

The domination number of Cartesian product of two directed paths

Michel Mollard

► To cite this version:

Michel Mollard. The domination number of Cartesian product of two directed paths. Journal of Combinatorial Optimization, 2014, 27 (1), pp.144-151. hal-00655403

HAL Id: hal-00655403 https://hal.science/hal-00655403v1

Submitted on 29 Dec 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

The domination number of Cartesian product of two directed paths

Michel Mollard*

Institut Fourier 100, rue des Maths 38402 St martin d'hères Cedex FRANCE michel.mollard@ujf-grenoble.fr

	Abstract
pat] for	Let $\gamma(P_m \Box P_n)$ be the domination number of the Cartesian product of directed hs P_m and P_n for $m, n \ge 2$. In [13] Liu and al. determined the value of $\gamma(P_m \Box P_n)$ arbitrary n and $m \le 6$. In this work we give the exact value of $\gamma(P_m \Box P_n)$ for m, n and exhibit minimum dominating sets.
	AMS Classification[2010]:05C69,05C38.
Pat	Keywords : Directed graph, digraph, Cartesian product, Domination number, hs.
1	Introduction and definitions
	Let $G = (V, E)$ be a finite directed graph (digraph for short) without loops or tiple arcs.
set	A vertex u dominates a vertex v if $u = v$ or $uv \in E$. A set $S \subset V$ is a dominating of G if any vertex of G is dominated by at least a vertex of S . The domination obser of G , denoted by $\gamma(G)$ is the minimum cardinality of a dominating set. The

the classical domination notion for undirected graphs. 22 The determination of domination number of a directed or undirected graph is, in general, a difficult question in graph theory. Furthermore this problem has connec-24 tions with information theory. For example the domination number of Hypercubes is linked to error-correcting codes. Among the lot of related works ([7], [8]) mention 26 the special case of domination of Cartesian product of undirected paths or cycles ([1] to [6], [9], [10]).

28

2

4

6

8

10

12

14

16

18

20

set V is a dominating set thus $\gamma(G)$ is finite. These definitions extend to digraphs

^{*}CNRS Université Joseph Fourier

For two digraphs, $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$, the Cartesian product $G_1 \square G_2$ is the digraph with vertex set $V_1 \times V_2$ and $(x_1, x_2)(y_1, y_2) \in E(G_1 \square G_2)$ if and only if $x_1y_1 \in E_1$ and $x_2 = y_2$ or $x_2y_2 \in E_2$ and $x_1 = y_1$. Note that $G \square H$ is isomorphic to $H \square G$.

The domination number of Cartesian product of two directed cycles have been recently investigated ([11], [12], [14], [15]). Even more recently, Liu and al.([13]) began the study of the domination number of the Cartesian product of two directed paths P_m and P_n . They proved the following result

Theorem 1 Let $n \ge 2$. Then

 $\bullet \ \gamma(P_2 \Box P_n) = n$

30

32

34

36

40

42

- $\gamma(P_3 \Box P_n) = n + \lceil \frac{n}{4} \rceil$
- $\gamma(P_4 \Box P_n) = n + \lceil \frac{2n}{3} \rceil$
 - $\gamma(P_5 \Box P_n) = 2n + 1$

•
$$\gamma(P_6 \Box P_n) = 2n + \lceil \frac{n+2}{3} \rceil.$$

In this paper we are able to give a complete solution of the problem. In Theorem 2 we determine the value of $\gamma(P_m \Box P_n)$ for any $m, n \ge 2$. When m grows, the cases approach appearing in the proof of Theorem 1 seems to be more and more complicated. We proceed by a different and elementary method, but will assume that Theorem 1 is already obtained (at least for $m \le 5$ and arbitrary n). In the next section we describe three dominating sets of $P_m \Box P_n$ corresponding to the different values of m modulo 3. In the last section we prove that these dominating sets are minimum and deduce our main result:

Theorem 2 Let $n \ge 2$. Then

- $\gamma(P_{3k} \Box P_n) = k(n+1) + \lfloor \frac{n-2}{3} \rfloor$ for $k \ge 2$ and $n \ne 3$
- $\gamma(P_{3k+1} \Box P_n) = k(n+1) + \lceil \frac{2n-3}{3} \rceil$ for $k \ge 1$ and $n \ne 3$
- $\gamma(P_{3k+2} \Box P_n) = k(n+1) + n \text{ for } k \ge 0 \text{ and } n \ne 3$
- $\gamma(P_3 \Box P_n) = \gamma(P_n \Box P_3) = n + \lceil \frac{n}{4} \rceil.$

56

52

54

58

60

62

We will follow the notations used by Liu and al. and refer to their paper for a more complete description of the motivations. Let us recall some of these notations. We denote the vertices of a directed path P by the integers $\{0, 1, \dots, n-1\}$

We denote the vertices of a directed path P_n by the integers $\{0, 1, \ldots, n-1\}$. For any i in $\{0, 1, \ldots, n-1\}$, P_m^i is the subgraph of $P_m \Box P_n$ induced by the vertices $\{(k, i) \mid k \in \{0, 1, \ldots, m-1\}\}$. Note that P_m^i is isomorphic to P_m . Notice also that $P_m \Box P_n$ is isomorphic to $P_n \Box P_m$ thus $\gamma(P_m \Box P_n) = \gamma(P_n \Box P_m)$. A vertex $(a, b) \in P_m^b$ can be dominated by (a, b), $(a - 1, b) \in P_m^b$ (if $a \ge 1$), $(a, b - 1) \in P_m^{b-1}$ (if $b \ge 1$).

2 Three Dominating sets

64

We will first study $P_{3k} \Box P_n$ for $k \ge 1$ and $n \ge 2$. Consider the following sets of vertices of P_{3k} .

66	• $X = \{0, 1, 3, 4, \dots, 3k - 3, 3k - 2\} = \{3i/i \in \{0, 1, \dots, k - 1\}\} \cup \{3i + 1/i \in \{0, 1, \dots, k - 1\}\}$
68	• $Y = \{2, 5, 8, \dots, 3k - 1\} = \{3i + 2/i \in \{0, 1, \dots, k - 1\}\}$
	• $I = \{0, 3, 6, \dots, 3k - 3\} = \{3i/i \in \{0, 1, \dots, k - 1\}\}$
70	• $J = \{1, 4, 7, \dots, 3k - 2\} = \{3i + 1/i \in \{0, 1, \dots, k - 1\}\}$
	• $K = \{0, 2, 5, 8 \dots, 3k - 1\} = \{0\} \cup \{3i + 2/i \in \{0, 1, \dots, k - 1\}\}.$
72	
	Let D_n (see Figure 1) be the set of vertices of $P_{3k} \Box P_n$ consisting of the vertices

Figure 1: The dominating set D_n

• (a,0) for $a \in X$

76

78

80

82

84

86

- (a,1) for $a \in Y$
- (a, b) for $b \equiv 2 \mod 3$ $(2 \le b < n)$ and $a \in I$
- (a,b) for $b \equiv 0 \mod 3$ $(3 \le b < n)$ and $a \in J$
- (a,b) for $b \equiv 1 \mod 3$ $(4 \le b < n)$ and $a \in K$.

Lemma 3 For any $k \ge 1$, $n \ge 2$ the set D_n is a dominating set of $P_{3k} \Box P_n$ and $|D_n| = k(n+1) + \lfloor \frac{n-2}{3} \rfloor$.

Proof: It is immediate to verify that

- All vertices of P_{3k} are dominated by the vertices of X
- The vertices of P_{3k} not dominated by some of Y are $\{0, 1, 4, \dots, 3k-2\} \subset X$
- The vertices of P_{3k} not dominated by some of I are $\{2, 5, \ldots, 3k 1\} = Y \subset K$
- The vertices of P_{3k} not dominated by some of J are $\{0, 3, 6, \dots, 3k 3\} \subset I$

• The vertices of P_{3k} not dominated by some of K are $\{4, 7, \ldots, 3k-2\} \subset J$.

Therefore any vertex of some P_{3k}^i is dominated by a vertex in $P_{3k}^i \cap D_n$ or in $P_{3k}^{i-1} \cap D_n$ (if $i \ge 1$). Furthermore |X| = 2k, |Y| = |I| = |J| = k, and |K| = k + 1 thus $|D_n| = k(n+1) + \lfloor \frac{n-2}{3} \rfloor$.

Let us study now $P_{3k+1} \Box P_n$ for $k \ge 1$ and $n \ge 2$. Consider the following sets of vertices of P_{3k+1} .

• $X = \{0, 2, 4, 5, 7, 8, \dots, 3k - 2, 3k - 1\} = \{0\} \cup \{3i + 2/i \in \{0, 1, \dots, k - 1\}\} \cup \{3i + 1/i \in \{1, \dots, k - 1\}\}$

•
$$I = \{0, 3, 6, \dots, 3k\} = \{3i/i \in \{0, 1, \dots, k\}\}$$

• $J = \{1, 4, 7, \dots, 3k - 2\} = \{3i + 1/i \in \{0, 1, \dots, k - 1\}\}$

•
$$K = \{0, 2, 5, 8, \dots, 3k - 1\} = \{0\} \cup \{3i + 2/i \in \{0, 1, \dots, k - 1\}\}.$$

Figure 2: The dominating set E_n

Ι

Let E_n (see Figure 2) be the set of vertices of $P_{3k+1} \Box P_n$ consisting of the vertices

• (a,0) for $a \in X$

•
$$(a, b)$$
 for $b \equiv 1 \mod 3$ $(1 \le b < n)$ and $a \in$

- (a,b) for $b \equiv 2 \mod 3$ $(2 \le b < n)$ and $a \in J$
- (a,b) for $b \equiv 0 \mod 3$ $(3 \le b < n)$ and $a \in K$.

Lemma 4 For any $k \ge 1$, $n \ge 2$ the set E_n is a dominating set of $P_{3k+1} \Box P_n$ and $|E_n| = k(n+1) + \lceil \frac{2n-3}{3} \rceil$.

Proof : It is immediate to verify that

• All vertices of P_{3k+1} are dominated by the vertices of X

108

100

102

104

106

88

90

92

94

96

98

- The vertices of P_{3k+1} not dominated by some of I are $\{2, 5, \dots, 3k-1\} \subset K \subset X$
- The vertices of P_{3k+1} not dominated by some of J are $\{0, 3, 6, \dots, 3k\} = I$
- The vertices of P_{3k+1} not dominated by some of K are $\{4, 7, \ldots, 3k-2\} \subset J$.

Therefore any vertex of some P_{3k+1}^i is dominated by a vertex in $P_{3k+1}^i \cap E_n$ or in $PP_{3k+1}^{i-1} \cap E_n$ (if $i \ge 1$). Furthermore |X| = 2k, |I| = |K| = k + 1, and |J| = kthus $|E_n| = k(n+1) + \lceil \frac{2n-3}{3} \rceil$.

The last case will be $P_{3k+2} \Box P_n$ for $k \ge 0$ and $n \ge 2$. Consider the following sets of vertices of P_{3k+2} .

• $X = \{0, 1, 3, 4, \dots, 3k, 3k+1\} = \{3i/i \in \{0, 1, \dots, k\}\} \cup \{3i+1/i \in \{0, 1, \dots, k\}\}$
• $Y = \{2, 5, 8, \dots, 3k - 1\} = \{3i + 2/i \in \{0, 1, \dots, k - 1\}\}$
• $I = \{0, 3, 6, \dots, 3k\} = \{3i/i \in \{0, 1, \dots, k\}\}$

•
$$J = \{1, 4, 7, \dots, 3k+1\} = \{3i+1/i \in \{0, 1, \dots, k\}\}$$

•
$$K = \{0, 2, 5, 8 \dots, 3k - 1\} = \{0\} \cup \{3i + 2/i \in \{0, 1, \dots, k - 1\}\}.$$

124

110

112

114

116

118

120

122

Figure 3: The dominating set F_n

Let F_n (see Figure 3) be the set of vertices of $P_{3k+2} \Box P_n$ consisting of the vertices

126

128

130

- (a,0) for $a \in X$
- (a,1) for $a \in Y$

• (a,b) for $b \equiv 2 \mod 3$ $(2 \le b < n)$ and $a \in I$

- (a,b) for $b \equiv 0 \mod 3$ $(3 \le b < n)$ and $a \in J$
- (a,b) for $b \equiv 1 \mod 3$ $(4 \le b < n)$ and $a \in K$.

Lemma 5 For any $k \ge 0$, $n \ge 2$, the set F_n is a dominating set of $P_{3k+2} \Box P_n$ and $|F_n| = k(n+1) + n$.

Proof : It is immediate to verify that

- All vertices of P_{3k+2} are dominated by the vertices of X
 - The vertices of P_{3k+2} not dominated by some of Y are $\{0, 1, 4, \dots, 3k+1\} \subset X$
 - The vertices of P_{3k+2} not dominated by some of I are $\{2, 5, \dots, 3k-1\} = Y \subset K$
 - The vertices of P_{3k+2} not dominated by some of J are $\{0, 3, \ldots, 3k\} = I$
- The vertices of P_{3k+2} not dominated by some of K are $\{4, 7, \ldots, 3k+1\} \subset J$. Therefore any vertex of some P_{3k+2}^i is dominated by a vertex in $P_{3k+2}^i \cap F_n$ or in $P_{3k+2}^{i-1} \cap F_n$ (if $i \geq 1$). Furthermore |X| = 2k+2, |Y| = k and |I| = |J| = |K| = k+1, thus $|F_n| = k(n+1) + n$.
- 144

146

150

132

134

136

138

140

142

3 Optimality of the three sets

The structure of $P_m \Box P_n$ implies the following strong property.

Proposition 6 Let S be a dominating set of $P_m \Box P_n$. For any $n' \leq n$ consider

$$S_{n'} = \bigcup_{i=0,\dots,n'-1} P_m^i \cap S.$$

Then $S_{n'}$ is a dominating set of $P_m \Box P_{n'}$.

Notice that the three sets D_n , E_n , F_n satisfy, for example, $(D_n)_{n'} = D_{n'}$ therefore we can use the same notation without ambiguity.

If S is a dominating set of $P_m \Box P_n$, for any i in $\{0,1,\ldots,n-1\}$ let $s_i = |P_m^i \cap S|$. We have thus $|S| = \sum_{i=0}^{n-1} s_i$.

Proposition 7 Let S be a dominating set of $P_m \Box P_n$. Let $i \in \{1, 2, ..., n-1\}$ then $s_{i-1} + 2s_i \ge m$.

154 **Proof**: Any vertex of P_m^i must be dominated by some vertex of $P_m^i \cap S$ or of $P_m^{i-1} \cap S$. A vertex in $P_m^i \cap S$ dominates at most two vertices of P_m^i and a vertex in 156 $P_m^{i-1} \cap S$ dominates a unique vertex of P_m^i .

Lemma 8 Let $k \ge 0$ and $n \ge 2$, $n \ne 3$, then $\gamma(P_{3k+2} \Box P_n) = k(n+1) + n$.

158	Proof : The case $n = 2$ is immediate by Theorem 1.
	Let S be a dominating set of $P_{3k+2} \Box P_n$ with $n \ge 4$.
160	By Proposition 7, $s_i \leq k$ implies $s_{i-1} + s_i \geq m - s_i \geq 2k + 2$. Therefore for any
	$i \in \{2, \dots, n-1\}$ we get $s_i \ge k+1$ or $s_{i-1} + s_i \ge 2(k+1)$.
162	Apply the following algorithm:

	$I := \emptyset; \ J := \emptyset; \ i := n - 1;$
164	while $i \ge 5$ do
	$\mathbf{if} \ s_i \ge k+1 \ \mathbf{then}$
166	$I := I \cup \{i\}; i := i - 1$
	else
168	$J := J \cup \{i, i-1\}; i := i-2$
	end if
170	end while

If n = 4 or n = 5 the algorithm only sets I and J to \emptyset . In the general case, the algorithm stop when i = 3 or i = 4 and we get two disjoint sets I, J with $\{0, 1, \ldots, n-1\} = \{0, 1, 2, 3\} \cup I \cup J$ or $\{0, 1, \ldots, n-1\} = \{0, 1, 2, 3, 4\} \cup I \cup J$. Furthermore $\sum_{i \in I} s_i \geq |I|(k+1)$ and $\sum_{i \in J} s_i \geq |J|(k+1)$. We have thus one of the two inequalities

$$|S| - (s_0 + s_1 + s_2 + s_3) \ge (n - 4)(k + 1)$$

 or

$$|S| - (s_0 + s_1 + s_2 + s_3 + s_4) \ge (n - 5)(k + 1)$$

In the first case by Proposition 6 and Theorem 1 we get $s_0 + s_1 + s_2 + s_3 \ge$ $\gamma(P_{3k+2}\Box P_4) = \gamma(P_4\Box P_{3k+2}) = 3k + 2 + \lceil \frac{6k+4}{3} \rceil = 5k + 4$. Thus $|S| \ge (n+1)k + n$. 172 In the second case we get $s_0 + s_1 + s_2 + s_3 + s_4 \ge \gamma(P_5 \Box P_{3k+2}) = 6k + 5$. Thus again $|S| \ge (n+1)k + n$. 174 Therefore for any $n \geq 4$ we have $\gamma(P_{3k+2} \Box P_n) \geq k(n+1) + n$ and the equality occurs by Lemma 5. 176 Notice that, by Theorem 1, $\gamma(P_{3k+2}\Box P_3) = 3k + 2 + \lfloor \frac{3k+2}{4} \rfloor \neq 4k + 3$ for $k \geq 1$. **Lemma 9** Let $k \ge 1$ and $n \ge 2$, $n \ne 3$, then $\gamma(P_{3k+1} \Box P_n) = k(n+1) + \lceil \frac{2n-3}{3} \rceil$. 178 **Proof**: Consider some fixed $k \ge 1$. Notice first that by Theorem 1, $\gamma(P_{3k+1} \Box P_2) =$ 3k + 1, $\gamma(P_{3k+1} \Box P_4) = 5k + 2$ and $\gamma(P_{3k+1} \Box P_5) = 6k + 3$ thus the result is true for 180 n < 5.We knows, by Lemma 4, that for any $n \ge 2$ the set E_n is a dominating set of 182 $P_{3k+1} \Box P_n$ and $|E_n| = (n+1)k + \lceil \frac{2n-3}{3} \rceil$. We will prove now that E_n is a minimum dominating set . 184 If this is not true consider n minimum, $n \ge 2$, such that there exists a dominating set S of $P_{3k+1} \Box P_n$ with $|S| < |E_n|$. We knows that $n \ge 6$. 186 For $n' \leq n$ let $S_{n'} = \bigcup_{i=0,\dots,n'-1} P_{3k+1}^i \cap S$ and $s_{n'} = |P_{3k+1}^{n'} \cap S|$. 188 **Case 1** $n = 3p, p \ge 2$. Notice first that $|E_n| - |E_{n-1}| = k$ and $|E_n| - |E_{n-2}| = 2k + 1$. We have also by 190 hypothesis $|S| \leq |E_n| - 1$. By minimality of n, E_{n-1} is minimum thus $|S_{n-1}| \geq |E_n| - 1$. $|E_{n-1}|$. Therefore $s_{n-1} = |S| - |S_{n-1}| \le |E_n| - 1 - |E_{n-1}| = k - 1$. On the other hand, 192 by Proposition 7, $s_{n-2}+2s_{n-1} \ge 3k+1$ thus $s_{n-2}+s_{n-1} \ge (3k+1)-(k-1)=2k+2$. This implies $|S_{n-2}| \leq |S_n| - 2k - 2 \leq |E_n| - 2k - 3 < |E_n| - 2k - 1 = |E_{n-2}|$, thus 194 E_{n-2} is not minimum in contradiction with *n* minimum.

196	Case 2 $n = 3p + 1, p \ge 2.$
	In this case we have $ E_n - E_{n-1} = k+1$ and $ E_n - E_{n-2} = 2k+1$. We have
198	also by hypothesis $ S \leq E_n - 1$. By minimality of n , E_{n-1} is minimum thus $ S_{n-1} \geq E_{n-1} $. Therefore $s_{n-1} = S - S_{n-1} \leq E_n - 1 - E_{n-1} = k$. On the
200	other hand, by Proposition 7, $s_{n-2} + 2s_{n-1} \ge 3k + 1$ thus $s_{n-2} + s_{n-1} \ge 2k + 1$.
	This implies $ S_{n-2} \leq S_n - 2k - 1 < E_n - 2k - 1 = E_{n-2} $, thus E_{n-2} is not
202	minimum in contradiction with n minimum.
	Case 3 $n = 3p + 2, p \ge 2$. In this case, $ E_n - E_{n-2} = 2k + 2$ and we cannot proceed like case 1 and case 2.
204	Hopefully, by Lemma 8, $\gamma(P_{3k+1} \Box P_{3p+2}) = \gamma(P_{3p+2} \Box P_{3k+1}) = p(3k+2) + 3k + 1 = p(3k+2) + 3k +$
206	$k(3p+3) + 2p + 1$. Therefore, since $n+1 = 3p+3$ and $\lceil \frac{2n-3}{3} \rceil = 2p+1$, E_n is
	minimum.
208	
	Lemma 10 Let $k \ge 2$ and $n \ge 2$, $n \ne 3$ then $\gamma(P_{3k} \Box P_n) = k(n+1) + \lfloor \frac{n-2}{3} \rfloor$.
210	Proof :
	Case 1 $n = 3p + 1, p \ge 1.$
212	By Lemma 9, $\gamma(P_{3k} \Box P_{3p+1}) = \gamma(P_{3p+1} \Box P_{3k}) = p(3k+1) + 2k - 1 = k(3p+2) + p - 1.$
	We obtain the conclusion since $3p + 2 = n + 1$ and $\lfloor \frac{n-2}{3} \rfloor = p - 1$.
214	Case 2 $n = 3p + 2, p \ge 0.$ By Lemma 8, $\gamma(P_{3k} \Box P_{3p+2}) = \gamma(P_{3p+2} \Box P_{3k}) = p(3k+1) + 3k = k(3p+3) + p.$ We
216	by Lemma 8, $\gamma(1_{3k} \Box 1_{3p+2}) = \gamma(1_{3p+2} \Box 1_{3k}) = p(3k+1) + 3k = k(3p+3) + p$. We obtain again the conclusion since $3p+3 = n+1$ and $\lfloor \frac{n-2}{3} \rfloor = p$.
210	Case 3 $n = 3p$, $p \ge 2$.
218	We knows, by Lemma 3, that the set D_n is a dominating set of $P_{3k} \Box P_n$ and $ D_n =$
	$k(n+1) + \lfloor \frac{n-2}{3} \rfloor.$
220	If D_n is not a minimum dominating set let S be a dominating set with $ S < D_n $.
	For $n' \le n$ let $S_{n'} = \bigcup_{i=0,\dots,n'-1} P_{3k}^i \cap S$ and $s_{n'} = P_{3k}^{n'} \cap S $.
222	Because $n = 3p$ and $p \ge 2$ we get $ D_n - D_{n-1} = k$ and $ D_n - D_{n-2} = 2k+1$. We
	have also by hypothesis $ S \leq D_n - 1$. Notice that, by Lemma 8, $\gamma(P_{3k} \Box P_{n-1}) = \gamma(P_{2k} \Box P_{n-1}) + 2k = km + \lfloor \frac{n-3}{2} \rfloor = \lfloor \frac{n}{2} \rfloor$
224	$\gamma(P_{3p-1} \Box P_{3k}) = (p-1)(3k+1) + 3k = kn + \lfloor \frac{n-3}{3} \rfloor = D_{n-1} $ thus D_{n-1} is minimum and $ S_{n-1} \ge D_{n-1} $.
226	Therefore $s_{n-1} = S - S_{n-1} \le D_n - 1 - D_{n-1} = k - 1$. By Proposi-
	tion 7, $s_{n-2} + 2s_{n-1} \ge 3k$ thus $s_{n-2} + s_{n-1} \ge 2k + 1$. This implies $ S_{n-2} \le 3k$
228	$ S - 2k - 1 < D_n - 2k - 1 = D_{n-2} $. On the other hand, by Lemma 9,
	$\gamma(P_{3k} \Box P_{3p-2}) = \gamma(P_{3p-2} \Box P_{3k}) = (p-1)(3k+1) + 2k - 1 = k(n-1) + \lfloor \frac{n-4}{3} \rfloor = D_{n-2} $
230	thus D_{n-2} is minimum, a contradiction.
232	Notice that, by Theorem 1, $\gamma(P_{3k} \Box P_3) = 3k + \lceil \frac{3k}{4} \rceil \neq 4k$ for $k \ge 3$.
-	(1, 1, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,

234 4 Conclusions

Putting together Lemma 8, Lemma 9, Lemma 10 and the case m = 3 or n = 3, we obtain $\gamma(P_m \Box P_n)$ for any m, n (Theorem 2).

As a conclusion, notice that the minimum dominating sets we build for $P_5 \Box P_n$ and

236

²³⁸ $P_6 \square P_n$ are different than those proposed by Liu and al.([13]). An open problem would be to characterize all minimum dominating sets of $P_m \square P_n$.

References

240

242

244

246

248

252

256

- [1] T.Y. Chang, W.E. Clark: "The Domination numbers of the $5 \times n$ and $6 \times n$ grid graphs", *J.Graph Theory*, **17** (1993) 81-107.
- [2] M. El-Zahar, C.M. Pareek: "Domination number of products of graphs", Ars Combin., 31 (1991) 223-227.
- [3] M. El-Zahar, S. Khamis, Kh. Nazzal: "On the Domination number of the Cartesian product of the cycle of length n and any graph", *Discrete App. Math.*, 155 (2007) 515-522.
- [4] R.J. Faudree, R.H. Schelp: 'The Domination number for the product of graphs", Congr. Numer., 79 (1990) 29-33.
- [5] S. Gravier, M. Mollard: "On Domination numbers of Cartesian product of paths", Discrete App. Math., 80 (1997) 247-250.
 - [6] B. Hartnell, D. Rall: "On dominating the Cartesian product of a graph and K₂", Discuss. Math. Graph Theory, 24(3) (2004) 389-402.
- [7] T.W. Haynes, S.T. Hedetniemi, P.J. Slater: Fundamentals of Domination in Graphs, Marcel Dekker, Inc. New York, 1998.
 - [8] T.W. Haynes, S.T. Hedetniemi, P.J. Slater eds.: Domination in Graphs: Advanced Topics, Marcel Dekker, Inc. New York, 1998.
- ²⁵⁸ [9] M.S. Jacobson, L.F. Kinch: "On the Domination number of products of graphs I", Ars Combin., **18** (1983) 33-44.
- [10] S. Klavžar, N. Seifter: "Dominating Cartesian products of cycles", Discrete App. Math., 59 (1995) 129-136.
- ²⁶² [11] J. Liu, X.D. Zhang, X. Chen, J.Meng: "The Domination number of Cartesian products of directed cycles", *Inf. Process. Lett.*, **110(5)** (2010) 171-173.
- [12] J. Liu, X.D. Zhang, X. Chen, J.Meng: "On Domination number of Cartesian product of directed cycles", *Inf. Process. Lett.*, **111(1)** (2010) 36-39.
- ²⁶⁶ [13] J. Liu, X.D. Zhang, X. Chen, J.Meng: "On Domination number of Cartesian product of directed paths", *J. Comb. Optim.*, **22(4)** (2011) 651-662.
- ²⁶⁸ [14] R.S. Shaheen: "Domination number of toroidal grid digraphs", *Utilitas Mathematica* **78**(2009) 175-184.
- [15] M.Mollard: "On Domination of Cartesian product of directed cycles", submitted (2011). Manuscript available on line: http://hal.archives-ouvertes.fr/hal-00576481/fr/.