idiothetic cues. The drift of this esti-

mation is difficult to correct without assumptions about particular properties of the

environment (such as orthogonal walls). Moreover, path planning is often compu-

tationally expensive because, contrary to topological maps, no natural high-level

environment discretization is available.

3.1.1 Feature representation

y

x

Real environment Feature map

Fig. 4. Example of a feature map containing segments detected on the obstacles boundaries.
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Metric maps can explicitly store features that may be perceived by a robot, along

with their positions (Figure 4). There is a wide choice in such represented features,

as well as in the abstraction level of the representation.

Points, or objects considered as punctual, may be used (Levitt and Lawton, 1990;

Prescott, 1995; Feder et al., 1999). This choice corresponds to the intuitive defini-

tion of a landmark as a reference point. However, as the perception of a single point

does not allow the robot’s position to be inferred, several points must be perceived.

Moreover, uniquely identifying a landmark may be quite challenging. To overcome

this difficulty, it is possible to record points scattered over object surfaces (Lu and

Milios, 1997; Gutmann and Konolige, 2000; Thrun et al., 2000). Such points are

usually gathered using laser range-finders that are able to detect several points on

obstacle surfaces. Then, uniquely identifying each point becomes useless, since

only the spatial configuration of a set of points is necessary to define an object.

In order to gain a more precise contribution to position estimation from a single

feature, corners extracted from laser-scans may be used (Borghi and Brugali, 1995),

thus providing additional orientation information thanks to the two lines that define

the corner. Hébert et al. (1996) and Smith et al. (1988) also provide models where

objects are represented by points with an associated orientation.

Obstacles or object boundaries may also be represented in a metric map. Lines

defining polygonal boundaries may be used. These lines are often extracted from

sets of points detected by sonars-sensors (Dudek and MacKenzie, 1993; Gasós and

Martín, 1997), or by laser range-finders (Moutarlier and Chatila, 1990; Einsele,

1997; Castellanos et al., 1999). Cylinders and planes detected by sonars sensors are

used by Leonard et al. (1992) and higher-level features, such as planes containing

lines detected by stereo-vision, are used by Ayache and Faugeras (1989).

Representing uncertainty in the values of such features is crucial for many systems,

as it plays an important role in deciding whether a measure corresponds to a feature

or not. This is often achieved by estimating the variances of the object parameters

(Smith et al., 1988; Ayache and Faugeras, 1989; Moutarlier and Chatila, 1990;

Leonard et al., 1992; Hébert et al., 1996; Feder et al., 1999; Castellanos et al.,

1999). Leonard et al. (1992) also assign a credibility value to each feature in order

to model the confidence that a given object is really present in the environment and

not the result of a perception error. Fuzzy sets may also be used to represent feature

position uncertainty (Gasós and Martín, 1997).

3.1.2 Free-space representation

Instead of using a set of features to represent objects in the map, it is possible to

represent the portion of the environment that is accessible to the robot. The most

popular approach to this idea is the occupancy grid (Moravec and Elfes, 1985;

Thrun, 1999; Yamauchi et al., 1999) (Figure 5). In this case, the environment is
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Real environment Occupancy grid

Fig. 5. Example of occupancy grid. The environment is discretized in regular cells and the

grey value of a given cell indicates the probability for the considered position of being

occupied by an obstacle, from 0 for white to 1 for black.

discretized into a regular high-resolution grid. Each cell of the grid is assigned a

probability of being occupied by an obstacle. As this method entails using a lot of

memory to represent large environments, irregular space discretization may be used

(Arleo et al., 1999). The great advantage of these methods is that they can directly

use sensor data without the need for feature extraction, often either computationally

expensive or brittle.

3.2 Topological maps

In the topological framework, the environment is represented by a set of distinctive

places (Kuipers and Byun, 1991) and by the way a robot can go from one place

to another. Place definitions call upon allothetic information available at the corre-

sponding position in the environment. Some idiothetic information collected while

going from one place to another is also usually stored in the links of the graph re-

lating the different places. In its common sense, a topological map is therefore a

sparse representation of the environment that only represents key places for navi-

gation using allothetic data, on the one hand, and connexions between these places

using idiothetic data, on the other hand. In this paper, the definition of a topological

map will be extended to every map that records allothetic and idiothetic data sepa-

rately, and that is not used to infer relative positions of places thanks to the allothetic

data. This definition clearly covers all the maps classically defined as topological,

but also includes some maps which call on a very fine and regular discretization of

the environment. Within the framework of this paper, this definition is justified by

the fact that similar localization and map-learning methods are associated with all

these maps, which are different to techniques used with metric maps.

The first advantage of topological maps is that they don’t require a metric sensor

model to convert allothetic data in a common 2D reference frame. The only require-

ment is a method for storing place definitions and for recognizing places given a

sensory situation, which, incidentally, may be conveniently achieved through a met-

ric model. Topological maps are closely related to the robot’s perceptual capacities

and do not require extracting an objective representation of the environment. More-
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over, this memorization of the environment as a set of places calls upon a discretiza-

tion of the spatial layout that is often directly useful for higher-level processes. For

example, this representation is very convenient for planing or problem-solving, be-

cause the size of the corresponding search-space is small compared to the set of

possible trajectories in a continuous 2D space. This discretization may also be very

natural when it calls upon places defined by humans, such as corridors and rooms.

This allows problems to be described and solved in a way meaningful to humans

(for example, giving the order go to room 10, instead of go to point x,y).

However, these advantages are offset by the disadvantage that allothetic informa-

tion is only available for places physically explored by the robot, thus requiring a

more exhaustive exploration of the environment when higher precision for position

estimation is needed. Another difficulty lies in the definition of places, which may

be hard in case of unreliable sensors or a dynamic environment. This definition is

made even more difficult in case of perceptual aliasing (see section 2). As a conse-

quence, topological maps may be hard to build in large scale environments, because

erroneous place recognition results in faulty map topology, which may be hard to

detect and correct. The lack of an objective description of the environment may

also turn out to be a problem if the goal is to let humans or other robots reuse this

map.

3.2.1 Node definition

As a topological map provides an intrinsic discretization of the environment, the

first issue when designing a mapping system is to choose which places to rep-

resent, i.e., when to perform localization and map updates. This decision may be

conditioned by human choices, or may be completely dependent upon the particular

environment the robot will be confronted with.

Operator-defined nodes

Places that must be represented may be directly defined by a human operator. In

such cases, the robot is endowed with procedures able to detect predefined types

of places, which it must locate in its environment. The most common choice is

to use corridors, doors and intersections (Kunz et al., 1997; Dedeoglu et al., 1999;

Shatkay and Kaelbling, 2002; Hertzberg and Kirchner, 1996). In this situation, a lot

of perceptual aliasing occurs (when, for example, individual intersections cannot

be recognized); therefore correct localization and mapping rely heavily on internal

information (section 4.4.1).

Nodes defined at canonical places
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Instead of completely specifying nodes, the designer can specify where places have

to be detected, leaving the robot the task of precisely defining each place. This is

the case in the distinctive places approach pioneered by Kuipers and Byun (1991).

In their model, places are defined as areas from which a hill-climbing control law

is able to guide the robot toward a locally unique point (for example, a corridor

intersection place is defined as the area from where a unique control law can guide

the robot to a precise point, at the junction of two corridors). A given place is then

characterized by the allothetic situation at the point reached by the control law.

This technique affords a solution to the point-of-view problem, which arises from

the discretization of the real world by humans into places which are not character-

ized by a unique allothetic situation from the robot point-of-view 3 . Engelson and

McDermott (1992) exploit the same idea, of which Kortenkamp and Weymouth’s

(1994) gateways are another instance. Gateways are defined as places detected by

sonar sensors where the robot can change its travel direction, which are therefore

important for navigation (such as doors leading from one room to the other, or such

as corridor intersections).

Within such a framework, a sensory situation is recorded at each canonical place

encountered in order to more precisely define the corresponding node. Place defini-

tions are quite general in Kuipers and Byun’s model; however, these authors report

that simply using the distances of neighboring obstacles measured by sonar sensors

is not precise enough to disambiguate all places and that the additional memoriza-

tion of an occupancy grid representing the surroundings of the distinctive place

proves to be necessary. Engelson and McDermott suggest recording signatures of

images taken at canonical places to define each node. An image signature is a set

of measurements (such as the color distribution) made on an image and that char-

acterize it. Such a compact representation of the image (compared to the original

image size) allows efficient storage and image comparison. Similarly, Kortenkamp

and Weymouth use a low-dimension representation of images, named Abstracted

Scene Representation, to characterize nodes in the map.

Automatically defined nodes

A third method for defining nodes is to define them as areas where perceptions are

similar, regardless of the robot’s position in such areas. This method naturally cir-

cumvents the point-of-view problem. Place definitions are simply obtained through

unsupervised categorization of allothetic cues, the category of a perception corre-

sponding to the place where the robot is located. Such node definition is based on

the robot’s perceptual capacities alone and does not depend on the human definition

3 The point-of-view problem can make map-learning quite difficult because of the pos-

sible definition of places by multiple allothetic situations. The reason is that an allothetic

situation never encountered before does not always correspond to a new place, but may

correspond to a known place under a different point-of-view.
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of what a place should be, which make places easier to recognize, given a single per-

ception. Moreover, such space discretization is the natural choice of models which

try to mimic some animal navigation capabilities, because it does not presuppose

any high-level definition of places (such as door or corridor). Places can by defined

by the local configuration of landmark directions or distances (Levitt and Lawton,

1990; Sharp, 1991; Burgess et al., 1994; Bachelder and Waxman, 1994; Gaussier

et al., 2000; Balakrishnan et al., 1999; Touretzky et al., 1994), by the values of

proximity sensors (Nehmzow and Owen, 2000; Mataric, 1992; Kurz, 1995; Duck-

ett and Nehmzow, 1997), or by some characteristics of panoramic images (Arleo

and Gerstner, 2000; Franz et al., 1998; Ulrich and Nourbakhsh, 2000; Von Wichert,

1998). These models are detailed in section 4.3.1.

When such a strategy is chosen, in the absence of any a priori definition of what

the places to represent are, a criterion has to be designed to determine when the

robot has reached a new place. As places are supposed to represent almost constant

sensory situations, the obvious choice is to monitor the variations of the sensory

situation and to consider that a new node is reached when this variation exceeds a

given threshold. This is used in several models (Mataric, 1992; Kurz, 1995; Franz

et al., 1998; Nehmzow and Owen, 2000; Gaussier et al., 2000), but requires that

the situation be monitored in real-time, which may be difficult on real robots. Other

models simply define a new place when the distance from the previous place ex-

ceeds a threshold (Touretzky et al., 1994; Yamauchi and Beer, 1996; Von Wichert,

1998; Arleo and Gerstner, 2000).

Note that in all these node-definition methods a metric model for allothetic cues

may be used for convenience. However, in this topological framework, such a

model is not used to infer information about relative positions of places (see section

2), which depends on idiothetic cues only, as will be explained in the next section.

3.2.2 Link definition

Adjacency

The main information provided by a link is that the two nodes it connects are adja-

cent, i.e., it is possible to move directly from one to the other (Kortenkamp et al.,

1994; Nourbakhsh et al., 1995; Hertzberg and Kirchner, 1996; Franz et al., 1998;

Gaussier et al., 1998; Ulrich and Nourbakhsh, 2000).

Metric relations

Additional information gained from idiothetic sensors may be stored in the map.

This is often achieved by recording the relative metric position of the nodes (Kuipers

and Byun, 1991; Engelson and McDermott, 1992; Simmons and Koenig, 1995;
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Shatkay and Kaelbling, 2002; Kunz et al., 1997; Von Wichert, 1998; Nehmzow and

Owen, 2000; Hafner, 2000). This approach has the advantage of bounding the error

of the idiothetic information, as it is reset whenever a node is encountered. This

use of local metric information leads to a so-called diktiometric map (Engelson and

McDermott, 1992) (Figure 6 a).

y

x

x = 10 m
y = 12 m

x = 17 m
y = 15 m 

b

length : 7.6 m
direction : 64 °

a

Fig. 6. Two different types of maps obtained when metric information is added to a topo-

logical map. When the metric information about relative positions of the nodes is stored

in the links between nodes, the map is said to be diktiometric (part a). When an absolute

metric position is stored in each node, the map is said to be absolute diktiometric (part b).

Assigning nodes a position

Each node may also be assigned a position in a global reference frame (Mataric,

1992; Touretzky et al., 1994; Kurz, 1995; Yamauchi and Langley, 1997; Duckett

and Nehmzow, 1997; Oore et al., 1997; Von Wichert, 1998; Arleo and Gerstner,

2000; Balakrishnan et al., 1999; Dedeoglu et al., 1999). This makes it possible to

retrieve the general layout of the environment, albeit at the price that long-term

error in idiothetic cues must be compensated for. Such metric information may be

substituted for any link information, or added to links coding for adjacency. As the

absolute position of each node is defined in a 2D space, in the remainder of this

paper this kind of map will be called an absolute diktiometric map (Figure 6 b).

Implicit links

Some varieties of allothetic information implicitly define links between nodes in

the map representation. This is the case, for example, when punctual landmark

distances or directions are used to characterize nodes. Common landmarks detected

from different places can then be used to infer information about place adjacencies,

and the fact that nodes have landmarks in common can be used as implicit links

(Levitt and Lawton, 1990; Sharp, 1991; Burgess et al., 1994).

4 Localization strategies

In this section we consider that a complete map of the environment is provided to

the robot. We will be presenting different localization strategies and the way they

integrate the idiothetic and allothetic information.
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4.1 Localization capacities

There are two different localization capacities. The first one is the capacity to pro-

vide a new position estimate, given a previous position estimate and new idiothetic

or allothetic information. This capacity may be called local localization or position

tracking. It is useful as long as the robot has an estimate of its initial position and

that the said estimate does not become too different from the robot’s actual position.

In the case where the robot has no estimation of its previous position, a second,

more powerful, capacity is required, because the robot must locate itself without

capitalizing upon information about where it was before. This situation is referred

to as the lost-robot problem or the drop-off problem. The corresponding capacity

may be called global localization.

When metric maps are used, these two localization capacities have dual properties

(Piasecki, 1995). Position tracking is a rather continuous problem, with a quantita-

tive solution : given an allothetic situation, the robot’s position should be corrected

in order to best reflect its perception. On the contrary, global localization is a rather

discrete and qualitative problem : given an allothetic situation, the robot must iden-

tify the object or the region of the environment that accounts for its perceptions. As

several objects or regions widely scattered in the environment may have produced

this perception, the issue is more to choose among distinct separate position hy-

potheses than to correct a previous position estimate. In the context of topological

maps, however, these capacities are more similar, because they both entail find-

ing the node which best reflects the robot’s position. However, position tracking is

simpler than global localization because only a small set of nodes must be discrim-

inated between.

It should be noted that the position of a robot is not only defined by its two co-

ordinates in a plane, but also by its orientation. However, throughout this review,

we will only refer to localization in a 2D space because most of the topological lo-

calization strategies do not directly estimate the robot orientation. This estimation

usually relies on a dedicated sensor, i.e., on a compass, or on a dedicated procedure

that evaluates directions independently from position coordinates. It should never-

theless be clear that most of the approaches using metric maps directly estimate the

robot’s orientation along with its position.

4.2 Classification used

In the following, we will classify the localization strategies into three categories :

• Strategies which directly infer the position from allothetic cues without requir-

ing idiothetic cues. The corresponding models make the assumption that the pro-
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Fig. 7. The three categories for map and position representation (see text for details).

cessing of the available allothetic information is powerful enough to allow the

robot’s position to be recognized. They therefore allow global positioning in en-

vironments where there is no perceptual aliasing.

• Strategies which track a single hypothesis about the robot’s position using both

idiothetic and allothetic cues. The corresponding models solve the perceptual

aliasing problem by selecting the most credible position using a previous posi-

tion estimate and idiothetic cues. However, if the previous position estimation

turns out to be totally wrong (e.g., because the robot has been moved by the

experimenter to a new place), it cannot be correctly updated, and the robot gets

lost. In any case, these models do allow position tracking in environments with

perceptual aliasing.

• Strategies which track multiple-hypothesis about the robot’s position using both

idiothetic and allothetic cues. Instead of tracking only the most credible hypothe-

sis, the corresponding models maintain a set of hypotheses which are all updated

in parallel. These strategies allow alternative position estimates to be maintained,

even if the most credible estimation at one time turns out to be totally wrong.

Therefore, they make global positioning possible in environments with percep-

tual aliasing.

Within these categories, models may be broken down into sub-categories which

correspond to the classical metric/topological distinction. However, we will make

a distinction between position representation and map representation, which leads

to three categories (see figure 7) :

• The map is represented in a topological framework, and the position is repre-

sented as a node in this map or as some activity distribution over the nodes of

this map.
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Topological Map /
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Metric Map /

Metric Position

Direct

Position

Inference

Hyp. : NPA.

Input : AC.

Capacity : GP,

DPE.

Hyp. : NPA.

Input : AC.

Capacity : GP,

CPE.

Hyp. : NPA, SM.

Input : AC.

Capacity : GP,

CPE.

Single-

Hypothesis

Tracking

Hyp. : None.

Input : AC,IC,PE.

Capacity : PT,

DPE.

Hyp. : None.

Input : AC,IC,PE.

Capacity : PT,

CPE.

Hyp. : SM.

Input : AC,IC,PE.

Capacity : PT,

CPE.

Multiple-

Hypothesis

Tracking

Hyp. : None.

Input : AC,IC.

Capacity : GP,

DPE.

Hyp. : None.

Input : AC,IC.

Capacity : GP,

CPE.

Hyp. : SM.

Input : AC,IC.

Capacity : GP,

CPE.

Table 1

NPA : No Perceptual Aliasing, SM : Sensor Model, IC : Idiothetic Cues, AC : Allothetic

cues, PE : Position estimate, GP : Global Positioning, PT : Position Tracking, DPE : Dis-

crete Position Estimation, CPE : Continuous Position Estimation.

• The map is represented in a topological framework, but the position is repre-

sented in a 2D metric framework.

• Map and position are both represented in a 2D metric framework.

A fourth category, where the map would be represented in a metric framework

whereas the position would be represented by a topological node, is not considered

here. In fact, no models fall into this category as far as localization is concerned.

The reason seems to be that once a metric map is available, the loss of precision

in localization resulting from the conversion to a topological representation is not

compensated for. Note however that the extraction of a topological map from a

metric one may be useful for path planning. In the corresponding models, however,

the robot position is represented in the metric space and the topological position is

inferred from this metric estimate.

In the first category, topological maps may contain metric information, but this

information is not used in an absolute 2D space for position estimation. In the

second category, however, topological maps must be absolute diktiometric maps

in order to make it possible to infer the robot’s metric position from the currently

recognized node. The different categories, together with their main attributes, are

summarized in Table 1.
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4.3 Direct position inference

Allothetic sensors in robots may be limited or noisy. Moreover, environments may

be very regular, with only a few distinguishable features. These two facts put to-

gether may render allothetic cues nearly useless for localization. However, one

could argue that, in many situations - for example a robot using a camera in a com-

mon office environment - there is enough available information in the current view

of the environment to determine its position. This section presents models which

basically rely on this assumption. The matter at issue is to find efficient methods

that make it possible to extract enough information from the available allothetic

cues so that the resulting position estimation becomes unambiguous. This section

also describes procedures that are used in an initialization step to produce a rough

position estimate in models that allow position tracking and that will be described

later, in section 4.4.

4.3.1 Topological Map / Topological Position
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Fig. 8. Direct position inference in a topological framework requires that no perceptual

aliasing occur, i.e., that each node encodes a different sensory situation. Localization then

simply entails finding the node that best corresponds to the current sensory situation. In this

example, the robot positions itself at node R2.

When using a topological framework for direct position inference, each node of

the map must represent a different sensory situation (Figure 8). Localization then

simply entails finding the node that encodes the sensory situation the most similar

to the current allothetic cues. In order to do that, some models rely on metric sensor

models, but this is not mandatory.

In some models, map positions correspond to canonical places in the environ-

ment(e.g., (Kuipers, 2000)), which are recognized using a hill-climbing control

law. Once such a place is reached, the sensory situation is simply compared to

all the stored situations, the closest one being recognized as the current place. Lee

(1996) implements this strategy using a local occupancy grid to define nodes and

an occupancy-grid matching procedure for place recognition. Kuipers and Beeson

(2002) define a place by a set of views that correspond to the robot’s possible di-

rections in this place. Each view in this model is a laser range-finder scan of the
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environment in front of the robot. In a similar way, Kortenkamp and Weymouth

(1994) recognize places by the local wall configuration detected by sonar sensors,

and by an Abstracted Scene Representation (ASR) extracted from images in eight

fixed directions around the robot. An ASR is a low-resolution representation of

an image in which the direction, length and distance of vertical edges detected by

stereo-vision in 25 regions of the image are stored. In the model of Franz et al.

(1998), panoramic images, sub-sampled to a low resolution representation of the

surroundings using only 78 pixels, are stored in each node. However, the authors

acknowledge that such a simple place representation must contend with the percep-

tual aliasing problem, which leads to a restriction of the size of the environment in

which their system can operate.

Other models use direction or distance of punctual landmarks for place definition

instead of a representation of the robot’s whole surroundings. Among these mod-

els, some are bio-mimetic models, like those that have been designed to emulate

neuronal activity in the hippocampus of rats. As these models have not been imple-

mented on real robots, such landmarks are rather idealized.

On/Off
Connections

Place Cells

Sensory Input

Winner−takes−all

Fig. 9. In Burgess et al.’s model (1994), allothetic cues are direction and distance to distant

punctual landmarks. A three-layered neural network takes this information as input and

is responsible for categorizing allothetic cues. The output values of the neurons in the last

layer emulates place-cell activity in the hippocampus of rats and are correlated to the robot’s

position (see text for details).

For instance, Sharp (1991) and Burgess et al. (1994) use the distances and directions

of perfectly recognizable landmarks as their primary source of information. Their

models rely on artificial neural networks designed to emulate place cells of the rat

hippocampus in computer simulations. Inputs to their networks are provided by

sets of neurons whose activity depends on the distance to, or on the direction of,

specific landmarks. The activities of these neurons are fed to successive layers of

neurons where competitive mechanisms result in the activation of a few nodes in the

output layer which correspond to the robot’s position (Figure 9). Trullier and Meyer

(2000) also simulate hippocampal activity but without the use of any intermediate

layer or competitive mechanisms. In their model, place cells directly respond to a

combination of landmark distances via a mathematical function which is maximum

when the current landmark distribution is identical to the memorized one.
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Fig. 10. In the models of Gaussier et al. (2000), and of Bachelder and Waxman (1994),

the identity of distant landmarks - the ’what’ information - is encoded on a linear set of

neurons (bottom of the figure), while their direction - the ’where’ information - is coded on

a second linear set of neurons (left of the figure). The activities of these two sets are used

to calculate the activity of a 2D set of neurons that encodes the current sensory situation.

The activity of this last set is then classified so as to recognize the node corresponding to

the current sensory situation (see text for details).

Some of the models using punctual landmarks have also been implemented on

robots and therefore use different allothetic cues, namely landmark directions, in-

stead of landmark distances, which are more difficult to extract from robot sensor

data. In Bachelder and Waxman (1994)’s model, the robot is placed in an envi-

ronment with easily recognized artificial landmarks, while the model of Gaussier

et al. (2000) is designed to work in an unmodified environment using local views

extracted around focus points (e.g., corners). In both models, a procedure extracts

landmark identities and directions from panoramic images. These two categories,

named the ’what’ and the ’where’, are coded on two 1D arrays of neurons. The

product of the activity of these two arrays gives the activity of a 2D array that en-

codes the local sensory view of the robot (Figure 10). The activity of this array is

then fed into a classifier that categorizes these patterns, each category correspond-

ing to a node in the map.

In all these models, the output is not only the most activated neuron but also an

activity distribution among map nodes. This activity distribution may be used in

order to produce a finer position estimate, for example through population vector

coding 4

Levitt and Lawton’s (1990) model also makes use of the direction and distance of

landmarks, but not in a biologically-inspired fashion. These authors provide two

4 Population vector coding (Georgopoulos et al., 1986) is a widely-used method for com-

puting a robot’s position, given an activity distribution over a set of possible locations. The

computed position is simply the mean of the positions of each location, weighted by the

activity of each location.
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kinds of place representation for mobile robot localization. The first one is the ori-

entation region, which is defined by the identity and order of landmarks around the

robot without distances, nor directions. This results in regions delimited by lines

joining two landmarks and provide a coarse segmentation of the environment. The

second type of region is called a view-frame and defines a region by coarse esti-

mates of landmark directions and distances. Such regions are used when a more

precise position estimate for the robot is useful.

4.3.2 Topological Map / Metric Position
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Fig. 11. When an absolute diktiometric map, in which each node encodes a unique sen-

sory situation, is available, recognizing the node which corresponds to the current sensory

situation allows the robot’s metric position to be derived.

Recognizing a node in the models of this section is also simply performed by com-

paring the current allothetic data with the data stored in each of the nodes. The

use of an absolute diktiometric map, in which all nodes encode different sensory

situations, makes it possible to infer the robot’s metric position (Figure 11). How-

ever, the precision of metric position estimates is limited by the size of the places

encoded in the map. Population vector coding may however be used in order to

refine this estimate. A metric sensor model is not mandatory but may also be used

to improve the position estimate in the area coded by one node.

In the models of Arleo and Gerstner (2000) and in Balakrishnan et al. (1999) (to

be described in greater detail in section 4.4.2), when no previous position estimate

is available, global localization procedures rely on the assumption that some nodes

represent allothetic situations which are unique in the environment. When such a

unique situation is detected, the robot’s metric position may be inferred using allo-

thetic cues alone. In Balakrishnan et al.’s model, which is evaluated in simulation,

the allothetic information is that of the distances, directions and identities of land-

marks, relative to the robot, with an absolute reference direction. This information

is categorized by an unsupervised classifier that recognizes the current sensory situ-

ation and therefore the current node. In Arleo and Gerstner’s model, allothetic cues

are a set of four images taken by a linear or 2D camera in four fixed directions in

order to obtain 360-degree information. These images are processed using different

kinds of filters, in order to extract some characteristic features which are then used

to derive the activity of a set of snapshot cells. Such cells are connected to a second
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set of cells that carry out an unsupervised classification of the sensory situation,

leading to an activation of each node in the map that is related to its similarity to

the current sensory situation. When this situation is unique in the environment, the

result is a coherent activity distribution over the cells of the map centered around

one point. This coherent activity allows population vector coding to be used to

estimate the robot’s position.

When the nodes of the map are sparse, the precision of position estimation can be

enhanced by computing the robot’s position relatively to the node center after hav-

ing recognized the correct node. To achieve this, Yamauchi and Langley (1997) use

a map where each node stores a local occupancy grid built around one point in the

environment, along with the position of this point in a 2D space. Although occu-

pancy grids are metric maps, they are used in this model for place recognition only.

Localization entails building a local occupancy grid and searching out the node to

which the most similar grid is attached in the map. Once the node corresponding to

the current perceptions is recognized, this use of local metric maps allows a finer

localization, because the relative position of the robot inside the area covered by

the node is derived through an occupancy grid matching feature.

4.3.3 Metric Map / Metric Position

y

x

Real Environment Allothetic Cues Map and Position 

current position
The robot’s

Fig. 12. Localizing a robot within a metric map requires a metric model for the sensors.

Given this model, the robot’s position may be inferred from its position relative to known

landmarks.

When the positions of some landmarks or objects of the environment are known

within a metric map, and when a metric sensor model is used, the robot’s metric

position may be inferred relatively to the detected objects, instead of just recogniz-

ing the local allothetic view (Figure 12). The methods used to estimate this position

are numerous and may be classified into 3 categories.

• Methods belonging to the first category compute the robot’s position given the

positions of some detected landmarks relative to the robot. This may be accom-

plished by triangulation, in virtue of the fact that the position of a point in a 2D

space is defined uniquely if the distances or directions to three characteristic land-

marks are known. The procedures for detecting such landmarks may be similar to

those of section 4.3.1.

22



Betke and Gurvits (1994) describe an efficient algorithm for triangulation given the

position of at least three distinguishable punctual landmarks. Such an algorithm

is robust with regard to noisy data and makes it possible to cope with incorrectly

recognized landmarks. This approach calls upon a omnidirectional linear camera

that makes it possible to detect dark regions that are used as landmarks. As a con-

sequence, landmarks are usually distributed over the whole surroundings, which

affords good precision for position estimation. However, if only three very close

landmarks are perceived, the triangulation becomes very brittle, and may lead to

poor position estimation. This problem is tackled by Madsen et al. (1997) who

describe another triangulation algorithm that uses an estimate of the robot’s posi-

tion to select landmarks and avoids the above-mentioned brittleness problem (see

section 4.4.3 for details).

1

b

a

A.   Landmarks recorded
on the map

B.   Landmarks perceived
in the environement

E.   Calculated position of the robot
on the map

D.   Superposition of landmarks
with correspondence 1-b

C.   Superposition of landmarks
with correspondence 1-a

Fig. 13. A. In the localization procedure used by Wijk and Christensen (2000), a first pair of

landmarks is chosen in the map (for example pair a). B. A second pair is chosen among the

perceived landmarks (for example pair 1). C. and D. The robot’s position in the map where

the two pairs would correspond is calculated. This position is then used to estimate where

the remaining perceived landmarks would be positioned in the map’s reference frame. E.

The position which gives the best overall match between the perceived landmarks and the

map is assumed to be the robot’s true position (correspondence 1-b in this example).

With punctual landmarks, other techniques for position estimation may be used.

For example, the landmarks used by Wijk and Christensen (2000) are corners de-

tected by sonar sensors. The corresponding localization process evaluates different

matches of corner pairs to recognize the detected corners and to estimate the robot’s

position (Figure 13). A very similar algorithm is used by Borghi and Brugali (1995)

using corners extracted from laser range-finders.

Instead of using punctual landmarks, other models use spatially extended land-

marks which allow the robot’s position to be computed from the detection of a

single one. Gomes-Mota and Ribeiro (2000), for example, use sets of pairs of non-

parallel lines extracted from a laser-scan as landmarks. Such pairs, called frames,

are defined by the two lines and their intersection point. The consequence is that
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Fig. 14. In the localization procedure used by Gomes-Mota and Ribeiro (2000), frames are

used as landmarks (represented by dotted lines). Matching frames from the map (marked

by letters) with frames from the current allothetic situation (marked by numbers) gives a set

of candidate positions (designated by the names of the two frames 1-A, 1-F ...). This set is

clusterized and yields several possible positions for the robot. A laser scan is then simulated

for each of these positions, using the map and supposing that the robot is located in the

corresponding position. The candidate position which leads to the best correspondence

between the perceived laser scan and the simulated laser scan is assumed to be the robot’s

actual position (position 1-E/2-D in this example).

landmark identity is very weakly defined, as only the similarity of two frames may

be assessed. In such a framework, localization entails extracting from the metric

map a set of frames, used as reference, and matching a pair of frames taken in

the map and in the current robot’s perceptions (Figure 14). An extension of this

approach makes it possible to incorporate an initial approximate estimation of the

robot’s position in order to simplify computations (see section 4.4.3). Arsenio and

Ribeiro (1998a) use similar landmarks, but position estimation is computationally

simplified through the use of a so-called visibility cells decomposition (Guibas

et al., 1997) that segments the map in regions where the same landmarks are de-

tectable. Visibility cells allow a fast processing of landmarks by quickly detecting

impossible matches of sensed and memorized landmarks. This approach is also

simplified when an initial approximate position estimate is available for the robot

(see section 4.4.3).

A different approach is that of Sim and Dudek (1999) who use small images ex-

tracted around focus points in camera images as landmarks. The map contains a set

of landmarks, along with their appearance from different positions distributed over

the whole environment. Localization entails taking an image, extracting landmarks

from this image and calculating the position from which the image was taken us-

ing each landmark, by linearly interpolating between the positions from which the

most similar landmarks stored in the map have been taken. In order to counter the

influence of erroneous landmark detection, the robot’s final position is taken as the
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median of position estimates given by all the landmarks taken from the image.

Fig. 15. The multi-resolution search strategy used by Olson (2000). Whenever a cell is

found that cannot contain the position affording the best similarity with the current local

map, it is removed. Otherwise, it is divided, and the process is repeated at a higher resolu-

tion level. The process is stopped when the optimal resolution has been reached.

• A second category of methods making it possible to localize a robot searches

out the position that affords the best correspondence between a local map, built

using recent perceptions, and the global map of the environment. As the search

space is huge and often contains a lot of local-extrema, these map − matching

methods are mainly used in conjunction with a position estimate that restricts the

search space (see section 4.4.3). However, Olson (2000) proposes a method which

is able to globally find the position affording the best correspondence. A similarity

measure is used that allows local and global maps to be compared. This measure

may be defined for many map representations using either geometric features or

occupancy grids. An additional function provides a bound to the similarity measure

over an area of the environment, given the similarity value at the center of this

area. This function makes it possible to quickly discard areas of the environment

where the similarity cannot be higher than the current best similarity. The search

strategy is a multi-resolution approach (Figure 15) that allows the robot’s position

to be retreived. A still finer localization estimate may be obtained by computing the

similarity in neighboring cells at the finest resolution and hypothesizing a Gaussian

distribution of this similarity around the true position. Finding the center of this

Gaussian allows sub-pixel localization in a way similar to population vector coding.

• Finally, a third category of localization calls upon the computation of feasible

poses, i.e., given a sensory measurement, the positions in the environment where

this measurement is possible are estimated. Brown and Donald (2000) present such

a strategy which uses obstacle distances only, without resorting to any landmark

identification. This approach calls upon several laser range-finder measurements

taken from a single place and allows the robot to uniquely determine its location

by gradually eliminating the positions from which the measurements would not

have been possible. The corresponding model is presented in an exact mathematical

formalization, while a rasterized version - i.e., a version operating in a discretized

world - is implemented on a real robot using an occupancy grid as a map. Howell

and Donald (2000) present a simplified version of this algorithm which exploits

local directions of the surfaces, in addition to their position, in order to enhance the

algorithm’s robustness.

Guibas et al. (1997) take a similar approach, based on the computation of the re-
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gions of the map where the current perception is possible. It is based on a pre-

processing of the map that generates visibility cells from which the perceptions

are similar. In this work, perceptions are obtained by a laser range-finder and lead

to a visibility polygon that surrounds the robot and encloses the free space visible

from the robot’s point of view. The authors provide efficient algorithms for finding

the robot’s possible locations, given a visibility polygon and the visibility-cell de-

composition. Karch and Wahl (1999) improve and extend this framework to noisy

perceptions, using simulated laser scans.

4.4 Single-hypothesis tracking

The models described in this section acknowledge the perceptual aliasing problem

and deal with the fact that allothetic cue processing does not allow all the positions

in the environment to be differentiated between. As a consequence, idiothetic cues

and previous position estimates have to be used to resolve ambiguities. The problem

is solved by selecting, whenever new allothetic cues become available, the position

which is the most coherent with the previous estimate and the movements made

since, ignoring any other candidate position.

When a single metric position has to be tracked, many navigation systems make

use of Kalman filtering. A Kalman filter (Maybeck, 1979) is a general algorithm

used to estimate the state of a system, given a model of this system’s evolution and

a capacity to measure this system’s state approximately. Each of these estimates is

supposed to be corrupted by a Gaussian white noise. This filter is an optimal linear

estimator, i.e., it gives the best estimation of the system state given the available

information, provided that the system’s evolution is modelled by a linear function.

To localize a robot, its position defines the state of the system (Figure 16) whose

evolution is related to idiothetic cues, while state measurements are afforded by

allothetic cues. As shown by examples in section 4.4.2 and 4.4.3, there are numer-

ous implementations of this basic scheme, and Kalman filtering turns out to be a

convenient way to fuse idiothetic and allothetic information. When the evolution

equations are non-linear, which is almost always the case in robotics, an extended

version of the filter may be used, in which a local linear approximation of the sys-

tem is obtained through Taylor expansion. However, this approximation may entail

some lack of robustness (see section 4.4.3).

4.4.1 Topological Map / Topological Position

Single-hypothesis tracking in topological maps usually first entails selecting nodes

whose place definition corresponds to the current sensory situation. This may be

achieved by procedures similar to those of models described in section 4.3.1, or by

simpler procedures, because tolerating perceptual aliasing allows unreliable node
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Fig. 16. Within the context of localization in a navigating robot, the state estimated by

the Kalman filter corresponds to the Cartesian coordinates of the robot’s position. From

time t1 to t2, the estimated state of the robot changes from state s1 to state s2′, according

to the idiothetic cues. The estimated variance of the estimation also evolves from v1 to

v2′ to reflect noise. At time t2, a measurement m2, with an associated variance vm2, is

made on the robot’s position through allothetic cues. The estimated state of the system is

accordingly adjusted to a better estimate s2, with an associated variance v2. This process

is then repeated between times t2 and t3, when a new measurement of the robot’s position,

m3, is made.
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Fig. 17. When a topological map contains nodes which encode different positions with

the same sensory view (here, for example, the robot is unable to differentiate between the

different rooms), the previous position estimate and the allothetic cues have to be used to

resolve these ambiguities. In a model which tracks a single hypothesis, this is achieved by

selecting the node which is the most coherent with the previous position estimate.

recognition to be coped with. Under such conditions, idiothetic information stored

in the links between nodes is then used to select the node which is the most coherent

with respect to the previously recognized node (Figure 17).
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The nodes of the maps therefore often encode easy-to-recognize, but non-unique,

situations. Corridor angles and junctions like those used by Kunz et al. (1997) and

Dedeoglu et al. (1999) are very common choices in office environments. Ad-hoc

procedures based on sonars or laser range-finders for such place recognitions are

numerous. Places may also be defined through an unsupervised classification of

the sensory situations. In the model of Nehmzow and Owen (2000), for example,

places are automatically defined via an unsupervised clustering algorithm applied

to the vector of sonar-sensor values. Mataric (1992) uses a coarser space segmen-

tation with automatically defined large-sized features, such as walls and corridors,

as places. Such places are detected using the robot motion, which is constrained by

low-level control laws such as wall-following and sonar data.

Having recognized several nodes that may correspond to the current sensory situ-

ation, the right position has to be determined using knowledge about the previous

position, together with the information that is stored in the links of the map. In par-

ticular, this information may concern the control procedure used to move from one

place to another, as in the model of Kuipers (2000). In this application, the robot

will be considered as localized in a node A in the map if the control procedure

linking the node B, which corresponds to its previous localization, to the node A is

the same than the procedure that was effectively performed by the robot since the

previous localization. Metric information may also be used to disambiguate place

recognition. For instance, adjacency and approximate position relative to the previ-

ously recognized node are used in the models of Mataric (1992), Kunz et al. (1997),

Dedeoglu et al. (1999) and Nehmzow and Owen (2000).

An important characteristic of the above models is that, even if idiothetic cues are

used, their cumulative error does not affect the localization quality. In Kuipers’

model, this property results from the fact that the closed-loop control strategy which

is memorized in the links doesn’t make explicit use of idiothetic cues and from the

fact that when a node is reached, the hill-climbing strategy (described in section

3.2.1) allows the robot to reach a locally uniquely defined reference point, thus

suppressing any idiothetic error. In Kunz et al., Dedeoglu et al. and Nehmzow and

Owen’s models, idiothetic cues are explicitly used to relate nodes, but this informa-

tion is only used locally - i.e., between two nodes - and it is reset whenever a new

node is recognized. Moreover, in Kunz et al. and in Dedeoglu et al.’s models, the en-

vironment includes orthogonal corridors only, which allows the robot to frequently

adjust its direction estimation by considering that its direction is the closest to four

possible orthogonal reference directions. In Nehmzow and Owen’s model, where

the directions of links are not assumed orthogonal, direction drift is corrected using

a magnetic compass. However, the authors report that this correction is not suffi-

cient for large-scale environments. To solve this problem, they introduce behaviors

that resemble Kuipers’ control strategies (e.g., reaching a corridor center).

Instead of recognizing some nodes using allothetic cues and choosing the right

one using idiothetic cues, some models work in the opposite way. Accordingly, the
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previous position is used to select a set of possible nodes, and the most likely node

is chosen according to allothetic cues.

For example, Ulrich and Nourbakhsh (2000) store histograms in several color bands

of images taken by an omnidirectional camera at each node of the map. In their sys-

tem, a node represents a room or a corridor, and the histograms of several images

are stored for each location. Place recognition first entails taking an image and com-

paring its histograms with the nodes neighboring the previous node. The new node

is then determined using the results from each color band through a voting scheme.

If all the color bands vote for the same location, it is considered recognized. If the

vote is ambiguous, the system does not recognize a new node and assumes that it

is still at the previous location. This model extends the approach of Radhakrishnan

and Nourbakhsh (1999), in which a Bayesian classifier was used on the set of pixels

associated with a panoramic color image for node recognition. Von Wichert (1998)

also resorts to a similar idea by constraining the recognition to nodes that are situ-

ated less than 2 meters away from the previously recognized node. In this model,

each node stores features extracted from images taken in eight absolute directions.

4.4.2 Topological Map / Metric Position
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Fig. 18. When seeking the metric position of a robot with an absolute diktiometric map,

idiothetic cues are first used to estimate a new metric position. Ambiguities arising from

perceptual aliasing (e.g., being unable to recognize a particular room using allothetic cues

only) are then solved by selecting the node which is the most consistent with this position

estimate and the idiothetic cues. The position of the selected node then allows this first

estimate of the robot’s position to be improved.

The nodes in the maps mentioned in this section associate sensory situations with

metric positions in a 2D-space. Solving the perceptual aliasing problem can there-

fore be based on a comparison between the position of the nodes and of the robot.
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The latter calls upon a previous estimate that is updated through idiothetic cues.

Resolving ambiguities usually entails choosing the node closest to the robot’s po-

sition estimate (Figure 18). Once the correct node has been recognized, the robot’s

position may be corrected using this node position.

Position

Idiothetic Information

Category

Allothetic Information

Map

Category + Position

Correct
Reset or

Fig. 19. A model structure that allows position tracking with a topological map and metric

position estimates (see text for details).

Several models of this section exhibit the same structure, with three distinct func-

tional modules (Figure 19). The first module allows the allothetic cues to be cate-

gorized so as to discretize the space in which allothetic cues are represented. In the

model of Arleo and Gerstner (2000), allothetic cues are provided by a camera and

determine the activity of a set of cells, thus making clue classification possible (see

section 4.3.2). In the model of Balakrishnan et al. (1999), allothetic information is

provided by distance and identity of landmarks relative to the robot, together with

their direction in an absolute reference frame. This information is also categorized

by a set of cells.

The second functional module characterizing the models of this section monitors

an estimate of the robot’s metric position in a 2D Cartesian space. This module

is updated using idiothetic cues and is in strong interaction with the third module,

both because the position estimate is used to disambiguate node recognition in the

map and because node recognition is used to correct the position estimate. In the

model of Arleo and Gerstner (2000) the robot’s position is coded by the activity

distribution of a set of cells that have an associated position in the 2D space. The

activity of each of these cells is a Gaussian of the distance between its position

and the robot’s estimated position, the latter being periodically reset to the posi-

tion estimated from the map activity using population vector coding. In the model

of Balakrishnan et al. (1999), the robot’s position is simply represented by its co-

ordinates, without further encoding. It is continuously updated thanks to positions

recognized on the map using Kalman filtering, instead of being updated only from

time to time.

Finally, the third functional module contains the map, which associates categories

detected in the first part with positions coded in the second part. In the model of

Arleo and Gerstner (2000), a set of cells that have connections with the cells of the
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two previous modules is used, thereby associating a sensory situation with a po-

sition in space, because cell activations in the map module depend on the activity

of the cells in the two other modules. The result is that only those cells that cor-

respond to the current sensory situation and that are close to the position estimate

are activated, thereby unambiguously defining the robot’s position. In the model of

Balakrishnan et al. (1999), the map is composed of a set of nodes, each of which

has an associated position and an associated sensory situation. When several nodes

are associated to the same sensory situation, disambiguation is performed by se-

lecting the node whose associated sensory description is the closest to the current

position estimate. The model proposed by Kurz (1995) is very similar to those of

Balakrishnan et al. but is implemented on a real robot and uses a ring of sonar

range-finders as allothetic cues. The simulated model of Touretzky et al. (1994) is

another example of a similar, but simpler, structure.

The model of Yamauchi and Beer (1996) has a different structure and is unusual

in that it doesn’t store allothetic information in the nodes of the topological map

except for the first created node, where a local occupancy grid is stored. Nodes are

simply associated with evenly-spaced positions in a 2D space. The current position

corresponds to the node that is the closest to the current position estimate. Idio-

thetic cues drift is recalibrated periodically by navigating to the first created node,

where the occupancy grid was initially stored. The robot then creates a new local

occupancy grid that is matched with the stored one using hill-climbing. The result

of the match (see section 4.3.3 for details on grid matching) allows to correct the

position estimate.

It should be noted that, although the models of this section are only able to track a

single-position hypothesis, some are also able to globally localize the robot thanks

to dedicated procedures. This is the case, for instance, with the models of Arleo

and Gerstner and of Balakrishnan et al. that were previously described. It is also

true of the model of Touretzky et al. (1994), which computes a map activity us-

ing allothetic cues, and which sets the position estimate at the center of the active

nodes. A high uncertainty value is initially associated with this position, i.e., the

Gaussian that gives a node’s activity as a function of its distance to the robot’s po-

sition estimate has a large width. Then the robot moves, and the node activity is

calculated according to the standard position-tracking procedure described above.

At each time step, the robot’s position is set to the center of activated nodes, while

the position uncertainty is gradually reduced in order to restrict the dispersion of

the map activity, thus ultimately generating a coherent position estimate. The ad-

vantage of this procedure over the ones of Arleo and Gerstner and of Balakrishnan

et al. is that the robot integrates successive sensory situations to continuously up-

date its position, instead of relying on the occasional discovery of an unambiguous

place.
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Fig. 20. Most models which allow position tracking in a metric framework use idiothetic

cues to produce a position estimate. This estimate is used to restrain the search for a position

which best corresponds to the current allothetic situation; this is then used to correct the first

position estimate.

4.4.3 Metric Map / Metric Position

This category covers a vast number of implementations in classical robotics. In such

implementations, idiothetic cues are straightforwardly used to estimate the robot’s

position based on a previous estimate. Allothetic cues are then used to correct this

position estimate by searching in the vicinity the position which best corresponds

to the sensory data (Figure 20). The joint use of a metric map and a sensor model

permits the robot’s position to be estimated directly from allothetic cues without

resorting to the categorization and the recognition of sensory situations - as it is the

case for topological maps - thereby potentially allowing a finer position estimate.

The first task is therefore to estimate the robot’s position using allothetic cues. This

may be done using techniques mentioned in section 4.3.3, but often the previous

position estimate is used in order to constrain the search for the position which

corresponds to the current sensory situation.

The most popular approach in this field is based on occupancy grids. The pro-

cessing of allothetic cues entails building a local occupancy grid using current or

recent data only. The problem then entails finding a position for the robot close to

the current estimate which maximizes the correspondence between the local occu-

pancy grid and the global map. This may be performed by various techniques (see

Schiele and Crowley (1994) for a review) of which the following are just examples.

Because they are based either on the whole occupancy grid or on segments repre-

senting obstacle boundaries extracted from the grids, the corresponding matching

procedures may be performed between segments, between grids or between a seg-
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ment and a grid. The first two procedures proved to be more stable than the last one.

Thrun (1999) resorts to grid-grid matching using a differentiable correspondence

function that measures the similarity between the grids. The fact that this function

is differentiable allows the use of gradient ascent to expedite the search for the best

correspondence. Schultz and Adams (1998) also tested two methods for finding the

position which maximizes the grid correspondence. The first one is hill-climbing,

which entails looking iteratively in the neighborhood of the current position estima-

tion for positions which produce higher correspondences. The second one entails

calculating the similarity of the two maps in several positions close to the estimated

position. The new position is given by the barycentre of these positions weighted

by the matching score. The second method proved to be more reliable than the first.

A.   Map and initial position estimate B.   Perceived features C.   Position of perceived features estimated
in the map

Matching features

Matching features

D.   Position estimation after matching 

Fig. 21. In the model of Ayache and Faugeras (1989), when an initial coarse position esti-

mate is available for the robot (A), feature matching is simplified. To this end, the position

of perceived features (B) is estimated in the map using the initial position estimate (C).

Perceived features are then matched to the closest feature in the map, and the position of

the robot that superimposes perceived and stored features is calculated (D).

Other approaches use geometric features such as points, segments or polygons, in-

stead of occupancy grids. With single-point landmarks, a triangulation algorithm

similar to those described in section 4.3.3 can be used to localize the robot. How-

ever, in this case, as landmark identification can depend on the robot’s position,

the system does not require the landmarks to be perceptually unique. Ayache and

Faugeras (1989) use 3D segments detected by stereo vision as features. The cor-

respondence between perceived and stored segments depends on their similarity in

length and direction, as well as on their proximity in the global space in which the

positions of perceived segments are computed using the robot’s position estimate

(Figure 21). Castellanos et al. (1999) describe a similar strategy for a model based

on segments extracted from laser range-finder data. The approach of Gomes-Mota

and Ribeiro (2000), which calls upon direct position inference (see section 4.3.3), is

very similar. Cox (1991) also uses segments as features in the map. However, only

points sensed by an infrared range-finder are used as allothetic cues. The position

of each point is estimated in the map’s reference frame using the robot’s initial po-
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sition estimate. Each point is then made to correspond with the closest segment in

the map, and the robot’s position is the one that gives the smallest summed square

distance between the points and their corresponding line.

Likewise, the approach of Leonard et al. (1992) is based on features extracted from

consecutive sonar readings during robot movement and tackles the issue of dynamic

environments in which map features may appear or disappear, either because of en-

vironment modification or because of temporary false sensory measurements. Their

solution is to assign a credibility to each feature in the map that depends on how of-

ten the feature has been correctly perceived and how often it has been predicted but

not perceived. Thus, using only the most credible features to compute the position

from perceptions affords additional robustness to the localization process. Dudek

and MacKenzie (1993) and Arsenio and Ribeiro (1998b) also make use of a confi-

dence measure for each perceived feature to give more weight to the more reliable

ones.

Moutarlier and Chatila (1990) describe a similar method which is an implemen-

tation of the stochastic mapping scheme presented by Smith et al. (1988). Their

model is based on segments extracted from laser scans. However, the authors re-

port a problem of instability in feature correspondence due to the poor modeling

of robot movements. They stress that the linear movement model of the robot may

lead to a very poor estimate of the robot’s position due to wheel slippage, which

is highly non-linear and not modeled. This precludes simply matching the clos-

est and most similar segments in the global reference frame. The corresponding

solution calls upon an heuristic that compensates for the unmodeled errors in the

robot’s movements before finding corresponding segments and estimating the robot

position.

Besides helping feature matching, odometry can be used to select useful landmarks,

for example to avoid landmark configurations that lead to poor triangulation pre-

cision. For instance, Greiner and Isukapalli (1996) propose an algorithm which

learns to select the landmarks leading to the best position estimate. Likewise, Mad-

sen et al. (1997) present a triangulation algorithm that uses landmarks extracted

from a single camera image and that estimates the precision of the result according

to the corresponding landmark configuration. Using this algorithm in conjunction

with the map and the current position estimate, their system is therefore able to

select the camera direction which will lead to the best position update. Such an ac-

tive localization scheme is also implemented by Arsenio and Ribeiro (1998b), who

adapted their visibility cell decomposition algorithm to situations where an initial

position estimate is available (see section 4.3.3). Wijk and Christensen (2000) (see

section 4.3.3) use the current position to discard position estimates that are im-

possible, thus reducing the computational complexity of their global localization

algorithm. Borghi and Brugali (1995) (see section 4.3.3) also use an initial posi-

tion estimate in case of ambiguous position recognitions in order to select the most

likely one.
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Finally, Lu and Milios (1997) propose a different approach, where the map en-

codes a set of laser scans along with the absolute position of the robot where the

scans have been taken. In this system, raw sensor data are stored in the map instead

of extracted features. Finding the robot’s position using a perceived laser scan is

therefore achieved by scan-matching. Among the various procedures that may be

used to this end, Gutmann and Schlegel (1996) review three different possibilities.

Although each of these has drawbacks, the authors propose an algorithm that se-

lects the most appropriate one each time a new match is performed. This results in

increase reliability in the whole positioning process. Einsele (1997) also describes

a dynamic-programming method for matching laser scans, based on segments ex-

tracted from the laser scans, and reviews some additional matching techniques.

Once a position has been estimated using allothetic cues, it can be directly used as

the new robot’s position estimate. This, for example, is the case with the models

of Einsele (1997), Madsen et al. (1997), Yamauchi et al. (1999), Gomes-Mota and

Ribeiro (2000) and Wijk and Christensen (2000). However, this new estimate can

be used with the previous one to produce an enhanced position estimate. For this

purpose, Kalman filtering and its improvements are techniques frequently called

upon, which are used, for example, by Smith et al. (1988), Ayache and Faugeras

(1989), Moutarlier and Chatila (1990), Cox (1991), Leonard et al. (1992), Schiele

and Crowley (1994), Betke and Gurvits (1994), Borghi and Brugali (1995), Lu

and Milios (1997) and Castellanos et al. (1999). Other techniques may be called

on. For example, Thrun (1999) uses the minimization of a cost function which ef-

fects a trade-off between the closeness to the current position and the quality of

map matching in the position considered. Boley et al. (1996) also suggest using

the recursive total least squares methodology, instead of a Kalman filter, to esti-

mate the robot’s position. The proposed method proved to be more effective than

Kalman filtering, particularly when the initial position estimate is poor. Cox and

Leonard (1991) choose a different approach to take into account the different po-

sitions estimated through allothetic-cues processing. Instead of selecting the most

likely position, given the previous position estimate, they use each possible posi-

tion to generate a new position hypothesis through Kalman filtering. Each of these

hypotheses is assigned a probability of being correct that is estimated from the de-

gree of correspondence between the sensed and stored features. The new position

estimate is then the weighted sum of all the position hypotheses. This approach is

said to afford additional robustness to position tracking.

4.5 Multiple-hypothesis tracking

The models of the previous section deal with the perceptual aliasing problem by

selecting the position corresponding to the current allothetic cues that is the clos-

est to the current position estimation. Unlike these, models of this section try to

keep track of all the possible positions that could correspond to the sensory sit-
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uation, in order to update these possibilities in parallel with new idiothetic and

allothetic information, and to select the most likely among these possibilities. Such

an approach naturally allows global localization because, in this framework, total

uncertainty about the initial position estimation is simply represented by an equal

probability for each candidate position, and does not represent a special case of the

localization procedures.

Pm3(s)P3’(s)

P2’(s) P2(s)

P3(s)

t1

Evolution of position probability Position probability Position probability given perception

P1(s)

Pm2(s)

t2

t3

time

Fig. 22. In the context of Markov localization, the states of the system are the robot’s pos-

sible positions within the environment. At time t1, the robot’s position is represented as

a probability distribution P1(s) over these states. Using a model of the robot’s odometry,

these probabilities are updated to a probability distribution P2′(s) at time t2. A measure-

ment Pm2(s) is then made of the robot’s position which provides a probability distribution

over the states, given the allothetic cues perceived by the robot. These two distributions

are used to estimate a new probability distribution P2(s) that better estimates the robot’s

position at time t2. This process is then repeated between times t2 and t3, when a new

measurement Pm3(s) is made on the robot’s position.

A general framework to represent multiple position hypotheses and to tackle posi-

tion uncertainty is that of Markov localization (Thrun, 2000) i.e., an adaptation of

the state estimation procedure in Partially Observable Markov Decision Processes

(POMDP). Navigation systems based on Markov localization, like those developed

by Simmons and Koenig (1995) or by Thrun et al. (1998), rely on a discretization of

the space into a finite set of states S, each state being either a node in a topological

map or a cell in a metrical map. The robot’s position is represented by a probability

distribution P (s) over S. Contrary to Kalman filtering, the probability distribution

is not supposed Gaussian, which makes it possible to represent multiple possible

positions. P (s) is updated in two ways whenever the robot moves or senses its envi-

ronment, using probabilistic models of the robot’s actions and perceptions (Figure

22). Like Kalman filtering, Markov localization provides a very natural tool for the

fusion of idiothetic and allothetic information in a common reference frame, i.e.,

the probability distribution of the robot’s position over the environment.

The models based on this method are among the most efficient and noise resistant,

but they can be difficult to adapt to map-learning (see Meyer and Filliat, 2002) .
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4.5.1 Topological Map / Topological Position
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Fig. 23. Multiple-hypothesis tracking in a topological map entails assessing the probability

that the robot is positioned in the place represented by each node. This probability, which

is represented by the node’s grey level in the figure, is updated using both idiothetic and

allothetic cues. The node with the highest probability corresponds to the estimated robot

position, but alternative hypotheses are still in competition.

Whenever a robot perceives allothetic cues that could correspond to several nodes,

instead of selecting the node which is the most coherent with the previous estimate

as in section 4.4.1, models of this section keep track of these multiple possible

positions by updating estimates of the possibility of currently being in each node.

Idiothetic cues may also be used to update these possibilities (Figure 23).

The simplest approach to this method is to explicitly track multiple hypotheses

about the robot location. For example, the model of Engelson and McDermott

(1992) uses a diktiometric map where information is assumed to be uncertain and

is represented using intervals. The nodes of the map are associated with world

features, such as doors or corners, and store sensory views that characterize them.

When perceptual aliasing occurs - i.e., when several nodes correspond to the current

sensory situation - the algorithm creates a set of tracks that represents each possi-

ble location. Each of these tracks is then simply updated as in the single hypothesis

case (see section 4.4.1). Whenever an hypothesis does not match any possible loca-

tion in the map, it is eliminated from the track list. Although this is not mentioned

by the authors, this systems seems to be able to globally localize the robot if the

set of tracks is initialized with all possible positions. However, the estimation of

the robot’s position is unambiguous when there is a single hypothesis only, as no

relative credibility is assigned to different hypotheses.

Other models implicitly perform multiple-hypothesis tracking by representing the
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position as a probability distribution over the nodes of the map. Most of these mod-

els are be based on Markov localization. The major strength of these models being

their capacity to continuously accumulate any idiothetic or allothetic cues about

the robot’s position, they do not strongly rely on individual node recognition. They

consequently use allothetic cues that are subject to very strong perceptual aliasing,

relying on sequences of these data to disambiguate places.

For example, Hertzberg and Kirchner (1996) use the junctions in a sewer system

as topological nodes. Node recognition is performed by a neural network that is

trained on sonar data to recognize different types of junctions (for example T-

junctions or X-junctions). The probability of being at a given node is assigned a

priori on an empirical basis, given the recognized situation and its uncertainty 5 .

Likewise, Shatkay and Kaelbling (2002) use corridor junctions in an office envi-

ronment. Node definitions in their model are based on perception vectors that are

acquired in the corresponding positions. Each node stores a probability distribution

over these vectors that encodes what the robot may perceive at the corresponding

place. This distribution is used, given a perception, to evaluate the robot’s proba-

bility of being at this place. In the models of Cassandra et al. (1996) and Simmons

and Koenig (1995), the states of the underlying POMDP are 1-meter wide squares

which cover an office environment where the corridors are assumed to be orthog-

onal. Features such as WALLS, DOORS or OPEN-AREAS are used as perceptions in

these models. These features are extracted from local occupancy grids constructed

from sonar scans which, according to the authors, allows feature detections that are

much more reliable than detections based directly on the sonar scans. According

to these approaches, each node stores the probability that the robot detects each

feature at the corresponding location. The model of Theocharous et al. (2001) also

relies on local occupancy grids to define allothetic cues, but only takes into account

the presence or absence of an obstacle at a predefined distance in four directions

around the robot. Moreover, the map is based on a hierarchical POMDP, a structure

that allows low-level states similar to those of the model of Simmons and Koenig

(1995) to be grouped into higher-level states that represent concepts such as cor-

ridors or junctions. Only low-level states have associated probabilities of making

each perception. High-level states simply reflect the robot’s probability of presence

in one of the low-level states it merges, but are not associated with perceptions. The

nodes of the map in the model of Filliat and Meyer (2002) densely cover the whole

environment in an irregular fashion with a mean spacing of 50 cm. Two kinds of

allothetic cues are memorized in each node : the values of a sonar sensors belt and

a grey-level panoramic image of the robot’s surroundings sub-sampled to a 36x1

image. The very low resolution used leads to strong perceptual aliasing. The prob-

ability for the robot’s being at a given node is estimated according to the similarity

of the current perceptions with the perceptions memorized in this node. Finally,

5 For example, the probability of being at the mid-leg of a T-junction, having detected a

mid-leg of a T-junction, is 0.8, while the probability of being at the mid-leg of a T-junction,

having detected an exit, is only 0.05.
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the model of Kuipers and Beeson (2002) memorizes in each node several laser

range-finder scans of the environment that are acquired by the robot with different

orientations in the corresponding place.

In all these models, idiothetic information is used to update the probability of be-

ing in each node when the robot moves according to the information stored in the

links between nodes. In the models of Shatkay and Kaelbling and of Filliat and

Meyer, the relative metric position of the nodes is available. The probability of

making a given transition simply depends on the similarity between the length and

direction recorded by the odometry between the two nodes, on the one hand, and

the length and direction of the link stored in the map, on the other. However, most

models resort to idiothetic cue discretization in the form of a set of actions that

the robot can accomplish. In the above-mentioned work of Hertzberg and Kirchner,

because information about sewer lengths is highly unreliable, only actions made

at sewer junctions are used. Moreover, as sewer junctions are supposed orthog-

onal, only a limited set of actions of the type LEFT-TURN or GO-STRAIGHT are

used. Between junctions, the robot simply follows the sewer. Actions have prob-

abilistic outcomes that are estimated empirically 6 . In Cassandra et al., Simmons

and Koenig and Theocharous et al.’s models, the possible actions are RIGHT-TURN,

LEFT-TURN and GO-FORWARD 1 meter. The outcomes of these actions are modeled

probabilistically 7 . The model of Simmons and Koenig additionally uses several

parallel chains of Markov states in order to represent the corridor length uncer-

tainty. In Theocharous et al.’s model, specific probabilities are associated with the

transitions between high-level states.

The model of Kuipers and Beeson (2002) is singular in the sense that it makes it

possible to switch from multiple hypothesis tracking to single hypothesis tracking

or to direct position inference. It makes use of a Markov localization approach dur-

ing mapping, which allows global localization and affords robustness to mapping

errors. When the map is complete and precise, this model can use either direct po-

sition inference, if the sensory situation is unique, or single position tracking, when

the position is subject to perceptual aliasing.

Very similar approaches characterize other models even though they do not re-

sort to Markov localization. The concept of state set progression in Nourbakhsh

et al. (1995), for example, shares most of its features with the previous Markov

localization-based models. The model of Kortenkamp et al. (1994) also proposes

a similar framework for global localization in a topological map. Finally, Hafner

(2000) describes a model where the map is represented by a neural network. This

network receives inputs from a 16-neuron layer which encodes allothetic informa-

6 For example, when the robot detects that it has performed a RIGHT-TURN, the probability

that it has actually performed a RIGHT-TURN is 0.9, while the probability that it has actually

performed a U-TURN is 0.04.
7 For example, going forward one meter leads to the state ahead of the current state with a

probability 0.7, but to the state two meters away with probability 0.05.
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tion derived from a panoramic image, sub-sampled to a 16x1 pixel picture. More-

over, the topology of the neural network encodes the connectedness of the places,

i.e., whether or not the robot may move from one place to another, together with

the direction followed to move from one place to another. The activity of each node

in the map depends on the sum of three terms that respectively depend upon the

current view, the activation at the previous time-step, and the recent idiothetic cues,

in a way very similar to Markov localization models.

In all the above models, the probability distribution over states is updated whenever

a new action or a new perception is made. In the POMDP-based models, the state

representing the robot’s position is usually taken as the most likely state, although

Cassandra et al. (1996) review other possibilities, such as taking the barycentre of

the nodes, which is similar to population vector coding. Such a population vector

coding method is also used by Filliat and Meyer (2002). Nourbakhsh et al. and

Kortenkamp et al.’s models simply choose the most activated node. However, when

this activation exceeds a given threshold, multiple-hypothesis tracking is stopped

and a simple-hypothesis tracking algorithm is used instead.

4.5.2 Topological Map / Metric Position
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Fig. 24. A set of possible metric positions is maintained and updated using idiothetic and

allothetic cues, with procedures similar to those of section 4.4.2 (hypotheses 1 and 2). Each

hypothesis is assigned a probability (represented by the grey level of the circle surround-

ing each position) that is also updated using the newly acquired information. Whenever

allothetic cues correspond to nodes that do not fit any existing hypothesis, new position

hypotheses are generated (hypotheses 3 and 4).

When a position is associated to each node of the map, several metric-position

hypotheses about the robot’s position can be monitored. These positions can be

updated in parallel when any new information becomes available. A credibility can
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also be assigned to each hypothesis, thus making it possible to assess which is the

current best position estimate (Figure 24).

Positions and likelihood updates can be performed using techniques similar to those

of section 4.4.2, as it was done by Duckett and Nehmzow (1998) for example. The

model of these authors calls upon a topological map where each node has an associ-

ated position in a 2D space and stores a definition of the corresponding place using

sonars and infrared sensors. All the hypotheses are updated using the idiothetic

cues recorded by the robot. When new allothetic information is received, the nodes

that correspond to these cues are sought and the likelihood of each hypothesis is

updated by increasing the likelihood of hypotheses that are close to a recognized

node, on the one hand, and by decreasing the likelihood of hypotheses that do not

fall within a recognized node, on the other hand. A Kalman filter is used to update

each hypothesis’ coordinates with the coordinates of the corresponding recognized

nodes. If the position of one recognized node does not correspond to any hypothesis

in the current set, this position is simply added as a new hypothesis. The position of

the robot is finally considered to be the position with the highest likelihood. Note

that, concerning a single hypothesis, this process is very similar to the one used by

Kurz or Balakrishnan et al. (see section 4.4.2).

However, completely different frameworks may be used, achieving similar results.

Donnart and Meyer (1996), for example, propose a very unusual model which is

able to perform multiple-hypothesis tracking. In their approach, the environment

is mapped as a set of production rules, organized in a hierarchical structure. The

system is designed for an environment containing polygonal obstacles in which a

robot heads towards a goal whose position is known in the 2D space. Landmarks

are associated with points where the robot encounters or leaves the neighborhood

of an obstacle, and where it increases or decreases its proximity to the goal. Conse-

quently, landmarks are not directly associated with the robot perception, but rather

with the variations of an abstract notion of “satisfaction”. Localization in this con-

text entails managing a list of location hypotheses associated with an error and

a confidence level. These values are updated using the correspondence of the en-

countered landmarks with the landmarks the robot would detect if it were at the

hypothesized location. New hypotheses are added whenever a detected landmark

corresponds to a landmark stored in the map and does not correspond to any exist-

ing hypothesis.

In the model of Oore et al. (1997) a robot’s position is represented as a probability

distribution over the cells of a grid that covers the whole environment. Using a new

allothetic situation and the position of a given cell as input, a neural network is

trained to estimate the probability of making this perception from this cell. After

learning, the network can be used to estimate, through Bayes’ rule, the probability

for each cell to be the robot’s current position, given the allothetic cues. Idiothetic

cues are used to update the position probability distribution, in a manner similar to

the Markov localization update cycle. This position estimation technique resembles
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that of Burgard et al. (1996) (see section 4.5.3). However, the probability of being

in a cell given an allothetic perception is not estimated using a metric model, but

through the neural network. This is why this model may be assigned in this paper

amongst the category of models calling upon topological maps, as the use of a

sensor model is not mandatory in this application. Nevertheless, the corresponding

map is admittedly not a topological one in the strict sense of the term.

4.5.3 Metric Map / Metric Position

y

x

y

x

Map and Position 

Real Environment Allothetic and Idiothetic Cues Map and Position 

current positionprevious position
The robot’s The robot’s

Fig. 25. To perform multiple hypotheses tracking, a probability distribution over positions

may be maintained and updated using idiothetic and allothetic cues. Unlike models based

on Kalman filters, this probability distribution is not assumed to be Gaussian.

The models in this section basically extend the framework of the models in section

4.4.3 by relaxing the single-hypothesis assumption. This may be achieved by ex-

plicitly tracking multiple position hypotheses, via multiple Kalman Filters, or by

associating the position with a probability distribution other than a mere Gaussian,

as is the case when Kalman filtering is used (Figure 25). The corresponding models

usually afford the most precise and efficient localization methods.

Explicitly tracking multiple hypotheses by Kalman filtering is done in the model

of Piasecki (1995). His robot uses sonar sensors and moves in a world made of

polygonal obstacles. Given a sensor reading, hypotheses are made on the objects

which may have generated the current perception. The hypotheses at successive

time steps are grouped into scenarios. Within each scenario, a Kalman filter is used

to update the robot’s position using odometry and perceptions. A credibility is as-

signed to each scenario by comparing, at each time step, the perceptions predicted

given the robot’s position estimate with the actual perceptions. Simulation results

show a gain in robustness as compared with standard Kalman filtering techniques.

Following a similar scheme, Jensfelt and Kristensen (1999) use a laser range-finder,
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which makes it possible to detect several types of features that are divided into two

groups: creative features, that allow a robot’s precise position to be estimated (such

as doors), and supportive features, that only allow the robot’s position to be par-

tially estimated (such as walls that provide information in their perpendicular di-

rection only). When new features are detected, they are used in conjunction with the

map to generate position candidates. These candidates are then matched with the

current position hypotheses. A match is considered successful if the Mahalanobis

distance between a candidate and an hypothesis falls below a given threshold and

is then used to update the hypothesis estimate. Unmatched candidates provided by

creative features are used to create new hypotheses. The likelihood of each hypoth-

esis is then assessed, given the probability of each detected feature to be perceived

at the corresponding position. In these two models, as the number of hypotheses

could grow exponentially with time, various heuristics are introduced to keep the

algorithm practicable.

Other models directly monitor general probability distributions through Markov lo-

calization without resorting to Kalman filtering. For example, in the model of Bur-

gard et al. (1996), the position and orientation in the environment are discretized

into a fine-grained regular grid, while the map is represented by an occupancy grid

based on the same discretization. The robot’s position is represented as a probabil-

ity distribution over the elements of this grid. Sonar scans provide allothetic cues

and the probability of making a given perception at a given position in the envi-

ronment is assessed by using a simplified sonar sensor model. The model of the

robot’s odometry is also simplified and is based on the assumption that a Gaussian

noise corrupts the dead-reckoning estimation. These two models are used through

the standard cycle of Markov localization to update the probability distribution.

Despite the simplified models for sensors and odometry, this approach proved to

be reliable in a variety of environments. Extending this approach to highly popu-

lated environments, Fox et al. (1998) found that this basic scheme may lead to poor

performance because highly corrupted sensor measurements are used by the local-

ization process. The author’s solution is to filter the sensor readings so as to get rid

of most of the measurements originating from people around the robot. Only sen-

sor readings that decrease the robot’s position uncertainty and that are consistent

enough with respect to the current position estimate are used. Extending this ap-

proach by using a laser range-finder and a camera, Thrun et al. (1999) were able to

reliably localize the robot in a crowded museum over several weeks. Olson (2000)

also mentioned that the similarity measurement used in his global localization sys-

tem (see section 4.3.3) may be used to estimate the probability distribution over the

states of the discretization and may be integrated into a similar localization system.

The Monte-Carlo localization method of Fox et al. (1999) represents the probability

distribution over the continuous 2D space by a weighted set of samples (i.e., a set

of points with an associated importance factor). This representation, called impor-

tance sampling, is a powerful way of representing arbitrary probability distributions

that may be updated using sensor models similar to the one used by Burgard et al..
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This approach proved to be superior to the previous one because it afforded more

accurate localization of the robot while using an order of magnitude less memory

and computations.
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X

Fig. 26. Example of position representation using fuzzy sets. The left portion of the figure

shows the projection of the set on the x and y axes. The right part shows the position

possibility in the x, y space. The height of the fuzzy set at a given position represents the

credibility for this position to be the robot’s current position.

Alternative frameworks that do not use probabilities may be called on, as in the

model of Saffiotti and Wesley (1995), in which a fuzzy set is used to represent the

likelihood of the robot’s position. This fuzzy set yields the possibility of the robot’s

being at any given position in the environment (Figure 26). The robot’s environ-

ment is modeled as a set of objects (doors, wall, corridors), each of them having

an associated fuzzy set that represents its position. The fuzzy set representing the

robot’s position is updated using idiothetic cues in order to take the robot’s displace-

ments into account. As the robot moves, features are extracted from sonar values

and are represented by fuzzy sets relative to the robot. The perceived and mem-

orized objects are then matched to provide a fuzzy set representing the possible

robot’s position in the map, given its perceptions. This set is then merged with the

set representing the position before perceptions were made. Such an update cycle is

similar to the Markov localization update cycle. This technique is computationally

efficient and may compare favorably with probability-based techniques in case of

high uncertainty.

5 Discussion

For robots, animals, and even for men, to be able to use an internal representation

of the spatial layout of their environment to position themselves is a very complex

task, which raises numerous issues of perception, categorization and motor control

that must all be solved in an integrated manner to promote survival. Thus, among

the different ways a robot may categorize its perceptions to build an internal rep-

resentation of its environment and to localize itself, some are clearly better suited

than others, depending upon the characteristics of the environment, the nature and
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reliability of the allothetic or idiothetic sensors that the robot may call upon, and

the possibilities it has to move itself or to perceptually scan the surroundings.

5.1 Robots

In the case of robots, because they are often equipped with powerful distance sen-

sors such as laser range-finders, a lot of localization systems that have been de-

scribed here made use of metric maps and of metric sensor models. The corre-

sponding approaches capitalize upon highly accurate, robot-independent, maps of

the environment. Although such objective representations are not very close to the

robot perceptual capacities and although they are more difficult to build than topo-

logical maps, they are very meaningful to humans operating the robots, and they

facilitate the use of the same map by different robots.

The fact that topological maps may call upon any sensor modality, without the

requirement of a sensor model, is an important advantage for localization. This

capacity potentially allows the use of richer sensory data than mere distances to

obstacles. However, the resulting precision of the estimated position is usually very

coarse, and using a metric model for sensor data together with a metric map, usually

makes a finer estimation of the position possible. Models that use topological maps

and compute a metric position estimate for the robot seem a good compromise in

this respect.

A completely autonomous localization system should allow a robot to keep an es-

timation of its position under any circumstances, and in any environment. Models

calling upon direct position inference that have been presented in this review are

clearly limited in this respect, as they require an environment where no perceptual

aliasing occurs. This is seldom the case and, when the robot is unable to perceptu-

ally distinguish between two places, the corresponding localization system is either

unable to estimate the robot’s position or requires human intervention. Such inter-

vention must modify the robot’s perceptual system or must change the environment

in order to cancel the perceptual aliasing problem. Models implementing position

tracking make a first step toward solving this problem. They, however, rely on an

initial position estimate that must be supplied by a human operator, or on an ini-

tial position that is not subject to perceptual aliasing. Moreover, if the position

estimate accidentally becomes false, the corresponding systems are usually unable

to autonomously recover a correct estimation. These problems are solved by sys-

tems that call upon multiple-hypothesis tracking, because they are able to estimate

the robot’s position without any initial estimate. Moreover, at least in cases were

Markov localization implementations are used, the corresponding systems are reli-

able and resistant to noise. Several robots operating in challenging environments,

such as crowded museums, successfully demonstrate the advantages of this ap-

proach (Buhmann et al., 1995; Thrun et al., 1999). Other advantages are afforded
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by the approach of Kuipers and Beeson (2002) that makes it possible to use the

most appropriate localization method according to the characteristics of the current

situation.

However, still from the point of view of autonomy, models with multiple-hypothesis

tracking face difficulties when a map of an unknown environment has to be built.

Indeed, most of these models cope poorly with partial maps of the environment

because they capitalize on the fact that the probability of a given perception is

correctly estimated over the whole environment. Consequently, systems that use

such a localization scheme often resort to predefined maps provided by a human, or

they build their map off-line using data gathered beforehand. Only a few models can

use multiple-hypothesis tracking along with map learning. They capitalize either on

the use of powerful metric sensors to rapidly acquire a map of the environment that

is known to cover the current position (Thrun et al., 2000), or they make use of

heuristics to autonomously detect whether the current position is already covered

by the map or not (Kuipers and Beeson, 2002; Filliat and Meyer, 2002). In this

latter model, a single-hypothesis tracking is temporary used whenever the current

position is detected to be outside the mapped area.

5.2 Animals

Concerning animals, all the models that were described in this review aimed at

modeling the anatomy and functionalities of the rat’s hippocampus, and they ac-

cordingly shared several characteristics.

In particular, most of them used a topological map, which encodes a set of places

along with their allothetic definition from the animat’s point-of-view, and which

is relatively easy to elaborate with models of neuronal mechanisms found in rats.

Indeed, such topological maps can be implemented using only simple associative

memory mechanisms. Moreover, they do not require metric models for sensors,

and they are therefore well adapted to integrating any non-metric cues used by rats,

such as odors.

Most models also fall into the category of direct position inference or of position

tracking. The underlying assumption is that place cells code for a unimodal rep-

resentation of the position, and that the animal’s hippocampus functionally acts as

a Kalman filter. However, recent modeling efforts (Filliat and Meyer, 2002) raised

the alternative hypothesis that cell activities could code for an arbitrary probability

distribution with respect to the animal’s position. According to such hypothesis,

the more activated a given cell, the higher the probability that the animal is located

in the corresponding place. Functionally, it would afford an animal the possibility

of quickly relocalizing itself if it is passively moved from one place to another,

or if it gets temporarily lost for whatever reason. It would also keep the animal
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from having to frequently calibrate its position using a special purpose mechanism,

as it would be mandatory if it were using a single-hypothesis tracking strategy.

Finally, it would permit an animal to survive in environments not specifically pro-

tected against perceptual aliasing difficulties, notably because the advantages of

such probability distribution coding might be strengthened by those of preferen-

tially using background cues - which are presumably more stable than foreground

ones (Zugaro et al., 2001) - or by those of using active perception (Terzopoulos

and Rabie, 1997; Ballard, 1991; Aloimonos, 1990) and active exploration strate-

gies (Berlyne, 1950; Fehrer, 1956; Zimbardo and Miller, 1958) known to be called

on by animals. Be that as it may, it turns out that arguments in favor of such a

representation of an arbitrary probability distribution by cellular population coding

are starting to be brought forth by neurobiologists (Zemel et al., 1997). In this re-

spect, POMDP-based models – like those that have been described in this review –

would be well suited to providing hypotheses about how such a capacity might be

implemented in vivo.

5.3 Men

This review definitely does not contribute to a better understanding of localization

strategies that men may not share with other animals - because such strategies may

call on specific cognitive processes like the faculty of reading written information

provided by other men to characterize given places in the environment. This review

nevertheless provides some clues as to the lower levels of the hierarchical struc-

ture that, according to Piaget et al. (1960), characterizes human spatial knowledge.

Hence, although men are clearly capable of "reading an internal map from above"

and of planning metric detours (Trullier et al., 1997) in their head - a capacity

that they may share with some animals like dogs (Chapuis, 1988) or chimpanzees

(Menzel, 1973), and that they definitely share with the robots using metric maps

and metric sensor models which were described in this review - they may also oc-

casionally navigate and self-localize according to the simpler strategies that were

ascribed herein to rats and to robots using topological maps and non-metric sensors.

Numerous factors may affect the switch from one strategy to another, notably the

possibility of applying the specific cognitive processes just mentioned, the nature

and capacities of the sensors currently available, the degree of perceptual alias-

ing experienced in the environment, and various neural, motivational or emotional

contingencies.

6 Conclusion

To build a topological or a metric map of its environment, a robot may call upon

both allothetic and idiothetic sensors. Although the former are prone to perceptual
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aliasing and although the latter may suffer from cumulative errors, there are several

ways in which such sensors may be used jointly to elaborate precise and robust in-

ternal representations of the environment’s spatial layout. The corresponding meth-

ods may come under the heading of traditional engineering - e.g., Kalman filter-

ing - or they may draw inspiration from bio-mimetic mechanisms - e.g., place-cell

activity. Using such maps and such sensors, robots may self-localize according to

three strategies: direct position inference, single-hypothesis tracking, and multiple-

hypothesis tracking. However, the successful implementation of any such strategy

entails a highly integrated approach, in which the type of sensors, the structure of

the map, and the details of the localization algorithm must not only fit together, but

also be adapted to the characteristics of the environment and to the robot’s mis-

sion. A variety of such robotic implementations have been reviewed here, and a

few hints about how animals might tackle the same issues of self-localization have

been occasionally mentioned.
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