
HAL Id: hal-00655472
https://hal.science/hal-00655472v1

Submitted on 29 Dec 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Map-based navigation in Mobile robots - II. A review of
map-learning and path-planing strategies

Jean-Arcady Meyer, David Filliat

To cite this version:
Jean-Arcady Meyer, David Filliat. Map-based navigation in Mobile robots - II. A review of map-
learning and path-planing strategies. Journal of Cognitive Systems Research, 2003, 4 (4), pp.283–317.
�10.1016/S1389-0417(03)00007-X�. �hal-00655472�

https://hal.science/hal-00655472v1
https://hal.archives-ouvertes.fr


Map-based navigation in mobile robots.

II. A review of map-learning and path-planning

strategies.

Jean-Arcady Meyer a David Filliat b

aAnimatLab - LIP6

8,rue du Capitaine Scott

75015 Paris - France 1

bDGA/Centre Technique d’Arcueil

16 bis Av Prieur de la Cote d’Or

94114 Arcueil Cedex - France

Abstract

This article reviews map-learning and path-planning strategies within the context of map-

based navigation in mobile robots. Concerning map-learning, it distinguishes metric maps

from topological maps and describes procedures that help maintain the coherency of these

maps. Concerning path-planning, it distinguishes continuous from discretized spaces and

describes procedures applicable when the execution of a plan fails. It insists on the need

for an integrated conception of such procedures, that must be tightly tailored to the specific

robot that is used - notably to the capacities and limitations of its sensory-motor equipment

- and to the specific environment that is experienced. A hierarchy of navigation strategies is

outlined in the discussion, together with the sort of adaptive capacities each affords to cope

with unexpected obstacles or dangers encountered on an animat or robot’s way to its goal.

Key words: autonomous mobile robot, map-based navigation, map-learning,

path-planning

Email addresses: jean-arcady.meyer@lip6.fr (Jean-Arcady Meyer),

david.filliat@etca.fr (David Filliat).
1 URL : http://animatlab.lip6.fr

Preprint submitted to Elsevier 18 April 2008



1 Introduction

The capacity to navigate is obviously a major requirement for an animal striving to

survive in a given environment, or for an autonomous robot trying to fulfill its mis-

sion, because it affords them the possibility of finding energy sources while avoid-

ing dangerous hazards. The most primitive navigation strategy that might help the

animal or the robot succeed in such tasks consists in relying on mere chance and

in moving randomly. As shown by Todd et al. (1994), evolutionary shaped blind

action may suffice to keep a population of animats - i.e., of simulated animals or

real robots (Meyer and Wilson, 1991; Meyer et al., 1993; Cliff et al., 1994; Maes

et al., 1996; Pfeifer et al., 1998; Meyer et al., 2000; Hallam et al., 2002) - alive and

reproducing. However, the adaptive capacities of the animal or the robot would be

dramatically enhanced, should they use a slightly more elaborated navigation strat-

egy, which would call upon some sensor to detect objects in the environment and

to some reflex action to either go after or avoid such objects. Additional adaptive

capacities would be afforded to an animal or a robot able to turn to still more elabo-

rated navigation strategies making it possible to elaborate and memorize a so-called

cognitive map (Tolman, 1948) - i.e., an internal representation of the environment.

Survival in such case would depend not only on immediate perceptions and reflexes,

but also on the recall of objects or events experienced in specific places in the past.

Finally, because some implementations of such internal representations allow the

animal or the robot to take into account that a given move from a given place should

lead to another specific place, still more elaborate navigation strategies afford plan-

ning capacities to the animal or the robot. In this case, survival depends on actions

that are not only determined by current perceptions and memorized events, but also

by their expected consequences.

A hierarchy of navigation strategies may accordingly be defined, depending upon

how those combine past, present, and future information (Trullier et al., 1997), the

most elaborate relying on all three components at once. Incidentally, it also turns

out that other behavioral capacities may be similarly classified (McFarland and

Bösser, 1993; Mel, 1995).

This article reviews navigation systems implementing map-based strategies on mo-

bile robots and discusses their respective adaptive capacities. It complements the

review of biomimetic navigation systems of Trullier et al. (1997), which was es-

sentially devoted to simulated animats. Being centered on map-learning and path-

planning, it capitalizes on a review of localization strategies published in a compan-

ion paper (Filliat and Meyer, 2002b), which are briefly summarized in the begin-

ning of this article. Metric and topological map-learning systems are then succes-

sively described, along with path-planning systems applied to discrete and contin-

uous spaces. The article ends with a discussion of the adaptive capacities of these

implementations.

2



2 Map-based navigation

Basically, map-based navigation calls upon three processes (Levitt and Lawton,

1990; Balakrishnan et al., 1999) :

• Map-learning, which is the process of memorizing the data acquired by the ani-

mat during exploration in a suitable representation.

• Localization, which is the process of deriving the current position of the animat

within the map.

• Path-planning, which is the process of choosing a course of actions to reach a

goal, given the current position.

Localization and map-learning are interdependent processes - as using a map to

localize a robot requires that the map exists, while building a map requires the

position to be estimated relative to the partial map learned so far. On the contrary,

path-planning is a rather independent process that takes place once the map has

been built and the animat’s position estimated.

2.1 Available information

These three processes may rely on two distinct sources of information available to

an animal, an animat or a robot. The first is the idiothetic source, which provides

internal information about the animat’s movements. This information may con-

cern speed, acceleration, leg movement for animals, or wheel rotation for robots.

Through straightforward integration, these data provide position estimates of the

animat in a 2D metric space. This process is called dead-reckoning, path-integration

or odometry.

The second source of information is the allothetic source, which provides exter-

nal information about the environment. The corresponding cues may derive from

vision, odor, or touch for animals, from laser range-finders, sonars or vision for

robots, and they may be used in two different ways :

• they may be used to directly recognize a place or a situation. In this case, any

cue - such as sonar time-of-flight, color or odor - may be used.

• they may be converted to information expressed in the 2D space related to the

idiothetic data thanks to a metric model of the corresponding sensors. With such

a metric model, it is possible to infer the allothetic cues that would be sensed in

unvisited places, or to infer the relative positions of two places in which allothetic

information has been gathered (Filliat and Meyer, 2002b).

The drawbacks and advantages of these two sources of information are comple-

mentary. Indeed, the main issue raised by idiothetic information is that, because

3



it involves an integration process, it is subject to cumulative error. This leads to

a continuous decrease in quality, and therefore such information cannot be trusted

over long periods of time. On the contrary, the quality of allothetic information is

stationary over time, but it suffers from the perceptual aliasing problem, i.e., the

fact that, for a given sensory system, two distinct places in the environment may

appear the same.

Consequently, in order to build reliable maps and to navigate for long periods

of time, the two sources must be combined in a given animat (Cox, 1991). In

other words, allothetic information must compensate for idiothetic information

drift, while idiothetic information must allow perceptually aliased allothetic infor-

mation to be disambiguated.

2.2 Map representation

When both allothetic and idiothetic sources of information are available, there are

many ways to integrate them in a representation useful for animat navigation. Clas-

sically, the corresponding models are classified in two categories resorting to either

metric or topological maps. In metric maps, the positions of some objects, mainly

the obstacles that the animat may encounter, are stored in a common reference

frame. On the contrary, within topological maps, it is the allothetic characteriza-

tions of places that the animat can reach that are stored, along with some infor-

mation about their relative positions (Figure 1). Additional details about the ad-

vantages and drawbacks of these representations can be found in Filliat and Meyer

(2002b).

3 Map-learning

As previously mentioned, the map-learning process cannot be separated from the

localization process. This interdependence makes map-learning difficult because

errors in localization that arise during map-learning are incorporated into the map

and subsequently need to be detected and corrected. The map-learning process,

often referred to as SLAM - i.e., Simultaneous Localization And Mapping - is a

highly active area of research in the robotics community.

Furthermore, learning a map of an environment from scratch is intrinsically more

difficult for an autonomous robot than localizing itself in a map that is already

available. The main reason is that when the map is known, the robot is necessarily in

some place represented in the map. Self-localizing then entails searching, through

the possible positions, the place that best fits the available idiothetic and allothetic

information. When the map has to be learned, an important additional problem is

4



Topological Map

R C

R

C T

C

DR

D
y

x

Real Environment

R R

R

CC T

D

D

C

B

A

B

A

B

A

Metric Map

Fig. 1. Illustration of the classical distinction between metric and topological maps. In the

metric framework, object positions are inferred and represented in a common reference

frame. Two positions A and B are represented in this map by their coordinates in this

reference frame. These coordinates make it possible to infer their distance. In topological

maps, only place identities and their spatial relations are stored. Two positions A and B in

the environment may be recognized as belonging to places R and C. This makes it possible

to infer that position B can be reached from position A via places C,C and T (In this figure,

R = room, C = corridor, D = door and T = turn).

to evaluate whether the robot is in a part of the environment already stored in the

map, or if it is in a part never visited before.

This evaluation step is crucial for obtaining a correct map and the specific issues

it raises render useless a number of localization techniques that are not applica-

ble when the map is only partially known. It is notably the case of almost every

multiple-hypothesis tracking model, which rely on a complete map of the environ-

ment in order to estimate the relative credibility of the various hypotheses. If the

real position is outside the mapped area of the environment, it cannot be estimated

by these models. As the following paragraphs will show, these issues are usually

tackled through the use of map-learning techniques that call upon single-position

tracking algorithms for localization. This is possible thanks to the characterization

of each position relatively to the previous one, independently from the fact that it

is located in the mapped area or not.

3.1 Metric map-learning

The simplest method for building a metric map calls upon an incremental scheme

(section 3.1.1) that consists of estimating the robot’s position using the current map

and in subsequently locally updating the map around this position whenever new

information is acquired by the robot. The term incremental stems from the fact that

5



the way new information is added to the map cannot be reconsidered afterward,

even if this information turns out to be incorrect. For example, if the robot’s po-

sition is wrongly estimated, any update of the map will be incorrect. If the robot

later recovers its true position, it cannot take this information into account to cancel

the effects of wrong past map updates. This incremental scheme may be problem-

atic, for example, when large cycles, such as a corridor surrounding a room can be

covered in the environment (Figure 2). Upon closing such cycle, a lot of informa-

tion is gathered about the robot’s previous positions but cannot be used, and the

corresponding map-learning strategies often fail in such circumstances.

1
2

3

1

2

1

2

3

1
2

3

A B

C D

Fig. 2. Part A of the figure shows the real environment the robot is mapping and the trajec-

tory taken by the robot. During mapping, errors accumulate from position 1 to position 2

and lead to a map where recorded positions do not correspond exactly to the real environ-

ment (Part B). Upon closing the cycle, at position 3, the robot can detect that its previous

position estimates were wrong. In the incremental mapping framework, as previous map

updates are not re-estimated, such errors are not fully taken into account and are only cor-

rected locally (Part C). If all past map updates were reconsidered, it would be possible to

recover the right map, by correcting all the previous position estimates (Part D).

These limitations of the incremental scheme stem from the fact that, in general, the

idiothetic and allothetic information gathered by the robot is memorized in a single

common reference frame. No recording is made of what has been changed and of

where the robot was when changes took place. Consequently, when a map update

turns out to be erroneous, it is difficult to retrieve its effects and to reconsider them.

Using a map that records feature positions, it is possible to improve this incremental

scheme through the memorization of all the confidences in inter-relations between

features (section 3.1.2). This memorization, within the framework of a probabilis-

tic scheme, allows new perceptual information to be propagated to unperceived

features that are related to perceived ones. This process affords possibilities of up-

6



dating the global map, as well as of correcting past updates that turned out to be

wrong in the light of new perceptions. In case of an environment containing a cyclic

path, this process makes it possible to correct the map along the whole path, instead

of merely correcting it around the position where the cycle is closed (Figure 2 D).

Another way to proceed to global map updates is afforded by the decoupled record-

ing of idiothetic and allothetic data so as to make the correction of past updates

possible, when new data about past positions become available (section 3.1.3).

However, matching newly perceived data with data memorized in the map is a

difficult problem, and using only the robot’s currently estimated position to solve

it can lead to poor performances. To improve these performances, particularly in

cyclic environments, some models rely on more efficient data association methods,

by resorting to off-line algorithms that allow all the available information to be

efficiently taken into account (section 3.1.4), or by resorting to on-line algorithms

that approximate the off-line ones (see section 3.1.5).

It should be noted incidentally that all the models concerned in this section make

use of a metric sensor model, which is mandatory for metric map-building (Filliat

and Meyer, 2002b).

3.1.1 Incremental mapping

In the context of incremental mapping, a position-tracking approach, which relies

on the overlap between current allothetic data and data stored in the map, is usually

used to estimate the robot’s position with respect to the known part of the environ-

ment. These data may be memorized either as a set of features (such as segments,

or corners) detected in the environment, or as an occupancy grid (see Filliat and

Meyer (2002b) for details). In the first case, newly-perceived features are contin-

uously added to the map. On the contrary, in the second case, the environment

is discretized into small cells and the probability of each cell being free or being

occupied by an obstacle is updated in the light of new information.

Segments Fuzzy setsPoints Fuzzy sets fusion

Fig. 3. Illustration of the use of fuzzy-sets for feature representation. Starting from points

detected on obstacle surfaces, segments that match these points are extracted. Fuzzy sets

whose size depends on the quality of the approximation are then built around these seg-

ments. Finally, fuzzy-sets that are close and almost colinear are merged.

In the context of feature-based mapping, Gasós and Martín (1997) advocate the

7



use of fuzzy-segments to represent uncertainty in feature positions. Their model is

based on the extraction of segments from sets of points provided by sonar sensors.

Such segments are modeled by fuzzy-sets in the map’s reference frame (Figure

3). The size of a given fuzzy-set takes into account three sources of uncertainty

: the scattering of the points around a segment, the distance of the points to the

robot, and the uncertainty in the robot’s position. Once fuzzy-sets have been cre-

ated, collinear and overlapping fuzzy-sets are grouped in order to extract object’s

boundaries. Robot localization is performed by matching a local map, generated

from recent perceptions, with the global map. To perform segment matching and

merging, the use of fuzzy-sets is crucial in this approach because it makes it pos-

sible to quickly and efficiently detect the correspondence between perceived and

stored segments.

Using an occupancy-grid framework (Moravec and Elfes, 1985), Thrun (1999) also

implements an incremental mapping scheme. Within such a grid, the probability

of each cell’s being occupied is updated using the Bayes rule, given the robot’s

position and the current sonar-sensor readings. This probability is computed using a

neural network that has been trained by back-propagation in a known environment.

The use of this neural network reduces the effects of spurious sensor readings.

The robot’s position is calculated using odometry and local map-matching, with a

classical position-tracking approach. However, as this does not prove to be reliable

enough for large environments, Thrun makes the additional hypothesis that walls

are orthogonal. Such hypothesis limits the estimation error in the robot’s direction

to values that permit local map-matching and efficient correcting of the robot’s

position estimate. Thrun also resorts to an exploration scheme that allows to drive

the robot toward unexplored areas - i.e., areas where cell probabilities have never

been updated - so as to get a correct map of the whole environment as quickly as

possible. For each cell, this scheme updates a value representing the distance to

the closest unvisited cell area using a value-iteration algorithm (Sutton and Barto,

1998), so that performing a gradient descent on these values leads to unexplored

areas.

Yamauchi et al. (1999) provide a similar scheme but without using the orthogonal

walls assumption. Their computation of occupancy probabilities is based on the

combination of laser-scans and sonar-sensor values. This combination is designed

to simultaneously avoid the use of spurious measurements from the sonar-sensors,

and to filter too high laser-scan values due to the laser ray being targeted above

the obstacles. Instead of using value-iteration, exploration is directed toward the

closest frontier between explored and unexplored areas. The path to this frontier is

computed using a depth-first search in known open-areas.

While Bayesian theory is widely used for representing and updating the likelihood

of each cell being occupied, other techniques may be called upon. Hughes and Mur-

phy (1992) describe the use of the Dempster-Shafer theory of possibilities (Dubois

and Prade, 1986) for occupancy-grid mapping. This theory has the advantage of

8



being able to represent partial information and of allowing to assess the conflict

between data. The latter property makes it possible, for example, to detect in which

region the map may be erroneous and should be refined. Whatever the case, results

of occupancy grid mapping using the Dempster-Shafer theory closely resemble

those obtained with probability theory (Murphy, 2000). It is also possible to use

heuristic techniques, like the Histogrammic in Motion Mapping developed by Ko-

ren and Borenstein (1991a) to be used with sonar sensors. This method associates

a score to each cell in the map, a high score meaning that the cell is occupied with

greater certainty. A very simple metric sensor model is used, assuming that a single

point in the sensor’s direction is detected at the distance measured by the sensor.

The score of the cell containing that point is simply increased, while the scores of

the cells between the robot and this point are accordingly decreased by a smaller

value. This method has the advantage of being computationally highly efficient, but

may be difficult to adapt to a given robot and a given environment because of the

numerous parameters that must be tuned (Murphy, 2000).

MapReal Environment

Fig. 4. Example of the discretization used by Arleo et al. (1999). The environment is dis-

cretized in cells whose boundaries are made of lines corresponding to obstacle boundaries.

White cells represent empty space, while black cells correspond to obstacles.

Arleo et al. (1999) describe a variable-resolution map building method where each

cell in the map is considered either occupied or unoccupied (Figure 4). Starting

from an initially empty world model, whenever a new obstacle is detected, the

partition of the space around this obstacle is refined in order to incorporate an oc-

cupied cell which represents this obstacle. The obstacles are considered rectangu-

lar and their boundaries are detected using a line extraction algorithm on a local

occupancy-grid map. Every time a new obstacle is detected, a contour-following

strategy is used in order to model the whole obstacle. The odometry errors of the

robot are compensated using the hypothesis that all obstacle boundaries are orthog-

onal, which make the system very sensitive to the type of environment it is faced

with. Exploration is directed toward cells that have been less often and less recently

visited.

3.1.2 Maintaining all features inter-relations

The main problem about incremental mapping is that it does not afford the possi-

bility of recording dependencies between data added to the map. This, for example,

9



precludes taking advantage of the fact that the relative positions of two landmarks

are known very precisely, while their respective positions within the whole map

are imprecise. When updating a map, it is important to take these dependencies

into account so as to rely on accurate regions of the map in order to improve the

inaccurate ones. This is possible thanks to a probabilistic scheme that maintains

a full posterior distribution over the positions of the robot and the environmental

features. This entails memorizing simultaneously the estimated positions, the vari-

ances of these estimates, and the covariances between these estimates. Note that

this solution cannot be applied to the occupancy-grid framework.

This general approach is called stochastic mapping by Smith et al. (1988). In their

framework, the positions of the robot and of all the features detected in the en-

vironment are stored in a vector that represents the environment. Additionally, a

matrix is used to memorize the variances and the covariances of these positions.

The corresponding model therefore assumes that these positions are uncertain and

that their estimates are corrupted by a Gaussian noise. Covariances make it possi-

ble to record how the relative positions of two features were observed to change

across successive detections performed by the robot. During map-learning, when-

ever a feature is perceived, its position in the map’s reference frame is estimated

from the robot’s current position. If this feature has already been memorized in the

map, Kalman filtering (Filliat and Meyer, 2002b) is used to update the position and

variance of the matched feature of the robot, and of all the other features, through

their associated covariances. Unmatched features are simply added to the map at

their perceived positions.

Various authors describe specific implementations of this approach. For example,

the model of Ayache and Faugeras (1989) calls upon geometric features, such as

lines extracted from a stereo-vision system. In this model, feature parameter uncer-

tainties (like size and position) are represented by variances but, instead of calling

upon covariances to represent relations between features, they use geometric rela-

tionships such as colinearity, parallelism or coplanarity. Such constraints, which are

enforced through algebraic equations involving the feature parameters, make possi-

ble a significant reduction of the uncertainty attached to these parameters by prop-

agating estimates along related features. Moutarlier and Chatila (1990) describe a

similar model using segments representing boundaries of straight obstacles that are

extracted as features from laser-scans. However, the authors remark that sequen-

tially updating features perceived from a single location may lead to instability

in the map building process. The reason is that the relative perceived feature po-

sitions when the robot stands still are less noisy than when the robot has moved

between feature perceptions. Consequently, sequentially adding features integrates

the robot’s potential position error in the relative feature positions, and leads to bi-

ases in these position estimates. This problem is solved by estimating the robot’s

position using all the features perceived at a given place before updating these fea-

ture positions.

10



Still following the same scheme, Leonard et al. (1992) remark that uncertainty not

only characterizes the position estimate of each feature, but also the very existence

of each feature. This issue mainly stems from the use of sonar sensors for feature

detection, which produces a lot of spurious measurements. To cope with such issue,

the authors associate to each feature a credibility, which is increased if a feature is

reliably detected from several positions and which is decreased if a feature is not

consistently detected. Consequently, this process makes it possible to remove from

the map features that were erroneously detected, or features that have disappeared

from the robot’s environment because they were associated with a low credibility.

Using only the most credible features to update the robot’s position affords more

robustness to the map-building process.

Feder et al. (1999) improve the feature integration scheme by using a delayed near-

est neighbor initiator instead of directly adding unmatched features to the map. The

corresponding procedure filters out spurious measurements before adding features

to the map. This entails delaying any insertion so as to check if the corresponding

feature is consistently detected. The model also integrates an adaptive action selec-

tion mechanism, the goal of which is to direct the robot toward positions where the

map’s precision may be enhanced.

Leonard and Feder (1999) also remark that memorizing the covariances between all

features and keeping them up to date, through a Kalman filter each time a feature

is perceived, leads to a complexity in O(n2) with the number of features, which

is problematic for large environments. As simply ignoring covariances leads to

instability (Hébert et al., 1995), they resorted to a decoupled stochastic mapping

procedure according to which the environment is represented by multiple regular

rectangle sub-maps of limited sizes. These sub-maps are fixed a priori. Covariances

are only maintained between features of each sub-map, thus limiting the complex-

ity of the overall system. Experimental results show performances similar to those

obtained with a model that maintains all the covariances.

Perception

Point Line 2D Objet

Possible positions

Fig. 5. Examples of positional information provided by the perception of various features.

Perceiving a single point limits possible positions to a circle, perceiving a line limits them

to two lines, while perceiving an object spatially extended in two dimensions corresponds

to a single possible position.

11



The Symmetries and Perturbations map (SPmap) of Castellanos et al. (1999) is also

a similar scheme that uses different methods for uncertainty representation. Uncer-

tainties in feature positions are modeled probabilistically as in the previous models

but, additionally, the theory of symmetries is used to represent the fact that the

shape of a given feature limits the positional information that can be derived from

its perception. For instance, matching two lines only provides positional informa-

tion in the direction perpendicular to the lines, and not along their direction (Figure

5). Knowing that the information provided by a given feature is partial then allows

to selectively update the feature and robot’s position through Kalman filtering and

affords a greater robustness.

An important practical issue raised by these approaches lies in the assumption that

features should be correctly detected and identified, i.e., that the match between a

memorized and a perceived feature is correct. This problem is often referred to as

the data association problem. In most models, this association is simply based on

the similarity between features and on their relative distances, assuming that a per-

ceived feature matches a similar recorded feature if their distance is smaller than

a given threshold. This approach makes feature identification simple, but it also

makes it highly dependent on a correct initial estimate of the robot’s position. For

instance, Moutarlier and Chatila (1990) report that such matching is not reliable,

because the positions of the features are evaluated relatively to the robot’s estimated

position, which turns out to be very imprecise because of the robot’s poor odom-

etry. Their solution to this problem is to use an heuristic method to detect which

perceived and recorded features have to be put in correspondence. Starting from

the robot’s estimated position, this heuristic finds the rotation and translation of

the robot which lead to the best overall matching between perceived and recorded

features. Using the corresponding displacement in the robot’s position, feature as-

sociations are then sought that relate each feature to its closest neighbor. This makes

it possible to reduce the effect of a poor estimate of the robot’s position on feature

matching.

3.1.3 Decoupling odometry and perceptions

The previous schemes integrate new information in the map in the form of feature

positions estimated from sensor values and from the robot’s positions. However,

relative positions of objects estimated using sensor values acquired from a single

robot position are usually much more precise than relative positions estimated while

the robot is moving. The main reason for this fact is the difficulty to model some

aspects of the odometry noise (e.g. sliding). This remark leads to several models in

which the absolute position of the robot and the relative positions of the features

are used in different ways in order to limit the effect of poor estimates in the robot

position. Moreover, separating these two sources of information is a further step

toward the possibility of reconsidering past incorrect map updates, because it makes

it possible to reconsider past erroneous data association when new information on

12



past positions becomes available.

y

x

y

x

y

x

y

x

Real environment Feature map

1

2

3 1

2

3

Fig. 6. Illustration of the map decomposition used by Hébert et al. (1996). Each sub-map

(1, 2 and 3) groups features that have been perceived from the corresponding position in

the environment.

Extending the stochastic mapping scheme previously described, Hébert et al. (1996)

suggest to decouple odometry and perceptions. To this end, the environment is rep-

resented by multiple sub-maps, each sub-map containing only positions and covari-

ances of features whose mutual spatial relations have been observed from a single

position (Figure 6). Each sub-map has an associated position in a global map that

is estimated using the robot’s odometry between the points where the feature of the

sub-maps have been detected. When a new set of features is perceived, the possi-

bility that any such feature is already included in one sub-map is checked. If this

is the case, all the perceived features are added to the corresponding sub-map and

the parameters of the features in the sub-map are updated using the relative posi-

tions of the newly perceived features. If no feature already belongs to an existing

sub-map, a new sub-map is created that contains the new features. The fact that

two sub-maps should be merged because the new set contains features belonging to

both of them is also checked. In this model, the robot’s odometry only influences

sub-map positions in the global map. Once the map is updated, the robot’s posi-

tion is estimated using its relative position to perceived features via a Kalman filter.

According to the authors, a more precise map is obtained with this scheme than

with the standard stochastic mapping. Moreover, the complexity of the algorithm is

reduced by computing feature covariances among features that belong to the same

sub-map only.

Borghi and Brugali’s extension of Engelson’s diktiometric map (Engelson and Mc-

Dermott, 1992; Borghi and Brugali, 1995) follows the same principle. The features

that are exploited by their model are corners detected by a laser range-finder. The

corresponding map is represented as a set of sub-maps similar to those of the pre-

vious model with relative positions estimated through odometry (Figure 7). In this

model, no global position estimate is computed, but the robot’s position is mon-

itored within the sub-map it is currently in. To achieve this, when a new set of

features is perceived, this set is compared to all the sub-maps already stored. If

some perceived features can be identified as belonging to an already stored map,

the robot’s position is computed inside this sub-map, using these features, and the

corresponding features of the sub-map are updated. If none of the perceived features

already exists in the map, a new sub-map is created with these features. In these two

13



y

x

y

x

y

x

y

x

Type 1 Type 1

Type 2

Type 2

Real environment Feature Map

Fig. 7. Map representation used by Borghi and Brugali (1995). The environment is mem-

orized as a set of sub-maps along with their relative positions. Two type of sub-maps are

used. Type 1 corresponds to parts of the environment where features (corners in this case)

can be perceived. Type 2 corresponds to parts of the environment that are featureless, such

as corridors. The relative positions of the sub-maps are estimated through the robot’s odom-

etry.

cases, the position of the sub-map is evaluated relatively to the last known position

through odometry.

3.1.4 Reconsidering past updates off-line.

In all the previous models, associations between perceived and stored data are made

once and are not reconsidered afterward. If the robot’s position turns out to be

poorly estimated - for example if an explored part of the environment is encoun-

tered after closing a large cycle - past data associations and map updates cannot be

modified to take this information into account. As reconsidering such past updates

would lead to better maps, some models tackle this issue.

As suggested in the introduction, the ideal solution would be to look forward in time

and take into account at each time-step any future information about the robot’s

position. To achieve this, some models resort to off-line algorithms that work on

data sets of idiothetic and allothetic information gathered by the robot. Indeed, these

sets characterize the positions they record by both past and future information. This

is for example the case with several models based on POMDP’s, the localization

methods of which were reviewed in Filliat and Meyer (2002b). These models are

based on an Expectation-Maximization (EM) algorithm (McLachlan and Krishnan,

1997) that iterates two stages referred to as the E-step and the M-step (Figure 8).

Given an approximate map, a sensor model, a movement model, and some training

data recorded by the robot, the E-step evaluates the robot’s most likely trajectory.

This step is very similar to Markov localization (see Filliat and Meyer, 2002b), but

the strength of this version lies in the fact that it takes all the information brought by

the training data set into account, including future cues about the robot’s position

(Figure 9). In the M-step, a map is computed that best reflects the gathered data

along the trajectory calculated in the first stage. This map computation entails a

data association different from those of the initial map which is more correct and

14



Initial map
and

training data

Estimate trajectory 
using current map and

training data

Compute an improved
map using estimated 
trajectory and training

data

Convergence ?
No

Yes

E-step

M-step

Fig. 8. Illustration of the EM algorithm (see text for details).

leads to a better map. Iterating these two steps allows to converge toward a map

that maximizes the likelihood of the gathered data. This algorithm, however, can

get easily trapped in local minima, and careful attention has to be paid to the initial

data that are used.

Thrun et al. (1998) implement this algorithm using punctual landmarks detected

by the robot and laser-scans. Two EM algorithms are successively used. In the first

one, perceptions are the types and approximate positions of landmarks relatively

to the robot. Landmarks may be detected in a number of ways and do not need to

be individually recognizable. Given a set of landmark perceptions and robot move-

ments, the EM algorithm is used to compute a map containing the positions of all

the landmarks and corresponding to an environment in which the robot could gather

these data with a high probability. This algorithm is efficient, as the corresponding

search space, which contains a few landmarks only, is significantly smaller than the

search space of metric maps that would contain all obstacles detected by a laser

range-finder. Once this landmark map has been computed, data about the robot’s

position that are contained in the training set are corrected using the now-known

landmark positions. These corrected data, together with laser-scan data, are then

used to initialize a second EM algorithm that computes a metric representation of

the environment. However, in order to make this second algorithm computation-

ally tractable, position probabilities have to be approximated by Gaussians. This

approximation makes the algorithm very sensitive to initial conditions and often

leads to a local optimum. But, in this context, as the landmark map has been used

to correct most of the odometric error, such local optimum is probably a good ap-

proximation of the optimal metric map.

15



t-1 t t+1

t-1 t t+1

t-1 t t+1

a. Real positions

Measured displacements

Known positions

Estimated position

b. Estimated position 
using past information

c. Estimated position
using past and future 
information

Estimated position using
past information

Estimated position using
future information

Estimated position

Fig. 9. Illustration of the effect of taking future information about the robot’s position into

account. In this example, position at time t has to be estimated knowing positions at time

t − 1 and t + 1. All the measures of displacements are over-estimated. Using future infor-

mation allows to more efficiently estimate the position.

The implementation by Burgard et al. (1999) of this algorithm is based on a map

that stores local occupancy grids along with their relative positions estimated via

odometry. This approach is used to both overcome the local minima issues that arise

in the previous models, and to avoid the use of a landmark map as an intermediate

representation for occupancy grid mapping. To achieve this, the second step of the

EM algorithm, which is only guaranteed to converge toward a local extremum in

the general case, is modified to incorporate a simulated annealing variant. As a

result, convergence towards a correct map may be achieved using noisier data.

3.1.5 Reconsidering past updates on-line

The models of the previous section allow to compute precise maps using all avail-

able data but require resorting to off-line map-building. This off-line step often re-

quires the intervention of a human operator and thus reduces the robot’s autonomy.

However, approximations of such models may be used, thus allowing to keep most

of their desirable properties, while making on-line processing of new data possible.

16



Real environment Map

Relation measured by odometry

Relation measured by laser−scan matching

Fig. 10. Map representation used by Lu and Milios (1997). A set of laser-scans are mem-

orized along with the relation between the positions from which they were taken. These

relations may be derived either from the robot’s odometry or from scan matching.

In the model of Lu and Milios (1997), the map is composed of a set of laser-range

scans, along with their spatial relationships. These relationships are of two kinds,

the first one being derived from the robot’s odometry between the points where

the scans were taken, the second one being derived by scan-matching when scan

positions are close enough for the corresponding measurements to overlap. An op-

timization process computes the position of each scan maximally satisfying spatial

relationships, taking into account the uncertainty associated to each type of relation

and giving greater confidence to relationships derived from scan-matching than to

those derived from odometry. The result is a map exhibiting a minimal number of

discrepancies and that best reflects the environmental layout. This mapping method

allows to reconsider past map updates because, whenever a cycle is closed in the

environment, a new relationship derived from scan matching is added to the map.

This new relationship enforces the fact that the current robot position corresponds

to the position at the beginning of the cycle. Using this new relationship to optimize

the scan positions therefore entails modifying the positions of the scans along the

whole cycle. As a consequence, past map updates are thus revised.

Gutmann and Konolige (2000), considering that the approach of Lu and Milios only

works well with good initial position estimates, improve the corresponding scheme.

When no cycle is closed in the environment, the technique of Lu and Milios is used,

but applied to a few past scans only. This proves to be reliable enough to build an

approximately correct map of the environment and leads to results similar to those

of incremental mapping. A separate procedure is responsible for detecting cycles

in the environment and reconsidering past updates in this case. This cycle detection

is achieved by matching a local map composed of a few past scans with the global

map in an area surrounding the robot’s position estimate. The size of this area grows

with position uncertainty. When a match good enough is found, a loop is considered

to be closed, and the technique of Lu and Milios is used to optimize the positions

of all the scans in the loop. This methods provides faster and more accurate results.

Thrun et al. (2000), using a set of laser-scans along with the position from which

they were recorded as a map, describe a similar model. Their model uses Markov

localization in order to estimate the robot’s position. The mapping strategy is a

17



weaker version of the Expectation Maximization described above, as it cannot take

into account any future information for localization. However, similar properties

are achieved by using special procedures that modify past position estimates when

a cycle is closed. In normal operation mode, whenever a new scan is acquired, it

is simply added to the map at the robot’s most likely position. This step is similar

to incremental mapping, except that the use of Markov localization allows to avoid

local minima because it finds the current best position estimate for the robot. A

different procedure is applied when a cycle is closed in the environment. The error

in the robot’s position computed when re-observing a part of the map is propagated

to all the scans belonging to the loop, the positions of which are optimized so as

to maximize the probability of the perceived data. The result is a close approxi-

mation of what would have been achieved using EM and taking the whole future

information into account.

3.1.6 Topological map generation

As mentioned in the companion paper on localization (Filliat and Meyer, 2002b),

it may be useful to extract a topological representation of the environment from a

metric map, mainly in order to facilitate planning tasks.

Some topological information may already be included in the metric map repre-

sentation. For example, when odometry and perceptions are decoupled, as in the

model of Borghi and Brugali (1995), although the global map is metric, it is never-

theless represented as places that are related via idiothetic cues. The model of Arleo

et al. (1999) also contains topological information in the arrangement of cells that

discretize the free space.

Other models explicitly extract topological information once the metric map has

been obtained. Chatila and Laumond (1985) decompose the free-space between

objects represented by polyhedra into cells that corresponds to rooms and corri-

dors. Thrun (1999) decomposes the free space represented by an occupancy-grid

using a Voronoï diagram, the critical points of which are used to find the bound-

aries of the topological regions. As a result, regions are separated by narrow pas-

sages, such as doorways. Buhmann et al. (1995) also extract topological informa-

tion from occupancy-grids. Their approach calls upon a database of small labelled

occupancy-grids that represent doors, corridors and rooms of the environment. The

maps of this database are continuously matched to the map of the environment

and, when a convenient matching is found, the associated label is assigned to the

corresponding region in the map.

Although such discretization procedures are very useful to reduce the complexity

of subsequent path-planning, it should be noted that node identification relies on a

prior estimate of the robot’s metric position, which means that topological infor-

mation is not used for localization in the corresponding models.

18



3.2 Topological map-learning

Topological map-learning is relatively different from metric map-learning, as place

definitions and their relative positions are recorded respectively in the map nodes

and links. Most of the time, nodes store allothetic place definitions without the need

to resort to metric models of the sensors, while links memorize relative positions

of the nodes, ranging from simple adjacency information to precise relative metric

positions. This separation of the two types of information naturally makes it pos-

sible to reconsider past map updates more easily than in most metric map-learning

models. However, node recognition, as a counterpart of data-association, is often

a difficult task which can be highly sensitive to perceptual aliasing and perceptual

variability.

Topological map-learning often entails recognizing if the current situation corre-

sponds to a node in the map, and adding a new node if no such node is found

(section 3.2.1). Link information is then updated using idiothetic data. When this

information is metric, the corresponding strategies usually require relatively pre-

cise idiothetic data. As raw data are often of poor quality, they have to be corrected,

using either the existing map or external means. Section 3.2.2 describes these meth-

ods.

a

b

c

d

e

Real environment Topological map

N1

N2

N4

N5

N3 N5’

Fig. 11. A topological map, which memorizes metric relations in its links, may be inconsis-

tent, i.e., two different paths between two nodes may record different relative positions for

these two nodes. In this example, the position of N5 relative to N1 through the successive

connections a, b, c and d is different from the relative position recorded in the direct link e.

In many models, the information memorized in links does not require to be precise

and consistent over the whole map (Figure 11), i.e., they just need to be locally

consistent. As a consequence, taking new information about past positions into ac-

count is usually less important than in metric map-learning. Update strategies are

therefore often local (Figure 12C), as a counterpart of the incremental scheme de-

scribed in metric map-learning (section 3.2.3). However, some models take infor-

mation about past positions into account and globally enforce map consistency and

reconsider data association (Figure 12D), either off-line (section 3.2.4) or on-line

(section 3.2.5).

Finally, section 3.2.6 describes the explorations strategies that can be used to con-

19



A. Real Environnement B. Partial map

C. Local map update D. Global map update

Fig. 12. Illustration of the difference between a local and a global enforcement of consis-

tency. Local update (part C) only concerns links that are connected to the current node,

while global update potentially modifies all links at each time-step (part D).

strain the movements of the robot in order to limit map errors.

3.2.1 Adding nodes to the map

When no perceptual aliasing is supposed to occur in the environment, topological

mapping is relatively straightforward. As for localization, the robot continuously

compares its current allothetic information to data stored in the map’s nodes. But,

contrary to what is done for localization, the node which is the most similar to the

current situation is not always recognized as the current position. Instead, a thresh-

old is used to decide whether the current position corresponds to this node or to a

place never-seen-before. If the maximal similarity is above this threshold, the cor-

responding place is recognized as the robot’s current position. Otherwise, this node

is not recognized and the robot is considered to be in a new place. Consequently, a

new node, characterized by the current perceptions, is added to the map.

When the mapping system has to cope with perceptual ambiguities, this strategy is

useful when a never-seen-before sensory situation is encountered, but an already-

know sensory situation may correspond either to an already visited place or to a

new place. To differentiate between these two cases, idiothetic information has to

be taken into account. In models that use position-tracking for localization, the

standard localization procedure is used and predicts the robot’s current position us-

ing idiothetic cues. The procedure used in the case without perceptual aliasing is

then applied over the nodes in a limited area around this predicted position, assum-

ing that this area is not subject to perceptual aliasing. When the links of the map

20



simply encode the adjacency of places, this area contains nodes that are connected

to the previously recognized node. When metric data are associated with the links,

the area can simply correspond to a given distance around the predicted position

(Kuipers and Byun, 1991; Engelson and McDermott, 1992; Kurz, 1995; Donnart

and Meyer, 1996b; Yamauchi and Beer, 1996; Kunz et al., 1997; Von Wichert,

1998; Nehmzow and Owen, 2000). Such an area can be adjusted to take into ac-

count the robot’s position uncertainty, thus making poorer matches possible if the

precision of the estimate is low. This can be achieved, for example, using the Ma-

halanobis distance, which takes into account the variances and covariances of the

positions (Balakrishnan et al., 1999).

Other systems directly take into account the position information to determine

which node on the map best fits the current situation. The corresponding match-

ing depends both on the similarity between perceived and recorded allothetic in-

formation and on the closeness between the robot’s and the node’s positions. Con-

sequently, it is possible to simply add a threshold to the recognition mechanism to

be able to decide when new places have to be recorded (Arleo and Gerstner, 2000;

Touretzky et al., 1994; Dedeoglu et al., 1999; Mataric, 1992).

Activity sum = 1 Activity sum = 0.4

Initial Position
estimate

Movement Final Position
estimate

Activity sum = 1.12Activity sum = 1

Fig. 13. Illustration of the heuristic used in Filliat and Meyer (2002a) to detect when a

node should be added in the map. When the robot moves inside the mapped area (top of the

figure), the total sum of the probabilities of the various hypotheses remains approximatively

constant. On the contrary, if the robot exits the mapped area (bottom of the figure), this sum

suddenly decreases, making it possible to detect that it is necessary to add a new node to

the map.

As for systems that rely on multiple-hypothesis tracking (Filliat and Meyer, 2002b),

the decision between recognizing an existing node and creating a new one is more

difficult. The main reason is that multiple-hypothesis tracking for localization relies

on the comparison of the robot’s different possible positions in the map in order to

select the one that best corresponds to the available data. Hence the localization

algorithm itself can’t work if the robot is outside the mapped area. For this rea-

son, most models that rely on multiple-hypothesis tracking cannot build a map on-

21



line but resort to off-line map-learning (see section 3.2.4). Some models (Hafner,

2000; Filliat and Meyer, 2002a), however, are able to track multiple hypotheses

and build a map on-line. These models rely on an heuristic that detects whether the

robot is currently in the mapped area or not. If it is the case, the standard multiple-

hypothesis tracking algorithm is used to determine the robot’s position. If not, a

new node is added to the map. This heuristic could rely on a simple threshold tied

to the most probable position (Hafner, 2000), or could be based on the variation

of the sum of the probabilities of all the concurrent position hypotheses (Figure

13) (Filliat and Meyer, 2002a). The latter method allows greater robustness as it

explicitly detects when the robot gets out of the mapped area.

3.2.2 Odometry correction

In environments where robots face perceptual aliasing issues, idiothetic cues play a

major role in localization and map-learning. Consequently, various techniques are

used to prevent idiothetic errors growing too high. As these techniques are detailed

in a companion review of localization methods (Filliat and Meyer, 2002b), they are

briefly summarized in this paragraph.

When idiothetic cues are used locally only - i.e., between two connected nodes -

and are reset every time the robot detects a new place, odometry precision does not

require to be very high. As a consequence, raw odometry can be sufficient for map-

learning and some systems do not correct it between places (Kuipers and Byun,

1991; Mataric, 1992; Engelson, 1995; Donnart and Meyer, 1996b). Other systems

use an external sensor - such as a compass (Nehmzow and Owen, 2000; Filliat and

Meyer, 2002a) - or assumptions about the environment - such as orthogonal corri-

dors (Dedeoglu et al., 1999; Kunz et al., 1997) - to correct the raw odometry. This

correction mainly concerns the robot’s direction which is usually not estimated, nor

corrected, for topological localization, but which is often essential to navigation.

When idiothetic cues are used globally - i.e., when a position is associated to each

node in a common reference frame - odometry correction is more important, as

long-term consistency has to be achieved. But in this case, the positions of the

nodes that are already in the map can be used to correct odometry measurements.

This situation resembles those of metric map-learning where already-mapped fea-

ture perceptions can be used to correct the robot’s estimated position. In the topo-

logical context, corrections may be made occasionally, when the odometry preci-

sion is considered insufficient. This entails using special-purpose procedures that

estimate the robot’s position using the known map of the environment and allothetic

cues only (Yamauchi and Beer, 1996; Touretzky et al., 1994; Arleo and Gerstner,

1999). This estimated position is then used as the new reference for subsequent

idiothetic cues. Odometry corrections may also be continuously performed by us-

ing the recognized node position at each time step. This position may either be

taken directly as the new reference position (Mataric, 1992), or it may be used to

22



correct the robot’s current position estimate through Kalman filtering (Kurz, 1995;

Balakrishnan et al., 1999).

3.2.3 Locally updating link information

When a node has been recognized, or when a new node has been created, idiothetic

information gathered since the last node recognition is used to update or to create a

connection between these two nodes. This section presents models in which mod-

ifications only concern the current connection, and do not propagate to the whole

map.

In Sharp (1991), Burgess et al. (1997) and Levitt and Lawton (1990), nodes are

defined by the landmarks that are visible from the corresponding positions. Hence

the link between two nodes is implicitly recorded in the definitions, as it is possible

to infer the relative positions of two nodes when they share common landmarks.

In Bachelder and Waxman (1995), the relation between the previous and the current

node is also implicit, because it is encoded in a neural network that predicts which

node may be reached from the current node, thus affording the same information

than links between nodes.

However, most models explicitly create links between the previous and the current

node to indicate that it is possible to go directly from one node to the other. In some

models, this connection simply express the adjacency (Franz et al., 1998; Gaussier

et al., 1998; Kortenkamp and Weymouth, 1994).

When idiothetic information is memorized in the links, it must be updated after

each robot’s move. When this information is only used locally - i.e. when the rela-

tive positions of distant nodes is not calculated - such operation is straightforward

and may simply call upon a weighted mean of the old and new values (Kuipers

and Byun, 1991; Engelson and McDermott, 1992; Kunz et al., 1997; Von Wichert,

1998; Dedeoglu et al., 1999).

However, when the idiothetic information is used globally - i.e., when it is used to

compute the relative positions of all the nodes of the map - the consistency of the

map has to be maintained. Maintaining this consistency is particularly important

when large cycles are traveled through in the environment (see section 3.1.1) and

raises the same issue than reconsidering past updates in metric maps (see section

3.1.4), because previous idiothetic data recorded in the map must be coherent with

new ones. Global solutions to this problem will be presented in the next two sec-

tions, but it is possible to enforce consistency using only local map modification.

A solution to automatically achieve global map consistency without updating ev-

ery link is to associate a position to each node in a metric framework, instead of

associating lengths to the links. Using this technique, the relative position of two

23



nodes is independent of the path leading from one node to the other, and the map

is therefore automatically coherent. In these models, map modification are only lo-

cal and only concern the position of the recognized node. Some models assign a

metric position at the node creation and don’t change it afterward (Touretzky et al.,

1994; Yamauchi and Langley, 1997; Oore et al., 1997; Arleo and Gerstner, 2000),

while other models update it with the robot’s current position each time the node

is recognized, for example by using a Kalman filter (Balakrishnan et al., 1999) or

a simple average of the estimated positions (Mataric, 1992; Donnart and Meyer,

1996b; Kurz, 1995; Duckett and Nehmzow, 1997; Nehmzow and Owen, 2000).

3.2.4 Globally updating links off-line.

Map consistency can also be maintained by algorithms that modify all the links

of the map and that reconsider past data association each time new idiothetic cues

are gathered. These methods come down to reconsider past map updates under the

effect of new information on the robot’s past positions, as mentioned in the metric

map-learning section.

As for metric maps, it is possible to use off-line algorithms to generate maps from

data sets recorded by the robot so as to be able to use future information about its

positions. The corresponding models are based on POMDP models of the environ-

ment (see Filliat and Meyer, 2002b) and use Expectation-Maximization algorithms

in order to build a map (see section 3.1.4). Here again, using an approximate map

of the environment together with probabilistic sensor and actuator models, the al-

gorithm produces an enhanced map that maximizes the probability of the training

data. However, as mentioned in section 3.1.4, such algorithms converge to local

maxima only. In a topological map-learning context, they are also poorly effec-

tive for learning the map structure, i.e., the arrangement of the nodes within the

environment. Instead, they are much more effective at learning the parameters of

the POMDP states, i.e., the allothetic definition of the nodes. As a consequence,

an initial map with an almost correct structure is generally used to enhance the

algorithm’s efficiency.

The model of Simmons and Koenig (1996) calls upon a topological map of the en-

vironment initially provided by an operator. However, this initial map is imprecise

and contains uncertainties in corridor lengths. It is converted to a POMDP model,

in which nodes represent regularly spaced positions within the environment. As

the distances between nodes are fixed, uncertain corridor lengths are modeled by

several parallel chains of nodes with different node numbers (Figure 14). An EM

algorithm is then used to learn both the probabilities of making perceptions at each

node and the transition probabilities between nodes. Corridor lengths are learned

by selecting the node chain that best corresponds to actual idiothetic data. Using

some additional hypotheses, like constancy of the transition probabilities between

adjacent nodes over the whole environment, the authors are able to produce an im-

24



A. B.

C. D.

4 m

4 m

4 m 4 m 4 m

3-5 m

3-5 m

Fig. 14. Part A of the figure shows the real environment the robot is mapping. In Simmons

and Koenig’s model (1996), a simple topological representation of the environment, along

with some metric information, is initially provided to the mapping system (Part B). This

map is then transformed into a POMDP model of the environment, where states repre-

sent positions with 1-meter intervals. Several parallel chains are used to model uncertain

corridor lengths (Part C). Expectation Maximization is then used to learn perception prob-

abilities for each node and transition probabilities for each link between nodes. Eventually,

chains representing true corridor lengths are selected (Part D).

proved map using a smaller amount of training data for the EM algorithm.

Corridor

Corner

Corridor

B.A.

Fig. 15. Part A of the figure shows an actual environment a robot is mapping. Part B

shows the corresponding map in Theocharous et al.’s model (2001), where low-level states

represent regularly-spaced possible positions for the robot. Each of these states records

the probabilities of the robot’s perceptions in the corresponding positions. Links between

states correspond to idiothetic cues relating two such positions. These states are grouped

in higher-level states that represent structures of the environment such as corridors and

corners.

Theocharous et al. (2001) also start with an a priori given topological map of the

environment that is converted to a Hierarchical POMDP model. In this model, sev-

eral levels of states are used that represent the environment with different spatial

resolutions. Low-level states, similar to those of Simmons and Koenig’s model,

are used to accurately represent the robot’s possible positions. Higher-level states

make it possible to group low-level states to represent environmental features such

as corridors or corners (Figure 15). The algorithm used to build such a map is EM

25



adapted to Hierarchical POMDP, which learns perception probabilities for each

low-level state, and transition probabilities between low-level and high-level states.

The learning of such hierarchical models achieves performances similar to those of

the standard flat models. However, taking advantage of the hierarchical structure

of the model makes it possible to separately learn groups of low-level states that

represent corridors or junction. Re-using such partial maps of the environment, and

learning to combine them in a global map, affords better and faster learning for

subsequent maps.

The approach of Shatkay and Kaelbling (2002) also learns topological models us-

ing an EM algorithm. However, unlike in the previous models, link lengths are

variable and not fixed to a given value. As a consequence, nodes are used to repre-

sent junctions and doors along corridors, while links represent corridors. Moreover,

the initial model is not provided by a human operator, but is generated from idio-

thetic data by a clustering of similar inter-states odometry readings. This clustering

detects which odometry readings correspond to the same node transition. These

transitions are then put together by a state-tagging algorithm that associates each

transition to a start and end node, thereby creating an initial map. The EM algo-

rithm then learns perception probabilities at each node, together with the lengths

and directions of the links. Associating this metric information to the links, instead

of using a purely topological information, makes it possible to effectively learn

topological models of the environment within a POMDP framework.

Using formal logic theory, Remolina and Kuipers (2001) describe a method for

building a topological map from a set of idiothetic and allothetic cues. The consid-

ered cues consist of a succession of distinctive states (see Filliat and Meyer, 2002b)

and actions that link these states. This set makes a description of the environment

at the so-called causal level, i.e., it describes the environment by the effects of ac-

tions in the different states related to perceptions. However, it does not constitute a

map because, owing to perceptual aliasing, a given state may correspond to differ-

ent places in the environment. Capitalizing on this representation, the model makes

it possible to create a topological map by abduction, i.e. by finding the map with

the minimal number of places that can explain the observed cues. The logical the-

ory that is used to create this map is based on various axioms that enforce general

properties of the map and of spatial behaviors. For example, it exploits the fact that

turning leaves the robot at the same place.

3.2.5 Globally updating links on-line.

Finally, some models (Duckett et al., 2000; Hafner, 2000; Filliat and Meyer, 2002a)

are able to take care of map consistency by globally updating links on-line each

time new idiothetic data are gathered. However, these models are not able to re-

consider data association and only allow to reconsider globally the idiothetic cues

stored in the map. The corresponding procedure considers that links of the map are

26



sort of springs, the relaxation length of each corresponding to a link length mea-

sured by odometry. These springs being connected in a network according to the

map layout, an incoherent map corresponds to a spring network that is not in equi-

librium. Therefore, a relaxation algorithm is used to compute the equilibrium state

of the network, thus providing a consistent map whose link lengths are the clos-

est to the measured lengths. Such a relaxation algorithm only provides a heuristic

method for reconsidering past link updates in the presence of new information, but

it proves to be efficient and to allow correct map-learning.

3.2.6 Exploration strategies

Usually, the major objective of a given exploration strategy is to guide the robot in

order to explore the environment as quickly and as completely as possible. How-

ever, within the framework of topological map-learning, as the recognition of a

given sensory situation may be subject to errors, some models implement dedi-

cated exploration strategies that aim at checking if the recognition is correct. The

corresponding procedures often play an important role in these models because

they prevent an accumulation of errors in the map that would lead to instability.

An example of a procedure for recognition verification is the rehearsal strategy of

Kuipers and Byun (1991) that exploits the expected consequences of some robot

moves as suggested in the introduction. Whenever an already existing node is rec-

ognized, the system uses the map to guide the robot toward another already known

node which is connected to the recognized node. If this second node is also recog-

nized, this means that the previous recognition was correct and the robot resumes

its map-building behavior. Otherwise, it may be concluded that the previous node

was erroneously recognized, and a new node is added to the map. To warrant ter-

mination, this procedure is not used recursively. As a consequence, two successive

recognition errors cannot be detected by the system. However, other strategies are

guaranteed to converge if some hypotheses are made about the environment (see

Dudek et al., 1997; Basye et al., 1997, for details). During map-learning, in order

to warrant an exhaustive exploration of the environment, an exploration agenda,

which memorizes detected but untraveled corridors, is also used to direct the robot’s

movements.

Several other exploration strategies are used by Engelson (1995) and implemented

as opportunity scripts. Such scripts are short sequences of actions, designed to de-

tect and correct map errors. For example, a Head for rare waypoints script computes

the robot actions that drive it toward a neighboring node which has not often been

encountered, in order to check if this node is not a transient, i.e., a node that has

been created because of perception errors and that no longer fits the actual environ-

ment. Other scripts also direct exploration toward unexplored or uncertain areas, to

make the mapping process as exhaustive as possible. Each script has an application

condition related to the current states of the map and the robot, and this condition

27



is continuously checked by an opportunity checker. Scripts that can be applied in

the current situation may then be chosen and executed by a planning process.

Kunz et al. (1997) describe a model that strongly relies on exploration strategies.

Their system assumes that corridors are orthogonal in order to predict the layout of

the environment when new intersections are detected. These predictions are added

to the map as hypotheses and the robot is then guided in order to check these hy-

potheses. If predicted hallways or intersections are not detected, they are removed

from the map; otherwise, they are confirmed.

4 Path-planning

Once a robot is provided with a map, once an estimate of its position inside this

map is available, and once a goal position is singularized within this map, the robot

should be able to navigate from its current position to the goal position. This path-

planning capacity relies on the computation or on the learning of a plan that allows

the goal to be reached. The corresponding research domain is wide and relatively

far removed from those of localization and map-learning, and it faces very intricate

issues when robots with many degrees of freedom are involved. However, relatively

simple techniques can be called on for 2D path-planning in autonomous robotics.

This article accordingly surveys these techniques without going into detail about

the difficulties of path-planning in the general case (see Latombe (1991) or Lau-

mond (1998) for more general reviews). Section 4.1 mentions the specific issues

arising during the actual execution of such a plan. Section 4.2 defines the two sorts

of plans that are commonly used. Methods for computing or learning these plans

are then presented, first in a discretized search-space (section 4.3), then in a contin-

uous space (section 4.4).

4.1 Executing a plan

The execution of a plan prescribing movements toward the goal brings up a number

of issues. The first is concerned with the fact that discrepancies almost always exist

between the map and the actual environment. These discrepancies, for example,

may be caused by dynamic obstacles such as humans. Consequently, a precise plan

generated using an incorrect map may be impossible to execute. A second issue

stems from the fact that a robot’s actions may be noisy, for instance because of

wheel slippage. Here, even when the robot precisely executes a correct plan, the

goal may still be missed.

Such issues caused the first robots that used so-called hierarchical controllers (Mur-

phy, 2000) to behave poorly in realistic environments. The reason is that these

28



ACT

PLAN

SENSE

SENSE ACT SENSE

PLAN

ACT

A B C

Fig. 16. Various architectures have been devised to control autonomous robots. Earlier

architectures were organized in a hierarchical fashion. These architectures relied on the

elaboration of a correct world-model in which a plan was carried out. The plan was then

executed on the real robot without closed-loop control, thus leading to frequent failures

(Part A). The behavior-based solution to these problems was to suppress world models and

planning by calling upon reactive behaviors alone, which may be more efficient when con-

fronted with unforeseen situations. The corresponding architectures called upon a variety

of sensory-motor modules that operated in parallel (Part B). Most modern robots use a hy-

brid approach, with a high-level controller that models the environment and plans actions,

while low-level reactive controllers are responsible for their execution and for reacting to

unforeseen situations (Part C).

controllers did not have any control over the execution of the plan that was de-

vised (Figure 16A). A radically opposite approach was brought forth by Brooks

(1991), who advocated the suppression whenever possible of internal world models

such as environmental maps, and plead for the use of the behavior-based approach

to robotics. This approach placed emphasis on reactive behaviors that acted in a

closed-loop with the environment (Figure 16B) and that avoided many problems

arising with world models, thus leading to efficient, albeit simple, robots.

However, most current robotic systems mix these two opposite approaches by us-

ing an hybrid deliberative/reactive control architecture (Arkin, 1989, 1998; Mur-

phy, 2000). Within these architectures, a low-level reactive controller is responsible

for the execution of moves prescribed by the high-level controller, while continu-

ously reacting to unforeseen situations such as unmodeled obstacles (Figure 16C).

The high-level controller is responsible for map-learning, localization and path-

planning. The interplay of these two levels affords robots the possibility of quickly

reacting to their environment, while remaining able to efficiently execute long-term

plans.

4.2 Two kinds of plan

In its general sense, a plan is a sequence of actions to be taken to achieve a given

goal. In a path-planning context, it consists of a list of moves to be executed se-

quentially, each such move possibly followed by the detection of a position already

stored in the map when the plan is executed in a closed-loop within the environ-

29



ment. According to this view, a plan is a path that is elaborated thanks to a mental

exploration of the map - in agreement with Craik’s (1943) description of planning

as a series of "experiments in the head" - and this exploration is both determinis-

tic and systematic (Figure 17). Usually, the execution of this kind of plan leads to

deterministically following the corresponding path.

Goal

Start

Goal

Start

a

(Path)

b

(Universal Plan)

Fig. 17. Two plans for solving the same navigation problem : a) a single path leading from

the start place to the goal place and b) an universal plan defining several paths to the goal.

However, other authors define planning as a "goal-directed selection of reactions

to possible situations" (Schoppers, 1987). According to this view, either a mental

exploration of a map or actual moves in the environment, which may both be per-

formed deterministically or at random, lead to the elaboration of what is called a

universal plan, i.e., an association of the action to be performed to reach the goal

with each possible position (Figure 17). Then, the execution of this kind of plan en-

tails deterministically or probabilistically executing the move associated with each

position.

4.3 Path-planning in a discretized space

As previously mentioned, one of the advantages of topological maps is that the rep-

resentation of the environment as a graph of places makes path-planning relatively

straightforward because any classical method for graph-search (see, e.g., Barr and

Feigenbaum, 1981) may be used. When metric maps are used, a majority of plan-

ning methods start by discretizing the free space available to the robot and then

apply similar graph-search techniques.

30



4.3.1 Discretizing the search space

Metric map of the environment

Exact cell decomposition

Quadtree decomposition

Rectangular cell decomposition

Regular cell decomposition

Fig. 18. Examples of cell decompositions used to discretize the path-planning search space.

These results call upon either exact or approximate decompositions. Exact decompositions

precisely cover the whole free space, while approximate decompositions only cover a part

of this space that makes robot movements possible. The latter decompositions rely on vari-

ous cell types, either rectangles of various sizes, regular squares, or squares of variable size

in the case of quadtrees.

• A first class of methods for discretizing the search space extracts a topologi-

cal map from a metric map by decomposing the free space into small cells corre-

sponding to topological nodes. Such decomposition may be integrated in the map-

learning process, for example by using a map representation that intrinsically de-

composes the free space into cells representing the environment (e.g., Arleo et al.,

1999, see section 3.1.1). Other models (e.g., Chatila and Laumond, 1985; Thrun,

1999; Buhmann et al., 1995, see section 3.1.6) integrate such decomposition in

the map-learning process by explicitly extracting a topological map from the met-

ric map. But some models use dedicated methods to decompose the free-space for

path-planning. These methods may be classified as exact methods - which cover

the free space exactly - or as approximate methods - which only represent a part

of the free space that is convenient for path-planning, without trying to cover the

whole free space. An example of an exact method is the decomposition into convex

polygons (Latombe, 1991), also referred to as a meadow map (Murphy, 2000). Ap-

proximate cell decompositions may call upon rectangles similar to those of Arleo

et al. (1999), or upon regular grids or quad-trees (Murphy, 2000) (Figure 18).

31



Metric map of the environment

Visibility graph Vononoi diagram

Fig. 19. Two examples of methods used to create road-maps. The first method calls upon

a visibility graph. In this case, the obstacle’s angles are the key-points, and the straight

lines that link two points that are visible from each other are the partial paths. The second

method calls upon a Voronoï Diagram, which is built from the points that are equidistant

from several obstacles. In this case, the key-points are the points that are equidistant from

at least three obstacles, while partial paths are broken lines that pass through points that are

equidistant from two obstacles only and that join these key points.

• A second class of methods, known as roadmap methods (Latombe, 1991), may

be used to discretize the search space for path-planning. Instead of decomposing

the free space into discrete areas, it is decomposed into a set of partial possible

paths, called a roadmap, that join a number of key-points scattered within the en-

vironment. Path-planning therefore entails combining these partial paths so as to

create an overall path from the start to the goal positions. The roadmap may derive,

for example, from a visibility graph (Figure 19), which includes the straight lines

joining obstacle angles that are visible from each other. In this case, the key-points

of the roadmaps are the obstacle corners, which make it possible to compute short

paths that lie close to the obstacle. However, this closeness to the obstacles can be

undesirable, for example if the robot has to move fast. Another method for com-

puting roadmaps, which maximizes clearance from obstacles, calls upon Voronoï

diagrams. In this case, the key-points of the roadmaps are points equidistant from

at least three obstacles (Figure 19). Still other methods for computing roadmaps

may be found in the literature (Latombe, 1991).

Once a suitable decomposition has been achieved, planning a path toward the goal

first entails calculating a path between the initial robot position and the closest

point in the discretized space. This point must be either a key-point of a roadmap,

the center of the cell that contains the initial position, or the middle of a border

belonging to this cell. A path is then calculated in the discretized space passing

through other points and leading to a point that is close to the goal, according to

a method chosen among those described in the next section. When this point has

32



Planning using roadmaps

Metric map of the environment

Start

Goal

Optimized path Optimized path

Planning using cell borders Planning using cell centers

Fig. 20. Example of planning in a discretized space for metric maps (see text for details).

been determined, a final move is calculated that leads from this point to the goal.

Once the total path has thus been elaborated, it is additionally possible to optimize

it, for example using a relaxation method (Murphy, 2000), in order to avoid detours

that are side-effects of the chosen discretization (Figure 20).

4.3.2 Computing a path

Several strategies exist that allow a path to be computed. In particular, classical

algorithms for graph-based search, such as Dijkstra’s algorithm or the well-known

A⋆ or its variants (Barr and Feigenbaum, 1981), may be used to calculate the path

from the current node to the goal node as is done in Levitt and Lawton (1990), Ko-

rtenkamp et al. (1994), Kuipers (2000), Scholkopf and Mallot (1995), Nourbakhsh

et al. (1995), Arleo et al. (1999) and Dudek and Jenkin (2000) for example. In prac-

tice, the reasonable size of the maps usually used in robotics affords an efficient use

of such algorithms. It is moreover possible to resort to dynamic programming (Bell-

man, 1957) if the map is too large for such a direct approach to be effective. This

approach exploits Bellman’s principle, i.e. the fact that the optimal path from point

A to point C via point B is the concatenation of the optimal path from point A to

point B, and of the optimal path from point B to point C. Exploiting this property,

dynamic programming allows heuristic functions to be used that avoid seeking ev-

ery possible path leading to the goal from the start place in the map, thus reducing

the computational complexity of path-planning.

Computing a path may also be performed by a simple breadth-first search in a

graph, starting from the goal. This method is also called spreading activation (Mataric,

1992; Bachelder and Waxman, 1995), or wavefront propagation (Murphy, 2000).

33



Metric map of the environment

Start

Goal

Fig. 21. Illustration of spreading activation planning. Starting from the goal node, the action

that guides the robot to the goal is computed for neighboring nodes. This process is then

repeated for the neighbors of these latter nodes. Progressively, an action aiming toward the

goal is associated with each node of the map.

Such expressions are inspired by the fact that the action associated with each node

is calculated in an order resembling the progression of a fluid pouring out of the

goal (Figure 21).

a b

goal goal

salient
states

Fig. 22. The planning strategy presented in Donnart and Meyer (1996a) calls upon a

goal-directed behavior and local obstacle-skirting strategies. After reaching the goal, salient

states are extracted from the performed trajectory and are used to define new planning rules

(Part a). Subsequently, these new rules will define the salient states as intermediate goals,

thus permitting the robot, when starting from the same place and aiming at the same goal,

to reach this goal while avoiding the obstacle from a distance (Part b).

A very different approach is described in Donnart and Meyer (1996a). In this arti-

cle, a classifier system is used to describe the map and to control a robot’s moves.

A set of planning rules decides the robot’s current goal, while a set of reactive

rules determines its actual moves, and a set of mapping rules manages the on-line

building of a topological map with associated metric positions (Filliat and Meyer,

34



2002b). Initially, the robot learns to reach the goal in a straight line. However, if

it encounters an unexpected obstacle on its direct route toward the goal, it skirts

around it thanks to its reactive rules. Then, the resulting trajectory is analyzed, and

so-called salient states are characterized along this trajectory that serve to elaborate

new planning rules. If the robot needs to reach the same goal again, these planning

rules will temporarily change the robot’s goal so that, instead of directly aiming

at it - with the risk of encountering the previous obstacle again - the robot will

now try to pass through the salient states in order to avoid this obstacle from a dis-

tance. When the detour is completed and the obstacle is avoided, the robot resumes

moving directly toward its overall goal (Figure 22).

4.3.3 Computing a universal plan

0

Initial step step 1 step 2

step 4

universal plan

0 0.1

0.1

0 0.1

0.1

0.2

0.2

0 0.1

0.1

0.2

0.2 0.3

0.4

0.6 0.7

0.6

0 0.1

0.1

0.2

0.2 0.3

0.4

0.6 0.7

0.6

0.5

0.8

0 0.1

0.1

0.2

0.2 0.3

0.6

0.6

step 3

step 5

0 0.1

0.1

0.2

0.2 0.3

0.4

0.6 0.6

0.6

0.5

0.8

step 6

0 0.1

0.1

0.2

0.2 0.3

0.4

0.6 0.6

0.6

0.5

0.7

step 7

Fig. 23. Illustration of the algorithm of Thrun (1999) for computing a universal plan. In this

example, moving to a black cell is impossible, moving to a white cell is associated with a

cost of 0.1, while moving to a grey cell is associated with a cost of 0.4. After convergence

of the algorithm, the action associated with each cell is the one leading to the neighboring

cell with the smallest value.

Computing a universal plan, like computing a path, may also be accomplished using

breadth-first search in the graph of the map. However, other algorithms may also be

used. In the systems described by Buhmann et al. (1995), Thrun (1999) and Burgard

et al. (1998), a value Vi is estimated for each node of the map. Initially, the value

of the goal node is set to 0, while the value of every other node is set to ∞. The

algorithm then iteratively updates each node’s value by the smallest value among

its neighbors plus a cost of moving between the two nodes. After convergence, the

value of a node represents the minimal cost of a path leading from this node to the

goal (Figure 23). Then, the action to perform in each node is the one that leads to

35



the neighboring node with the lowest value.

Quoy et al. (1999) present a variant of this method in which the initial value as-

sociated to the goal is 1, while the value associated with any other node is 0. This

value is updated by the highest value among neighboring nodes multiplied by a co-

efficient related to the cost of actually moving from one node to the other. Because

this coefficient may be different for each pair of nodes, it is thus possible to encode

that it is more or less easy to travel between two specific nodes according to the

local properties of the environment. The action associated with each node is then

the action that goes to the neighboring node with the highest value. As a result, the

corresponding trajectory will avoid areas where node transitions are more difficult.

In the model of Burgess et al. (1997) - which is inspired from neurosciences and

from the way spatial information is encoded in a rat’s brain - a robot’s position

is monitored through population vector coding (Georgopoulos et al., 1986), i.e.,

through the computation of a mean position stemming from the activities of nu-

merous place cells. Each such cell somehow expresses the chances of the robot’s

being in a given place in the environment. When the robot reaches a goal place, a

one-shot learning procedure is triggered that associates with each place-cell active

in front of the robot the reverse direction of the robot - i.e., the direction in which to

move to get to the goal from the considered cell. However, it should be noted that

this approach does not work in environments cluttered with obstacles, thus making

it applicable in open areas only.

Models described so far assume that the robot’s position is known precisely. How-

ever, as by Filliat and Meyer (2002b), some models - mostly based on POMDPs

- estimate a probability distribution over the possible positions. Using these prob-

abilities to choose the action to be executed affords additional robustness to the

planning process.

A priori, an optimal plan may be derived from an underlying POMDP model.

This would entail associating an action, not with each node of the map, but with

each probability distribution over map nodes. As a result, a robot could temporar-

ily choose moving away from its goal, should these actions reduce uncertainty in

the position estimates and globally result in a more efficient goal-reaching behav-

ior. However, implementing this strategy is computationally extremely difficult and

cannot be achieved in practice if the map has more than a few dozen nodes.

The probability distribution may nevertheless be taken into account by different

means. A first method is to associate an action with each node in the map as in

the deterministic case, and then to select the action to be carried out according

to the probability distribution of the robot’s positions. For example, Simmons and

Koenig (1995) simply use the A⋆ algorithm to associate an action with each state of

the POMDP model of the environment. The action to be performed is then chosen

according to a voting scheme. Given the current probability distribution represent-

36



ing the robot’s positions, a probability mass is computed for each possible action

as the sum of the probabilities of the states that are associated with this action. The

chosen action is then the action with the highest probability mass. Cassandra et al.

(1996) present a similar method, except that the corresponding plan is estimated

using a probabilistic procedure instead of a deterministic one.

Filliat and Meyer (2002a) also rely on a similar scheme, using a universal plan

determined by a simple breadth-first search algorithm. An additional mechanism is

implemented to continuously check the progression of the robot in order to detect

potential failures to reach the goal. If the progression is stopped before the goal

is reached, the nodes of the map surrounding the current position are excluded

from the planning process and the universal plan is recalculated. This results in a

trajectory that avoids the area where progression is impossible and represents an

alternative route to the goal.

Although these approaches only lead to actions that move the robot toward the

goal, more sophisticated strategies are implemented in Cassandra et al. (1996),

which specify uncertainty-reducing actions. These strategies are based on an es-

timate of the degree of uncertainty attached to the current representation of the

position, which depends on the entropy of the probability distribution representing

the position. The lower the value, the more certain the position. Accordingly, the

chosen action is an action that moves toward the goal when the entropy is low, or

an action that reduces the entropy if it is high. Roy and Thrun. (2000) provides

another example of a similar strategy, named coastal navigation. This expression

stems from the fact that the resulting strategy favors paths that pass near obstacles,

rather than paths that cross large open areas because, as for a boat, these paths are

easier to follow and less prone to localization errors.

4.3.4 Learning a universal plan

Learning a universal plan may be performed in the broader context of reinforcement

learning (Sutton and Barto, 1998). Instead of deterministically scanning a map in

order to evaluate every possible move, this approach calls upon a series of random

explorations, either of the environment or of the map, and incrementally elaborates

statistics about the chances that a specific move in a specific place will ultimately

lead to the goal - i.e., to a place where a reward is obtained. A particular instance of

such a strategy entails computing, for each state-action pair (s, a), a value Q(s, a)
that corresponds to the maximal expected reward the robot could gain when taking

action a in state s. Once such a function has been learned, an exploitation strategy

may be derived - like choosing the action associated with the highest expected

reward in each possible robot’s state.

In the context of path-planning, in the biomimetic model of Arleo and Gerstner

(2000) for instance, the states s correspond to the robot’s positions, while the pos-

37



Real environment

Map nodes

Expected future reward after action

Expected reward in the position

north south east west

si

ja

Wij

Fig. 24. Illustration of the structure of the model of Arleo and Gerstner (2000). Four action

nodes are connected with the map nodes, each evaluating the reward to be expected when

the corresponding action is performed at the corresponding place. The learning process

modifies the Wij connections so that such evaluations become increasingly accurate over

time. An additional node allows it to learn the reward gained at the current position, so as

to be able to detect if the goal subsequently changes.

sible actions a correspond to going north, east, south or west (Figure 24). A reward

is associated with the goal cell. After learning, the robot chooses at each step the

action that corresponds to the highest expected reward. In this case, learning a plan

entails wandering in the actual environment until reaching the goal and receiving a

reward. The expected reward Q(s, a) is then updated for all the positions encoun-

tered before reaching the goal using the Q-learning algorithm (Sutton and Barto,

1998).

Moreover, when the reward is assigned to a different goal, the robot must detect

that its goal has changed in order to change its plan accordingly. This is achieved in

Arleo and Gerstner’s model by a mechanism that learns which reward should be ex-

perienced in each position of the map. This mechanism therefore makes it possible

to detect when this reward has changed, and when to restart the learning process.

It seems to have a neuro-physiological counterpart in dopaminergic neurons found

in mammalian brains that might detect when an actual reward does not match the

expected one (Shultz et al., 1997).

4.4 Planning in continuous space

When metric maps are used, it is possible to plan directly in continuous space,

without resorting to discretization. Instead, a function that indicates where to move

to reach the goal is calculated in each point of the free space. This function provides

information similar to universal plans mentioned in previous sections.

38



The basic tool to implement such a method is the potential field (Latombe, 1991;

Arkin, 1998). In this approach, the function that is calculated at each point is the

sum of an attractive potential emitted by the goal and of repulsive potentials emitted

by obstacles. A gradient-ascent strategy is applied to the resulting potential, thus

guiding the robot to the goal. However, this basic scheme often produces functions

that exhibit local minima, thus preventing the robot from reaching the goal in ev-

ery situation. Additionally, this scheme may lead to oscillatory movements in the

presence of specific obstacles (Koren and Borenstein, 1991b).

Several methods have been devised to avoid these local minima issues. It is for

example possible to use the potential field approach to guide a higher-level plan-

ner (Latombe, 1991) whose task is to avoid the local minima. Another technique,

named randomized path planner, triggers a random walk when a local minimum is

reached, until the robot escapes from it, before reverting to gradient ascent (Latombe,

1991).

Another possible strategy to avoid these issues is to design alternative potential

functions that do not exhibit local minima. This is, for example, the case with har-

monic potential field functions, i.e., functions that are solution of Laplace’s equa-

tion (Dudek and Jenkin, 2000). However, determining such a function is compu-

tationally difficult, which makes this approach applicable to small environments

only.

5 Discussion

To be able to purposively navigate in an initially unknown environment is a com-

plex task for an animal or a robot, and this task raises numerous issues of per-

ception, categorization and motor control that must all be solved in an integrated

manner to ensure survival. Among the different ways an animat may categorize its

perceptions to build an internal representation of its environment, and then to use

this representation for navigation, some are clearly better suited than others, de-

pending upon the characteristics of the environment, the nature and reliability of

the allothetic or idiothetic sensors that the animat may call upon, and the possibili-

ties it has to move itself or to perceptually scan the surroundings.

Likewise, among the different ways an animat may react to circumstances jeopar-

dizing the successful achievement of a map suitable for navigation, some are clearly

more appropriate than others, depending upon the circumstances in question, upon

the internal representation that is used, and upon the navigation strategy that is im-

plemented. Among such circumstances, the case of errors during the localization

process has been dealt with in Filliat and Meyer (2002b), while that of errors dur-

ing the incremental building of a map has been discussed earlier in this paper. In

both cases, even if general techniques are reused in various systems, each correc-

39



tive procedure thus implemented was tailored to a specific robot - with its specific

sensory-motor equipment - and to the specific kind of map it was building. In other

words, because integrated solutions must be sought and implemented, it is highly

probable that any such corrective procedure would simply not work with another

robot or another type of map. This is clearly the case when strong assumptions are

made on the environment (for example the assumption of orthogonal walls), but

is also often the case with general algorithms that rely on so many aspects of the

whole system that the individual effect of each particular aspect cannot be fully

controlled.

Once a reliable map of the environment has been learned, planning procedures

may be triggered and a trajectory leading from the current place to its goal may

be followed by the animat. However, various additional circumstances may still

jeopardize the successful achievement of this latter task. In particular, some unex-

pected obstacle or specific danger may be encountered that must activate a detour

procedure.

actual path

direction to moveplace

S

G

S

G

new obstacle

a) b)

Fig. 25. Navigation according to a Place Recognition-Triggered Response strategy calls

upon places and directions recorded in an animat’s cognitive map. a) Starting from place

S and moving in the associated direction, the animat will successively reach other places

from which it will be directed toward the goal place G. b) If an obstacle is encountered on

its way, the animat has to wander around until it reaches a known place from which it will

be directed toward the goal again. After Trullier et al. (1997).

In such circumstances, an animat only able to derive from its mapping and planning

capacities the place in which it is located and the action it must perform in order to

get closer to its goal would resort to a mere Place Recognition-Triggered Response

navigation strategy (Trullier et al., 1997). Because explicit links between map po-

sitions aren’t exploited by this strategy, the animat cannot anticipate to which new

place a specific move from the current place will lead, and therefore it cannot ex-

periment the consequences of specific moves in its head. Consequently, if a danger

or an obstacle is encountered while moving, then the animat is committed to resort

to low-level local-avoidance procedures to skirt around the corresponding zone,

thus incurring the risk of reaching unknown places, with which no dedicated goal-

40



seeking actions are attached. The animat will survive or fulfill its mission if its

skirting behavior drives it to a place already recorded in its map, from which the

right move to resume goal-seeking is already known (Figure 25). Referring to the

introduction, this strategy only calls upon past and present information to ensure

survival. Again, its ultimate success depends upon the animat’s allothetic sensors

and the degree of perceptual aliasing experienced in the environment, of the quality

of the idiothetic sensors used to monitor the animat’s odometry, and more gener-

ally of the integrated approach that has been used to build its map. Two systems

illustrating these points are those of Arleo and Gerstner (2000) and Burgess et al.

(1997).

S

G

new obstacle

place

actual path

links between two places

a)

S

G

b)

Fig. 26. Navigation according to a Topological strategy calls upon places and links recorded

in an animat’s cognitive map. a) Starting from place S and following successive links, the

animat will reach the goal place G. b) If an obstacle is encountered on its way, the animat

may plan and follow an alternative path to the goal. However, such an alternative path can

only pass through already known places. After Trullier et al. (1997).

On the contrary, if an animat resorting to a Topological Navigation strategy (Trullier

et al., 1997) and following a planned path encounters an unexpected obstacle or

danger, it may exploit the links of its topological map to compute from scratch

a new path leading to its goal (Figure 26). This strategy takes into account not

only the current situation, but also recorded places and links, on the one hand, and

expected consequences of specific moves, on the other hand. In other words, it

combines the past, the present and the future at once. However, it should be noted

that the detours it generates necessarily pass through places already recorded in

the animat’s map. Naturally, should an animat following such a detour nevertheless

get lost for whatever reason, it could also resort to mere chance to reach its goal

as mentioned above. Examples of models resorting to Topological Navigation are

those of Filliat and Meyer (2002a), Simmons and Koenig (1995) and Nourbakhsh

et al. (1995).

Still more powerful adaptive capacities are afforded to animats relying on a Metric

Navigation strategy (Trullier et al., 1997) that makes it possible to plan detours or

41



detour

shortcut

S

G

unknown area

S

G

usual path

modified pathnew obstacle

a) b)

Fig. 27. Navigation according to a Metric strategy makes metric detours and metric short-

cuts possible. a) If an obstacle prevents direct access to the goal G, an animat may plan a

metric detour to get to it. b) To shorten its path to the goal, an animat may plan a metric

shortcut. In both cases, such detours and shortcuts may pass through yet unknown places.

After Trullier et al. (1997).

shortcuts passing through places that the animat has never encountered before (Fig-

ure 27). Such capacities are afforded by vector manipulations, which are possible

within the framework of metric map and space. Here again, experiences in the head

and evaluations of future consequences are possible, and the corresponding pro-

cedures may also be complemented by mere chance. Metric Navigation has been

implemented in the systems described by Donnart and Meyer (1996b), Arleo et al.

(1999) and Yamauchi et al. (1998) for example.

6 Conclusion

Numerous map-learning and path-planning strategies implemented on autonomous

robots have been described in this article. By necessity, each such implementa-

tion was carefully tailored to the specific robot used - notably to the capacities

and limitations of its sensory-motor equipment - and to the specific environment

experienced. Without such careful integration, no navigation system stands any

chance of ensuring an animal’s survival or a robot’s mission under changing and

unpredictable circumstances. A hierarchy of navigation strategies has been out-

lined, together with the sort of adaptive capacities each affords to cope with such

circumstances. Animats resorting to a mere Place Recognition-Triggered Response

strategy essentially capitalize on reflexes and chance to reach their goal when en-

countering an unexpected obstacle or danger. Animats resorting to a Topological

Navigation strategy may mentally plan a detour and take into account the expected

consequences of their acts, but such detours will pass through places already rec-

ognized. Lastly, the detours that may be planned by animats resorting to a Metric

42



Navigation strategy may entail passing through new places, not yet recorded in the

animat’s internal map.

Acknowledgements

The authors are indebted to anonymous reviewers who greatly helped improving

the article. This work was supported by Robea, an interdisciplinary program of the

French Centre National de la Recherche Scientifique.

References

Arkin, R., 1989. Towards the unification of navigational planning and reactive

control. In: Proceedings of the AAAI Spring Symposium on Robot Navigation.

AAAI Press, pp. 1–5.

Arkin, R., 1998. Behavior-based robotics. The MIT Press.

Arleo, A., del R. Millán, J., Floreano, D., 1999. Efficient learning of variable-

resolution cognitive maps for autonomous indoor navigation. IEEE Transactions

on Robotics and Automation 15 (6), 990–1000.

Arleo, A., Gerstner, W., 1999. Neuro-mimetic navigation systems : A computa-

tional model of the rat hippocampus. In: Drogoul, A., Meyer, J. A. (Eds.), Intel-

ligence Artificielle Située. Hermès, pp. 193–211.

Arleo, A., Gerstner, W., 2000. Spatial cognition and neuro-mimetic navigation : A

model of hippocampal place-cell activity. Biological Cybernetics, Special Issue

on Navigation in Biological and Artificial Systems 83, 287–299.

Ayache, N., Faugeras, O., 1989. Maintaining representations of the environment of

a mobile robot. IEEE Transactions on Robotics and Automation 5 (6), 804 – 819.

Bachelder, I. A., Waxman, A. M., 1995. A view-based neurocomputational system

for relational map-making and navigation in visual environments. Robotics and

Autonomous Systems 16, 267–298.

Balakrishnan, K., Bousquet, O., Honavar, V., 1999. Spatial learning and localiza-

tion in rodents : A computation model of the hippocampus and its implications

for mobile robots. Adaptive Behavior 7 (2), 173–216.

Barr, A., Feigenbaum, E., 1981. The handbook of artificial intelligence. Pitman

books.

Basye, K., Dean, T., Vitter, J. S., 1997. Coping with uncertainty in map-learning.

Machine Learning 29 (1), 65–88.

Bellman, R. E., 1957. Dynamic programming. Princeton University Press.

Borghi, G., Brugali, D., 1995. Autonomous map-learning for a multi-sensor mobile

robot using diktiometric representation and negotiation mechanism. In: Proceed-

ings of the International Conference on Advanced Robotics (ICAR-95). IEEE

Press, pp. 521–528.

43



Brooks, R. A., 1991. Intelligence without representation. Artificial Intelli-

gence (47), 139–159.

Buhmann, J., Burgard, W., Cremers, A. B., Fox, D., Hofmann, T., Schneider, F.,

Strikos, J., Thrun, S., 1995. The mobile robot rhino. AI Magazine 16 (1), 31–38.

Burgard, W., Cremers, A. B., Fox, D., Hähnel, D., Lakemeyer, G., Schulz, D.,

Steiner, W., Thrun, S., 1998. The interactive museum tour-guide robot. In: Pro-

ceedings of the Fifteenth National Conference on Artificial Intelligence (AAAI-

98). The MIT Press.

Burgard, W., Fox, D., Jans, H., Matenar, C., Thrun, S., 1999. Sonar-based map-

ping of large-scale mobile robot environments using EM. In: Proceeding of the

International Conference on Machine Learning (ICML-99). ProBook.

Burgess, N., Donnett, J., Jeffery, K., O’Keefe, J., 1997. Robotic and neuronal sim-

ulation of the hippocampus and rat navigation. Philosophical Transactions of the

Royal Society B 352, 1535–1543.

Cassandra, A. R., Kaelbling, L. P., Kurien, J. A., 1996. Acting under uncer-

tainty : Discrete bayesian models for mobile-robot navigation. In: Proceedings

of IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE

Press, pp. 963–972.

Castellanos, J. A., Montiel, J. M. M., Neira, J., Tardos, J. D., 1999. The spmap : A

probabilistic framework for simultaneous localization and map building. IEEE

Transactions on Robotics and Automation 15 (5), 948–953.

Chatila, R., Laumond, J., 1985. Position referencing and consistent world mod-

elling for mobile robots. In: Proceedings of the IEEE International Conference

on Robotics and Automation (ICRA-85). IEEE Press, pp. 138–170.

Cliff, D., Husbands, P., Meyer, J. A., Wilson, S. W. (Eds.), 1994. From Animals to

Animats 3. Proceedings of the Third International Conference on Simulation of

Adaptive Behavior. The MIT Press/Bradford Books.

Cox, I. J., 1991. Blanche - an experiment in guidance and navigation of an au-

tonomous robot vehicle. IEEE Transactions on Robotics and Automation 7 (2),

193–204.

Craik, K., 1943. The nature of explanation. Cambridge University Press.

Dedeoglu, G., Mataric, M., Sukhatme, G. S., 1999. Incremental, online topological

map building with a mobile robot. In: Proceedings of Mobile Robots XIV - SPIE.

Society of Photo Optical, pp. 129–139.

Donnart, J. Y., Meyer, J. A., 1996a. Learning reactive and planning rules in a moti-

vationally autonomous animat. IEEE Transactions on Systems, Man, and Cyber-

netics - Part B: Cybernetics 26 (3), 381–395.

Donnart, J. Y., Meyer, J. A., 1996b. Spatial exploration, map learning, and self-

positioning with monalysa. In: From Animals to Animats 4. Proceedings of the

Fourth International Conference on Simulation of Adaptive Behavior (SAB-96).

The MIT Press, pp. 204–213.

Dubois, D., Prade, H., 1986. Possibility theory : An approach to computerized pro-

cessing of uncertainty. Plenum Press.

Duckett, T., Marsland, S., Shapiro, J., 2000. Learning globally consistent maps

by relaxation. In: Proceedings of the International Conference on Robotics and

44



Automation (ICRA’2000). IEEE Press, pp. 3841 – 3846.

Duckett, T., Nehmzow, U., 1997. Experiments in evidence based localisation for a

mobile robot. In: Proceedings of the AISB 97 workshop on Spatial Reasoning in

Animals and Robots. Springer.

Dudek, G., Jenkin, M., 2000. Computational principles of mobile robotics. Cam-

bridge University Press.

Dudek, G., Jenkin, M., Milios, E., Wilkes, D., 1997. Map validation and robot

self-location in a graph-like world. Robotics and Autonomous Systems 22 (2),

159–178.

Engelson, S. P., 1995. Continuous map learning for mobile robots, extended Ab-

stract for the 3rd French-Israeli Symposium on Robotics.

Engelson, S. P., McDermott, D. V., 1992. Error correction in mobile robot map-

learning. In: Proceedings of the IEEE International Conference on Robotics and

Automation (ICRA-92). IEEE Press, pp. 2555–2560.

Feder, H., Leonard, J., Smith, C., 1999. Adaptive mobile robot navigation and map-

ping. International Journal of Robotics Research 18 (7), 650–668.

Filliat, D., Meyer, J. A., 2002a. Global localization and topological map learning

for robot navigation. In: From Animals to Animats 7. The Seventh International

Conference on simulation of adaptive behavior (SAB02).

Filliat, D., Meyer, J. A., 2002b. Map-based navigation in mobile robots - i. a review

of localisation strategies. Journal of Cognitive Systems Research, submitted for

publication.

Franz, M., Scholkopf, B., Georg, P., Mallot, H., Bulthoff, H., 1998. Learning view

graphs for robot navigation. Autonomous Robots 5, 111–125.

Gasós, J., Martín, A., 1997. Mobile robot localization using fuzzy maps. In: Martin,

T., Ralescu, A. (Eds.), Fuzzy Logic in AI - Selected papers from the IJCAI ’95

Workshop. No. 1188 in LNCS. Springer-Verlag, pp. 207–224.

Gaussier, P., Leprêtre, S., Joulain, C., Revel, A., Quoy, M., Banquet, J. P., 1998.

Animal and robot learning : Experiments and models about visual navigation. In:

Proceedings of the Seventh European Workshop on Learning Robots. Springer

Verlag.

Georgopoulos, A. P., Schwartz, A. B., Kettner, R. E., 1986. Neuronal population

coding of movement direction. Science 233, 1416–1419.

Gutmann, J., Konolige, K., 2000. Incremental mapping of large cyclic environ-

ments. In: Proceedings of the IEEE International Symposium on Computational

Intelligence in Robotics and Automation (CIRA-2000). IEEE Press.

Hafner, V. V., 2000. Learning places in newly explored environments. In: From

Animals to Animats 6. Proceedings of the Sixth International Conference on

Simulation of Adaptive Behavior (SAB2000). Proceedings Supplement. ISAB

pub, pp. 111–120.

Hallam, B., Floreano, D., Hallam, J., Hayes, G., Meyer, J. A. (Eds.), 2002. From

Animals to Animats 7. The Seventh International Conference on simulation of

adaptive behavior (SAB02). The MIT Press.

Hébert, P., Betgé-Brezetz, S., Chatila., R., 1995. Probabilistic map learning : Ne-

cessity and difficulties. In: Dorst, L., van Lambalgen, M., Voorbraak, F. (Eds.),

45



Reasoning with Uncertainty in Robotics. No. 1093 in LNCS. Springer, pp. 307–

321.

Hébert, P., Betgé-Brezetz, S., Chatila, R., 1996. Decoupling odometry and extero-

ceptive perception in building a global world map of a mobile robot : The use of

local maps. In: Proceedings of the IEEE International Conference on Robotics

and Automation (ICRA-1996). IEEE Press, pp. 757–764.

Hughes, K., Murphy, R. R., 1992. Ultrasonic robot localization using dempster-

shafer theory. In: SPIE Stochastic Methods in Signal Processing, Image Pro-

cessing, and Computer Vision, invited session on Applications for Vision and

Robotics. Society of Photo Optical.

Koren, Y., Borenstein, J., 1991a. Histogramic in-motion mapping for mobile robot

obstacle avoidance. IEEE Transaction on Robotics and Automation 7 (4), 535–

539.

Koren, Y., Borenstein, J., 1991b. Potential field methods and their inherent limi-

tations for mobile robot navigation. In: Proceedings of the IEEE International

Conference on Robotics and Automation. IEEE Press, pp. 1398–1404.

Kortenkamp, D., Huber, M., Koss, F., Belding, W., Lee, J., Wu, A., Bidlack, C.,

Rogers, S., 1994. Mobile robot exploration and navigation of indoor spaces using

sonar and vision. In: Proceedings of the AIAA/NASA Conference on Intelligent

Robots in Field, Factory, Service, and Space (CIRFFSS 94). AIAA, pp. 509–519.

Kortenkamp, D., Weymouth, T., 1994. Topological mapping for mobile robots us-

ing a combination of sonar and vision sensing. In: Proceedings of the Twelfth

National Conference on Artificial Intelligence (AAAI-94). The MIT Press, pp.

979–984.

Kuipers, B. J., 2000. The spatial semantic hierarchy. Artificial Intelligence (119),

191–233.

Kuipers, B. J., Byun, Y. T., 1991. A robot exploration and mapping strategy based

on a semantic hierarchy of spatial representations. Robotics and Autonomous

Systems 8, 47–63.

Kunz, C., Willeke, T., Nourbakhsh, I., 1997. Automatic mapping of dynamic office

environments. In: Proceedings of the IEEE International Conference on Robotics

and Automation (ICRA-97). Vol. 2. IEEE Press, pp. 1681–1687.

Kurz, A., 1995. Alef : An autonomous vehicle which learns basic skills and con-

struct maps for navigation. Robotics and Autonomous Systems 14, 172–183.

Latombe, J.-C., 1991. Robot motion planning. Boston: Kluwer Academic Publish-

ers.

Laumond, J.-P., 1998. Robot motion planning and control. Lectures Notes in Con-

trol and Information Sciences 229. Springer.

Leonard, J. J., Durrant-Whyte, H. F., Cox, I. J., 1992. Dynamic map building for

an autonomous mobile robot. International Journal of Robotics Research 11 (4),

89–96.

Leonard, J. J., Feder, H., 1999. A computationally efficient method for large-scale

concurrent mapping and localization. In: Proceedings of the Ninth International

Symposium on Robotics Research. Springer-Verlag.

Levitt, T. S., Lawton, D. T., 1990. Qualitative navigation for mobile robots. Artifi-

46



cial Intelligence 44, 305–360.

Lu, F., Milios, E., 1997. Globally consistent range scan alignment for environment

mapping. Autonomous Robots 4, 333–349.

Maes, P., Mataric, M., Meyer, J. A., Pollack, J., Wilson, S. W. (Eds.), 1996. From

Animals to Animats 4. Proceedings of the Fourth International Conference on

Simulation of Adaptive Behavior. The MIT Press/Bradford Books.

Mataric, M. J., 1992. Integration of representation into goal-driven behaviour-based

robots. IEEE Transactions on Robotics and Automation 8 (3), 304–312.

McFarland, D., Bösser, T., 1993. Intelligent behavior in animals and robots. The

MIT Press.

McLachlan, G. J., Krishnan, T., 1997. The EM algorithm an extensions. Wiley.

Mel, B. W., 1995. Animal behavior in four components. In: Roitblat, H., Meyer,

J. A. (Eds.), Comparative Approaches to Cognitive Science. The MIT Press.

Meyer, J. A., Berthoz, A., Floreano, D., Roitblat, H., Wilson, S. W. (Eds.), 2000.

From Animals to Animats 6. Proceedings of the Sixth International Conference

on Simulation of Adaptive Behavior. The MIT Press.

Meyer, J. A., Roitblat, H., Wilson, S. W. (Eds.), 1993. From Animals to Animats 2.

Proceedings of the Second International Conference on Simulation of Adaptive

Behavior. The MIT Press/Bradford Books.

Meyer, J. A., Wilson, S. W. (Eds.), 1991. From Animals to Animats. Proceedings

of the First International Conference on Simulation of Adaptive Behavior. The

MIT Press/Bradford Books.

Moravec, H., Elfes, A., 1985. High resolution maps from wide angular sensors. In:

Proceedings of the IEEE International Conference On Robotics and Automation

(ICRA-85). IEEE Press, pp. 116–121.

Moutarlier, P., Chatila, R., 1990. An experimental system for incremental environ-

ment modeling by an autonomous mobile robot. In: Experimental Robotics 1.

Springer-Verlag, pp. 327–346.

Murphy, R. R., 2000. Introduction to AI robotics. The MIT Press.

Nehmzow, U., Owen, C., 2000. Robot navigation in the real world : Experiments

with manchester’s fortytwo in unmodified, large environments. Robotics and Au-

tonomous Systems 33 (4), 223–242.

Nourbakhsh, I., Powers, R., Birchfield, S., 1995. Dervish, an office navigating

robot. AI Magazine 16 (2), 53–60.

Oore, S., Hinton, G., Dudek, G., 1997. A mobile robot that learns its place. Neural

Computation 9, 683–699.

Pfeifer, R., Blumberg, B., Meyer, J. A., Wilson, S. W. (Eds.), 1998. From Animals

to Animats 5. Proceedings of the Fifth International Conference on Simulation

of Adaptive Behavior. The MIT Press/Bradford Books.

Quoy, M., Gaussier, P., Lepretre, S., Revel, A., 1999. A neural model for the visual

navigation and planning of a mobile robot. In: Proceedings of the fifth european

conference on artificial life - ECAL99. Springer.

Remolina, E., Kuipers, B., 2001. A logical account of causal and topological maps.

In: Proceedings of the Seventeenth International Joint Conference on Artificial

Intelligence (IJCAI-01). Morgan Kaufman Pub.

47



Roy, N., Thrun., S., 2000. Coastal navigation for mobile robots. Advances in Neural

Information Processing Systems 12.

Scholkopf, B., Mallot, H. A., 1995. View-based cognitive mapping and path plan-

ning. Adaptive Behavior 3 (3), 311–348.

Schoppers, M. J., 1987. Universal plans for reactive robots in unpredictable envi-

ronments. In: Proceedings of the 10th International Joint Conference on Artificial

Intelligence (IJCAI 87). William Kaufmann, pp. 1039–1046.

Sharp, P. E., 1991. Computer simulation of hippocampal place cells. Psychobiology

19 (2), 103–115.

Shatkay, H., Kaelbling, L. P., 2002. Learning geometrically-constrained hidden

markov models for robot navigation: Bridging the topological-geometrical gap.

Journal of Artificial Intelligence Research (JAIR).

Shultz, W., Dayan, P., Montague, P., 1997. A neural substrate of prediction and

reward. Science 275, 1593–1599.

Simmons, R., Koenig, S., 1995. Probabilistic navigation in partially observable en-

vironments. In: Proccedings of IJCAI’95. Morgan Kaufman Pub, pp. 1080–1087.

Simmons, R., Koenig, S., 1996. Unsupervised learning of probabilistic models

for robot navigation. In: Proceedings of the IEEE International Conference on

Robotics and Automation (ICRA-1996). IEEE Press, pp. 2301–2308.

Smith, R., Self, M., Cheeseman, P., 1988. Estimating uncertain spatial relationships

in robotics. In: Uncertainty in Artificial Intelligence. Elsevier, pp. 435–461.

Sutton, R. S., Barto, A. G., 1998. Reinforcement learning : An introduction. The

MIT Press.

Theocharous, G., Rohanimanesh, K., Mahadevan, S., 2001. Learning hierarchical

partially observable markov decision processes for robot navigation. In: Proceed-

ings of the IEEE Conference on Robotics and Automation (ICRA-2001). IEEE

Press.

Thrun, S., 1999. Learning metric-topological maps for indoor mobile robot naviga-

tion. Artificial Intelligence 99(1), 21–71.

Thrun, S., Burgard, W., Fox, D., 2000. A real-time algorithm for mobile robot

mapping with applications to multi-robot and 3d mapping. In: Proceedings of

the IEEE International Conference on Robotics and Automation (ICRA-2000).

IEEE Press, pp. 321–328.

Thrun, S., Fox, D., Burgard, W., 1998. A probabilistic approach to concurrent map-

ping and localization for mobile robots. Machine Learning 31, 29–53, joint issue

with Autonomous Robots 5.

Todd, P., Wilson, S., Somayaji, A., Yanco, H., 1994. The blind breeding the blind:

Adaptive behavior without looking. In: Proceedings of the Third International

Conference on Simulation of Adaptive Behavior: From Animals to Animats 3.

The MIT Press.

Tolman, E. C., 1948. Cognitive maps in rats and men. Psychological Review 55,

189–208.

Tolman, E. C., Honzik, C. H., 1930. "insight" in rats. University of California Pub-

lications in Psychology 4, 215–232.

Touretzky, D. S., Wan, H. S., Redish, A. D., 1994. Neural representations of space

48



in rats and robots. In: Zurada, J. M., Marks, R. J., Robinson, C. J. (Eds.), Com-

putational Intelligence : Imitating Life. IEEE Press, pp. 57–68.

Trullier, O., Wiener, S., Berthoz, A., Meyer, J. A., 1997. Biologically-based arti-

ficial navigation systems : Review and prospects. Progress in Neurobiology 51,

483–544.

Von Wichert, G., 1998. Mobile robot localization using a self-organised visual en-

vironment representation. Robotics and Autonomous Systems 25, 185–194.

Yamauchi, B., Beer, R., 1996. Spatial learning for navigation in dynamic environ-

ments. IEEE Transactions on Systems, Man, and Cybernetics-Part B. Special

Issue on Learning Autonomous Robots 26 (3), 496–505.

Yamauchi, B., Langley, P., 1997. Place recognition in dynamic environments. Jour-

nal of Robotic Systems, Special Issue on Mobile Robots 14 (2), 107–120.

Yamauchi, B., Schultz, A., Adams, W., 1998. Mobile robot exploration and map-

building with continuous localization. In: Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA-98).

Yamauchi, B., Schultz, A., Adams, W., 1999. Integrating exploration and localiza-

tion for mobile robots. Adaptive Behavior 7 (2), 217–230.

49


